1
|
Yin Y, Hu C, Sun J, Huang K, Yan CG, Wang L, Han Y. Synthesis of Indole- and Benzofuran-Based Benzylic Sulfones by Palladium-Catalyzed Sulfonylation of ortho-Iodoaryl Allenes. J Org Chem 2024; 89:16653-16662. [PMID: 39503529 DOI: 10.1021/acs.joc.4c01953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
A highly efficient palladium-catalyzed domino coupling reaction of ortho-iodoaryl allene with sodium sulfonates under mild conditions is described. This novel method provides a practical protocol to access diverse indole- and benzofuran-containing sulfones by simultaneous construction of C(sp2)-C(sp2) bond and a C(sp3)-S bonds in one pot. The salient features of this transformation include simple operations, broad substrate scope, and good functional group tolerance.
Collapse
Affiliation(s)
- Yuan Yin
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Cangzhu Hu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Jing Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Kun Huang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
- Jiangsu Lianhuan Pharmaceutical Co., Ltd., Yangzhou, Jiangsu 225002, China
| | - Chao-Guo Yan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Ying Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| |
Collapse
|
2
|
Su J, Huang M, Yan Z, Tang S, Zhang X, Sun J. Aminosulfonylation of Rhodium Carbene via Ylide Formation and 1,4-Sulfonyl Rearrangement. Org Lett 2024; 26:9592-9597. [PMID: 39470634 DOI: 10.1021/acs.orglett.4c03733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
We report here the use of pyridin-2-yl benzenesulfonates as sulfonylation reagents in a difunctionalization reaction based on oxy-pyridinium ylide chemistry, providing an effective protocol for the installation of both a sulfonyl group and a pyridone moiety into one molecule. Density functional theory (DFT) calculations disclose that the reaction process might proceed through sequential metal-bound ylide formation, keto-enol tautomerism, and the migratory rearrangement of the sulfonyl group.
Collapse
Affiliation(s)
- Jiahui Su
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Meirong Huang
- Shenzhen Bay Laboratory, Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zichun Yan
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Shengbiao Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Xinhao Zhang
- Shenzhen Bay Laboratory, Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
3
|
Chen X, Tian J, Wang S, Wang C, Zong L. Toward Bicalutamide Analogues with High Structural Diversity Using Catalytic Asymmetric Oxohydroxylation. J Org Chem 2024; 89:3907-3911. [PMID: 38427963 DOI: 10.1021/acs.joc.3c02735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
A catalytic enantioselective synthesis of bicalutamide derivatives with promising potentials in prostate cancer treatment has been disclosed. The key intermediates, α-hydroxy-β-keto esters, were efficiently constructed through cinchoninium-mediated asymmetric oxohydroxylation of easily accessible alkenes with potassium permanganate. Good yields and high levels of asymmetric induction are achieved. This method provides a new synthetic route to bicalutamide analogues with high structural diversity, which will beneficially support subsequent structure-activity relationship studies and boost prostate cancer drug development.
Collapse
Affiliation(s)
- Xinrui Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Jinxin Tian
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Shuangshuang Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chao Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Lili Zong
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
4
|
Gupta A, Laha JK. Growing Utilization of Radical Chemistry in the Synthesis of Pharmaceuticals. CHEM REC 2023; 23:e202300207. [PMID: 37565381 DOI: 10.1002/tcr.202300207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/19/2023] [Indexed: 08/12/2023]
Abstract
Our current unhealthy lifestyle and the exponential surge in the population getting affected by a variety of diseases have made pharmaceuticals or drugs an imperative part of life, making the development of innovative strategies for drug discovery or the introduction of refined, cost-effective and modern technologies for the synthesis of clinically used drugs, a need of the hour. Ever since their discovery, free radicals and radical cations or anions as reactive intermediates have captivated the chemists, resulting in an exceptional utilization of these moieties throughout the field of chemical synthesis, owing to their unprecedented and widespread reactivity. Sticking with the idea of not judging the book by its cover, despite the conventional thought process of radicals being unstable and difficult to control entities, scientists and academicians around the globe have done an appreciable amount of work utilizing both persistent as well as transient radicals for a variety of organic transformations, exemplifying them with the synthesis of significant biologically active pharmaceutical ingredients. This review truly accounts for the organic radical transformations including radical addition, radical cascade cyclization, radical/radical cross-coupling, coupling with metal-complexes and radical cations coupling with nucleophiles, that offers fascinating and unconventional approaches towards the construction of intricate structural frameworks of marketed APIs with high atom- and step-economy; complementing the otherwise employed traditional methods. This tutorial review presents a comprehensive package of diverse methods utilized for radical generation, featuring their reactivity to form critical bonds in pharmaceutical total synthesis or in building key starting materials or intermediates of their synthetic journey, acknowledging their excellence, downsides and underlying mechanisms, which are otherwise poorly highlighted in the literature. Despite great achievements over the past few decades in this area, many challenges and obstacles are yet to be unraveled to shorten the distance between the academics and the industry, which are all discussed in summary and outlook.
Collapse
Affiliation(s)
- Anjali Gupta
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education & Research (NIPER) S.A.S. Nagar, Sahibzada Ajit Singh Nagar, Mohali, 160062, India
| | - Joydev K Laha
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education & Research (NIPER) S.A.S. Nagar, Sahibzada Ajit Singh Nagar, Mohali, 160062, India
| |
Collapse
|
5
|
Zhang B, Liu C, Yang Z, Zhang S, Hu X, Li B, Mao M, Wang X, Li Z, Ma S, Zhang S, Qin C. Discovery of BWA-522, a First-in-Class and Orally Bioavailable PROTAC Degrader of the Androgen Receptor Targeting N-Terminal Domain for the Treatment of Prostate Cancer. J Med Chem 2023; 66:11158-11186. [PMID: 37556600 DOI: 10.1021/acs.jmedchem.3c00585] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
We report small molecular PROTAC compounds targeting the androgen receptor N-terminal domain (AR-NTD), which were obtained by tethering AR-NTD antagonists and different classes of E3 ligase ligands through chemical linkers. A representative compound, BWA-522, effectively induces degradation of both AR-FL and AR-V7 and is more potent than the corresponding antagonist against prostate cancer (PC) cells in vitro. We have shown that the degradation of AR-FL and AR-V7 proteins by BWA-522 can suppress the expression of AR downstream proteins and induce PC cell apoptosis. BWA-522 achieves 40.5% oral bioavailability in mice and 69.3% in beagle dogs. In a LNCaP xenograft model study, BWA-522 was also proved to be an efficacious PROTAC degrader, resulting in 76% tumor growth inhibition after oral administration of a dose of 60 mg/kg. This study indicates that BWA-522 is a promising AR-NTD PROTAC for the treatment of AR-FL- and AR-V7-dependent tumors.
Collapse
Affiliation(s)
- Bowen Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
| | - Chang Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
| | - Zhenqian Yang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
| | - Sai Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
- Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao, Shandong 266003, China
| | - Xiaolin Hu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
| | - Baohu Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
| | - Mei Mao
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
| | - Xiao Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
- Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao, Shandong 266003, China
| | - Zhuoyue Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
- Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao, Shandong 266003, China
| | - Shumin Ma
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
- Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao, Shandong 266003, China
| | - Siqi Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
- Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao, Shandong 266003, China
| | - Chong Qin
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
- Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao, Shandong 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong 266137, China
| |
Collapse
|
6
|
Zhuang JQ, Guo YQ, Deng CL, Zhang XG, Tu HY. TBAI-Mediated Cyclization and Methylsulfonylation of Propargylic Amides with Dimethyl Sulfite. J Org Chem 2023. [PMID: 37467194 DOI: 10.1021/acs.joc.3c00785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
A tetramethylammonium iodide (TBAI)-mediated cyclization and methylsulfonylation of propargylic amides enabled by dimethyl sulfite as a SO2 surrogate and methyl source have been developed. The transition metal-free and oxidant-free reaction provides a practical and efficient approach for the selective synthesis of methylsulfonyl oxazoles in moderate to excellent yields with good functional group compatibility.
Collapse
Affiliation(s)
- Jia-Qing Zhuang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Ying-Qiong Guo
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Chen-Liang Deng
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xing-Guo Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Hai-Yong Tu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
7
|
Li Q, Zhou L, Qin S, Huang Z, Li B, Liu R, Yang M, Nice EC, Zhu H, Huang C. Proteolysis-targeting chimeras in biotherapeutics: Current trends and future applications. Eur J Med Chem 2023; 257:115447. [PMID: 37229829 DOI: 10.1016/j.ejmech.2023.115447] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023]
Abstract
The success of inhibitor-based therapeutics is largely constrained by the acquisition of therapeutic resistance, which is partially driven by the undruggable proteome. The emergence of proteolysis targeting chimera (PROTAC) technology, designed for degrading proteins involved in specific biological processes, might provide a novel framework for solving the above constraint. A heterobifunctional PROTAC molecule could structurally connect an E3 ubiquitin ligase ligand with a protein of interest (POI)-binding ligand by chemical linkers. Such technology would result in the degradation of the targeted protein via the ubiquitin-proteasome system (UPS), opening up a novel way of selectively inhibiting undruggable proteins. Herein, we will highlight the advantages of PROTAC technology and summarize the current understanding of the potential mechanisms involved in biotherapeutics, with a particular focus on its application and development where therapeutic benefits over classical small-molecule inhibitors have been achieved. Finally, we discuss how this technology can contribute to developing biotherapeutic drugs, such as antivirals against infectious diseases, for use in clinical practices.
Collapse
Affiliation(s)
- Qiong Li
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Li Zhou
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, PR China
| | - Siyuan Qin
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Zhao Huang
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Bowen Li
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Ruolan Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Mei Yang
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Huili Zhu
- Department of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, 610041, PR China.
| | - Canhua Huang
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China; School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
8
|
Zhang X, Wang L, Zhu Q. Magnetically recyclable Cu-BTC@Fe 3O 4-catalyzed chlorosulfonylation of vinylarenes. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2112582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Xin Zhang
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou, P. R. China
| | - Liang Wang
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou, P. R. China
- School of Chemical and Pharmaceutical Engineering, Changzhou Vocational Institute of Engineering, Changzhou, P. R. China
| | - Qiaoyong Zhu
- Changzhou Precision Testing Technology Co., LTD, Changzhou, P. R. China
| |
Collapse
|
9
|
Abstract
The androgen receptor (AR) plays a key role in the maintenance of muscle and bone and the support of male sexual-related functions, as well as in the progression of prostate cancer. Accordingly, AR-targeted therapies have been developed for the treatment of related human diseases and conditions. AR agonists are an important class of drugs in the treatment of bone loss and muscle atrophy. AR antagonists have also been developed for the treatment of prostate cancer, including metastatic castration-resistant prostate cancer (mCRPC). Additionally, selective AR degraders (SARDs) have been reported. More recently, heterobifunctional degrader molecules of AR have been developed, and four such compounds are now in clinical development for the treatment of human prostate cancer. This review attempts to summarize the different types of compounds designed to target AR and the current frontiers of research on this important therapeutic target.
Collapse
Affiliation(s)
- Weiguo Xiang
- Departments of Internal Medicine, Pharmacology and Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Shaomeng Wang
- Departments of Internal Medicine, Pharmacology and Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
10
|
Wang X, You F, Xiong B, Chen L, Zhang X, Lian Z. Metal- and base-free tandem sulfonylation/cyclization of 1,5-dienes with aryldiazonium salts via the insertion of sulfur dioxide. RSC Adv 2022; 12:16745-16750. [PMID: 35754872 PMCID: PMC9170380 DOI: 10.1039/d2ra03034a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 05/31/2022] [Indexed: 02/05/2023] Open
Abstract
A metal- and base-free 5-endo-trig sulfonylative cyclization between 1,5-dienes, aryldiazonium salts and SO2 (from SOgen) is presented. This method could successfully produce sulfonylated pyrrolin-2-ones in one pot with excellent regioselectivity and good-to-excellent yields. This strategy features mild reaction conditions and broad substrate scope. Moreover, a scale-up reaction and three synthetic applications demonstrate the practicality of this method. Lastly, control experiments indicate that the 5-endo-trig sulfonylative cyclization may proceed in a radical pathway. A new metal- and base-free method for synthesizing sulfonylated pyrrolin-2-ones from 1,5-dienes, aryldiazonium salts and SO2 is presented. This transformation features mild reaction conditions and broad substrate scope.![]()
Collapse
Affiliation(s)
- Xiaohong Wang
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, West China School of Pharmacy, Sichuan University Chengdu 610041 China
| | - Fengzhi You
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, West China School of Pharmacy, Sichuan University Chengdu 610041 China
| | - Baojian Xiong
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, West China School of Pharmacy, Sichuan University Chengdu 610041 China
| | - Lei Chen
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, West China School of Pharmacy, Sichuan University Chengdu 610041 China
| | - Xuemei Zhang
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, West China School of Pharmacy, Sichuan University Chengdu 610041 China
| | - Zhong Lian
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, West China School of Pharmacy, Sichuan University Chengdu 610041 China
| |
Collapse
|
11
|
Liu Y, Bai S, Du Y, Qi X, Gao H. Expeditious and Efficient
ortho
‐Selective Trifluoromethane‐sulfonylation of Arylhydroxylamines. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yue Liu
- School of Chemistry and Chemical Engineering Shandong University 27 South Shanda Road Ji'nan 250100, Shandong China
| | - Songlin Bai
- National Institute of Biological Sciences Beijing 102206 China
- Tsinghua Institute of Multidisciplinary Biomedical Research Tsinghua University Beijing 100084 China
| | - Yuanbo Du
- School of Chemistry and Chemical Engineering Shandong University 27 South Shanda Road Ji'nan 250100, Shandong China
| | - Xiangbing Qi
- National Institute of Biological Sciences Beijing 102206 China
- Tsinghua Institute of Multidisciplinary Biomedical Research Tsinghua University Beijing 100084 China
| | - Hongyin Gao
- School of Chemistry and Chemical Engineering Shandong University 27 South Shanda Road Ji'nan 250100, Shandong China
| |
Collapse
|
12
|
Li C, Hu DD, Jin RX, Wu BB, Wang CY, Ke Z, Wang XS. Selective 1,4-arylsulfonation of 1,3-enynes via photoredox/nickel dual catalysis. Org Chem Front 2022. [DOI: 10.1039/d1qo01653a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A photoredox/nickel-catalyzed selective 1,4-arylsulfonation of 1,3-enynes to access structurally diverse sulfone-containing allenes has been established with low catalyst loading.
Collapse
Affiliation(s)
- Chao Li
- School of Materials Science & Engineering, School of Chemistry, PCFM Lab, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Duo-Duo Hu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Ruo-Xing Jin
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Bing-Bing Wu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Cheng-Yu Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Zhuofeng Ke
- School of Materials Science & Engineering, School of Chemistry, PCFM Lab, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Xi-Sheng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| |
Collapse
|
13
|
Wei W, Zhong Y, Feng Y, Gao L, Tang H, Pan Y, Ma X, Mo Z. Electrochemically Mediated Direct C(
sp
3
)−H Sulfonylation of Xanthene Derivatives. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wan‐Jie Wei
- Pharmacy School of Guilin Medical University Guilin 541199 People's Republic of China
| | - Yu‐Jing Zhong
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Yu‐Feng Feng
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Lei Gao
- Pharmacy School of Guilin Medical University Guilin 541199 People's Republic of China
| | - Hai‐Tao Tang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Ying‐Ming Pan
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Xian‐Li Ma
- Pharmacy School of Guilin Medical University Guilin 541199 People's Republic of China
| | - Zu‐Yu Mo
- Pharmacy School of Guilin Medical University Guilin 541199 People's Republic of China
| |
Collapse
|
14
|
Liu Y, Bai S, Du Y, Qi X, Gao H. Expeditious and Efficient ortho-Selective Trifluoromethane-sulfonylation of Arylhydroxylamines. Angew Chem Int Ed Engl 2021; 61:e202115611. [PMID: 34904339 DOI: 10.1002/anie.202115611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Indexed: 12/14/2022]
Abstract
A metal- and oxidant-free, practical and efficient method for the synthesis of highly versatile and synthetically useful ortho-trifluoromethanesulfonylated anilines from arylhydroxylamines and trifluoromethanesulfinic chloride was developed. This rapid transformation proceeded smoothly with good yields and excellent ortho-selectivity in the absence of any metals or ligands. Mechanistically, the reaction comprised a noncanonical O-trifluoromethanesulfinylation of the arylhydroxylamine, and the subsequent [2,3]-sigmatropic rearrangement to afford ortho-trifluoromethanesulfonylated aniline derivatives. The practical application of this reaction was demonstrated by further conversion into a series of functional molecules under different reaction conditions.
Collapse
Affiliation(s)
- Yue Liu
- School of Chemistry and Chemical Engineering, Shandong University, 27 South Shanda Road, Ji'nan, 250100, Shandong, China
| | - Songlin Bai
- National Institute of Biological Sciences, Beijing, 102206, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China
| | - Yuanbo Du
- School of Chemistry and Chemical Engineering, Shandong University, 27 South Shanda Road, Ji'nan, 250100, Shandong, China
| | - Xiangbing Qi
- National Institute of Biological Sciences, Beijing, 102206, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China
| | - Hongyin Gao
- School of Chemistry and Chemical Engineering, Shandong University, 27 South Shanda Road, Ji'nan, 250100, Shandong, China
| |
Collapse
|
15
|
Chen GL, He SH, Cheng L, Liu F. Copper-Catalyzed N-Directed Distal C(sp 3)-H Sulfonylation and Thiolation with Sulfinate Salts. Org Lett 2021; 23:8338-8342. [PMID: 34632768 DOI: 10.1021/acs.orglett.1c03075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We herein report a selective and catalytic C(sp3)-H functionalization approach to access amines bearing organo-sulfonyl and organo-thiol groups. This reaction proceeds through a cascade process of N-radical formation, alkyl radical formation via 1,5-HAT, and C-S bond formation, thereby offering a series of functionalized amines. This method could enable primary, secondary, and tertiary C(sp3)-H sulfonylation and thiolation and also exhibits good functional group tolerance.
Collapse
Affiliation(s)
- Guang-Le Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Shi-Hui He
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Liang Cheng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Feng Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China.,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| |
Collapse
|
16
|
Han X, Zhao L, Xiang W, Qin C, Miao B, McEachern D, Wang Y, Metwally H, Wang L, Matvekas A, Wen B, Sun D, Wang S. Strategies toward Discovery of Potent and Orally Bioavailable Proteolysis Targeting Chimera Degraders of Androgen Receptor for the Treatment of Prostate Cancer. J Med Chem 2021; 64:12831-12854. [PMID: 34431670 DOI: 10.1021/acs.jmedchem.1c00882] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Proteolysis targeting chimera (PROTAC) small-molecule degraders have emerged as a promising new type of therapeutic agents, but the design of PROTAC degraders with excellent oral pharmacokinetics is a major challenge. In this study, we present our strategies toward the discovery of highly potent PROTAC degraders of androgen receptor (AR) with excellent oral pharmacokinetics. Employing thalidomide to recruit cereblon/cullin 4A E3 ligase and through the rigidification of the linker, we discovered highly potent AR degraders with good oral pharmacokinetic properties in mice with ARD-2128 being the best compound. ARD-2128 achieves 67% oral bioavailability in mice, effectively reduces AR protein and suppresses AR-regulated genes in tumor tissues with oral administration, leading to the effective inhibition of tumor growth in mice without signs of toxicity. This study supports the development of an orally active PROTAC AR degrader for the treatment of prostate cancer and provides insights and guidance into the design of orally active PROTAC degraders.
Collapse
Affiliation(s)
- Xin Han
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lijie Zhao
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Weiguo Xiang
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Chong Qin
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bukeyan Miao
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Donna McEachern
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yu Wang
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hoda Metwally
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lu Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Aleksas Matvekas
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bo Wen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Shaomeng Wang
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
17
|
Wang Q, Liu A, Wang Y, Ni C, Hu J. Copper-Mediated Cross-Coupling of Diazo Compounds with Sulfinates. Org Lett 2021; 23:6919-6924. [PMID: 34410732 DOI: 10.1021/acs.orglett.1c02481] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A copper-mediated cross-coupling reaction between a diazo compound and a sodium alkane(arene)sulfinate gives a sulfone as the product. This reaction proceeds under mild conditions and features excellent functional group compatibility. A wide range of sodium alkane(arene)sulfinates were successfully applied in this chemistry. Mechanistic studies revealed that the overall reaction efficiency of the sulfinates was in line with their nucleophilicity in this reaction.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - An Liu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Yan Wang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Chuanfa Ni
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| |
Collapse
|
18
|
Li Y, Shen L, Zhou M, Xiong B, Zhang X, Lian Z. Copper-Catalyzed Chloro-Arylsulfonylation of Styrene Derivatives via the Insertion of Sulfur Dioxide. Org Lett 2021; 23:5880-5884. [PMID: 34261319 DOI: 10.1021/acs.orglett.1c02001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A copper-catalyzed four-component chloro-arylsulfonylation of styrene derivatives with aryldiazonium tetrafluoroborates, lithium chloride, and ex-situ generated sulfur dioxide (from SOgen) is presented. This sulfonylation features good functional group compatibility, mild reaction conditions, excellent regioselectivity, and good yields. The robustness and potential of this method have also been successfully demonstrated by a gram-scale reaction. Based on experimental study, a radical-involved mechanism is proposed for the transformation.
Collapse
Affiliation(s)
- Yue Li
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital and West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Lin Shen
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital and West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Mi Zhou
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital and West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Baojian Xiong
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital and West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Xuemei Zhang
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital and West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Zhong Lian
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital and West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
19
|
Qian ZM, Zuo KL, Guan Z, He YH. Visible-light-induced sequential sulfonylation/hydroxylation of allylacetamides leading to β-tert-hydroxy sulfones. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.131999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Kandil SB, Kariuki BM, McGuigan C, Westwell AD. Synthesis, biological evaluation and X-ray analysis of bicalutamide sulfoxide analogues for the potential treatment of prostate cancer. Bioorg Med Chem Lett 2021; 36:127817. [PMID: 33513386 DOI: 10.1016/j.bmcl.2021.127817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/09/2021] [Accepted: 01/19/2021] [Indexed: 10/22/2022]
Abstract
The androgen receptor (AR) is a pivotal target for the treatment of prostate cancer (PC) even when the disease progresses toward androgen-independent or castration-resistant forms. In this study, a series of sulfoxide derivatives were prepared and their antiproliferative activity evaluated in vitro against four different human prostate cancer cell lines (22Rv1, DU-145, LNCaP and VCap). Bicalutamide and enzalutamide were used as positive controls. Compound 28 displayed significant enhancement in anticancer activity across the four PC cell lines with IC50 = 9.09 - 31.11 µM compared to the positive controls: bicalutamide (IC50 = 45.20 -51.61 µM) and enzalutamide (IC50 = 11.47 - 53.04 µM). Sulfoxide derivatives of bicalutamide were prepared efficiently from the corresponding sulfides using only one equivalent of mCPBA, limiting the reaction time to 15-30 min and maintaining the temperature at 0 °C. Interestingly, three pairs of sulfoxide diastereomers were separated and NMR comparison of their diastereotopic methylene (CH2) group is presented. X-ray diffraction crystal structure analysis provided relative configuration assignment at the chiral sulfur and carbon centres. Molecular modelling study of the four diastereoisomers of compound 28 is described.
Collapse
Affiliation(s)
- Sahar B Kandil
- School of Pharmacy & Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, Wales, United Kingdom.
| | - Benson M Kariuki
- School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, Wales, United Kingdom
| | - Christopher McGuigan
- School of Pharmacy & Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, Wales, United Kingdom
| | - Andrew D Westwell
- School of Pharmacy & Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, Wales, United Kingdom
| |
Collapse
|
21
|
Peng Z, Hong YY, Peng S, Xu XQ, Tang SS, Yang LH, Xie LY. Photosensitizer-free synthesis of β-keto sulfones via visible-light-induced oxysulfonylation of alkenes with sulfonic acids. Org Biomol Chem 2021; 19:4537-4541. [PMID: 33949605 DOI: 10.1039/d1ob00552a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A practical and environment-friendly methodology for the construction of β-keto sulfones through visible-light induced direct oxysulfonylation of alkenes with sulfonic acids at ambient temperature under open-air conditions was developed. Most importantly, the reaction proceeded smoothly without the addition of any photocatalyst or strong oxidant, ultimately minimizing the production of chemical waste.
Collapse
Affiliation(s)
- Zhen Peng
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China.
| | - Yun-Yun Hong
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China.
| | - Sha Peng
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China.
| | - Xiang-Qun Xu
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China.
| | - Shan-Shan Tang
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China.
| | - Li-Hua Yang
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China.
| | - Long-Yong Xie
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China.
| |
Collapse
|
22
|
Wu Z, Hao S, Hu J, Shen H, Lai M, Liu P, Xi G, Wang P, Zhao S, Zhang X, Zhao M. Copper‐Catalyzed Decarboxylative Reductive Sulfonylation of α‐Oxocarboxylic Acids with Aryl Sulfonyl Hydrazines. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zhiyong Wu
- College of Tobacco Science Flavors and Fragrance Engineering & Technology Research Center of Henan Province Henan Agricultural University 95, Wenhua Road Zhengzhou 450002 P. R. China
| | - Shuai Hao
- College of Tobacco Science Flavors and Fragrance Engineering & Technology Research Center of Henan Province Henan Agricultural University 95, Wenhua Road Zhengzhou 450002 P. R. China
| | - Jingyan Hu
- College of Tobacco Science Flavors and Fragrance Engineering & Technology Research Center of Henan Province Henan Agricultural University 95, Wenhua Road Zhengzhou 450002 P. R. China
| | - Hongtao Shen
- Technology Center China Tobacco Henan Industrial Co., Ltd. 9, 3th Jingkai Avenue Zhengzhou 450000 Henan P. R. China
| | - Miao Lai
- College of Tobacco Science Flavors and Fragrance Engineering & Technology Research Center of Henan Province Henan Agricultural University 95, Wenhua Road Zhengzhou 450002 P. R. China
| | - Pengfei Liu
- College of Tobacco Science Flavors and Fragrance Engineering & Technology Research Center of Henan Province Henan Agricultural University 95, Wenhua Road Zhengzhou 450002 P. R. China
| | - Gaolei Xi
- Technology Center China Tobacco Henan Industrial Co., Ltd. 9, 3th Jingkai Avenue Zhengzhou 450000 Henan P. R. China
| | - Pengfei Wang
- Technology Center China Tobacco Henan Industrial Co., Ltd. 9, 3th Jingkai Avenue Zhengzhou 450000 Henan P. R. China
| | - Shengchen Zhao
- Technology Center China Tobacco Henan Industrial Co., Ltd. 9, 3th Jingkai Avenue Zhengzhou 450000 Henan P. R. China
| | - Xiaoping Zhang
- College of Tobacco Science Flavors and Fragrance Engineering & Technology Research Center of Henan Province Henan Agricultural University 95, Wenhua Road Zhengzhou 450002 P. R. China
| | - Mingqin Zhao
- College of Tobacco Science Flavors and Fragrance Engineering & Technology Research Center of Henan Province Henan Agricultural University 95, Wenhua Road Zhengzhou 450002 P. R. China
| |
Collapse
|
23
|
|
24
|
Wu L, Peng L, Hu Z, Jiao Y, Tang Z. Recent Advances of Sulfonylation Reactions in Water. Curr Org Synth 2020; 17:271-281. [PMID: 32178616 DOI: 10.2174/1570179417666200316124107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 01/17/2020] [Accepted: 02/13/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The sulfonyl groups are general structural moieties present in agrochemicals, pharmaceuticals, and natural products. Recently, many efforts have been focused on developing efficient procedures for preparation of organic sulfones. MATERIALS AND METHODS Water, a proton source, is considered one of the most ideal and promising solvents in organic synthesis for its easy availability, low cost, nontoxic and nonflammable characteristics. From the green and sustainable point of view, more and more reactions are designed proceeding in water. OBJECTIVE The review focuses on recent advances of sulfonylation reactions proceeding in water. Sulfonylation reactions using sodium sulfinates, sulfonyl hydrazides, sulfinic acids, and sulfonyl chlorides as sulfonating agents were introduced in detail. RESULTS AND DISCUSSION In this review, sulfonylation reactions proceeding in water developed in recent four yields were presented. Sulfonylation reactions using water as solvent have attracted more and more attention because water is one of the most ideal and promising solvents in organic synthesis for its facile availability, low cost, nontoxic and nonflammable properties. CONCLUSION Numerous sulfonating agents such as sodium sulfinates, sulfonyl hydrazides, sulfinic acid, sulfonyl chlorides and disulfides are efficient for sulfonylation reactions which proceed in water.
Collapse
Affiliation(s)
- Li Wu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Lifen Peng
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Zhifang Hu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yinchun Jiao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Zilong Tang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
25
|
Ferroni C, Varchi G. Non-Steroidal Androgen Receptor Antagonists and Prostate Cancer: A Survey on Chemical Structures Binding this Fast-Mutating Target. Curr Med Chem 2019; 26:6053-6073. [PMID: 30209993 DOI: 10.2174/0929867325666180913095239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 02/01/2023]
Abstract
The Androgen Receptor (AR) pathway plays a major role in both the pathogenesis and progression of prostate cancer. In particular, AR is chiefly involved in the development of Castration-Resistant Prostate Cancer (CRPC) as well as in the resistance to the secondgeneration AR antagonist enzalutamide, and to the selective inhibitor of cytochrome P450 17A1 (CYP17A1) abiraterone. Several small molecules acting as AR antagonists have been designed and developed so far, also as a result of the ability of cells expressing this molecular target to rapidly develop resistance and turn pure receptor antagonists into ineffective or event detrimental molecules. This review covers a survey of most promising classes of non-steroidal androgen receptor antagonists, also providing insights into their mechanism of action and efficacy in treating prostate cancer.
Collapse
Affiliation(s)
- Claudia Ferroni
- Institute of Organic Synthesis and Photoreactivity - ISOF, Italian National Research Council, Bologna, Italy
| | - Greta Varchi
- Institute of Organic Synthesis and Photoreactivity - ISOF, Italian National Research Council, Bologna, Italy
| |
Collapse
|
26
|
Zamagni A, Cortesi M, Zanoni M, Tesei A. Non-nuclear AR Signaling in Prostate Cancer. Front Chem 2019; 7:651. [PMID: 31616657 PMCID: PMC6775214 DOI: 10.3389/fchem.2019.00651] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 09/11/2019] [Indexed: 11/17/2022] Open
Abstract
Despite the key role played by androgen receptor (AR) in tumor cell aggressiveness and prostate cancer (PCa) progression, its function in the tumor microenvironment (TME) is still controversial. Increasing studies highlight the crucial role played by TME modulation in treatment outcome and tumor cell spreading. In this context, targeting specific constituents of the TME could be considered an alternative approach to classic treatments directed against cancer cells. Currently, androgen deprivation therapy (ADT) is a routinely adopted strategy in the management of PCa, with initial success, and consecutive fail. A possible justification to this is the fact that ADT aims to target all the transcription/translation-related activities of AR, which are typical of tumor epithelial cells. Less is still known about side effects of ADT on TME. Cancer Associated Fibroblasts (CAFs), for example, express a classic AR, mostly confined in the extra-nuclear portion of the cell. In CAFs ADT exerts a plethora of non-transcriptional effects, depending by the protein partner linked to AR, leading to cell migration, proliferation, and differentiation. In recent years, substantial progress in the structure-function relationships of AR, identification of its binding partners and function of protein complexes including AR have improved our knowledge of its signaling axis. Important AR non-genomic effects and lots of its cytoplasmatic binding partners have been described, pointing out a fine control of AR non-genomic pathways. Accordingly, new AR inhibitors have been designed and are currently under investigation. Prompt development of new approaches to target AR or block recruitment of its signaling effectors, or co-activators, is urgently needed. The present review takes an in-depth look at current literature, furnishing an exhaustive state-of-the-art overview of the non-genomic role of AR in PCa, with particular emphasis on its involvement in TME biology.
Collapse
Affiliation(s)
- Alice Zamagni
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), IRCCS, Meldola, Italy
| | - Michela Cortesi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), IRCCS, Meldola, Italy
| | - Michele Zanoni
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), IRCCS, Meldola, Italy
| | - Anna Tesei
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), IRCCS, Meldola, Italy
| |
Collapse
|
27
|
Mei H, Liu J, Guo Y, Han J. Electrochemical Alkoxysulfonylation Difunctionalization of Styrene Derivatives Using Sodium Sulfinates as Sulfonyl Sources. ACS OMEGA 2019; 4:14353-14359. [PMID: 31508561 PMCID: PMC6733175 DOI: 10.1021/acsomega.9b02442] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/09/2019] [Indexed: 05/15/2023]
Abstract
An eco-friendly method for the synthesis of β-alkoxy sulfones via electrochemical alkoxysulfonylation reaction of styrenes with sodium sulfinates as sulfonyl sources has been established. The reaction is conducted in an undivided cell at room temperature and tolerates a wide scope of styrenes, sodium sulfinates, and alcohols. The reaction does not need any chemical oxidants and transition-metal catalysts, which provides a new and green access to β-alkoxy sulfones.
Collapse
|
28
|
Abstract
Nuclear receptors (NRs) are ligand-inducible transcription factors that play an essential role in a multitude of physiological processes as well as diseases, rendering them attractive drug targets. Crystal structures revealed the binding site of NRs to be buried in the core of the protein, with no obvious route for ligands to access this cavity. The process of ligand binding is known to be an often-neglected contributor to the efficacy of drug candidates and is thought to influence the selectivity and specificity of NRs. While experimental methods generally fail to highlight the dynamic processes of ligand access or egress on the atomistic scale, computational methods have provided fundamental insight into the pathways connecting the buried binding pocket to the surrounding environment. Methods based on molecular dynamics (MD) and Monte Carlo simulations have been applied to identify pathways and quantify their capability to transport ligands. Here, we systematically review findings of more than 20 years of research in the field, including the applied methodology and controversies. Further, we establish a unified nomenclature to describe the pathways with respect to their location relative to protein secondary structure elements and summarize findings relevant to drug design. Lastly, we discuss the effect of NR interaction partners such as coactivators and corepressors, as well as mutations on the pathways.
Collapse
Affiliation(s)
- André Fischer
- Molecular Modeling, Pharmacenter of the University of Basel , University of Basel , Klingelbergstrasse 50 , 4056 Basel , Switzerland
| | - Martin Smieško
- Molecular Modeling, Pharmacenter of the University of Basel , University of Basel , Klingelbergstrasse 50 , 4056 Basel , Switzerland
| |
Collapse
|
29
|
Di Donato M, Cernera G, Migliaccio A, Castoria G. Nerve Growth Factor Induces Proliferation and Aggressiveness In Prostate Cancer Cells. Cancers (Basel) 2019; 11:E784. [PMID: 31174415 PMCID: PMC6627659 DOI: 10.3390/cancers11060784] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 12/20/2022] Open
Abstract
Resistance to hormone therapy and disease progression is the major challenge in clinical management of prostate cancer (PC). Drugs currently used in PC therapy initially show a potent antitumor effects, but PC gradually develops resistance, relapses and spreads. Most patients who fail primary therapy and have recurrences eventually develop castration-resistant prostate cancer (CRPC), which is almost incurable. The nerve growth factor (NGF) acts on a variety of non-neuronal cells by activating the NGF tyrosine-kinase receptor, tropomyosin receptor kinase A (TrkA). NGF signaling is deregulated in PC. In androgen-dependent PC cells, TrkA mediates the proliferative action of NGF through its crosstalk with the androgen receptor (AR). Epithelial PC cells, however, acquire the ability to express NGF and TrkA, as the disease progresses, indicating a role for NGF/TrkA axis in PC progression and androgen-resistance. We here report that once activated by NGF, TrkA mediates proliferation, invasiveness and epithelial-mesenchymal transition (EMT) in various CRPC cells. NGF promotes organoid growth in 3D models of CRPC cells, and specific inhibition of TrkA impairs all these responses. Thus TrkA represents a new biomarker to target in CRPC.
Collapse
Affiliation(s)
- Marzia Di Donato
- Department of Precision Medicine-University of Campania 'L. Vanvitelli'-via L. De Crecchio, 7-80138 Naples, Italy.
| | - Gustavo Cernera
- Department of Precision Medicine-University of Campania 'L. Vanvitelli'-via L. De Crecchio, 7-80138 Naples, Italy.
| | - Antimo Migliaccio
- Department of Precision Medicine-University of Campania 'L. Vanvitelli'-via L. De Crecchio, 7-80138 Naples, Italy.
| | - Gabriella Castoria
- Department of Precision Medicine-University of Campania 'L. Vanvitelli'-via L. De Crecchio, 7-80138 Naples, Italy.
| |
Collapse
|
30
|
Beretta GL, Zaffaroni N. Androgen Receptor-Directed Molecular Conjugates for Targeting Prostate Cancer. Front Chem 2019; 7:369. [PMID: 31192191 PMCID: PMC6546842 DOI: 10.3389/fchem.2019.00369] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/06/2019] [Indexed: 12/18/2022] Open
Abstract
Due to its central role in the cellular biology of prostate cancer (PC), androgen receptor (AR) still remains an important therapeutic target for fighting this tumor. Several drugs targeting AR have been reported so far, and many new molecules are expected for the future. In spite of their antitumor efficacy, these drugs are not selective for malignant cells and are subjected to AR-mediated activation of drug resistance mechanisms that are responsible for several drawbacks, including systemic toxicity and disease recurrence and metastasis. Among the several strategies considered to overcome these drawbacks, very appealing appears the design of hybrid small-molecule conjugates targeting AR to drive drug action on receptor-positive PC cells. These compounds are designed around on an AR binder, which selectively engages AR with high potency, coupled with a moiety endowed with different pharmacological properties. In this review we focus on two classes of compounds: a) small-molecules and AR-ligand based conjugates that reduce AR expression, which allow down-regulation of AR levels by activating its proteasome-mediated degradation, and b) AR-ligand-based conjugates for targeting small-molecules, in which the AR binder tethers small-molecules, including conventional antitumor drugs (e.g., cisplatin, doxorubicin, histone deacetylase inhibitors, as well as photo-sensitizers) and selectively directs drug action toward receptor-positive PC cells.
Collapse
Affiliation(s)
- Giovanni L Beretta
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
31
|
Ansari MY, Kumar N, Kumar A. Regioselective Intermolecular Sulfur–Oxygen Difunctionalization (Phenoxysulfonylation) of Alkynes: One-Pot Construction of (Z)-β-Phenoxy Vinylsulfones. Org Lett 2019; 21:3931-3936. [DOI: 10.1021/acs.orglett.9b01041] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Mohd Yeshab Ansari
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
| | - Navaneet Kumar
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
| | - Atul Kumar
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
- Academy of Scientific and Innovative Research, New Delhi 110001, India
| |
Collapse
|
32
|
Han X, Wang C, Qin C, Xiang W, Fernandez-Salas E, Yang CY, Wang M, Zhao L, Xu T, Chinnaswamy K, Delproposto J, Stuckey J, Wang S. Discovery of ARD-69 as a Highly Potent Proteolysis Targeting Chimera (PROTAC) Degrader of Androgen Receptor (AR) for the Treatment of Prostate Cancer. J Med Chem 2019; 62:941-964. [PMID: 30629437 DOI: 10.1021/acs.jmedchem.8b01631] [Citation(s) in RCA: 244] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We report herein the discovery of highly potent PROTAC degraders of androgen receptor (AR), as exemplified by compound 34 (ARD-69). ARD-69 induces degradation of AR protein in AR-positive prostate cancer cell lines in a dose- and time-dependent manner. ARD-69 achieves DC50 values of 0.86, 0.76, and 10.4 nM in LNCaP, VCaP, and 22Rv1 AR+ prostate cancer cell lines, respectively. ARD-69 is capable of reducing the AR protein level by >95% in these prostate cancer cell lines and effectively suppressing AR-regulated gene expression. ARD-69 potently inhibits cell growth in these AR-positive prostate cancer cell lines and is >100 times more potent than AR antagonists. A single dose of ARD-69 effectively reduces the level of AR protein in xenograft tumor tissue in mice. Further optimization of ARD-69 may ultimately lead to a new therapy for AR+, castration-resistant prostate cancer.
Collapse
|
33
|
Xu H, Sha F, Wu XY. Highly enantioselective allylic alkylation of 5 H -oxazol-4-ones with Morita-Baylis-Hillman carbonates. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.06.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
34
|
Guddati AK. Current and potential targets for drug design in the androgen receptor pathway for prostate cancer. Expert Opin Drug Discov 2018; 13:489-496. [PMID: 29621897 DOI: 10.1080/17460441.2018.1455662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Modulating the androgen axis by different agents has been one of the most successful therapeutic interventions in the field of prostate cancer therapy. Newer agents such as abiraterone and enzalutamide have been widely adapted and have contributed to an increase in the overall survival of prostate cancer patients. However, most of these patients will develop resistance to these agents and will need chemotherapy. Areas covered: In this review, this author discusses current agents which modulate the androgen axis, the mechanisms of resistance to these agents and investigative agents which are designed to bypass these mechanisms of resistance. Potential targets in the androgen axis and related biochemical pathways are, furthermore, identified. Expert opinion: Understanding the mechanism of resistance to these agents is crucial in developing third generation anti-androgen agents which can potentially contribute to the longevity of prostate cancer patients to a greater extent. Besides developing more potent agents, it is also important to formulate new strategies to resensitize patients to current anti-androgen agents by carefully sequencing chemotherapy regimens and abrogating genetic changes which are known to cause resistance to anti-androgens. Combinatorial approach with immunotherapy offers prospects which may yield better results and need to be thoroughly explored.
Collapse
|
35
|
Wang L, Li J. Structure–activity relationship analysis of carbobicyclo and oxabicyclo succinimide analogs as potential androgen receptor antagonists. J Biomol Struct Dyn 2017; 36:2876-2892. [DOI: 10.1080/07391102.2017.1371643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Lingyan Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Jiazhong Li
- School of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
36
|
Ferroni C, Pepe A, Kim YS, Lee S, Guerrini A, Parenti MD, Tesei A, Zamagni A, Cortesi M, Zaffaroni N, De Cesare M, Beretta GL, Trepel JB, Malhotra SV, Varchi G. 1,4-Substituted Triazoles as Nonsteroidal Anti-Androgens for Prostate Cancer Treatment. J Med Chem 2017; 60:3082-3093. [PMID: 28272894 DOI: 10.1021/acs.jmedchem.7b00105] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prostate cancer (PC) is the fifth leading cause of cancer death in men, and the androgen receptor (AR) represents the primary target for PC treatment, even though the disease frequently progresses toward androgen-independent forms. Most of the commercially available nonsteroidal antiandrogens show a common scaffold consisting of two aromatic rings connected by a linear or a cyclic spacer. By taking advantage of a facile, one-pot click chemistry reaction, we report herein the preparation of a small library of novel 1,4-substituted triazoles with AR antagonistic activity. Biological and theoretical evaluation demonstrated that the introduction of the triazole core in the scaffold of nonsteroidal antiandrogens allowed the development of small molecules with improved overall AR-antagonist activity. In fact, compound 14d displayed promising in vitro antitumor activity toward three different prostate cancer cell lines and was able to induce 60% tumor growth inhibition of the CW22Rv1 in vivo xenograft model. These results represent a step toward the development of novel and improved AR antagonists.
Collapse
Affiliation(s)
- Claudia Ferroni
- Institute for the Organic Synthesis and Photoreactivity, Italian National Research Council , Via Gobetti 101, 40129 Bologna, Italy
| | - Antonella Pepe
- Purdue Center for Cancer Research , 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| | - Yeong Sang Kim
- Center for Cancer Research, National Cancer Institute, National Institutes of Health , Building 10, Magnuson CC, Bethesda, Maryland 20892, United States
| | - Sunmin Lee
- Center for Cancer Research, National Cancer Institute, National Institutes of Health , Building 10, Magnuson CC, Bethesda, Maryland 20892, United States
| | - Andrea Guerrini
- Institute for the Organic Synthesis and Photoreactivity, Italian National Research Council , Via Gobetti 101, 40129 Bologna, Italy
| | - Marco Daniele Parenti
- Institute for the Organic Synthesis and Photoreactivity, Italian National Research Council , Via Gobetti 101, 40129 Bologna, Italy
| | - Anna Tesei
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), IRCCS , Via P. Maroncelli, 40, 47014 Meldola, Forlì Italy
| | - Alice Zamagni
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), IRCCS , Via P. Maroncelli, 40, 47014 Meldola, Forlì Italy
| | - Michela Cortesi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), IRCCS , Via P. Maroncelli, 40, 47014 Meldola, Forlì Italy
| | - Nadia Zaffaroni
- Fondazione IRCCS Istituto Tumori Milano , Via Amadeo, 42, 20133 Milano, Italy
| | | | | | - Jane B Trepel
- Center for Cancer Research, National Cancer Institute, National Institutes of Health , Building 10, Magnuson CC, Bethesda, Maryland 20892, United States
| | - Sanjay V Malhotra
- Department of Radiation Oncology, Division of Radiation and Cancer Biology, Stanford University School of Medicine , Stanford, California 94304, United States
| | - Greta Varchi
- Institute for the Organic Synthesis and Photoreactivity, Italian National Research Council , Via Gobetti 101, 40129 Bologna, Italy
| |
Collapse
|
37
|
Meninno S, Zullo L, Overgaard J, Lattanzi A. TunableCinchona-Based Thioureas-Catalysed Asymmetric Epoxidation to Synthetically Important Glycidic Ester Derivatives. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700146] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sara Meninno
- Dipartimento di Chimica e Biologia “A. Zambelli”; Università di Salerno; Via Giovanni Paolo II 84084 Fisciano Italy
| | - Luca Zullo
- Dipartimento di Chimica e Biologia “A. Zambelli”; Università di Salerno; Via Giovanni Paolo II 84084 Fisciano Italy
| | - Jacob Overgaard
- Department of Chemistry; Aarhus University; Langelandsgade 140 8000 Aarhus Denmark
| | - Alessandra Lattanzi
- Dipartimento di Chimica e Biologia “A. Zambelli”; Università di Salerno; Via Giovanni Paolo II 84084 Fisciano Italy
| |
Collapse
|
38
|
Zuo M, Xu X, Xie Z, Ge R, Zhang Z, Li Z, Bian J. Design and synthesis of indoline thiohydantoin derivatives based on enzalutamide as antiproliferative agents against prostate cancer. Eur J Med Chem 2017; 125:1002-1022. [DOI: 10.1016/j.ejmech.2016.10.049] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/20/2016] [Accepted: 10/21/2016] [Indexed: 11/15/2022]
|
39
|
Johnson J, Skoda EM, Zhou J, Parrinello E, Wang D, O’Malley K, Eyer BR, Kazancioglu M, Eisermann K, Johnston PA, Nelson JB, Wang Z, Wipf P. Small Molecule Antagonists of the Nuclear Androgen Receptor for the Treatment of Castration-Resistant Prostate Cancer. ACS Med Chem Lett 2016; 7:785-90. [PMID: 27563404 PMCID: PMC4983742 DOI: 10.1021/acsmedchemlett.6b00186] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 05/27/2016] [Indexed: 01/29/2023] Open
Abstract
After a high-throughput screening campaign identified thioether 1 as an antagonist of the nuclear androgen receptor, a zone model was developed for structure-activity relationship (SAR) purposes and analogues were synthesized and evaluated in a cell-based luciferase assay. A novel thioether isostere, cyclopropane (1S,2R)-27, showed the desired increased potency and structural properties (stereospecific SAR response, absence of a readily oxidized sulfur atom, low molecular weight, reduced number of flexible bonds and polar surface area, and drug-likeness score) in the prostate-specific antigen luciferase assay in C4-2-PSA-rl cells to qualify as a new lead structure for prostate cancer drug development.
Collapse
Affiliation(s)
- James
K. Johnson
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Erin M. Skoda
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jianhua Zhou
- Department
of Urology, University of Pittsburgh School
of Medicine, Pittsburgh, Pennsylvania 15232, United States
| | - Erica Parrinello
- Department
of Urology, University of Pittsburgh School
of Medicine, Pittsburgh, Pennsylvania 15232, United States
| | - Dan Wang
- Department
of Urology, University of Pittsburgh School
of Medicine, Pittsburgh, Pennsylvania 15232, United States
| | - Katherine O’Malley
- Department
of Urology, University of Pittsburgh School
of Medicine, Pittsburgh, Pennsylvania 15232, United States
| | - Benjamin R. Eyer
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Mustafa Kazancioglu
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Kurtis Eisermann
- Department
of Urology, University of Pittsburgh School
of Medicine, Pittsburgh, Pennsylvania 15232, United States
| | - Paul A. Johnston
- Department
of Pharmaceutical Sciences, University of
Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Joel B. Nelson
- Department
of Urology, University of Pittsburgh School
of Medicine, Pittsburgh, Pennsylvania 15232, United States
| | - Zhou Wang
- Department
of Urology, University of Pittsburgh School
of Medicine, Pittsburgh, Pennsylvania 15232, United States
| | - Peter Wipf
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Pharmaceutical Sciences, University of
Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
40
|
Misaki T, Choi NR, Morita A, Sugimura T. Highly enantioselective and diastereoselective conjugate addition of 5H-oxazol-4-ones to 2-chloroacrylonitrile catalyzed by chiral guanidines. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.07.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Di Donato M, Bilancio A, D'Amato L, Claudiani P, Oliviero MA, Barone MV, Auricchio A, Appella E, Migliaccio A, Auricchio F, Castoria G. Cross-talk between androgen receptor/filamin A and TrkA regulates neurite outgrowth in PC12 cells. Mol Biol Cell 2015; 26:2858-72. [PMID: 26063730 PMCID: PMC4571344 DOI: 10.1091/mbc.e14-09-1352] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 05/14/2015] [Accepted: 06/04/2015] [Indexed: 12/17/2022] Open
Abstract
Steroids and growth factors control neuronal development through their receptors under physiological and pathological conditions. We show that PC12 cells harbor endogenous androgen receptor (AR), whose inhibition or silencing strongly interferes with neuritogenesis stimulated by the nonaromatizable synthetic androgen R1881 or NGF. This implies a role for AR not only in androgen signaling, but also in NGF signaling. In turn, a pharmacological TrkA inhibitor interferes with NGF- or androgen-induced neuritogenesis. In addition, androgen or NGF triggers AR association with TrkA, TrkA interaction with PI3-K δ, and downstream activation of PI3-K δ and Rac in PC12 cells. Once associated with AR, filamin A (FlnA) contributes to androgen or NGF neuritogenesis, likely through its interaction with signaling effectors, such as Rac. This study thus identifies a previously unrecognized reciprocal cross-talk between AR and TrkA, which is controlled by β1 integrin. The contribution of FlnA/AR complex and PI3-K δ to neuronal differentiation by androgens and NGF is also novel. This is the first description of AR function in PC12 cells.
Collapse
Affiliation(s)
- Marzia Di Donato
- Department of Biochemistry, Biophysics and General Pathology, II University of Naples, 80138 Naples, Italy
| | - Antonio Bilancio
- Department of Biochemistry, Biophysics and General Pathology, II University of Naples, 80138 Naples, Italy
| | - Loredana D'Amato
- Department of Biochemistry, Biophysics and General Pathology, II University of Naples, 80138 Naples, Italy
| | - Pamela Claudiani
- Telethon Institute of Genetics and Medicine and Medical Genetics and Translational Medicine Department, University Federico II, 80131 Naples, Italy
| | - Maria Antonietta Oliviero
- Department of Biochemistry, Biophysics and General Pathology, II University of Naples, 80138 Naples, Italy
| | - Maria Vittoria Barone
- European Laboratory for the Investigation of Food Induced Diseases and Medical Genetics and Translational Medicine Department, University Federico II, 80131 Naples, Italy
| | - Alberto Auricchio
- Telethon Institute of Genetics and Medicine and Medical Genetics and Translational Medicine Department, University Federico II, 80131 Naples, Italy
| | - Ettore Appella
- Laboratory of Cell Biology, National Cancer Institute, Bethesda, MD 20892-4256
| | - Antimo Migliaccio
- Department of Biochemistry, Biophysics and General Pathology, II University of Naples, 80138 Naples, Italy
| | - Ferdinando Auricchio
- Department of Biochemistry, Biophysics and General Pathology, II University of Naples, 80138 Naples, Italy
| | - Gabriella Castoria
- Department of Biochemistry, Biophysics and General Pathology, II University of Naples, 80138 Naples, Italy
| |
Collapse
|
42
|
Species-dependent binding of new synthesized bicalutamide analogues to albumin by optical biosensor analysis. J Pharm Biomed Anal 2015; 111:324-32. [DOI: 10.1016/j.jpba.2015.02.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/04/2015] [Accepted: 02/06/2015] [Indexed: 11/21/2022]
|
43
|
Tian X, He Y, Zhou J. Progress in antiandrogen design targeting hormone binding pocket to circumvent mutation based resistance. Front Pharmacol 2015; 6:57. [PMID: 25852559 PMCID: PMC4371693 DOI: 10.3389/fphar.2015.00057] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 03/05/2015] [Indexed: 12/30/2022] Open
Abstract
Androgen receptor (AR) plays a critical role in the development and progression of prostate cancer (PCa). Current clinically used antiandrogens such as flutamide, bicalutamide, and newly approved enzalutamide mainly target the hormone binding pocket (HBP) of AR. However, over time, drug resistance invariably develops and switches these antiandrogens from antagonist to agonist of the AR. Accumulated evidence indicates that AR mutation is an important cause for the drug resistance. This review will give an overview of the mutation based resistance of the current clinically used antiandrogens and the rational drug design to overcome the resistance, provides a promising strategy for the development of the new generation of antiandrogens targeting HBP.
Collapse
Affiliation(s)
- Xiaohong Tian
- Lady Davis Institute, Jewish General Hospital, Mcgill University Montreal, QC, Canada
| | - Yang He
- Immunology, Institute of Medicinal Biotechnology Chinese Academy of Medical Science Beijing, China
| | - Jinming Zhou
- Immunology, Institute of Medicinal Biotechnology Chinese Academy of Medical Science Beijing, China
| |
Collapse
|
44
|
Farooqi AA, Sarkar FH. Overview on the complexity of androgen receptor-targeted therapy for prostate cancer. Cancer Cell Int 2015; 15:7. [PMID: 25705125 PMCID: PMC4336517 DOI: 10.1186/s12935-014-0153-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 12/23/2014] [Indexed: 12/11/2022] Open
Abstract
In the past decades, the field of prostate cancer (PCa) biology has developed exponentially and paralleled with that has been the growing interest in translation of laboratory findings into clinical practice. Based on overwhelming evidence of high impact research findings which support the underlying cause of insufficient drug efficacy in patients progressing on standard androgen deprivation therapy (ADT) is due to persistent activation of the androgen receptor (AR) signaling axis. Therefore, newer agents must be discovered especially because newer ADT such as abiraterone and enzalutamide are becoming ineffective due to rapid development of resistance to these agents. High-throughput technologies are generating massive and highly dimensional genetic variation data that has helped in developing a better understanding of the dynamic repertoire of AR and AR variants. Full length AR protein and its variants modulate a sophisticated regulatory system to orchestrate cellular responses. We partition this multicomponent review into subsections addressing the underlying mechanisms of resistance to recent therapeutics, positive and negative regulators of AR signaling cascade, and how SUMOylation modulates AR induced transcriptional activity. Experimentally verified findings obtained from cell culture and preclinical studies focusing on the potential of natural agents in inhibiting mRNA/protein levels of AR, nuclear accumulation and enhanced nuclear export of AR are also discussed. We also provide spotlight on molecular basis of enzalutamide resistance with an overview of the strategies opted to overcome such resistance. AR variants are comprehensively described and different mechanisms that regulate AR variant expression are also discussed. Reconceptualization of phenotype- and genotype-driven studies have convincingly revealed that drug induced resistance is a major stumbling block in standardization of therapy. Therefore, we summarize succinctly the knowledge of drug resistance especially to ADT and potential avenues to overcome such resistance for improving the treatment outcome of PCa patients.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- />Laboratory for Translational Oncology and Personalized Medicine, Rashid Latif Medical College, 35 Km Ferozepur Road, Lahore, Pakistan
| | - Fazlul H Sarkar
- />Departments of Pathology and Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 740 HWCRC, 4100 JohnR Street, Detroit, MI 48201 USA
| |
Collapse
|