1
|
Deng W, Xue RY, Xiao SX, Wang JT, Liao XW, Yu RJ, Xiong YS. Discovery of quaternized pyridine-thiazole-ruthenium complexes as potent anti-Staphylococcus aureus agents. Eur J Med Chem 2024; 277:116712. [PMID: 39106657 DOI: 10.1016/j.ejmech.2024.116712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/03/2024] [Accepted: 07/23/2024] [Indexed: 08/09/2024]
Abstract
Quaternization of ruthenium complexes may be a promising strategy for the development of new antibiotics. In response to the increasing bacterial resistance, we integrated the quaternary amine structure into the design of ruthenium complexes and evaluated their antibacterial activity. All the ruthenium complexes showed good antibacterial activity against the tested Staphylococcus aureus (S. aureus). Ru-8 was the most effective antibacterial agent that displayed excellent antibacterial activity against S. aureus (MIC = 0.78-1.56 μg/mL). In vitro experiments showed that all nine ruthenium complexes had low hemolytic toxicity to rabbit erythrocytes. Notably, Ru-8 was found to disrupt bacterial cell membranes, alter their permeability, and induce ROS production in bacteria, all the above leading to the death of bacteria without inducing drug resistance. To further explore the antibacterial activity of Ru-8in vivo, we established a mouse skin wound infection model and a G. mellonella larvae infection model. Ru-8 exhibited significant antibacterial efficacy against S. aureus in vivo and low toxicity to mouse tissues. The Ru-8 showed low toxicity to Raw264.7 cells (mouse monocyte macrophage leukemia cells). This study indicates that the ruthenium complex ruthenium quaternary was a promising strategy for the development of new antibacterial agents.
Collapse
Affiliation(s)
- Wei Deng
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Run-Yu Xue
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Su-Xin Xiao
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Jin-Tao Wang
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Xiang-Wen Liao
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Ru-Jian Yu
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Yan-Shi Xiong
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| |
Collapse
|
2
|
Gonzalo-Navarro C, Troyano AJ, Bermejo BGB, Organero JÁ, Massaguer A, Santos L, Rodríguez AM, Manzano BR, Durá G. Ru-terpyridine complexes containing clotrimazole as potent photoactivatable selective antifungal agents. J Inorg Biochem 2024; 260:112692. [PMID: 39151234 DOI: 10.1016/j.jinorgbio.2024.112692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
The overuse of antimicrobial agents in medical and veterinary applications has led to the development of antimicrobial resistance in some microorganisms and this is now one of the major concerns in modern society. In this context, the use of transition metal complexes with photoactivatable properties, which can act as drug delivery systems triggered by light, could become a potent strategy to overcome the problem of resistance. In this work several Ru complexes with terpyridine ligands and the clotrimazole fragment, which is a potent antimycotic drug, were synthesized. The main goal was to explore the potential photoactivated activity of the complexes as antifungal agents and evaluate the effect of introducing different substituents on the terpyridine ligand. The complexes were capable of delivering the clotrimazole unit upon irradiation with visible light in a short period of time. The influence of the substituents on the photodissociation rate was explained by means of TD-DFT calculations. The complexes were tested against three different yeasts, which were selected based on their prevalence in fungal infections. The complex in which a carboxybenzene unit was attached to the terpyridine ligand showed the best activity against the three species under light, with minimal inhibitory concentration values of 0.88 μM and a phototoxicity index of 50 achieved. The activity of this complex was markedly higher than that of free clotrimazole, especially upon irradiation with visible light (141 times higher). The complexes were more active on yeast species than on cancer cell lines.
Collapse
Affiliation(s)
- Carlos Gonzalo-Navarro
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Avda. C. J. Cela, 10, UCLM, Ciudad Real, Spain
| | - Antonio J Troyano
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Avda. C. J. Cela, 10, UCLM, Ciudad Real, Spain
| | - Beatriz García-Béjar Bermejo
- Departamento de Química Analítica y Tecnología de los Alimentos, Ed. Marie Curie, Avenida C. J. Cela, s/n, UCLM, Ciudad Real, Spain
| | - Juan Ángel Organero
- Universidad de Castilla-La Mancha, Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímicas and INAMOL, 45071 Toledo, Spain
| | - Anna Massaguer
- Universitat de Girona, Departament de Biologia, Facultat de Ciències, Maria Aurelia Capmany 40, 17003 Girona, Spain
| | - Lucía Santos
- Departamento de Q. Física, Facultad de Ciencias y Tecnologías Químicas, Avda. C. J. Cela, s/n, UCLM, Ciudad Real, Spain
| | - Ana M Rodríguez
- Departamento de Química Inorgánica, Orgánica y Bioquímica- IRICA, Escuela Técnica Superior de Ingenieros Industriales, Avda. C. J. Cela, 3, UCLM, Ciudad Real, Spain
| | - Blanca R Manzano
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Avda. C. J. Cela, 10, UCLM, Ciudad Real, Spain
| | - Gema Durá
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Avda. C. J. Cela, 10, UCLM, Ciudad Real, Spain.
| |
Collapse
|
3
|
Malagarriga M, González L. Binding modes of a flexible ruthenium polypyridyl complex to DNA. Phys Chem Chem Phys 2024; 26:27116-27130. [PMID: 39431730 PMCID: PMC11492816 DOI: 10.1039/d4cp02782e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024]
Abstract
Ruthenium(II) polypyridyl complexes are attractive binders to DNA. Modifying the hydrophobicity, shape, or size of the ancillary ligands around the central ruthenium atom can induce changes in the binding mode to the DNA double helix. In this paper, we investigate the binding modes of [Ru(2,2'-bipyridine)2 (5-{4-[(pyren-1-yl)methyl]-1H-1,2,3-triazol-4-yl}-1,10-phenanthroline)]2+ (RuPy for short), a metal complex featuring a flexible pyrene moiety known for its intercalative properties. Classical molecular dynamics simulations are employed to gain insight into the non-covalent binding interactions of RuPy with two different 20 base pair DNA sequences, poly(dA)poly(dT) (AT) and poly(dC)poly(dG) (CG). In addition to examining the intercalation of the pyrene moiety from the major groove, the stability of RuPy-DNA adducts is investigated when the metal complex interacts externally with the DNA and with the major and minor groove pockets. The results indicate that external interaction and major groove binding are not stable, whereas intercalation consistently forms stable adducts. Minor groove binding showed less stability than intercalation and more variability, with some trajectories transitioning to intercalation, involving either the pyrene moiety or a bipyridine ligand. Pyrene intercalation, especially from the minor groove, was the most stable, while bipyridine intercalation was less favorable and associated with higher binding free energies.
Collapse
Affiliation(s)
- Meritxell Malagarriga
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
- Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
- Vienna Research Platform on Accelerating Photoreaction Discovery, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria.
| |
Collapse
|
4
|
Wysocki M, Ziental D, Biyiklioglu Z, Jozkowiak M, Baş H, Dlugaszewska J, Piotrowska-Kempisty H, Güzel E, Sobotta L. Non-peripheral octasubstituted zinc(II) phthalocyanines bearing pyridinepropoxy substituents - Antibacterial, anticancer photodynamic and sonodynamic activity. J Inorg Biochem 2024; 262:112751. [PMID: 39368458 DOI: 10.1016/j.jinorgbio.2024.112751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/07/2024]
Abstract
The novel non-peripheral octa-substituted zinc(II) phthalocyanines with 3- and 4-pyridinepropoxy substituents were synthesized via cyclization of substituted phthalonitriles and further characterized. Their photodynamic and sonodynamic activity were then assessed toward bacteria and cancer cells. Additionally, inhibition activity against common human enzymes was evaluated. The singlet oxygen generation (with 1,3-diphenylisobenzofuran - DPBF as an unspecific chemical quencher of singlet oxygen) were measured under light irradiation, whereas under ultrasounds (1 MHz, 3 W) the stability of DPBF in the presence of sensitizer was evaluated. Both phthalocyanines revealed high photostability in DMSO and moderate in DMF, whereas the sonostability in DMF was moderate. Calculated light-induced singlet oxygen generation quantum yields were similar for both compounds and oscillated around 0.33 in DMF and 0.67 in DMSO. Sonodynamic manner revealed moderately high DPBF decomposition upon 1 MHz. Significant bacterial reduction was noted in both photodynamic and sonodynamic manner, reaching >3 log reduction against MRSA and S. epidermidis. Both compounds showed ca. 50 % viability reduction toward hypopharyngeal tumor (FaDu). Moreover, up to 60 % viability reduction was observed in squamous cell carcinoma (SCC-25). In summary, this molecular building of the efficient phthalocyanine-based sensitizer is a potential therapeutic for photodynamic and sonodynamic applications.
Collapse
Affiliation(s)
- Marcin Wysocki
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; Doctoral School Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland
| | - Daniel Ziental
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Zekeriya Biyiklioglu
- Department of Chemistry, Karadeniz Technical University, Faculty of Science, Trabzon, Türkiye.
| | - Malgorzata Jozkowiak
- Doctoral School Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland; Chair and Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland; Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Chalubinskiego 6a, 50-368 Wroclaw, Poland
| | - Hüseyin Baş
- Department of Chemistry, Karadeniz Technical University, Faculty of Science, Trabzon, Türkiye
| | - Jolanta Dlugaszewska
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Hanna Piotrowska-Kempisty
- Chair and Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland
| | - Emre Güzel
- Department of Engineering Fundamental Sciences, Sakarya University of Applied Sciences, Sakarya, Türkiye
| | - Lukasz Sobotta
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland.
| |
Collapse
|
5
|
Wei L, Kushwaha R, Sadhukhan T, Wu H, Dao A, Zhang Z, Zhu H, Gong Q, Ru J, Liang C, Zhang P, Banerjee S, Huang H. Dinuclear Tridentate Ru(II) Complex with Strong Near-Infrared Light-Triggered Anticancer Activity. J Med Chem 2024; 67:11125-11137. [PMID: 38905437 DOI: 10.1021/acs.jmedchem.4c00624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
The design of the dinuclear Ru(II) complex (Ru2) with strong near-infrared (NIR) absorption properties has been reported for efficient anticancer phototherapy. Under 700 nm LED light excitation, Ru2 exhibited remarkable synergistic type I/II photosensitization ability and photocatalytic activity toward intracellular biomolecules. Ru2 showed impressive 700 nm light-triggered anticancer activity under normoxia and hypoxia compared with the clinically used photosensitizer Chlorin e6. The mechanistic studies showed that Ru2 induced intracellular redox imbalance and perturbed the energy metabolism and biosynthesis in A549 cancer cells. Overall, this work provides a new strategy for developing efficient metal-based complexes for anticancer phototherapy under NIR light.
Collapse
Affiliation(s)
- Li Wei
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P.R. China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Rajesh Kushwaha
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Tumpa Sadhukhan
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Haorui Wu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P.R. China
| | - Anyi Dao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P.R. China
| | - Zhishang Zhang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P.R. China
| | - Haotu Zhu
- Department of Oncology, Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, P.R. China
| | - Qiufang Gong
- Institute for Advanced Research, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, Zhejinag 325035, P.R. China
| | - Jiaxi Ru
- Institute for Advanced Research, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, Zhejinag 325035, P.R. China
| | - Chao Liang
- Institute for Advanced Research, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, Zhejinag 325035, P.R. China
| | - Pingyu Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Huaiyi Huang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P.R. China
| |
Collapse
|
6
|
Kainat SF, Hawsawi MB, Mughal EU, Naeem N, Almohyawi AM, Altass HM, Hussein EM, Sadiq A, Moussa Z, Abd-El-Aziz AS, Ahmed SA. Recent developments in the synthesis and applications of terpyridine-based metal complexes: a systematic review. RSC Adv 2024; 14:21464-21537. [PMID: 38979466 PMCID: PMC11228761 DOI: 10.1039/d4ra04119d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024] Open
Abstract
Terpyridine-based metal complexes have emerged as versatile and indispensable building blocks in the realm of modern chemistry, offering a plethora of applications spanning from materials science to catalysis and beyond. This comprehensive review article delves into the multifaceted world of terpyridine complexes, presenting an overview of their synthesis, structural diversity, and coordination chemistry principles. Focusing on their diverse functionalities, we explore their pivotal roles in catalysis, supramolecular chemistry, luminescent materials, and nanoscience. Furthermore, we highlight the burgeoning applications of terpyridine complexes in sustainable energy technologies, biomimetic systems, and medicinal chemistry, underscoring their remarkable adaptability to address pressing challenges in these fields. By elucidating the pivotal role of terpyridine complexes as versatile building blocks, this review provides valuable insights into their current state-of-the-art applications and future potential, thus inspiring continued innovation and exploration in this exciting area of research.
Collapse
Affiliation(s)
| | - Mohammed B Hawsawi
- Department of Chemistry, Faculty of Science, Umm Al-Qura University 21955 Makkah Saudi Arabia
| | | | - Nafeesa Naeem
- Department of Chemistry, University of Gujrat Gujrat-50700 Pakistan
| | - Abdulaziz M Almohyawi
- Department of Chemistry, Faculty of Science, Umm Al-Qura University 21955 Makkah Saudi Arabia
| | - Hatem M Altass
- Department of Chemistry, Faculty of Science, Umm Al-Qura University 21955 Makkah Saudi Arabia
| | - Essam M Hussein
- Department of Chemistry, Faculty of Science, Umm Al-Qura University 21955 Makkah Saudi Arabia
- Department of Chemistry, Faculty of Science, Assiut University 71516 Assiut Egypt
| | - Amina Sadiq
- Department of Chemistry, Govt. College Women University Sialkot-51300 Pakistan
| | - Ziad Moussa
- Department of Chemistry, College of Science, United Arab Emirates University P.O. Box 15551 Al Ain United Arab Emirates
| | - Alaa S Abd-El-Aziz
- Qingdao Innovation and Development Centre, Harbin Engineering University Qingdao 266400 China
| | - Saleh A Ahmed
- Department of Chemistry, Faculty of Science, Umm Al-Qura University 21955 Makkah Saudi Arabia
| |
Collapse
|
7
|
Welsh A, Matshitse R, Khan SF, Nyokong T, Prince S, Smith GS. Trinuclear ruthenium(II) polypyridyl complexes: Evaluation as photosensitizers for enhanced cervical cancer treatment. J Inorg Biochem 2024; 256:112545. [PMID: 38581803 DOI: 10.1016/j.jinorgbio.2024.112545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/23/2024] [Accepted: 03/24/2024] [Indexed: 04/08/2024]
Abstract
Trinuclear ruthenium(II) polypyridyl complexes anchored to benzimidazole-triazine / trisamine scaffolds were investigated as photosensitizers for photodynamic therapy. The trinuclear complexes were noted to produce a significant amount of singlet oxygen in both DMF and aqueous media, are photostable and show appreciable emission quantum yields (ɸem). In our experimental setting, despite the moderate phototoxic activity in the HeLa cervical cancer cell line, the phototoxic indices (PI) of the trinuclear complexes are superior relative to the PIs of a clinically approved photosensitizer, Photofrin®, and the pro-drug 5-aminolevulinic acid (PI: >7 relative to PI: >1 and PI: 4.4 for 5-aminolevulinic acid and Photofrin®, respectively). Furthermore, the ruthenium complexes were noted to show appreciable long-term cytotoxicity upon light irradiation in HeLa cells in a concentration-dependent manner. Consequently, this long-term activity of the ruthenium(II) polypyridyl complexes embodies their ability to reduce the probability of the recurrence of cervical cancer. Taken together, this presents a strong motivation for the development of polymetallic complexes as anticancer agents.
Collapse
Affiliation(s)
- Athi Welsh
- Department of Chemistry, University of Cape Town, Rondebosch 7700, ,South Africa
| | - Refilwe Matshitse
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | - Saif F Khan
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Faculty of Health Science, Observatory, 7925, South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | - Sharon Prince
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Faculty of Health Science, Observatory, 7925, South Africa
| | - Gregory S Smith
- Department of Chemistry, University of Cape Town, Rondebosch 7700, ,South Africa.
| |
Collapse
|
8
|
Lin S, Song Y, Sun Y, Lin W, Yu G, Liao X, Yang Q. Morpholine-modified Ru-based agents with multiple antibacterial mechanisms as metalloantibiotic candidates against Staphylococcus aureus infection. RSC Adv 2024; 14:20130-20144. [PMID: 38915333 PMCID: PMC11194541 DOI: 10.1039/d4ra02667e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/06/2024] [Indexed: 06/26/2024] Open
Abstract
Multidrug-resistant bacteria resulting from the abuse and overuse of antibiotics have become a huge crisis in global public health security. Therefore, it is urgently needed to develop new antibacterial drugs with unique mechanisms of action. As a versatile moiety, morpholine has been widely employed to enhance the potency of numerous bioactive molecules. In this study, a series of ruthenium-based antibacterial agents modified with the morpholine moiety were designed and characterized, aiming to obtain a promising metalloantibiotic with a multitarget mechanism. Antibacterial activity screening demonstrated that the most active complex Ru(ii)-3 exhibited the strongest potency against Staphylococcus aureus (S. aureus) with an MIC value of only 0.78 μg mL-1, which is better than most clinically used antibiotics. Notably, Ru(ii)-3 not only possessed excellent bactericidal efficacy, but could also overcome bacterial resistance. Importantly, Ru(ii)-3 very efficiently removed biofilms produced by bacteria, inhibited the secretion of bacterial exotoxins, and enhanced the activity of many existing antibiotics. The results of mechanism studies confirmed that Ru(ii)-3 could destroy the bacterial membrane and induce ROS production in bacteria. Furthermore, animal infection models confirmed that Ru(ii)-3 showed significant anti-infective activity in vivo. Overall, this work demonstrated that a morpholine-modified ruthenium-based agent is a promising antibiotic candidate in tackling the crisis of drug-resistant bacteria.
Collapse
Affiliation(s)
- Shijie Lin
- Department of Pharmacy, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University) Haikou 570311 China
| | - Yun Song
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University Nanchang 330013 China
| | - Yajuan Sun
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University Nanchang 330013 China
| | - Wenjing Lin
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University Nanchang 330013 China
| | - Guangying Yu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University Nanchang 330013 China
| | - Xiangwen Liao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University Nanchang 330013 China
| | - Qiang Yang
- Department of Clinical Pharmacy, Hainan Cancer Hospital Haikou 570100 China
| |
Collapse
|
9
|
Gul A, Ahmad M, Ullah R, Ullah R, Kang Y, Liao W. Systematic review on antibacterial photodynamic therapeutic effects of transition metals ruthenium and iridium complexes. J Inorg Biochem 2024; 255:112523. [PMID: 38489864 DOI: 10.1016/j.jinorgbio.2024.112523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/29/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
The prevalence of antibiotic-resistant pathogenic bacteria poses a significant threat to public health and ranks among the principal causes of morbidity and mortality worldwide. Antimicrobial photodynamic therapy is an emerging therapeutic technique that has excellent potential to embark upon antibiotic resistance problems. The efficacy of this therapy hinges on the careful selection of suitable photosensitizers (PSs). Transition metal complexes, such as Ruthenium (Ru) and Iridium (Ir), are highly suitable for use as PSs because of their surface plasmonic resonance, crystal structure, optical characteristics, and photonics. These metals belong to the platinum family and exhibit similar chemical behavior due to their partially filled d-shells. Ruthenium and Iridium-based complexes generate reactive oxygen species (ROS), which interact with proteins and DNA to induce cell death. As photodynamic therapeutic agents, these complexes have been widely studied for their efficacy against cancer cells, but their potential for antibacterial activity remains largely unexplored. Our study focuses on exploring the antibacterial photodynamic effect of Ruthenium and Iridium-based complexes against both Gram-positive and Gram-negative bacteria. We aim to provide a comprehensive overview of various types of research in this area, including the structures, synthesis methods, and antibacterial photodynamic applications of these complexes. Our findings will provide valuable insights into the design, development, and modification of PSs to enhance their photodynamic therapeutic effect on bacteria, along with a clear understanding of their mechanism of action.
Collapse
Affiliation(s)
- Anadil Gul
- College of Applied Sciences, Shenzhen University, Shenzhen 518060, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China; College of Health Science and Environmental Engineering, Shenzhen Technology University, Pingshan District, Shenzhen 518118, China
| | - Munir Ahmad
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Raza Ullah
- College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Rizwan Ullah
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yan Kang
- College of Applied Sciences, Shenzhen University, Shenzhen 518060, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China; College of Health Science and Environmental Engineering, Shenzhen Technology University, Pingshan District, Shenzhen 518118, China.
| | - Wenchao Liao
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Pingshan District, Shenzhen 518118, China.
| |
Collapse
|
10
|
El-Gendy AO, Ezzat S, Samad FA, Dabbous OA, Dahm J, Hamblin MR, Mohamed T. Studying the viability and growth kinetics of vancomycin-resistant Enterococcus faecalis V583 following femtosecond laser irradiation (420-465 nm). Lasers Med Sci 2024; 39:144. [PMID: 38809462 PMCID: PMC11136855 DOI: 10.1007/s10103-024-04080-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/12/2024] [Indexed: 05/30/2024]
Abstract
Enterococcus faecalis is among the most resistant bacteria found in infected root canals. The demand for cutting-edge disinfection methods has rekindled research on photoinactivation with visible light. This study investigated the bactericidal activity of femtosecond laser irradiation against vancomycin-resistant Enterococcus faecalis V583 (VRE). The effect of parameters such as wavelength and energy density on the viability and growth kinetics of VRE was studied to design an optimized laser-based antimicrobial photoinactivation approach without any prior addition of exogenous photosensitizers. The most effective wavelengths were 430 nm and 435 nm at a fluence of 1000 J/cm2, causing a nearly 2-log reduction (98.6% and 98.3% inhibition, respectively) in viable bacterial counts. The colony-forming units and growth rate of the laser-treated cultures were progressively decreased as energy density or light dose increased at 445 nm but reached a limit at 1250 J/cm2. At a higher fluence of 2000 J/cm2, the efficacy was reduced due to a photobleaching phenomenon. Our results highlight the importance of optimizing laser exposure parameters, such as wavelength and fluence, in bacterial photoinactivation experiments. To our knowledge, this is the first study to report an optimized wavelength for the inactivation of VRE using visible femtosecond laser light.
Collapse
Affiliation(s)
- Ahmed O El-Gendy
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef, 62511, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Sarah Ezzat
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Fatma Abdel Samad
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Ola Ali Dabbous
- Department of Medical Applications of Lasers, National Institute of Laser Enhanced Science (NILES), Cairo University, Giza, 12611, Egypt
| | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Tarek Mohamed
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef, 62511, Egypt.
| |
Collapse
|
11
|
Niu H, Liu Y, Wang Y, Yang Y, Wang G, James TD, Sessler JL, Zhang H. Photochemical and biological dual-effects enhance the inhibition of photosensitizers for tumour growth. Chem Sci 2024; 15:7757-7766. [PMID: 38784735 PMCID: PMC11110147 DOI: 10.1039/d4sc00874j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Photosensitizers typically rely on a singular photochemical reaction to generate reactive oxygen species, which can then inhibit or eradicate lesions. However, photosensitizers often exhibit limited therapeutic efficiency due to their reliance on a single photochemical effect. Herein, we propose a new strategy that integrates the photochemical effect (type-I photochemical effect) with a biological effect (proton sponge effect). To test our strategy, we designed a series of photosensitizers (ZZ-sers) based on the naphthalimide molecule. ZZ-sers incorporate both a p-toluenesulfonyl moiety and weakly basic groups to activate the proton sponge effect while simultaneously strengthening the type-I photochemical effect, resulting in enhanced apoptosis and programmed cell death. Experiments confirmed near-complete eradication of the tumour burden after 14 days (Wlight/Wcontrol ≈ 0.18, W represents the tumour weight). These findings support the notion that the coupling of a type-I photochemical effect with a proton sponge effect can enhance the tumour inhibition by ZZ-sers, even if the basic molecular backbones of the photosensitizers exhibit nearly zero or minimal tumour inhibition ability. We anticipate that this strategy can be generalized to develop additional new photosensitizers with improved therapeutic efficacy while overcoming limitations associated with systems relying solely on single photochemical effects.
Collapse
Affiliation(s)
- Huiyu Niu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Organic Functional Molecules and Drug Innovation Key Laboratory of Henan Province, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China +86-373-3329030 +86-373-3329030
| | - Yang Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Organic Functional Molecules and Drug Innovation Key Laboratory of Henan Province, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China +86-373-3329030 +86-373-3329030
| | - Yafu Wang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Organic Functional Molecules and Drug Innovation Key Laboratory of Henan Province, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China +86-373-3329030 +86-373-3329030
| | - Yonggang Yang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Organic Functional Molecules and Drug Innovation Key Laboratory of Henan Province, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China +86-373-3329030 +86-373-3329030
| | - Ge Wang
- College of Basic Medicine, Xinxiang Medical University Xinxiang Henan 453007 P. R. China
| | - Tony D James
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Organic Functional Molecules and Drug Innovation Key Laboratory of Henan Province, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China +86-373-3329030 +86-373-3329030
- Department of Chemistry, University of Bath Bath BA2 7AY UK
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin Austin 78712 USA
| | - Hua Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Organic Functional Molecules and Drug Innovation Key Laboratory of Henan Province, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China +86-373-3329030 +86-373-3329030
| |
Collapse
|
12
|
Deng W, Zhang CY, Dou LX, Huang LT, Wang JT, Liao XW, Wang LP, Yu RJ, Xiong YS. Polypyridyl ruthenium complexes with benzothiazole moiety as membrane disruptors and anti-resistance agents for Staphylococcus aureus. J Inorg Biochem 2024; 254:112517. [PMID: 38460482 DOI: 10.1016/j.jinorgbio.2024.112517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
Developing new antimicrobials to combat drug-resistant bacterial infections is necessary due to the increasing problem of bacterial resistance. In this study, four metallic ruthenium complexes modified with benzothiazoles were designed, synthesized and subjected to bio-evaluated. Among them, Ru-2 displayed remarkable inhibitory activity against Staphylococcus aureus (S. aureus) with a minimum inhibitory concentration (MIC) of 1.56 μg/mL. Additionally, it showcased low hemolytic toxicity (HC50 > 200 μg/mL) and the ability to effectively eradicate S. aureus without fostering drug resistance. Further investigation into the antibacterial mechanism suggested that Ru-2 may target the phospholipid component of S. aureus, leading to the disruption of the bacterial cell membrane and subsequent leakage of cell contents (nucleic acid, protein, and ONPG), ultimately resulting in the death of the bacterial cell. In vivo studies, both the G. mellonella larvae and the mouse skin infection models were conducted, indicated that Ru-2 could potentially serve as a viable candidate for the treatment of S. aureus infection. It exhibited no toxic or side effects on normal tissues. The results suggest that benzothiazole-modified ruthenium complexes may have potential as membrane-active antimicrobials against drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Wei Deng
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Chun-Yan Zhang
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Li-Xin Dou
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Li-Ting Huang
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Jin-Tiao Wang
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Xiang-Wen Liao
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Li-Ping Wang
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Ru-Jian Yu
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Yan-Shi Xiong
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China.
| |
Collapse
|
13
|
Mandal AA, Singh V, Saha S, Peters S, Sadhukhan T, Kushwaha R, Yadav AK, Mandal A, Upadhyay A, Bera A, Dutta A, Koch B, Banerjee S. Green Light-Triggered Photocatalytic Anticancer Activity of Terpyridine-Based Ru(II) Photocatalysts. Inorg Chem 2024; 63:7493-7503. [PMID: 38578920 DOI: 10.1021/acs.inorgchem.4c00650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
The relentless increase in drug resistance of platinum-based chemotherapeutics has opened the scope for other new cancer therapies with novel mechanisms of action (MoA). Recently, photocatalytic cancer therapy, an intrusive catalytic treatment, is receiving significant interest due to its multitargeting cell death mechanism with high selectivity. Here, we report the synthesis and characterization of three photoresponsive Ru(II) complexes, viz., [Ru(ph-tpy)(bpy)Cl]PF6 (Ru1), [Ru(ph-tpy)(phen)Cl]PF6 (Ru2), and [Ru(ph-tpy)(aip)Cl]PF6 (Ru3), where, ph-tpy = 4'-phenyl-2,2':6',2″-terpyridine, bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, and aip = 2-(anthracen-9-yl)-1H-imidazo[4,5-f][1,10] phenanthroline, showing photocatalytic anticancer activity. The X-ray crystal structures of Ru1 and Ru2 revealed a distorted octahedral geometry with a RuN5Cl core. The complexes showed an intense absorption band in the 440-600 nm range corresponding to the metal-to-ligand charge transfer (MLCT) that was further used to achieve the green light-induced photocatalytic anticancer effect. The mitochondria-targeting photostable complex Ru3 induced phototoxicity with IC50 and PI values of ca. 0.7 μM and 88, respectively, under white light irradiation and ca. 1.9 μM and 35 under green light irradiation against HeLa cells. The complexes (Ru1-Ru3) showed negligible dark cytotoxicity toward normal splenocytes (IC50s > 50 μM). The cell death mechanistic study revealed that Ru3 induced ROS-mediated apoptosis in HeLa cells via mitochondrial depolarization under white or green light exposure. Interestingly, Ru3 also acted as a highly potent catalyst for NADH photo-oxidation under green light. This NADH photo-oxidation process also contributed to the photocytotoxicity of the complexes. Overall, Ru3 presented multitargeting synergistic type I and type II photochemotherapeutic effects.
Collapse
Affiliation(s)
- Arif Ali Mandal
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Virendra Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sukanta Saha
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Silda Peters
- Departmentof Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Tumpa Sadhukhan
- Departmentof Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Rajesh Kushwaha
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Ashish Kumar Yadav
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Apurba Mandal
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Aarti Upadhyay
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Arpan Bera
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Arnab Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Biplob Koch
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
14
|
Leite ML, Comeau P, Aghakeshmiri S, Lange D, Rodrigues LKA, Branda N, Manso AP. Antimicrobial photodynamic therapy against a dual-species cariogenic biofilm using a ruthenium-loaded resin-based dental material. Photodiagnosis Photodyn Ther 2024; 46:104019. [PMID: 38395246 DOI: 10.1016/j.pdpdt.2024.104019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Streptococcus mutans and Candida albicans are associated with caries recurrence. Therefore, this study evaluated the combination of a Ru(II)-loaded resin-based dental material (RDM) and antimicrobial photodynamic therapy (aPDT) against a dual-species biofilm of S. mutans and C. albicans. METHODS An aPDT protocol was established evaluating Ru(II)'s photocatalytic activity and antimicrobial potential under blue LED irradiation (440-460 nm, 22.55 mW/cm2) at different energy densities (0.00, 6.25, 20.25, 40.50 J/cm2). This evaluation involved singlet oxygen quantification and determination of minimum inhibitory concentration (MIC) and minimum bactericidal/fungicidal concentration (MBC/MFC). The biofilm was grown (72 h) on resin disks prepared with Ru(II)-doped RDM (0.00, 0.56, or 1.12 %) and samples were exposed to aPDT or dark conditions. The biofilm was then harvested to analyze cell viability (CFU counts) and formation of soluble and insoluble exopolysaccharides. RESULTS The photocatalytic activity of Ru(II) was concentration and energy density dependent (p < 0.05), and MIC/MBC values were reduced for the microorganisms after LED irradiation (40.5 J/cm2); therefor, this energy density was chosen for aPDT. Although incorporation of Ru(II) into RDM reduced the biofilm growth compared to Ru(II)-free RDM for both species in dark conditions (p < 0.05), aPDT combined with an Ru(II)-loaded RDM (0.56 or 1.12 %) potentialized CFU reductions (p < 0.05). Conversely, only 1.12 % Ru(II) with LED irradiation showed lower levels of both soluble and insoluble exopolysaccharides compared to Ru(II)-free samples in dark conditions (p < 0.05). CONCLUSIONS When the Ru(II)-loaded RDM was associated with blue LED, aPDT reduced cell viability and lower soluble and insoluble exopolysaccharides were found in the cariogenic dual-species biofilm.
Collapse
Affiliation(s)
- Maria Luísa Leite
- Department of Oral Health Sciences, Division of Restorative Dentistry, Faculty of Dentistry, The University of British Columbia, 2199 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Patricia Comeau
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, 1455 De Maisonneuve Blvd. W., Montreal, QC H3G 1M8, Canada
| | - Sana Aghakeshmiri
- Department of Oral Health Sciences, Division of Restorative Dentistry, Faculty of Dentistry, The University of British Columbia, 2199 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Dirk Lange
- Department of Urological Sciences, Faculty of Medicine, The University of British Columbia, 2775 Laurel St, Vancouver, BC V5Z 1M9, Canada
| | - Lidiany Karla Azevedo Rodrigues
- Department of Restorative Dentistry, Federal University of Ceará, 1057 Monsenhor Furtado St, Fortaleza, CE 60430-355, Brazil
| | - Neil Branda
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 0A7, Canada
| | - Adriana Pigozzo Manso
- Department of Oral Health Sciences, Division of Restorative Dentistry, Faculty of Dentistry, The University of British Columbia, 2199 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
15
|
Gillard M, Troian-Gautier L, Decottignies A, Elias B. pH-Activatable Ruthenium(II) Fluorescein Salphen Schiff Base Photosensitizers for Theranostic Applications. J Med Chem 2024; 67:2549-2558. [PMID: 38345026 DOI: 10.1021/acs.jmedchem.3c01678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Ruthenium(II) polypyridyl complexes exhibit a lack of selectivity toward cancer tissues despite extensive studies as photosensitizers for photodynamic therapy (PDT). Here, we report pH-activatable RuII photosensitizers for molecularly targeted PDT by exploiting the higher acidity of tumoral tissue. The fluorescein moiety, well known for its high pH sensitivity, was connected to a RuII center to yield novel photosensitizers for pH-sensitive 1O2 photogeneration. Their ability to photosensitize molecular dioxygen was studied at various pHs and revealed a drastic enhancement from 0.07 to 0.66 of the 1O2 quantum yield under acidic conditions (pH 7.5 to pH 5.5). Their photocytotoxicity against U2OS osteosarcoma cells was also investigated at pH 5.5 and 7.5 through IC50 determination. A strong enhancement of the photocytotoxicity reaching 930 nM was observed at pH 5.5, which showed the potential of such photosensitizers for pH-activatable PDT.
Collapse
Affiliation(s)
- Martin Gillard
- Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Université catholique de Louvain (UCLouvain), Place Louis Pasteur 1, bte L4.01.02, B-1348 Louvain-la-Neuve, Belgium
| | - Ludovic Troian-Gautier
- Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Université catholique de Louvain (UCLouvain), Place Louis Pasteur 1, bte L4.01.02, B-1348 Louvain-la-Neuve, Belgium
- Wel Research Institute, Avenue Pasteur 6, 1300 Wavre, Belgium
| | - Anabelle Decottignies
- Genetic and Epigenetic Alterations of Genomes, de Duve Institute, Université catholique de Louvain (UCLouvain), Avenue Hippocrate 75, 1200 Brussels, Belgium
| | - Benjamin Elias
- Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Université catholique de Louvain (UCLouvain), Place Louis Pasteur 1, bte L4.01.02, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
16
|
Dube NP, Thatyana M, Mokgalaka-Fleischmann NS, Mansour AM, Tembu VJ, Manicum ALE. Review on the Applications of Selected Metal-Based Complexes on Infectious Diseases. Molecules 2024; 29:406. [PMID: 38257319 PMCID: PMC10819944 DOI: 10.3390/molecules29020406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Fatalities caused by infectious diseases (i.e., diseases caused by parasite, bacteria, and viruses) have become reinstated as a major public health threat globally. Factors such as antimicrobial resistance and viral complications are the key contributors to the death numbers. As a result, new compounds with structural diversity classes are critical for controlling the virulence of pathogens that are multi-drug resistant. Derivatization of bio-active organic molecules with organometallic synthons is a promising strategy for modifying the inherent and enhanced properties of biomolecules. Due to their redox chemistry, bioactivity, and structural diversity, organometallic moieties make excellent candidates for lead structures in drug development. Furthermore, organometallic compounds open an array of potential in therapy that existing organic molecules lack, i.e., their ability to fulfill drug availability and resolve the frequent succumbing of organic molecules to drug resistance. Additionally, metal complexes have the potential towards metal-specific modes of action, preventing bacteria from developing resistance mechanisms. This review's main contribution is to provide a thorough account of the biological efficacy (in vitro and in vitro) of metal-based complexes against infectious diseases. This resource can also be utilized in conjunction with corresponding journals on metal-based complexes investigated against infectious diseases.
Collapse
Affiliation(s)
- Nondumiso P. Dube
- Department of Chemistry, Tshwane University of Technology, 175 Nelson Mandela Drive, Private Bag X680, Pretoria 0001, South Africa; (N.P.D.); (M.T.); (N.S.M.-F.); (V.J.T.)
| | - Maxwell Thatyana
- Department of Chemistry, Tshwane University of Technology, 175 Nelson Mandela Drive, Private Bag X680, Pretoria 0001, South Africa; (N.P.D.); (M.T.); (N.S.M.-F.); (V.J.T.)
| | - Ntebogeng S. Mokgalaka-Fleischmann
- Department of Chemistry, Tshwane University of Technology, 175 Nelson Mandela Drive, Private Bag X680, Pretoria 0001, South Africa; (N.P.D.); (M.T.); (N.S.M.-F.); (V.J.T.)
| | - Ahmed M. Mansour
- Department of Chemistry, United Arab Emirates University, Al-Ain 15551, United Arab Emirates;
| | - Vuyelwa J. Tembu
- Department of Chemistry, Tshwane University of Technology, 175 Nelson Mandela Drive, Private Bag X680, Pretoria 0001, South Africa; (N.P.D.); (M.T.); (N.S.M.-F.); (V.J.T.)
| | - Amanda-Lee E. Manicum
- Department of Chemistry, Tshwane University of Technology, 175 Nelson Mandela Drive, Private Bag X680, Pretoria 0001, South Africa; (N.P.D.); (M.T.); (N.S.M.-F.); (V.J.T.)
| |
Collapse
|
17
|
Wang N, Ali A, Liu Z, Chi H, Lv Z, Zhao X, Zhang Z, Hao H, Zhang Y, Rahman FU. Monofunctional dimetallic Ru(η6-arene) complexes inhibit NOTCH1 signaling pathway and synergistically enhance anticancer effect in combination with cisplatin or vitamin C. Eur J Med Chem 2023; 258:115536. [PMID: 37295260 DOI: 10.1016/j.ejmech.2023.115536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/16/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
ONS donor ligands L1-L4 were utilized in the preparation of monofunctional dimetallic Ru(η6-arene) complexes (C1-C4). These ONS donor ligand based novel tricoordinated Ru(II) complexes bearing η6-arene co-ligand were prepared for the first time. The current methodology resulted in excellent isolated yields and these complexes were characterized in detail by different spectroscopic and spectrometric techniques. The structures of C1-C2 and C4 were characterized in solid state by single crystal X-ray analysis. The in vitro anticancer analyses showed these novel complexes suppressed the growth of breast (MCF-7), liver (HepG2) and lung (A549) cancer cells. C2 suppressed the growth of these cells in dose-dependent manner revealed form the MTT and crystal violet cell viability assays. Moreover, C2 was observed the most potent complex that was used further in detailed mechanistic analyses in cancer cells. C2 showed good cytotoxic activity at 10 μM dose level as compared to cisplatin or oxaliplatin in these cancer cells. We observed morphological changes in cancer cells upon treatment with C2. Moreover, C2 suppressed the invasion and migration ability of cancer cells. C2 induced cellular senescence to retard cell growth and suppressed the formation of cancer stem cells. Importantly, C2 showed synergistic anticancer effect in combination with cisplatin and Vitamin C to further inhibit cell growth which suggested the potential role of C2 in cancer therapy. Mechanistically, C2 inhibited NOTCH1 dependent signaling pathway to suppress cancer cell invasion, migration and cancer stem cells formation. Thus, these data suggested potential role of C2 in cancer therapy by targeting NOTCH1-dependent signaling to suppress tumorigenesis. The results obtained in this study for these novel monofunctional dimetallic Ru(η6-arene) complexes showed their high anticancer potency and this study will pave to further cytotoxicity exploration on this class of complexes.
Collapse
Affiliation(s)
- Na Wang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Amjad Ali
- Institute of Integrative Biosciences, CECOS University of IT and Emerging Sciences, Peshawar, KPK, Pakistan; Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, People's Republic of China
| | - Zongwei Liu
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Huiqin Chi
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Zhimin Lv
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Xing Zhao
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Zeqing Zhang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Huifang Hao
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China; School of Life Sciences, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Yongmin Zhang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China; Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France.
| | - Faiz-Ur Rahman
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China.
| |
Collapse
|
18
|
Skoczynska A, Lewinski A, Pokora M, Paneth P, Budzisz E. An Overview of the Potential Medicinal and Pharmaceutical Properties of Ru(II)/(III) Complexes. Int J Mol Sci 2023; 24:ijms24119512. [PMID: 37298471 DOI: 10.3390/ijms24119512] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
This review examines the existing knowledge about Ru(II)/(III) ion complexes with a potential application in medicine or pharmacy, which may offer greater potential in cancer chemotherapy than Pt(II) complexes, which are known to cause many side effects. Hence, much attention has been paid to research on cancer cell lines and clinical trials have been undertaken on ruthenium complexes. In addition to their antitumor activity, ruthenium complexes are under evaluation for other diseases, such as type 2 diabetes, Alzheimer's disease and HIV. Attempts are also being made to evaluate ruthenium complexes as potential photosensitizers with polypyridine ligands for use in cancer chemotherapy. The review also briefly examines theoretical approaches to studying the interactions of Ru(II)/Ru(III) complexes with biological receptors, which can facilitate the rational design of ruthenium-based drugs.
Collapse
Affiliation(s)
- Anna Skoczynska
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, 93-338 Lodz, Poland
| | - Andrzej Lewinski
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, 93-338 Lodz, Poland
| | - Mateusz Pokora
- International Center of Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Piotr Paneth
- International Center of Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Elzbieta Budzisz
- Department of the Chemistry of Cosmetic Raw Materials, Medical University of Lodz, 90-151 Lodz, Poland
| |
Collapse
|
19
|
Frei A, Verderosa AD, Elliott AG, Zuegg J, Blaskovich MAT. Metals to combat antimicrobial resistance. Nat Rev Chem 2023; 7:202-224. [PMID: 37117903 PMCID: PMC9907218 DOI: 10.1038/s41570-023-00463-4] [Citation(s) in RCA: 132] [Impact Index Per Article: 132.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2023] [Indexed: 02/10/2023]
Abstract
Bacteria, similar to most organisms, have a love-hate relationship with metals: a specific metal may be essential for survival yet toxic in certain forms and concentrations. Metal ions have a long history of antimicrobial activity and have received increasing attention in recent years owing to the rise of antimicrobial resistance. The search for antibacterial agents now encompasses metal ions, nanoparticles and metal complexes with antimicrobial activity ('metalloantibiotics'). Although yet to be advanced to the clinic, metalloantibiotics are a vast and underexplored group of compounds that could lead to a much-needed new class of antibiotics. This Review summarizes recent developments in this growing field, focusing on advances in the development of metalloantibiotics, in particular, those for which the mechanism of action has been investigated. We also provide an overview of alternative uses of metal complexes to combat bacterial infections, including antimicrobial photodynamic therapy and radionuclide diagnosis of bacterial infections.
Collapse
Affiliation(s)
- Angelo Frei
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia.
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| | - Anthony D Verderosa
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Alysha G Elliott
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Johannes Zuegg
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Mark A T Blaskovich
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia.
| |
Collapse
|
20
|
Sun Y, Das S, Brown SR, Blevins ER, Qu F, Ward NA, Gregory SA, Boudreaux CM, Kim Y, Papish ET. Ruthenium pincer complexes for light activated toxicity: Lipophilic groups enhance toxicity. J Inorg Biochem 2023; 240:112110. [PMID: 36596265 PMCID: PMC10231263 DOI: 10.1016/j.jinorgbio.2022.112110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/08/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Nine ruthenium CNC pincer complexes (1-9) were tested for anticancer activity in cell culture under both dark and light conditions. These complexes included varied CNC pincer ligands including OH, OMe, or Me substituents on the pyridyl ring and wingtip N-heterocyclic carbene (NHC) groups which varied as methyl (Me), phenyl (Ph), mesityl (Mes), and 2,6-diisopropylphenyl (Dipp). The supporting ligands included acetonitrile, Cl, and 2,2'-bipyridine (bpy) donors. The synthesis of complexes 8 and 9 is described herein and are fully characterized by spectroscopic (1H NMR, IR, UV-Vis, MS) and analytical techniques. Single crystal X-ray diffraction results are reported herein for 8 and 9. The other complexes (1-7) are reported elsewhere. The four most lipophilic ruthenium complexes (6, 7, 8, and 9) showed the best activity vs. MCF7 cancer cells with complexes 6 and 9 showing cytotoxicity and complex 7 and 8 showing light activated photocytotoxicity. The distribution of these compounds between octanol and water is reported as log(Do/w) values, and increasing log(Do/w) values correlate roughly with improved activity vs. cancer cells. Overall, lipophilic wingtip groups (e.g. Ph, Mes, Dipp) on the NHC ring and a lower cationic charge (1+ vs. 2+) appears to be beneficial for improved anticancer activity.
Collapse
Affiliation(s)
- Yifei Sun
- The University of Alabama, Department of Chemical and Biological Engineering, Tuscaloosa, AL 35487, USA
| | - Sanjit Das
- The University of Alabama, Department of Chemistry and Biochemistry, Tuscaloosa, AL 35487, USA
| | - Spenser R Brown
- The University of Alabama, Department of Chemical and Biological Engineering, Tuscaloosa, AL 35487, USA
| | - Emily R Blevins
- The University of Alabama, Department of Chemistry and Biochemistry, Tuscaloosa, AL 35487, USA
| | - Fengrui Qu
- The University of Alabama, Department of Chemical and Biological Engineering, Tuscaloosa, AL 35487, USA
| | - Nicholas A Ward
- The University of Alabama, Department of Chemistry and Biochemistry, Tuscaloosa, AL 35487, USA
| | - Shawn Aiden Gregory
- The University of Alabama, Department of Chemistry and Biochemistry, Tuscaloosa, AL 35487, USA
| | - Chance M Boudreaux
- The University of Alabama, Department of Chemistry and Biochemistry, Tuscaloosa, AL 35487, USA
| | - Yonghyun Kim
- The University of Alabama, Department of Chemical and Biological Engineering, Tuscaloosa, AL 35487, USA.
| | - Elizabeth T Papish
- The University of Alabama, Department of Chemistry and Biochemistry, Tuscaloosa, AL 35487, USA.
| |
Collapse
|
21
|
Munegowda MA, Manalac A, Weersink M, Cole HD, McFarland SA, Lilge L. Ru(II) CONTAINING PHOTOSENSITIZERS FOR PHOTODYNAMIC THERAPY: A CRITIQUE ON REPORTING AND AN ATTEMPT TO COMPARE EFFICACY. Coord Chem Rev 2022; 470:214712. [PMID: 36686369 PMCID: PMC9850455 DOI: 10.1016/j.ccr.2022.214712] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Ruthenium(II)-based coordination complexes have emerged as photosensitizers (PSs) for photodynamic therapy (PDT) in oncology as well as antimicrobial indications and have great potential. Their modular architectures that integrate multiple ligands can be exploited to tune cellular uptake and subcellular targeting, solubility, light absorption, and other photophysical properties. A wide range of Ru(II) containing compounds have been reported as PSs for PDT or as photochemotherapy (PCT) agents. Many studies employ a common scaffold that is subject to systematic variation in one or two ligands to elucidate the impact of these modifications on the photophysical and photobiological performance. Studies that probe the excited state energies and dynamics within these molecules are of fundamental interest and are used to design next-generation systems. However, a comparison of the PDT efficacy between Ru(II) containing PSs and 1st or 2nd generation PSs, already in clinical use or preclinical/clinical studies, is rare. Even comparisons between Ru(II) containing molecular structures are difficult, given the wide range of excitation wavelengths, power densities, and cell lines utilized. Despite this gap, PDT dose metrics quantifying a PS's efficacy are available to perform qualitative comparisons. Such models are independent of excitation wavelength and are based on common outcome parameters, such as the photon density absorbed by the Ru(II) compound to cause 50% cell kill (LD50) based on the previously established threshold model. In this focused photophysical review, we identified all published studies on Ru(II) containing PSs since 2005 that reported the required photophysical, light treatment, and in vitro outcome data to permit the application of the Photodynamic Threshold Model to quantify their potential efficacy. The resulting LD50 values range from less than 1013 to above 1020 [hν cm-3], indicating a wide range in PDT efficacy and required optical energy density for ultimate clinical translation.
Collapse
Affiliation(s)
| | - Angelica Manalac
- Princess Margaret Cancer Centre, University Health Network,
Toronto, Ontario, Canada
- Dept Medical Biophysics, University of Toronto, Toronto,
Ontario, Canada
| | - Madrigal Weersink
- Princess Margaret Cancer Centre, University Health Network,
Toronto, Ontario, Canada
| | - Houston D. Cole
- Dept of Chemistry and Biochemistry, The University of Texas
at Arlington, Arlington, Texas, USA
| | - Sherri A. McFarland
- Dept of Chemistry and Biochemistry, The University of Texas
at Arlington, Arlington, Texas, USA
| | - Lothar Lilge
- Princess Margaret Cancer Centre, University Health Network,
Toronto, Ontario, Canada
- Dept Medical Biophysics, University of Toronto, Toronto,
Ontario, Canada
| |
Collapse
|
22
|
Scoditti S, Mazzone G, Sanna N, Sicilia E. Computational Exploration of the Synergistic Anticancer Effect of a Multi-Action Ru(II)-Pt(IV) Conjugate. Inorg Chem 2022; 61:12903-12912. [PMID: 35900874 PMCID: PMC9382638 DOI: 10.1021/acs.inorgchem.2c02223] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
An in-depth computational study of the ability of a recently
proposed
multi-action Ru(II)–Pt(IV) conjugate to act as a photosensitizer
in photodynamic therapy (PDT) and chemotherapeutic drugs is presented
here. The investigated complex is characterized by a polypyridyl Ru(II)
chromophore linked to a Pt(IV) complex that, acting as a prodrug,
should be activated by reduction releasing the Ru-based chromophore
that can absorb light of proper wavelength to be used in PDT. The
reaction mechanism for active species formation has been fully elucidated
by means of density functional theory and its time-dependent extension.
The reduction mechanism, assisted by ascorbate, of the Pt(IV) prodrug
to the Pt(II) active species has been explored, taking into consideration
all the possible modes of attack of the reductant for releasing the
axial ligands and affording active cisplatin. Given the similarity
in the photophysical properties of the chromophore linked or not to
the Pt(IV) complex, both the Ru(II)–Pt(IV) conjugate precursor
and the Ru(II) chromophore should be able to act as PDT photosensitizers
according to type I and type II photoprocesses. In particular, they
are able to generate singlet oxygen cytotoxic species as well as auto-ionize
to form highly reactive O2–• species. A computational study on the ability
of a multi-action Ru(II)−Pt(IV)
conjugate to act as a photosensitizer in photodynamic therapy (PDT)
and chemotherapeutic drugs is presented here. The reduction mechanism
of the Pt(IV) complex along with the photophysical properties of both
the prodrug Ru(II)−Pt(IV) conjugate and Ru(II) complex is provided.
The mechanism of action has been fully elucidated by means of density
functional theory and its time-dependent extension.
Collapse
Affiliation(s)
- Stefano Scoditti
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Rende, CS, Italy
| | - Gloria Mazzone
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Rende, CS, Italy
| | - Nico Sanna
- Department for Innovation in Biology Agro-Food and Forest Systems (DIBAF), University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy
| | - Emilia Sicilia
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Rende, CS, Italy
| |
Collapse
|
23
|
Chen Q, Cuello-Garibo JA, Bretin L, Zhang L, Ramu V, Aydar Y, Batsiun Y, Bronkhorst S, Husiev Y, Beztsinna N, Chen L, Zhou XQ, Schmidt C, Ott I, Jager MJ, Brouwer AM, Snaar-Jagalska BE, Bonnet S. Photosubstitution in a trisheteroleptic ruthenium complex inhibits conjunctival melanoma growth in a zebrafish orthotopic xenograft model. Chem Sci 2022; 13:6899-6919. [PMID: 35774173 PMCID: PMC9200134 DOI: 10.1039/d2sc01646j] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/13/2022] [Indexed: 12/28/2022] Open
Abstract
In vivo data are rare but essential for establishing the clinical potential of ruthenium-based photoactivated chemotherapy (PACT) compounds, a new family of phototherapeutic drugs that are activated via ligand photosubstitution. Here a novel trisheteroleptic ruthenium complex [Ru(dpp)(bpy)(mtmp)](PF6)2 ([2](PF6)2, dpp = 4,7-diphenyl-1,10-phenanthroline, bpy = 2,2′-bipyridine, mtmp = 2-methylthiomethylpyridine) was synthesized and its light-activated anticancer properties were validated in cancer cell monolayers, 3D tumor spheroids, and in embryonic zebrafish cancer models. Upon green light irradiation, the non-toxic mtmp ligand is selectively cleaved off, thereby releasing a phototoxic ruthenium-based photoproduct capable notably of binding to nuclear DNA and triggering DNA damage and apoptosis within 24–48 h. In vitro, fifteen minutes of green light irradiation (21 mW cm−2, 19 J cm−2, 520 nm) were sufficient to generate high phototherapeutic indexes (PI) for this compound in a range of cancer cell lines including lung (A549), prostate (PC3Pro4), conjunctival melanoma (CRMM1, CRMM2, CM2005.1) and uveal melanoma (OMM1, OMM2.5, Mel270) cancer cell lines. The therapeutic potential of [2](PF6)2 was further evaluated in zebrafish embryo ectopic (PC3Pro4) or orthotopic (CRMM1, CRMM2) tumour models. The ectopic model consisted of red fluorescent PC3Pro4-mCherry cells injected intravenously (IV) into zebrafish, that formed perivascular metastatic lesions at the posterior ventral end of caudal hematopoietic tissue (CHT). By contrast, in the orthotopic model, CRMM1- and CRMM2-mCherry cells were injected behind the eye where they developed primary lesions. The maximally-tolerated dose (MTD) of [2](PF6)2 was first determined for three different modes of compound administration: (i) incubating the fish in prodrug-containing water (WA); (ii) injecting the prodrug intravenously (IV) into the fish; or (iii) injecting the prodrug retro-orbitally (RO) into the fish. To test the anticancer efficiency of [2](PF6)2, the embryos were treated 24 h after engraftment at the MTD. Optimally, four consecutive PACT treatments were performed on engrafted embryos using 60 min drug-to-light intervals and 90 min green light irradiation (21 mW cm−2, 114 J cm−2, 520 nm). Most importantly, this PACT protocol was not toxic to the zebrafish. In the ectopic prostate tumour models, where [2](PF6)2 showed the highest photoindex in vitro (PI > 31), the PACT treatment did not significantly diminish the growth of primary lesions, while in both conjunctival melanoma orthotopic tumour models, where [2](PF6)2 showed more modest photoindexes (PI ∼ 9), retro-orbitally administered PACT treatment significantly inhibited growth of the engrafted tumors. Overall, this study represents the first demonstration in zebrafish cancer models of the clinical potential of ruthenium-based PACT, here against conjunctival melanoma. A new tris-heteroleptic photoactivated chemotherapy ruthenium complex induces apoptosis upon green light activation in a zebrafish orthothopic conjunctival melanoma xenograft model.![]()
Collapse
Affiliation(s)
- Quanchi Chen
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School Nanjing China.,Institute of Biology, Leiden University Leiden The Netherlands +31-71-527-4980
| | - Jordi-Amat Cuello-Garibo
- Leiden Institute of Chemistry, Leiden University P. O. Box 9502 2300 RA Leiden The Netherlands +31-71-527-4260
| | - Ludovic Bretin
- Leiden Institute of Chemistry, Leiden University P. O. Box 9502 2300 RA Leiden The Netherlands +31-71-527-4260
| | - Liyan Zhang
- Leiden Institute of Chemistry, Leiden University P. O. Box 9502 2300 RA Leiden The Netherlands +31-71-527-4260
| | - Vadde Ramu
- Leiden Institute of Chemistry, Leiden University P. O. Box 9502 2300 RA Leiden The Netherlands +31-71-527-4260
| | - Yasmin Aydar
- Institute of Biology, Leiden University Leiden The Netherlands +31-71-527-4980
| | - Yevhen Batsiun
- Leiden Institute of Chemistry, Leiden University P. O. Box 9502 2300 RA Leiden The Netherlands +31-71-527-4260
| | - Sharon Bronkhorst
- Leiden Institute of Chemistry, Leiden University P. O. Box 9502 2300 RA Leiden The Netherlands +31-71-527-4260
| | - Yurii Husiev
- Leiden Institute of Chemistry, Leiden University P. O. Box 9502 2300 RA Leiden The Netherlands +31-71-527-4260
| | - Nataliia Beztsinna
- Leiden Institute of Chemistry, Leiden University P. O. Box 9502 2300 RA Leiden The Netherlands +31-71-527-4260
| | - Lanpeng Chen
- Institute of Biology, Leiden University Leiden The Netherlands +31-71-527-4980
| | - Xue-Quan Zhou
- Leiden Institute of Chemistry, Leiden University P. O. Box 9502 2300 RA Leiden The Netherlands +31-71-527-4260
| | - Claudia Schmidt
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig Beethovenstrasse 55 D-38106 Braunschweig Germany
| | - Ingo Ott
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig Beethovenstrasse 55 D-38106 Braunschweig Germany
| | - Martine J Jager
- Department of Ophthalmology, Leiden University Medical Center Leiden The Netherlands
| | - Albert M Brouwer
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | | | - Sylvestre Bonnet
- Leiden Institute of Chemistry, Leiden University P. O. Box 9502 2300 RA Leiden The Netherlands +31-71-527-4260
| |
Collapse
|
24
|
A supramolecular photosensitizer derived from an Arene-Ru(II) complex self-assembly for NIR activated photodynamic and photothermal therapy. Nat Commun 2022; 13:3064. [PMID: 35654794 PMCID: PMC9163081 DOI: 10.1038/s41467-022-30721-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 05/06/2022] [Indexed: 12/22/2022] Open
Abstract
Effective photosensitizers are of particular importance for the widespread clinical utilization of phototherapy. However, conventional photosensitizers are usually plagued by short-wavelength absorption, inadequate photostability, low reactive oxygen species (ROS) quantum yields, and aggregation-caused ROS quenching. Here, we report a near-infrared (NIR)-supramolecular photosensitizer (RuDA) via self-assembly of an organometallic Ru(II)-arene complex in aqueous solution. RuDA can generate singlet oxygen (1O2) only in aggregate state, showing distinct aggregation-induced 1O2 generation behavior due to the greatly increased singlet-triplet intersystem crossing process. Upon 808 nm laser irradiation, RuDA with excellent photostability displays efficient 1O2 and heat generation in a 1O2 quantum yield of 16.4% (FDA-approved indocyanine green: ΦΔ = 0.2%) together with high photothermal conversion efficiency of 24.2% (commercial gold nanorods: 21.0%, gold nanoshells: 13.0%). In addition, RuDA-NPs with good biocompatibility can be preferably accumulated at tumor sites, inducing significant tumor regression with a 95.2% tumor volume reduction in vivo during photodynamic therapy. This aggregation enhanced photodynamic therapy provides a strategy for the design of photosensitizers with promising photophysical and photochemical characteristics.
Collapse
|
25
|
Xu Z, Lu X, Zhu Y, Xiong C, Li B, Li S, Zhang Q, Tian X, Li D, Tian Y. Prolongation excitation wavelength of two-photon active photosensitizer for near-infrared light-induced in vitro photodynamic therapy. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Biofilms in Surgical Site Infections: Recent Advances and Novel Prevention and Eradication Strategies. Antibiotics (Basel) 2022; 11:antibiotics11010069. [PMID: 35052946 PMCID: PMC8773207 DOI: 10.3390/antibiotics11010069] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 12/24/2022] Open
Abstract
Surgical site infections (SSIs) are common postoperative occurrences due to contamination of the surgical wound or implanted medical devices with community or hospital-acquired microorganisms, as well as other endogenous opportunistic microbes. Despite numerous rules and guidelines applied to prevent these infections, SSI rates are considerably high, constituting a threat to the healthcare system in terms of morbidity, prolonged hospitalization, and death. Approximately 80% of human SSIs, including chronic wound infections, are related to biofilm-forming bacteria. Biofilm-associated SSIs are extremely difficult to treat with conventional antibiotics due to several tolerance mechanisms provided by the multidrug-resistant bacteria, usually arranged as polymicrobial communities. In this review, novel strategies to control, i.e., prevent and eradicate, biofilms in SSIs are presented and discussed, focusing mainly on two attractive approaches: the use of nanotechnology-based composites and natural plant-based products. An overview of new therapeutic agents and strategic approaches to control epidemic multidrug-resistant pathogenic microorganisms, particularly when biofilms are present, is provided alongside other combinatorial approaches as attempts to obtain synergistic effects with conventional antibiotics and restore their efficacy to treat biofilm-mediated SSIs. Some detection and real-time monitoring systems to improve biofilm control strategies and diagnosis of human infections are also discussed.
Collapse
|
27
|
Manso AP, Leite ML, Comeau P, Dietrich C, Ghaffari S, Lange D, Branda N. Exploring the use of a Ruthenium complex incorporated into a methacrylate-based dental material for antimicrobial photodynamic therapy. J Appl Biomater Funct Mater 2022; 20:22808000221112989. [PMID: 35856607 DOI: 10.1177/22808000221112989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES To evaluate the effects of a blue light photosensitizer (PS), Ruthenium II complex (Ru), on the chemical, physical, mechanical, and antimicrobial properties of experimental dental resin blends. METHODS The experimental resin (BisEMA, TEEGDMA, HPMA, ethanol, and photoinitiator) was loaded with Ru at 0.00%, 0.07%, 0.14%, 0.28%, 0.56%, 1.12%, 1.2%, 1.5%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, or 10% w/w. Samples were evaluated for the degree of conversion (DC) after 30 and 60 s curing-time (n = 6). Selected formulations (0.00%, 0.28%, 0.56%, 1.12%) were further tested for shear bond strength (SBS) (n = 15); flexural strength (FS) (n = 12); and antimicrobial properties (CFUs), in dark and light conditions. These latter tests were performed on specimens stored for 24-h or 2-month in 37°C water. Water sorption (WS) and solubility (SL) tests were also performed (n = 12). Data were analyzed either by a one- or two-factor general linear model (α = 0.05). RESULTS Overall, Ru concentration above 1.2% resulted in reduced DC. In SBS results, only the 1.12%Ru resin blend samples had statistically lower values compared to the 0.00%Ru resin blend at 24-h storage (p = 0.004). In addition, no differences in SBS were detected among the experimental groups after 2-month storage in water. Meanwhile, FS increased for all experimental groups under similar aging conditions (p < 0.001). Antimicrobial properties were improved upon inclusion of Ru and application of light (p < 0.001 for both) at 24-h and 2-month storage. Lastly, no detectable changes in WS or SL were observed for the Ru-added resins compared to the 0.00%Ru resin blend. However, the 0.28% Ru blend presented significantly higher WS compared to the 0.56% Ru blend (p = 0.007). CONCLUSIONS Stable SBS, improved FS, and sustained antimicrobial properties after aging gives significant credence to our approach of adding the Ruthenium II complex into dental adhesive resin blends intended for an aPDT approach.
Collapse
Affiliation(s)
- Adriana Pigozzo Manso
- Department of Oral Health Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, Canada
| | - Maria Luísa Leite
- Department of Oral Health Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, Canada
| | - Patricia Comeau
- Department of Oral Health Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, Canada
| | - Claudia Dietrich
- Department of Oral Health Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, Canada
| | - Sahand Ghaffari
- Department of Urological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Dirk Lange
- Department of Urological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Neil Branda
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
28
|
Youf R, Müller M, Balasini A, Thétiot F, Müller M, Hascoët A, Jonas U, Schönherr H, Lemercier G, Montier T, Le Gall T. Antimicrobial Photodynamic Therapy: Latest Developments with a Focus on Combinatory Strategies. Pharmaceutics 2021; 13:1995. [PMID: 34959277 PMCID: PMC8705969 DOI: 10.3390/pharmaceutics13121995] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial photodynamic therapy (aPDT) has become a fundamental tool in modern therapeutics, notably due to the expanding versatility of photosensitizers (PSs) and the numerous possibilities to combine aPDT with other antimicrobial treatments to combat localized infections. After revisiting the basic principles of aPDT, this review first highlights the current state of the art of curative or preventive aPDT applications with relevant clinical trials. In addition, the most recent developments in photochemistry and photophysics as well as advanced carrier systems in the context of aPDT are provided, with a focus on the latest generations of efficient and versatile PSs and the progress towards hybrid-multicomponent systems. In particular, deeper insight into combinatory aPDT approaches is afforded, involving non-radiative or other light-based modalities. Selected aPDT perspectives are outlined, pointing out new strategies to target and treat microorganisms. Finally, the review works out the evolution of the conceptually simple PDT methodology towards a much more sophisticated, integrated, and innovative technology as an important element of potent antimicrobial strategies.
Collapse
Affiliation(s)
- Raphaëlle Youf
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
| | - Max Müller
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (M.M.); (M.M.)
| | - Ali Balasini
- Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (A.B.); (U.J.)
| | - Franck Thétiot
- Unité Mixte de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 6521, Université de Brest (UBO), CS 93837, 29238 Brest, France
| | - Mareike Müller
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (M.M.); (M.M.)
| | - Alizé Hascoët
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
| | - Ulrich Jonas
- Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (A.B.); (U.J.)
| | - Holger Schönherr
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (M.M.); (M.M.)
| | - Gilles Lemercier
- Coordination Chemistry Team, Unité Mixte de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7312, Institut de Chimie Moléculaire de Reims (ICMR), Université de Reims Champagne-Ardenne, BP 1039, CEDEX 2, 51687 Reims, France
| | - Tristan Montier
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
- CHRU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, Centre de Référence des Maladies Rares Maladies Neuromusculaires, 29200 Brest, France
| | - Tony Le Gall
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
| |
Collapse
|
29
|
Giacomazzo GE, Conti L, Guerri A, Pagliai M, Fagorzi C, Sfragano PS, Palchetti I, Pietraperzia G, Mengoni A, Valtancoli B, Giorgi C. Nitroimidazole-Based Ruthenium(II) Complexes: Playing with Structural Parameters to Design Photostable and Light-Responsive Antibacterial Agents. Inorg Chem 2021; 61:6689-6694. [PMID: 34793162 DOI: 10.1021/acs.inorgchem.1c03032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
5-Nitroimidazole (5NIMH), chosen as a molecular model of nitroimidazole derivatives, which represent a broad-spectrum class of antimicrobials, was incorporated into the ruthenium complexes [Ru(tpy)(phen)(5NIM)]PF6 (1) and [Ru(tpy)(dmp)(5NIM)]PF6 (2) (tpy = terpyridine, phen = phenanthroline, dmp = 2,9-dimethyl-1,10-phenanthroline). Besides the uncommon metal coordination of 5-nitroimidazole in its imidazolate form (5NIM), the different architectures of the spectator ligands (phen and dmp) were exploited to tune the "mode of action" of the resulting complexes, passing from a photostable compound where the redox properties of 5NIMH are preserved (1) to one suitable for the nitroimidazole phototriggered release (2) and whose antibacterial activity against B. subtilis, chosen as cellular model, is effectively improved upon light exposure. This study may provide a fundamental knowledge on the use of Ru(II)-polypyridyl complexes to incorporate and/or photorelease biologically relevant nitroimidazole derivatives in the design of a novel class of antimicrobials.
Collapse
Affiliation(s)
- Gina Elena Giacomazzo
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Luca Conti
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Annalisa Guerri
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Marco Pagliai
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Camilla Fagorzi
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Patrick Severin Sfragano
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Ilaria Palchetti
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Giangaetano Pietraperzia
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy.,European Laboratory for Non-Linear Spectroscopy (LENS), Via Nello Carrara 1, 50019 Sesto Fiorentino, Florence, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Barbara Valtancoli
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Claudia Giorgi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
30
|
Pham TC, Nguyen VN, Choi Y, Lee S, Yoon J. Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chem Rev 2021; 121:13454-13619. [PMID: 34582186 DOI: 10.1021/acs.chemrev.1c00381] [Citation(s) in RCA: 638] [Impact Index Per Article: 212.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review presents a robust strategy to design photosensitizers (PSs) for various species. Photodynamic therapy (PDT) is a photochemical-based treatment approach that involves the use of light combined with a light-activated chemical, referred to as a PS. Attractively, PDT is one of the alternatives to conventional cancer treatment due to its noninvasive nature, high cure rates, and low side effects. PSs play an important factor in photoinduced reactive oxygen species (ROS) generation. Although the concept of photosensitizer-based photodynamic therapy has been widely adopted for clinical trials and bioimaging, until now, to our surprise, there has been no relevant review article on rational designs of organic PSs for PDT. Furthermore, most of published review articles in PDT focused on nanomaterials and nanotechnology based on traditional PSs. Therefore, this review aimed at reporting recent strategies to develop innovative organic photosensitizers for enhanced photodynamic therapy, with each example described in detail instead of providing only a general overview, as is typically done in previous reviews of PDT, to provide intuitive, vivid, and specific insights to the readers.
Collapse
Affiliation(s)
- Thanh Chung Pham
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Van-Nghia Nguyen
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Yeonghwan Choi
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Songyi Lee
- Department of Chemistry, Pukyong National University, Busan 48513, Korea.,Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
31
|
Chevreux S, Four M, Lemercier G. Paramagnetic Oxygen as Contrast Agent for a Potential PDT Treatment MRI Monitoring. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sylviane Chevreux
- Université de Reims Champagne-Ardenne ICMR UMR CNRS 7312 BP 1039 FR-51687 Reims cedex 2 France
- Chimie ParisTech PSL University UMR CNRS 8247 Institut de Recherche de Chimie Paris FR-75005 Paris France
| | - Mickaël Four
- Université de Reims Champagne-Ardenne ICMR UMR CNRS 7312 BP 1039 FR-51687 Reims cedex 2 France
| | - Gilles Lemercier
- Université de Reims Champagne-Ardenne ICMR UMR CNRS 7312 BP 1039 FR-51687 Reims cedex 2 France
| |
Collapse
|
32
|
Hess J. Rational approaches towards inorganic and organometallic antibacterials. Biol Chem 2021; 403:363-375. [PMID: 34253000 DOI: 10.1515/hsz-2021-0253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022]
Abstract
The occurrence of drug-resistant bacteria is drastically rising and new and effective antibiotic classes are urgently needed. However, most of the compounds in development are minor modifications of previously used drugs to which bacteria can easily develop resistance. The investigation of inorganic and organometallic compounds as antibiotics is an alternative approach that holds great promises due to the ability of such molecules to trigger metal-specific mechanisms of action, which results in lethal consequences for pathogens. In this review, a selection of concepts to rationally design inorganic and organometallic antibiotics is discussed, highlighting their advantages by comparing them to classical drug discovery programmes. The review concludes with a short perspective for the future of antibiotic drug development and the role metal-based compounds will play in the field.
Collapse
Affiliation(s)
- Jeannine Hess
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| |
Collapse
|
33
|
Smith CB, Days LC, Alajroush DR, Faye K, Khodour Y, Beebe SJ, Holder AA. Photodynamic Therapy of Inorganic Complexes for the Treatment of Cancer †. Photochem Photobiol 2021; 98:17-41. [PMID: 34121188 DOI: 10.1111/php.13467] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/10/2021] [Indexed: 01/05/2023]
Abstract
Photodynamic therapy (PDT) is a medicinal tool that uses a photosensitizer and a light source to treat several conditions, including cancer. PDT uses reactive oxygen species such as cytotoxic singlet oxygen (1 O2 ) to induce cell death in cancer cells. Chemotherapy has historically utilized the cytotoxic effects of many metals, especially transition metal complexes. However, chemotherapy is a systemic treatment so all cells in a patient's body are exposed to the same cytotoxic effects. Transition metal complexes have also shown high cytotoxicity as PDT agents. PDT is a potential localized method for treating several cancer types by using inorganic complexes as photosensitizing agents. This review covers several in vitro and in vivo studies, as well as clinical trials that reported on the anticancer properties of inorganic pharmaceuticals used in PDT against different types of cancer.
Collapse
Affiliation(s)
- Chloe B Smith
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA
| | - Lindsay C Days
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA
| | - Duaa R Alajroush
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA
| | - Khadija Faye
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA
| | - Yara Khodour
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA
| | - Stephen J Beebe
- Frank Reidy Research Centre for Bioelectrics, Old Dominion University, Norfolk, VA
| | - Alvin A Holder
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA
| |
Collapse
|
34
|
Toupin N, Steinke SJ, Nadella S, Li A, Rohrabaugh TN, Samuels ER, Turro C, Sevrioukova IF, Kodanko JJ. Photosensitive Ru(II) Complexes as Inhibitors of the Major Human Drug Metabolizing Enzyme CYP3A4. J Am Chem Soc 2021; 143:9191-9205. [PMID: 34110801 DOI: 10.1021/jacs.1c04155] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We report the synthesis and photochemical and biological characterization of the first selective and potent metal-based inhibitors of cytochrome P450 3A4 (CYP3A4), the major human drug metabolizing enzyme. Five Ru(II)-based derivatives were prepared from two analogs of the CYP3A4 inhibitor ritonavir, 4 and 6: [Ru(tpy)(L)(6)]Cl2 (tpy = 2,2':6',2″-terpyridine) with L = 6,6'-dimethyl-2,2'-bipyridine (Me2bpy; 8), dimethylbenzo[i]dipyrido[3,2-a:2',3'-c]phenazine (Me2dppn; 10) and 3,6-dimethyl-10,15-diphenylbenzo[i]dipyrido[3,2-a:2',3'-c]phenazine (Me2Ph2dppn; 11), [Ru(tpy)(Me2bpy)(4)]Cl2 (7) and [Ru(tpy)(Me2dppn)(4)]Cl2 (9). Photochemical release of 4 or 6 from 7-11 was demonstrated, and the spectrophotometric evaluation of 7 showed that it behaves similarly to free 4 (type II heme ligation) after irradiation with visible light but not in the dark. Unexpectedly, the intact Ru(II) complexes 7 and 8 were found to inhibit CYP3A4 potently and specifically through direct binding to the active site without heme ligation. Caged inhibitors 9-11 showed dual action properties by combining photoactivated dissociation of 4 or 6 with efficient 1O2 production. In prostate adenocarcinoma DU-145 cells, compound 9 had the best synergistic effect with vinblastine, the anticancer drug primarily metabolized by CYP3A4 in vivo. Thus, our study establishes a new paradigm in CYP inhibition using metalated complexes and suggests possible utilization of photoactive CYP3A4 inhibitory compounds in clinical applications, such as enhancement of therapeutic efficacy of anticancer drugs.
Collapse
Affiliation(s)
- Nicholas Toupin
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Sean J Steinke
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sandeep Nadella
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Ao Li
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Thomas N Rohrabaugh
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | | | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | | | - Jeremy J Kodanko
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States.,Barbara Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| |
Collapse
|
35
|
Ahmed E, El-Gendy AO, Hamblin MR, Mohamed T. The effect of femtosecond laser irradiation on the growth kinetics of Staphylococcus aureus: An in vitro study. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 221:112240. [PMID: 34130092 DOI: 10.1016/j.jphotobiol.2021.112240] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/29/2021] [Accepted: 06/02/2021] [Indexed: 01/10/2023]
Abstract
We investigated the effect of femtosecond laser irradiation on the growth kinetics of Staphylococcus aureus. In order to improve laser-based antimicrobial therapy and develop a clinically viable modality, various laser parameters such as laser light wavelength, laser power, exposure time, and energy density were studied. The INSPIRE HF100 laser system (Spectra Physics) provided the femtosecond laser light, which was pumped by a mode-locked femtosecond Ti: sapphire laser MAI TAI HP (Spectra Physics). The survival of the bacterial cells was monitored after irradiation by determination of growth rate using optical density, which is a rapid, simple, and reliable method. The growth rate of laser-exposed cultures was compared to control cultures. Fifteen minutes of exposure to femtosecond laser radiation with a wavelength of 390 nm and 400 nm at an average power of 50 mW was enough to significantly reduce bacterial viability, with a lag in the growth phase of 5 h longer than the control culture (P < 0.0001 by ANOVA and Tukey test).
Collapse
Affiliation(s)
- Esraa Ahmed
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Ahmed O El-Gendy
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt; Faculty of Pharmacy, Department of Microbiology and Immunology, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Michael R Hamblin
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA; Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Tarek Mohamed
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt.
| |
Collapse
|
36
|
Wu S, Wu Z, Ge Q, Zheng X, Yang Z. Antitumor activity of tridentate pincer and related metal complexes. Org Biomol Chem 2021; 19:5254-5273. [PMID: 34059868 DOI: 10.1039/d1ob00577d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Pincer complexes featuring tunable tridentate ligand frameworks are one of the most actively studied classes of metal-based complexes. Currently, growing attention is devoted to the cytotoxicity of pincer and related metal complexes. The antiproliferative activity of numerous pincer complexes has been reported. Pincer tridentate ligand scaffolds show different coordination modes and offer multiple options for directed structural modifications. This review summarizes the significant progress in the research studies of the antitumor activity of pincer and related platinum(ii), gold(iii), palladium(ii), copper(ii), iron(iii), ruthenium(ii), nickel(ii) and some other metal complexes, in order to provide a reference for designing novel metal coordination drug candidates with promising antitumor activity.
Collapse
Affiliation(s)
- Shulei Wu
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, Affiliated Nanhua Hospital, University of South China, 28 Western Changsheng Road, Hengyang 421001, Hunan, PR China.
| | - Zaoduan Wu
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, Affiliated Nanhua Hospital, University of South China, 28 Western Changsheng Road, Hengyang 421001, Hunan, PR China.
| | - Qianyi Ge
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, Affiliated Nanhua Hospital, University of South China, 28 Western Changsheng Road, Hengyang 421001, Hunan, PR China.
| | - Xing Zheng
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, Affiliated Nanhua Hospital, University of South China, 28 Western Changsheng Road, Hengyang 421001, Hunan, PR China.
| | - Zehua Yang
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, Affiliated Nanhua Hospital, University of South China, 28 Western Changsheng Road, Hengyang 421001, Hunan, PR China.
| |
Collapse
|
37
|
He G, Xu N, Ge H, Lu Y, Wang R, Wang H, Du J, Fan J, Sun W, Peng X. Red-Light-Responsive Ru Complex Photosensitizer for Lysosome Localization Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19572-19580. [PMID: 33900720 DOI: 10.1021/acsami.0c22551] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Photoresponsive ruthenium (Ru) complexes have been extensively studied in the photodynamic therapy (PDT) of cancer. The metal-to-ligand charge transfer (MLCT) absorption maximum of most Ru complexes is located in the short-wavelength visible region, which is well suited for superficial tumors but shows inefficient therapeutic effects for more deep-seated ones. Moreover, Ru complexes are primarily located in the mitochondria or nucleus, always resulting in high levels of dark toxicity and DNA mutation. Herein, we reported a new ruthenium complex (Ru-I) for red-light-triggered PDT. The activation wavelength of Ru-I is successfully extended to 660 nm. Importantly, the complex photosensitizer can be quickly taken up by cancer cells and selectively accumulated in the lysosome, an ideal localization for PDT purposes. Intratumoral injection of Ru-I into tumor-bearing mice achieved excellent therapeutic effects and thus holds great promise for applications in lysosome localization photodynamic therapy.
Collapse
Affiliation(s)
- Guangli He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Ning Xu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Haoying Ge
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Yang Lu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Ran Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Hexiang Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, 26 Yucai Road, Jiangbei District, Ningbo 315016, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, 26 Yucai Road, Jiangbei District, Ningbo 315016, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, 26 Yucai Road, Jiangbei District, Ningbo 315016, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
38
|
Conti L, Mengoni A, Giacomazzo GE, Mari L, Perfetti M, Fagorzi C, Sorace L, Valtancoli B, Giorgi C. Exploring the potential of highly charged Ru(II)- and heteronuclear Ru(II)/Cu(II)-polypyridyl complexes as antimicrobial agents. J Inorg Biochem 2021; 220:111467. [PMID: 33932708 DOI: 10.1016/j.jinorgbio.2021.111467] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/29/2021] [Accepted: 04/18/2021] [Indexed: 01/18/2023]
Abstract
The antimicrobial potential of two ruthenium(II) polypyridyl complexes, [Ru(phen)2L1]2+ and [Ru(phen)2L2]2+ (phen = 1,10-phenanthroline) containing the 4,4'-(2,5,8,11,14-pentaaza[15])-2,2'-bipyridilophane (L1) and the 4,4'-bis-[methylen-(1,4,7,10-tetraazacyclododecane)]-2,2' bipyridine (L2) units, is herein investigated. These peculiar polyamine frameworks afford the formation of highly charged species in solution, influence the DNA-binding and cleavage properties of compounds, but they do not undermine their singlet oxygen sensitizing capacities, thus making these complexes attractive 1O2 generators in aqueous solution. L1 and L2 also permit to stably host Fenton -active Cu2+ ion/s, leading to the formation of mixed Ru2+/Cu2+ forms capable to further strengthen the oxidative damages to biological targets. Herein, following a characterization of the Cu2+ binding ability by [Ru(phen)2L2]2+, the water-octanol distribution coefficients, the DNA binding, cleavage and 1O2 sensitizing properties of [Ru(phen)2L2]2+ and [Cu2Ru(phen)2L2]6+ were analysed and compared with those of [Ru(phen)2L1]2+ and [CuRu(phen)2L1]4+. The antimicrobial activity of all compounds was evaluated against B. subtilis, chosen as a model for gram-positive bacteria, both under dark and upon light-activation. Our results unveil a notable phototoxicity of [Ru(phen)2L2]2+ and [Cu2Ru(phen)2L2]6+, with MIC (minimal inhibitory concentrations) values of 3.12 μM. This study highlights that the structural characteristics of polyamine ligands gathered on highly charged Ru(II)-polypyridyl complexes are versatile tools that can be exploited to achieve enhanced antibacterial strategies.
Collapse
Affiliation(s)
- Luca Conti
- Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Italy.
| | - Alessio Mengoni
- Department of Biology, University of Florence, via Madonna del Piano 6, 50019 Sesto Fiorentino (FI), Italy
| | - Gina Elena Giacomazzo
- Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Lorenzo Mari
- Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Mauro Perfetti
- Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Camilla Fagorzi
- Department of Biology, University of Florence, via Madonna del Piano 6, 50019 Sesto Fiorentino (FI), Italy
| | - Lorenzo Sorace
- Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Barbara Valtancoli
- Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Claudia Giorgi
- Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
39
|
Yan J, Wang C, Jiang X, Wei Y, Wang Q, Cui K, Xu X, Wang F, Zhang L. Application of phototherapeutic-based nanoparticles in colorectal cancer. Int J Biol Sci 2021; 17:1361-1381. [PMID: 33867852 PMCID: PMC8040477 DOI: 10.7150/ijbs.58773] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed malignancy and the second leading cause of cancer death, which accounts for approximately 10% of all new cancer cases worldwide. Surgery is the main method for treatment of early-stage CRC. However, it is not effective for most metastatic tumors, and new treatment and diagnosis strategies need to be developed. Photosensitizers (PSs) play an important role in the treatment of CRC. Phototherapy also has a broad prospect in the treatment of CRC because of its low invasiveness and low toxicity. However, most PSs are associated with limitations including poor solubility, poor selectivity and high toxicity. The application of nanomaterials in PSs has added many advantages, including increased solubility, bioavailability, targeting, stability and low toxicity. In this review, based on phototherapy, we discuss the characteristics and development progress of PSs, the targeting of PSs at organ, cell and molecular levels, and the current methods of optimizing PSs, especially the application of nanoparticles as carriers in CRC. We introduce the photosensitizer (PS) targeting process in photodynamic therapy (PDT), the damage mechanism of PDT, and the application of classic PS in CRC. The action process and damage mechanism of photothermal therapy (PTT) and the types of ablation agents. In addition, we present the imaging examination and the application of PDT / PTT in tumor, including (fluorescence imaging, photoacoustic imaging, nuclear magnetic resonance imaging, nuclear imaging) to provide the basis for the early diagnosis of CRC. Notably, single phototherapy has several limitations in vivo, especially for deep tumors. Here, we discuss the advantages of the combination therapy of PDT and PTT compared with the single therapy. At the same time, this review summarizes the clinical application of PS in CRC. Although a variety of nanomaterials are in the research and development stage, few of them are actually on the market, they will show great advantages in the treatment of CRC in the near future.
Collapse
Affiliation(s)
- Jiaxin Yan
- Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.,School of Pharmacy, Henan University, Kaifeng Kaifeng 475004, China
| | - Chunli Wang
- Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.,School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Xiaomei Jiang
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yiqu Wei
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Qun Wang
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Kunli Cui
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Xiao Xu
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Feng Wang
- Guangming Substation of Shenzhen Ecological Environment Monitoring Station, Shenzhen 518107, P. R. China
| | - Lei Zhang
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
40
|
Deshpande MS, Morajkar SM, Srinivasan BR, Ahirwar MB, Deshmukh MM. Effect of the electronic structure on the robustness of ruthenium( ii) bis-phenanthroline compounds for photodissociation of the co-ligand: synthesis, structural characterization, and density functional theory study. NEW J CHEM 2021. [DOI: 10.1039/d0nj05921h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Photodissociation of co-ligand in cis-[Ru(phen)2(L)2](PF6)2 (phen = 1,10-phenanthroline, L = isoquinoline 1; phthalazine 2), upon blue light irradiation was investigated via both experimental and DFT studies.
Collapse
Affiliation(s)
| | | | | | - Mini Bharati Ahirwar
- Department of Chemistry
- Dr Harisingh Gour Vishwavidyalaya (A Central University)
- Sagar
- India
| | - Milind M. Deshmukh
- Department of Chemistry
- Dr Harisingh Gour Vishwavidyalaya (A Central University)
- Sagar
- India
| |
Collapse
|
41
|
Srivastava P, Verma M, Kumar A, Srivastava P, Mishra R, Sivakumar S, Patra AK. Luminescent naphthalimide-tagged ruthenium(ii)–arene complexes: cellular imaging, photocytotoxicity and transferrin binding. Dalton Trans 2021; 50:3629-3640. [DOI: 10.1039/d0dt02967j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Two luminescent ruthenium(ii)–arene complexes containing a naphthalimide tagged morpholine moiety were studied for their biomaging, transferrin-binding and phototherapeutic activity.
Collapse
Affiliation(s)
- Payal Srivastava
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Madhu Verma
- Department of Chemical Engineering and Centre for Environmental Science and Engineering
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Anmol Kumar
- School of Pharmacy
- Computer-Aided Drug Design Center
- University of Maryland
- Baltimore
- USA
| | - Priyanka Srivastava
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Ramranjan Mishra
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Sri Sivakumar
- Department of Chemical Engineering and Centre for Environmental Science and Engineering
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Ashis K. Patra
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| |
Collapse
|
42
|
Lee SY, Kim CY, Nam TG. Ruthenium Complexes as Anticancer Agents: A Brief History and Perspectives. Drug Des Devel Ther 2020; 14:5375-5392. [PMID: 33299303 PMCID: PMC7721113 DOI: 10.2147/dddt.s275007] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/03/2020] [Indexed: 12/28/2022] Open
Abstract
Platinum (Pt)-based anticancer drugs such as cisplatin have been used to treat various cancers. However, they have some limitations including poor selectivity and toxicity towards normal cells and increasing chemoresistance. Therefore, there is a need for novel metallo-anticancers, which has not been met for decades. Since the initial introduction of ruthenium (Ru) polypyridyl complex, a number of attempts at structural evolution have been conducted to improve efficacy. Among them, half-sandwich Ru-arene complexes have been the most prominent as an anticancer platform. Such complexes have clearly shown superior anticancer profiles such as increased selectivity toward cancer cells and ameliorating toxicity against normal cells compared to existing Pt-based anticancers. Currently, several Ru complexes are under human clinical trials. For improvement in selectivity and toxicity associated with chemotherapy, Ru complexes as photodynamic therapy (PDT), and photoactivated chemotherapy (PACT), which can selectively activate prodrug moieties in a specific region, have also been investigated. With all these studies on these interesting entities, new metallo-anticancer drugs to at least partially replace existing Pt-based anticancers are anticipated. This review covers a brief description of Ru-based anticancer complexes and perspectives.
Collapse
Affiliation(s)
- Sang Yeul Lee
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do15588, Republic of Korea
| | - Chul Young Kim
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do15588, Republic of Korea
| | - Tae-Gyu Nam
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do15588, Republic of Korea
| |
Collapse
|
43
|
Soliman N, Sol V, Ouk TS, Thomas CM, Gasser G. Encapsulation of a Ru(II) Polypyridyl Complex into Polylactide Nanoparticles for Antimicrobial Photodynamic Therapy. Pharmaceutics 2020; 12:E961. [PMID: 33066200 PMCID: PMC7602071 DOI: 10.3390/pharmaceutics12100961] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 01/01/2023] Open
Abstract
Antimicrobial photodynamic therapy (aPDT) also known as photodynamic inactivation (PDI) is a promising strategy to eradicate pathogenic microorganisms such as Gram-positive and Gram-negative bacteria. This therapy relies on the use of a molecule called photosensitizer capable of generating, from molecular oxygen, reactive oxygen species including singlet oxygen under light irradiation to induce bacteria inactivation. Ru(II) polypyridyl complexes can be considered as potential photosensitizers for aPDT/PDI. However, to allow efficient treatment, they must be able to penetrate bacteria. This can be promoted by using nanoparticles. In this work, ruthenium-polylactide (RuPLA) nanoconjugates with different tacticities and molecular weights were prepared from a Ru(II) polypyridyl complex, RuOH. Narrowly-dispersed nanoparticles with high ruthenium loadings (up to 53%) and an intensity-average diameter < 300 nm were obtained by nanoprecipitation, as characterized by dynamic light scattering (DLS). Their phototoxicity effect was evaluated on four bacterial strains (Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli and Pseudomonas aeruginosa) and compared to the parent compound RuOH. RuOH and the nanoparticles were found to be non-active towards Gram-negative bacterial strains. However, depending on the tacticity and molecular weight of the RuPLA nanoconjugates, differences in photobactericidal activity on Gram-positive bacterial strains have been evidenced whereas RuOH remained non active.
Collapse
Affiliation(s)
- Nancy Soliman
- Institut de Recherche de Chimie Paris, CNRS, Chimie ParisTech, PSL University, 75005 Paris, France;
- Laboratory for Inorganic Chemical Biology, Institute of Chemistry for Life and Health Sciences, CNRS, Chimie ParisTech, PSL University, 75005 Paris, France
| | - Vincent Sol
- Laboratoire PEIRENE, Limoges University, EA 7500, 123 Avenue Albert Thomas, 87060 Limoges, France;
| | - Tan-Sothea Ouk
- Laboratoire PEIRENE, Limoges University, EA 7500, 123 Avenue Albert Thomas, 87060 Limoges, France;
| | - Christophe M. Thomas
- Institut de Recherche de Chimie Paris, CNRS, Chimie ParisTech, PSL University, 75005 Paris, France;
| | - Gilles Gasser
- Laboratory for Inorganic Chemical Biology, Institute of Chemistry for Life and Health Sciences, CNRS, Chimie ParisTech, PSL University, 75005 Paris, France
| |
Collapse
|
44
|
Li J, Chen T. Transition metal complexes as photosensitizers for integrated cancer theranostic applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213355] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
45
|
Li S, Zhao J, Wang X, Xu G, Gou S, Zhao Q. Design of a Tris-Heteroleptic Ru(II) Complex with Red-Light Excitation and Remarkably Improved Photobiological Activity. Inorg Chem 2020; 59:11193-11204. [DOI: 10.1021/acs.inorgchem.0c01860] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Shuang Li
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People’s Republic of China
| | - Jian Zhao
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People’s Republic of China
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, People’s Republic of China
| | - Xinyi Wang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People’s Republic of China
| | - Gang Xu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People’s Republic of China
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People’s Republic of China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, People’s Republic of China
| |
Collapse
|
46
|
Jana B, Thomas AP, Kim S, Lee IS, Choi H, Jin S, Park SA, Min SK, Kim C, Ryu JH. Self-Assembly of Mitochondria-Targeted Photosensitizer to Increase Photostability and Photodynamic Therapeutic Efficacy in Hypoxia. Chemistry 2020; 26:10695-10701. [PMID: 32428292 DOI: 10.1002/chem.202001366] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/08/2020] [Indexed: 12/19/2022]
Abstract
The development of photosensitizers for cancer photodynamic therapy has been challenging due to their low photostability and therapeutic inefficacy in hypoxic tumor microenvironments. To overcome these issues, we have developed a mitochondria-targeted photosensitizer consisting of an indocyanine moiety with triphenylphosphonium arms, which can self-assemble into spherical micelles directed to mitochondria. Self-assembly of the photosensitizer resulted in a higher photostability by preventing free rotation of the indoline ring of the indocyanine moiety. The mitochondria targeting capability of the photosensitizer allowed it to utilize intramitochondrial oxygen. We found that the mitochondria-targeted photosensitizer localized to mitochondria and induced apoptosis of cancer cells both normoxic and hypoxic conditions through generation of ROS. The micellar self-assemblies of the photosensitizer were further confirmed to selectively localize to tumor tissues in a xenograft tumor mouse model through passive targeting and showed efficient tumor growth inhibition.
Collapse
Affiliation(s)
- Batakrishna Jana
- Department of chemistry, Ulsan National Institute of, Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Ajesh P Thomas
- Department of chemistry, Ulsan National Institute of, Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Sangpil Kim
- Department of chemistry, Ulsan National Institute of, Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - In Seong Lee
- Department of chemistry, Ulsan National Institute of, Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Huyeon Choi
- Department of chemistry, Ulsan National Institute of, Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Seongeon Jin
- Department of chemistry, Ulsan National Institute of, Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Soo Ah Park
- In Vivo Research Center, UNIST, Central Research Facilities, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Seung Kyu Min
- Department of chemistry, Ulsan National Institute of, Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Chaekyu Kim
- Department of chemistry, Ulsan National Institute of, Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Ja-Hyoung Ryu
- Department of chemistry, Ulsan National Institute of, Science and Technology (UNIST), Ulsan, 44919, South Korea
| |
Collapse
|
47
|
Sovari SN, Vojnovic S, Bogojevic SS, Crochet A, Pavic A, Nikodinovic-Runic J, Zobi F. Design, synthesis and in vivo evaluation of 3-arylcoumarin derivatives of rhenium(I) tricarbonyl complexes as potent antibacterial agents against methicillin-resistant Staphylococcus aureus (MRSA). Eur J Med Chem 2020; 205:112533. [PMID: 32739550 DOI: 10.1016/j.ejmech.2020.112533] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 12/26/2022]
Abstract
We have prepared a series of ten 3-arylcoumarin molecules, their respective fac-[Re(CO)3(bpy)L]+ and fac-[Re(CO)3(L⁀L)Br] complexes and tested all compounds for their antimicrobial efficacy. Whereas the 3-arylcoumarin ligands are virtually inactive against the human-associated pathogens with minimum inhibitory concentrations (MICs) > 150 μM, when coordinated to the fac-[Re(CO)3]+ core, most of the resulting complexes showed remarkable antibacterial potency. Several rhenium complexes exhibit activity in nanomolar concentrations against Gram-positive pathogens such as Staphylococcus aureus strains, including methicillin-resistant S. aureus (MRSA) and Enterococcus faecium. The molecules do not affect bacterial cell membrane potential, but some of the most potent complexes strongly interact with DNA, indicating it as a possible target for their mode of action. In vivo studies in the zebrafish model showed that the complexes with anti-staphylococcal/MRSA activity were non-toxic to the organism even at much higher doses of the corresponding MICs. In the zebrafish-MRSA infection model, the complexes increased the survival rate of infected fish up to 100% and markedly reduced bacterial burden. Moreover, all rescued fish developed normally following the treatments with the metallic compounds.
Collapse
Affiliation(s)
- Sara Nasiri Sovari
- Department of Chemistry, University of Fribourg, Chemin Du Musée 10, 1700, Fribourg, Switzerland
| | - Sandra Vojnovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia
| | - Sanja Skaro Bogojevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia
| | - Aurelien Crochet
- Department of Chemistry, University of Fribourg, Chemin Du Musée 10, 1700, Fribourg, Switzerland
| | - Aleksandar Pavic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia.
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia
| | - Fabio Zobi
- Department of Chemistry, University of Fribourg, Chemin Du Musée 10, 1700, Fribourg, Switzerland.
| |
Collapse
|
48
|
Ryan RT, Stevens KC, Calabro R, Parkin S, Mahmoud J, Kim DY, Heidary DK, Glazer EC, Selegue JP. Bis-tridentate N-Heterocyclic Carbene Ru(II) Complexes are Promising New Agents for Photodynamic Therapy. Inorg Chem 2020; 59:8882-8892. [DOI: 10.1021/acs.inorgchem.0c00686] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Raphael T. Ryan
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, Kentucky 40506, United States
| | - Kimberly C. Stevens
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, Kentucky 40506, United States
| | - Rosemary Calabro
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, Kentucky 40506, United States
| | - Sean Parkin
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, Kentucky 40506, United States
| | - Jumanah Mahmoud
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, Kentucky 40506, United States
| | - Doo Young Kim
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, Kentucky 40506, United States
| | - David K. Heidary
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, Kentucky 40506, United States
| | - Edith C. Glazer
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, Kentucky 40506, United States
| | - John P. Selegue
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, Kentucky 40506, United States
| |
Collapse
|
49
|
Busemann A, Araman C, Flaspohler I, Pratesi A, Zhou XQ, van Rixel VHS, Siegler MA, Messori L, van Kasteren SI, Bonnet S. Alkyne Functionalization of a Photoactivated Ruthenium Polypyridyl Complex for Click-Enabled Serum Albumin Interaction Studies. Inorg Chem 2020; 59:7710-7720. [PMID: 32396371 PMCID: PMC7268191 DOI: 10.1021/acs.inorgchem.0c00742] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
Studying metal-protein
interactions is key for understanding the
fate of metallodrugs in biological systems. When a metal complex is
not emissive and too weakly bound for mass spectrometry analysis,
however, it may become challenging to study such interactions. In
this work a synthetic procedure was developed for the alkyne functionalization
of a photolabile ruthenium polypyridyl complex, [Ru(tpy)(bpy)(Hmte)](PF6)2, where tpy = 2,2′:6′,2′′-terpyridine,
bpy = 2,2′-bipyridine, and Hmte = 2-(methylthio)ethanol. In
the functionalized complex [Ru(HCC-tpy)(bpy)(Hmte)](PF6)2, where HCC-tpy = 4′-ethynyl-2,2′:6′,2′′-terpyridine,
the alkyne group can be used for bioorthogonal ligation to an azide-labeled
fluorophore using copper-catalyzed “click” chemistry.
We developed a gel-based click chemistry method to study the interaction
between this ruthenium complex and bovine serum albumin (BSA). Our
results demonstrate that visualization of the interaction between
the metal complex and the protein is possible, even when this interaction
is too weak to be studied by conventional means such as UV–vis
spectroscopy or ESI mass spectrometry. In addition, the weak metal
complex-protein interaction is controlled by visible light irradiation, i.e., the complex and the protein do not interact in the
dark, but they do interact via weak van der Waals
interactions after light activation of the complex, which triggers
photosubstitution of the Hmte ligand. A “clickable”
and photosubstitutionally active
ruthenium complex has been prepared that bears a terminal alkyne group.
In the dark, the saturated coordination sphere of the complex prevents
it from interacting with serum albumin. Upon photosubstitution of
one ligand, the complex interacts with the protein via weak interactions that were visualized using copper-catalyzed “click”
chemistry postfunctionalization with an azide fluorophore on polyacrylamide
gel electrophoresis. These studies demonstrate that the metal-protein
interaction is triggered by light irradiation.
Collapse
Affiliation(s)
- Anja Busemann
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Can Araman
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Ingrid Flaspohler
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Alessandro Pratesi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - Xue-Quan Zhou
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Vincent H S van Rixel
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Maxime A Siegler
- Small Molecule X-ray Facility, Department of Chemistry, John Hopkins University, Baltimore, Maryland 21218, United States
| | - Luigi Messori
- Laboratory of Metals in Medicine (MetMed), Department of Chemistry 'Ugo Schiff', University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Sander I van Kasteren
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Sylvestre Bonnet
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| |
Collapse
|
50
|
Notaro A, Frei A, Rubbiani R, Jakubaszek M, Basu U, Koch S, Mari C, Dotou M, Blacque O, Gouyon J, Bedioui F, Rotthowe N, Winter RF, Goud B, Ferrari S, Tharaud M, Řezáčová M, Humajová J, Tomšík P, Gasser G. Ruthenium(II) Complex Containing a Redox-Active Semiquinonate Ligand as a Potential Chemotherapeutic Agent: From Synthesis to In Vivo Studies. J Med Chem 2020; 63:5568-5584. [PMID: 32319768 DOI: 10.1021/acs.jmedchem.0c00431] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chemotherapy remains one of the dominant treatments to cure cancer. However, due to the many inherent drawbacks, there is a search for new chemotherapeutic drugs. Many classes of compounds have been investigated over the years to discover new targets and synergistic mechanisms of action including multicellular targets. In this work, we designed a new chemotherapeutic drug candidate against cancer, namely, [Ru(DIP)2(sq)](PF6) (Ru-sq) (DIP = 4,7-diphenyl-1,10-phenanthroline; sq = semiquinonate ligand). The aim was to combine the great potential expressed by Ru(II) polypyridyl complexes and the singular redox and biological properties associated with the catecholate moiety. Experimental evidence (e.g., X-ray crystallography, electron paramagnetic resonance, electrochemistry) demonstrates that the semiquinonate is the preferred oxidation state of the dioxo ligand in this complex. The biological activity of Ru-sq was then scrutinized in vitro and in vivo, and the results highlight the promising potential of this complex as a chemotherapeutic agent against cancer.
Collapse
Affiliation(s)
- Anna Notaro
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, F-75005 Paris, France
| | - Angelo Frei
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Riccardo Rubbiani
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Marta Jakubaszek
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, F-75005 Paris, France.,Institut Curie, PSL University, CNRS UMR 144, F-75005 Paris, France
| | - Uttara Basu
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, F-75005 Paris, France
| | - Severin Koch
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Cristina Mari
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Mazzarine Dotou
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, F-75005 Paris, France
| | - Olivier Blacque
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Jérémie Gouyon
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Team Synthèse, Electrochimie, Imagerie et Systèmes Analytiques pour le Diagnostic, F-75005 Paris, France
| | - Fethi Bedioui
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Team Synthèse, Electrochimie, Imagerie et Systèmes Analytiques pour le Diagnostic, F-75005 Paris, France
| | - Nils Rotthowe
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, D-78457 Konstanz, Germany
| | - Rainer F Winter
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, D-78457 Konstanz, Germany
| | - Bruno Goud
- Institut Curie, PSL University, CNRS UMR 144, F-75005 Paris, France
| | - Stefano Ferrari
- Institute of Molecular Cancer Research, University of Zurich, CH-8057 Zurich, Switzerland.,Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 143 00 Prague, Czech Republic
| | - Mickaël Tharaud
- Université de Paris, Institut de physique du Globe de Paris, CNRS, F-75005 Paris, France
| | - Martina Řezáčová
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Šimkova 870, 500 03 Hradec Kralove, Czech Republic
| | - Jana Humajová
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University in Prague, 150 06 Prague, Czech Republic
| | - Pavel Tomšík
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Šimkova 870, 500 03 Hradec Kralove, Czech Republic
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, F-75005 Paris, France
| |
Collapse
|