1
|
Bindra S, Datta A, Yasin HKA, Thomas RR, Verma S, Patel A, Parambi DGT, Mali SN, Rangarajan TM, Mathew B. Recent Progress in Synthetic and Natural Catechol- O-methyltransferase Inhibitors for Neurological Disorders. ACS OMEGA 2024; 9:44005-44018. [PMID: 39524663 PMCID: PMC11541507 DOI: 10.1021/acsomega.4c06190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/03/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Catechol-O-methyltransferase (COMT) inhibitors have played a crucial role in the development of potent and selective drugs for the treatment of Parkinson's disease, depression, and anxiety disorders. This review provides a comprehensive analysis of the structure-activity relationship (SAR) of COMT inhibitors, highlighting key structural features and pharmacophoric elements that govern their potency, selectivity, and pharmacokinetic properties. This review also discusses the application of SAR principles in the design and optimization of COMT inhibitors. Our analysis reveals the emergence of novel chemical scaffolds and the potential for COMT inhibitors to address unmet medical needs in neurology and psychiatry. This Perspective serves as a valuable resource for clinicians and researchers, providing insights into the rational design of COMT inhibitors and the development of next-generation therapeutics.
Collapse
Affiliation(s)
- Sandeep Bindra
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Amrita Health Science campus, Kochi 682041, India
| | - Ananya Datta
- Department
of Biochemistry, Sri Venkateswara College, University of Delhi, New Delhi 110021, India
| | - Haya Khader Ahmad Yasin
- Department
of Pharmaceutical Sciences, College of Pharmacy and Health Sciences,
Ajman University, Ajman 346, United Arab Emirates
- Center
of
Medical and Bio-allied Health Sciences Research, Ajman University, P. O. Box 346, Ajman 346, United Arab Emirates
| | - Riya Rachel Thomas
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Amrita Health Science campus, Kochi 682041, India
| | - Shailesh Verma
- Department
of Biochemistry, Sri Venkateswara College, University of Delhi, New Delhi 110021, India
| | - Ankita Patel
- Department
of Biochemistry, Sri Venkateswara College, University of Delhi, New Delhi 110021, India
| | - Della Grace Thomas Parambi
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Suraj N. Mali
- School of
Pharmacy, D.Y. Patil University (Deemed
to be University), Sector 7, Nerul, 400706 Navi Mumbai, India
| | - T. M. Rangarajan
- Department
of Chemistry, Sri Venkateswara College, University of Delhi, New Delhi 110021, India
| | - Bijo Mathew
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Amrita Health Science campus, Kochi 682041, India
| |
Collapse
|
2
|
Mohammadi M, Aboonajmi J, Panahi F, Sasanipour M, Sharghi H. Zirconium-catalyzed one-pot synthesis of benzoxazoles using reaction of catechols, aldehydes and ammonium acetate. Sci Rep 2024; 14:25973. [PMID: 39472665 PMCID: PMC11522672 DOI: 10.1038/s41598-024-76839-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024] Open
Abstract
In this study, an efficient method for the synthesis of benzoxazoles by coupling catechols, aldehydes and ammonium acetate using ZrCl4 as catalyst in ethanol is reported. A wide range of benzoxazoles (59 examples) are smoothly produced in high yields (up to 97%). Other advantages of the method include large-scale synthesis and the use of oxygen as an oxidant. The mild reaction conditions allowed late-stage functionalization, facilitating access to several derivatives with biologically relevant structures such as β-lactam and quinoline heterocycles.
Collapse
Affiliation(s)
- Masoumeh Mohammadi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Fars, 71454, Iran
| | - Jasem Aboonajmi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Fars, 71454, Iran
| | - Farhad Panahi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Fars, 71454, Iran.
| | - Maryam Sasanipour
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Fars, 71454, Iran
| | - Hashem Sharghi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Fars, 71454, Iran
| |
Collapse
|
3
|
Sequeira L, Benfeito S, Fernandes C, Lima I, Peixoto J, Alves C, Machado CS, Gaspar A, Borges F, Chavarria D. Drug Development for Alzheimer's and Parkinson's Disease: Where Do We Go Now? Pharmaceutics 2024; 16:708. [PMID: 38931832 PMCID: PMC11206728 DOI: 10.3390/pharmaceutics16060708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Neurodegenerative diseases (NDs) are a set of progressive, chronic, and incurable diseases characterized by the gradual loss of neurons, culminating in the decline of cognitive and/or motor functions. Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common NDs and represent an enormous burden both in terms of human suffering and economic cost. The available therapies for AD and PD only provide symptomatic and palliative relief for a limited period and are unable to modify the diseases' progression. Over the last decades, research efforts have been focused on developing new pharmacological treatments for these NDs. However, to date, no breakthrough treatment has been discovered. Hence, the development of disease-modifying drugs able to halt or reverse the progression of NDs remains an unmet clinical need. This review summarizes the major hallmarks of AD and PD and the drugs available for pharmacological treatment. It also sheds light on potential directions that can be pursued to develop new, disease-modifying drugs to treat AD and PD, describing as representative examples some advances in the development of drug candidates targeting oxidative stress and adenosine A2A receptors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Fernanda Borges
- CIQUP-IMS—Centro de Investigação em Química da Universidade do Porto, Institute of Molecular Sciences, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Daniel Chavarria
- CIQUP-IMS—Centro de Investigação em Química da Universidade do Porto, Institute of Molecular Sciences, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
4
|
Zou M, Wu Y, Lan Y, Xie H, Sun H, Liu W, Feng F, Jiang X. Identification and optimization of nitrophenolic analogues as dopamine metabolic enzyme inhibitors for the treatment of Parkinson's disease. Bioorg Chem 2024; 148:107488. [PMID: 38797066 DOI: 10.1016/j.bioorg.2024.107488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Progressive loss of dopaminergic neurons leads to the depletion of the striatal neurotransmitter dopamine, which is the main cause of Parkinson's disease (PD) motor symptoms. Simultaneous inhibition of the two key dopamine metabolic enzymes, catechol-O-methyltransferase (COMT) and monoamine oxidase B (MAO-B), could potentially be a breakthrough in achieving clinical efficacy. Representative compound C12 exhibits good COMT inhibitory activity (IC50 = 0.37 μM), metal chelation ability, and BBB permeability. Furthermore, results from in vivo biological activity evaluations indicate that C12 can improve dopamine levels and ameliorate MPTP-induced PD symptoms in mice. Preliminary in vivo and in vitro study results highlight the potential of compound C12 in PD treatment.
Collapse
Affiliation(s)
- Manxing Zou
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Yulu Wu
- Department of Medicinal Chemistry, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yudan Lan
- Department of Medicinal Chemistry, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Huanfang Xie
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Haopeng Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 211198, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China; Nanjing Medical University, Nanjing 211198, China
| | - Xueyang Jiang
- Department of Medicinal Chemistry, Anhui University of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
5
|
Mousavi H, Rimaz M, Zeynizadeh B. Practical Three-Component Regioselective Synthesis of Drug-Like 3-Aryl(or heteroaryl)-5,6-dihydrobenzo[ h]cinnolines as Potential Non-Covalent Multi-Targeting Inhibitors To Combat Neurodegenerative Diseases. ACS Chem Neurosci 2024; 15:1828-1881. [PMID: 38647433 DOI: 10.1021/acschemneuro.4c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Neurodegenerative diseases (NDs) are one of the prominent health challenges facing contemporary society, and many efforts have been made to overcome and (or) control it. In this research paper, we described a practical one-pot two-step three-component reaction between 3,4-dihydronaphthalen-1(2H)-one (1), aryl(or heteroaryl)glyoxal monohydrates (2a-h), and hydrazine monohydrate (NH2NH2•H2O) for the regioselective preparation of some 3-aryl(or heteroaryl)-5,6-dihydrobenzo[h]cinnoline derivatives (3a-h). After synthesis and characterization of the mentioned cinnolines (3a-h), the in silico multi-targeting inhibitory properties of these heterocyclic scaffolds have been investigated upon various Homo sapiens-type enzymes, including hMAO-A, hMAO-B, hAChE, hBChE, hBACE-1, hBACE-2, hNQO-1, hNQO-2, hnNOS, hiNOS, hPARP-1, hPARP-2, hLRRK-2(G2019S), hGSK-3β, hp38α MAPK, hJNK-3, hOGA, hNMDA receptor, hnSMase-2, hIDO-1, hCOMT, hLIMK-1, hLIMK-2, hRIPK-1, hUCH-L1, hPARK-7, and hDHODH, which have confirmed their functions and roles in the neurodegenerative diseases (NDs), based on molecular docking studies, and the obtained results were compared with a wide range of approved drugs and well-known (with IC50, EC50, etc.) compounds. In addition, in silico ADMET prediction analysis was performed to examine the prospective drug properties of the synthesized heterocyclic compounds (3a-h). The obtained results from the molecular docking studies and ADMET-related data demonstrated that these series of 3-aryl(or heteroaryl)-5,6-dihydrobenzo[h]cinnolines (3a-h), especially hit ones, can really be turned into the potent core of new drugs for the treatment of neurodegenerative diseases (NDs), and/or due to the having some reactionable locations, they are able to have further organic reactions (such as cross-coupling reactions), and expansion of these compounds (for example, with using other types of aryl(or heteroaryl)glyoxal monohydrates) makes a new avenue for designing novel and efficient drugs for this purpose.
Collapse
Affiliation(s)
- Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia 5756151818, Iran
| | - Mehdi Rimaz
- Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran 19395-3697, Iran
| | - Behzad Zeynizadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia 5756151818, Iran
| |
Collapse
|
6
|
Chan BWGL, Lynch NB, Tran W, Joyce JM, Savage GP, Meutermans W, Montgomery AP, Kassiou M. Fragment-based drug discovery for disorders of the central nervous system: designing better drugs piece by piece. Front Chem 2024; 12:1379518. [PMID: 38698940 PMCID: PMC11063241 DOI: 10.3389/fchem.2024.1379518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/12/2024] [Indexed: 05/05/2024] Open
Abstract
Fragment-based drug discovery (FBDD) has emerged as a powerful strategy to confront the challenges faced by conventional drug development approaches, particularly in the context of central nervous system (CNS) disorders. FBDD involves the screening of libraries that comprise thousands of small molecular fragments, each no greater than 300 Da in size. Unlike the generally larger molecules from high-throughput screening that limit customisation, fragments offer a more strategic starting point. These fragments are inherently compact, providing a strong foundation with good binding affinity for the development of drug candidates. The minimal elaboration required to transition the hit into a drug-like molecule is not only accelerated, but also it allows for precise modifications to enhance both their activity and pharmacokinetic properties. This shift towards a fragment-centric approach has seen commercial success and holds considerable promise in the continued streamlining of the drug discovery and development process. In this review, we highlight how FBDD can be integrated into the CNS drug discovery process to enhance the exploration of a target. Furthermore, we provide recent examples where FBDD has been an integral component in CNS drug discovery programs, enabling the improvement of pharmacokinetic properties that have previously proven challenging. The FBDD optimisation process provides a systematic approach to explore this vast chemical space, facilitating the discovery and design of compounds piece by piece that are capable of modulating crucial CNS targets.
Collapse
Affiliation(s)
| | - Nicholas B. Lynch
- School of Chemistry, The University of Sydney, Sydney, NSW, Australia
| | - Wendy Tran
- School of Chemistry, The University of Sydney, Sydney, NSW, Australia
| | - Jack M. Joyce
- School of Chemistry, The University of Sydney, Sydney, NSW, Australia
| | | | | | | | - Michael Kassiou
- School of Chemistry, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
7
|
Primus PS, Wu CHY, Kao CL, Choo YM. Glabraquinone A and B, new bisanthraquinones from Prismatomeris glabra (Korth.) Valeton. Nat Prod Res 2024; 38:1406-1413. [PMID: 36416441 DOI: 10.1080/14786419.2022.2147932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022]
Abstract
Two new bisanthraquinones, glabraquinone A and B (1-2) were isolated from the root of Prismatomeris glabra (Korth.) Valeton. In addition to the new glabraquinones, six known anthraquinones, that is, 1-hydroxy-2-methoxy-6-methylanthraquinone (3), 1,2-dimethoxy-7-methylanthraquinone (4), lucidin (5), nordamnacanthal (6), damnacanthal (7) and 2-carboxaldehyde-3-hydroxyanthraquinone (8)) and an aromatic compound, that is, catechol diethyl ether (9) were isolated and characterized in this study. Compounds 1, 4 and 9 showed mild activity, reducing N2A cell viability to 77%, 82% and 77%, respectively, in anti-neuroblastoma assay.
Collapse
Affiliation(s)
- Phoebe Sussana Primus
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Carol Hsin-Yi Wu
- Division of Cellular and Immune Therapy, Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Taiwan
| | - Chai-Lin Kao
- Division of Cellular and Immune Therapy, Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Taiwan
| | - Yeun-Mun Choo
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Hernández-Ayala LF, Guzmán-López EG, Galano A. Quinoline Derivatives: Promising Antioxidants with Neuroprotective Potential. Antioxidants (Basel) 2023; 12:1853. [PMID: 37891932 PMCID: PMC10604020 DOI: 10.3390/antiox12101853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Quinoline has been proposed as a privileged molecular framework in medicinal chemistry. Although by itself it has very few applications, its derivatives have diverse biological activities. In this work, 8536 quinoline derivatives, strategically designed using the CADMA-Chem protocol, are presented. This large chemical space was sampled, analyzed and reduced using selection and elimination scores that combine their properties of bioavailability, toxicity and manufacturability. After applying several filters, 25 derivatives were selected to investigate their acid-base, antioxidant and neuroprotective properties. The antioxidant activity was predicted based on the ionization potential and bond dissociation energies, parameters directly related to the transfer of hydrogen atoms and of a single electron, respectively. These two mechanisms are typically involved in the radical scavenging processes. The antioxidant efficiency was compared with reference compounds, and the most promising antioxidants were found to be more efficient than Trolox but less efficient than ascorbate. In addition, based on molecular docking simulations, some derivatives are expected to act as inhibitors of catechol-O methyltransferase (COMT), acetylcholinesterase (AChE) and monoamine oxidase type B (MAO-B) enzymes. Some structural insights about the compounds were found to enhance or decrease the neuroprotection activity. Based on the results, four quinoline derivatives are proposed as candidates to act as multifunctional antioxidants against Alzheimer's (AD) and Parkinson's (PD) diseases.
Collapse
Affiliation(s)
| | | | - Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Alcaldía Iztapalapa, México City 09310, Mexico; (L.F.H.-A.); (E.G.G.-L.)
| |
Collapse
|
9
|
Takebe K, Suzuki M, Kuwada-Kusunose T, Shirai S, Fukuzawa K, Takamiya T, Uzawa N, Iijima H. Structural and Computational Analyses of the Unique Interactions of Opicapone in the Binding Pocket of Catechol O-Methyltransferase: A Crystallographic Study and Fragment Molecular Orbital Analyses. J Chem Inf Model 2023. [PMID: 37436881 DOI: 10.1021/acs.jcim.3c00331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
A third-generation inhibitor of catechol O-methyltransferase (COMT), opicapone (1), has the 3-nitrocatechol scaffold as do the second-generation inhibitors such as entacapone (2) and tolcapone (3), but only 1 can sustainably inhibit COMT activity making it suitable for a once-daily regimen. These improvements should be attributed to the optimized sidechain moiety (oxidopyridyloxadiazolyl group) of 1 substituted at the 5-position of the 3-nitrocatechol ring. We analyzed the role of the sidechain moiety by solving the crystal structures of COMT/S-adenosylmethionine (SAM)/Mg/1 and COMT/S-adenosylhomocysteine (SAH)/Mg/1 complexes. Fragment molecular orbital (FMO) calculations elucidated that the dispersion interaction between the sidechains of Leu 198 and Met 201 on the β6β7-loop and the oxidopyridine ring of 1 were unique and important in both complexes. In contrast, the catechol binding site made a remarkable difference in the sidechain conformation of Lys 144. The ε-amino group of Lys 144 was outside of the catalytic pocket and was replaced by a water molecule in the COMT/SAH/Mg/1 complex. No nitrocatechol inhibitor has ever been reported to make a complex with COMT and SAH. Thus, the conformational change of Lys 144 found in the COMT/SAH/Mg/1 complex is the first crystallographic evidence that supports the role of Lys 144 as a catalytic base to take out a proton ion from the reaction site to the outside of the enzyme. The fact that 1 generated a complex with SAH and COMT also suggests that 1 could inhibit COMT twofold, as a typical substrate mimic competitive inhibitor and as a product-inhibition enhancer.
Collapse
Affiliation(s)
- Katsuki Takebe
- Oral and Maxillofacial Surgery II, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Mamoru Suzuki
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takao Kuwada-Kusunose
- School of Dentistry at Matsudo, Nihon University, 2-870-1 Sakaecho-nishi, Matsudo, Chiba 271-8587, Japan
| | - Satoko Shirai
- School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Shinagawa, Tokyo 142-8501, Japan
| | - Kaori Fukuzawa
- School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Shinagawa, Tokyo 142-8501, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tomoko Takamiya
- School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba 274-8555, Japan
| | - Narikazu Uzawa
- Oral and Maxillofacial Surgery II, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Hiroshi Iijima
- School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba 274-8555, Japan
- CBI Research Institute, 3-11-1 Shibaura, Minato-ku, Tokyo 108-0023, Japan
| |
Collapse
|
10
|
Ayuso P, Jiménez-Jiménez FJ, Gómez-Tabales J, Alonso-Navarro H, García-Martín E, Agúndez JAG. An update on the pharmacogenetic considerations when prescribing dopamine receptor agonists for Parkinson's disease. Expert Opin Drug Metab Toxicol 2023; 19:447-460. [PMID: 37599424 DOI: 10.1080/17425255.2023.2249404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/31/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
INTRODUCTION Parkinson's disease is a chronic neurodegenerative multisystemic disorder that affects approximately 2% of the population over 65 years old. This disorder is characterized by motor symptoms which are frequently accompanied by non-motor symptoms such as cognitive disorders. Current drug therapies aim to reduce the symptoms and increase the patient's life expectancy. Nevertheless, there is heterogeneity in therapy response in terms of efficacy and adverse effects. This wide range in response may be linked to genetic variability. Thus, it has been suggested that pharmacogenomics may help to tailor and personalize drug therapy for Parkinson's disease. AREAS COVERED This review describes and updates the clinical impact of genetic factors associated with the efficacy and adverse drug reactions related to common medications used to treat Parkinson's disease. Additionally, we highlight current informative recommendations for the drug treatment of Parkinson's disease. EXPERT OPINION The pharmacokinetic, pharmacodynamic, and safety profiles of Parkinson's disease drugs do not favor the development of pharmacogenetic tests with a high probability of success. The chances of obtaining ground-breaking pharmacogenetics biomarkers for Parkinson's disease therapy are limited. Nevertheless, additional information on the metabolism of certain drugs, and an analysis of the potential of pharmacogenetics in novel drugs could be of interest.
Collapse
Affiliation(s)
- Pedro Ayuso
- Universidad de Extremadura, University Institute of Molecular Pathology Biomarkers, Cáceres, Spain
| | | | - Javier Gómez-Tabales
- Universidad de Extremadura, University Institute of Molecular Pathology Biomarkers, Cáceres, Spain
| | | | - Elena García-Martín
- Universidad de Extremadura, University Institute of Molecular Pathology Biomarkers, Cáceres, Spain
| | - José A G Agúndez
- Universidad de Extremadura, University Institute of Molecular Pathology Biomarkers, Cáceres, Spain
| |
Collapse
|
11
|
Guzmán-López EG, Reina M, Hernández-Ayala LF, Galano A. Rational Design of Multifunctional Ferulic Acid Derivatives Aimed for Alzheimer's and Parkinson's Diseases. Antioxidants (Basel) 2023; 12:1256. [PMID: 37371986 DOI: 10.3390/antiox12061256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Ferulic acid has numerous beneficial effects on human health, which are frequently attributed to its antioxidant behavior. In this report, many of them are reviewed, and 185 new ferulic acid derivatives are computationally designed using the CADMA-Chem protocol. Consequently, their chemical space was sampled and evaluated. To that purpose, selection and elimination scores were used, which are built from a set of descriptors accounting for ADME properties, toxicity, and synthetic accessibility. After the first screening, 12 derivatives were selected and further investigated. Their potential role as antioxidants was predicted from reactivity indexes directly related to the formal hydrogen atom transfer and the single electron transfer mechanisms. The best performing molecules were identified by comparisons with the parent molecule and two references: Trolox and α-tocopherol. Their potential as polygenic neuroprotectors was investigated through the interactions with enzymes directly related to the etiologies of Parkinson's and Alzheimer's diseases. These enzymes are acetylcholinesterase, catechol-O-methyltransferase, and monoamine oxidase B. Based on the obtained results, the most promising candidates (FA-26, FA-118, and FA-138) are proposed as multifunctional antioxidants with potential neuroprotective effects. The findings derived from this investigation are encouraging and might promote further investigations on these molecules.
Collapse
Affiliation(s)
- Eduardo Gabriel Guzmán-López
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Alcaldía Iztapalapa, Mexico City 09310, Mexico
| | - Miguel Reina
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Luis Felipe Hernández-Ayala
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Alcaldía Iztapalapa, Mexico City 09310, Mexico
| | - Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Alcaldía Iztapalapa, Mexico City 09310, Mexico
| |
Collapse
|
12
|
Maślanka M, Tabor W, Krzyżek P, Grabowiecka A, Berlicki Ł, Mucha A. Inhibitory activity of catecholic phosphonic and phosphinic acids against Helicobacter pylori ureolysis. Eur J Med Chem 2023; 257:115528. [PMID: 37290184 DOI: 10.1016/j.ejmech.2023.115528] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023]
Abstract
Catechols have been reported to be potent covalent inhibitors of ureases, and they exhibit activity by modifying cysteine residues at the entrance to enzymatic active sites. Following these principles, we designed and synthesized novel catecholic derivatives that contained carboxylate and phosphonic/phosphinic functionalities and assumed expanded specific interactions. When studying the chemical stability of the molecules, we found that their intrinsic acidity catalyzes spontaneous esterification/hydrolysis reactions in methanol or water solutions, respectively. Regarding biological activity, the most promising compound, 2-(3,4-dihydroxyphenyl)-3-phosphonopropionic acid (15), exhibited significant anti-urease potential (Ki = 2.36 μM, Sporosarcinia pasteurii urease), which was reflected in the antiureolytic effect in live Helicobacter pylori cells at a submicromolar concentration (IC50 = 0.75 μM). As illustrated by molecular modeling, this compound was bound in the active site of urease through a set of concerted electrostatic and hydrogen bond interactions. The antiureolytic activity of catecholic phosphonic acids could be specific because these compounds were chemically inert and not cytotoxic to eukaryotic cells.
Collapse
Affiliation(s)
- Marta Maślanka
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Wojciech Tabor
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Paweł Krzyżek
- Department of Microbiology, Faculty of Medicine, Wrocław Medical University, Wybrzeże L. Pasteura 1, 50-367, Wrocław, Poland
| | - Agnieszka Grabowiecka
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Łukasz Berlicki
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Artur Mucha
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland.
| |
Collapse
|
13
|
Liang S, Zhao W, Chen Y, Lin H, Zhang W, Deng M, Fu L, Zhong X, Zeng S, He B, Qi X, Lü M. A comparative investigation of catalytic mechanism and domain between catechol-O-methyltransferase isoforms by isomeric shikonin and alkannin. Int J Biol Macromol 2023; 242:124758. [PMID: 37150367 DOI: 10.1016/j.ijbiomac.2023.124758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/12/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
The differences in catalytic mechanism and domain between the soluble (S-COMT) and membrane-bound catechol-O-methyltransferase (MB-COMT) are poorly documented due to the unavailable crystal structure of MB-COMT. Considering the enzymatic nature of S-COMT and MB-COMT, the challenge could be solvable by probing the interactions between the enzymes with the ligands with minor differences in structures. Herein, isomeric shikonin and alkannin bearing a R/S -OH group in side chain at the C2 position were used for domain profiling of COMTs. Human and rat liver-derived COMTs showed the differences in inhibitory response (human's IC50 and Ki values for S-COMT < rat's, 5.80-19.56 vs. 19.56-37.47 μM; human's IC50 and Ki values for MB-COMT > rat's) and mechanism (uncompetition vs. noncompetition) towards the two isomers. The inhibition of the two isomers against human and rat S-COMTs was stronger than those for MB-COMTs (S-COMT's IC50 and Ki values < MB-COMT's, 5.80-37.47 vs. 40.01-111.8 μM). Additionally, the inhibition response of alkannin was higher than those of shikonin in no matter human and rat COMTs. Molecular docking stimulation was used for analysis. The inhibitory effects observed in in vitro and in silico tests were confirmed in vivo. These findings would facilitate further COMT-associated basic and applied research.
Collapse
Affiliation(s)
- Sicheng Liang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; The Public Platform of Advanced Detecting Instruments, Public Center of Experimental Technology, Southwest Medical University, Luzhou 646000, China; Human Microecology and Precision Diagnosis and Treatment of Luzhou Key Laboratory, Luzhou 646000, China; Cardiovascular and Metabolic Diseases of Sichuan Key Laboratory, Luzhou 646000, China
| | - Wenjing Zhao
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yonglan Chen
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Hua Lin
- Technology Center of Chengdu Customs, Chengdu, China
| | - Wei Zhang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Mingming Deng
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Lu Fu
- The Public Platform of Advanced Detecting Instruments, Public Center of Experimental Technology, Southwest Medical University, Luzhou 646000, China
| | - Xiaolin Zhong
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang University, Hangzhou, China
| | - Bing He
- The Public Platform of Advanced Detecting Instruments, Public Center of Experimental Technology, Southwest Medical University, Luzhou 646000, China
| | - Xiaoyi Qi
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| | - Muhan Lü
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Human Microecology and Precision Diagnosis and Treatment of Luzhou Key Laboratory, Luzhou 646000, China; Cardiovascular and Metabolic Diseases of Sichuan Key Laboratory, Luzhou 646000, China.
| |
Collapse
|
14
|
Katherine Hatstat A, Kennedy GM, Squires TR, Xhafkollari G, Skyler Cochrane C, Cafiero M, Peterson LW. Synthesis and analysis of novel catecholic ligands as inhibitors of catechol-O-methyltransferase. Bioorg Med Chem Lett 2023; 88:129286. [PMID: 37054761 DOI: 10.1016/j.bmcl.2023.129286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/02/2023] [Accepted: 04/09/2023] [Indexed: 04/15/2023]
Abstract
L-DOPA, a dopamine precursor, is commonly used as a treatment for patients with conditions such as Parkinson's disease. This therapeutic L-DOPA, as well as the dopamine derived from L-DOPA, can be deactivated via metabolism by catechol-O-methyltransferase (COMT). Targeted inhibition of COMT prolongs the effectiveness of L-DOPA and dopamine, resulting in a net increase in pharmacological efficiency of the treatment strategy. Following the completion of a previous ab initio computational analysis of 6-substituted dopamine derivatives, several novel catecholic ligands with a previously unexplored neutral tail functionality were synthesized in good yields and their structures were confirmed. The ability of the catecholic nitriles and 6-substituted dopamine analogues to inhibit COMT was tested. The nitrile derivatives inhibited COMT most effectively, in agreement with our previous computational work. pKa values were used to further examine the factors involved with the inhibition and molecular docking studies were performed to support the ab initio and experimental work. The nitrile derivatives with a nitro substituent show the most promise as inhibitors, confirming that both the neutral tail and the electron withdrawing group are essential on this class of inhibitors.
Collapse
Affiliation(s)
- A Katherine Hatstat
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA 94158, USA; Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA
| | - Grace M Kennedy
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA
| | - Trevor R Squires
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA
| | - Gisela Xhafkollari
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA
| | - C Skyler Cochrane
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA
| | - Mauricio Cafiero
- School of Chemistry, Food and Pharmacy, University of Reading, Wolverhampton, RG6 6AD, UK
| | - Larryn W Peterson
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA.
| |
Collapse
|
15
|
Liu JS, Chen Y, Shi DD, Zhang BR, Pu JL. Pharmacogenomics-a New Frontier for Individualized Treatment of Parkinson's Disease. Curr Neuropharmacol 2023; 21:536-546. [PMID: 36582064 PMCID: PMC10207905 DOI: 10.2174/1570159x21666221229154830] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is the second most common neurodegenerative disease with a significant public health burden. It is characterized by the gradual degeneration of dopamine neurons in the central nervous system. Although symptomatic pharmacological management remains the primary therapeutic method for PD, clinical experience reveals significant inter-individual heterogeneity in treatment effectiveness and adverse medication responses. The mechanisms behind the observed interindividual variability may be elucidated by investigating the role of genetic variation in human-to-human variances in medication responses and adverse effects. OBJECTIVE This review aims to explore the impact of gene polymorphism on the efficacy of antiparkinsonian drugs. The identification of factors associated with treatment effectiveness variability might assist the creation of a more tailored pharmacological therapy with higher efficacy, fewer side outcomes, and cheaper costs. METHODS In this review, we conducted a thorough search in databases such as PubMed, Web of Science, and Google Scholar, and critically examined current discoveries on Parkinson's disease pharmacogenetics. The ethnicity of the individuals, research methodologies, and potential bias of these studies were thoroughly compared, with the primary focus on consistent conclusions. RESULTS This review provides a summary of the existing data on PD pharmacogenetics, identifies its limitations, and offers insights that may be beneficial for future research. Previous studies have investigated the impact of gene polymorphism on the effectiveness and adverse effects of levodopa. The trendiest genes are the COMT gene, DAT gene, and DRD2 gene. However, limited study on other anti-Parkinson's drugs has been conducted. CONCLUSION Therefore, In order to develop an individualized precision treatment for PD, it is an inevitable trend to carry out multi-center, prospective, randomized controlled clinical trials of PD pharmacogenomics covering common clinical anti-PD drugs in large, homogeneous cohorts.
Collapse
Affiliation(s)
- Jia-Si Liu
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China
| | - Ying Chen
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China
| | - Dan-Dan Shi
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China
| | - Bao-Rong Zhang
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China
| | - Jia-Li Pu
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China
| |
Collapse
|
16
|
Parrales-Macias V, Harfouche A, Ferrié L, Haïk S, Michel PP, Raisman-Vozari R, Figadère B, Bizat N, Maciuk A. Effects of a New Natural Catechol- O-methyl Transferase Inhibitor on Two In Vivo Models of Parkinson's Disease. ACS Chem Neurosci 2022; 13:3303-3313. [PMID: 36347018 DOI: 10.1021/acschemneuro.2c00356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
A tetrahydroisoquinoline identified in Mucuna pruriens ((1R,3S)-6,7-dihydroxy-1-methyl-1,2,3,4-tetrahydroisoquinoline-1,3-dicarboxylic acid, compound 4) was synthesized and assessed for its in vitro pharmacological profile and in vivo effects in two animal models of Parkinson's disease. Compound 4 inhibits catechol-O-methyltransferase (COMT) with no affinity for the dopaminergic receptors or the dopamine transporter. It restores dopamine-mediated motor behavior when it is co-administered with L-DOPA to C. elegans worms with 1-methyl-4-phenylpyridinium-damaged dopaminergic neurons. In a 6-hydroxydopamine rat model of Parkinson's disease, its co-administration at 30 mg/kg with L-DOPA enhances the effect of L-DOPA with an intensity similar to that of tolcapone 1 at 30 mg/kg but for a shorter duration. The effect is not dose-dependent. Compound 4 seems not to cross the blood-brain barrier and thus acts as a peripheral COMT inhibitor. COMT inhibition by compound 4 further validates the traditional use of M. pruriens for the treatment of Parkinson's disease, and compound 4 can thus be considered as a promising drug candidate for the development of safe, peripheral COMT inhibitors.
Collapse
Affiliation(s)
- Valeria Parrales-Macias
- Paris Brain Institute - ICM, Inserm, CNRS, Hôpital Pitié Salpêtrière, Sorbonne Université, Paris 75013, France
| | - Abha Harfouche
- CNRS, BioCIS, Université Paris-Saclay, Orsay 91400, France
| | - Laurent Ferrié
- CNRS, BioCIS, Université Paris-Saclay, Orsay 91400, France
| | - Stéphane Haïk
- Paris Brain Institute - ICM, Inserm, CNRS, Hôpital Pitié Salpêtrière, Sorbonne Université, Paris 75013, France
| | - Patrick P Michel
- Paris Brain Institute - ICM, Inserm, CNRS, Hôpital Pitié Salpêtrière, Sorbonne Université, Paris 75013, France
| | - Rita Raisman-Vozari
- Paris Brain Institute - ICM, Inserm, CNRS, Hôpital Pitié Salpêtrière, Sorbonne Université, Paris 75013, France
| | - Bruno Figadère
- CNRS, BioCIS, Université Paris-Saclay, Orsay 91400, France
| | - Nicolas Bizat
- Paris Brain Institute - ICM, Inserm, CNRS, Hôpital Pitié Salpêtrière, Sorbonne Université, Paris 75013, France
| | | |
Collapse
|
17
|
Arshad JZ, Hanif M. Hydroxypyrone derivatives in drug discovery: from chelation therapy to rational design of metalloenzyme inhibitors. RSC Med Chem 2022; 13:1127-1149. [PMID: 36325396 PMCID: PMC9579940 DOI: 10.1039/d2md00175f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/28/2022] [Indexed: 07/31/2023] Open
Abstract
The versatile structural motif of hydroxypyrone is found in natural products and can be easily converted into hydroxypyridone and hydroxythiopyridone analogues. The favourable toxicity profile and ease of functionalization to access a vast library of compounds make them an ideal structural scaffold for drug design and discovery. This versatile scaffold possesses excellent metal chelating properties that can be exploited for chelation therapy in clinics. Deferiprone [1,2-dimethyl-3-hydroxy-4(1H)-one] was the first orally active chelator to treat iron overload in thalassemia major. Metal complexes of hydroxy-(thio)pyr(id)ones have been investigated as magnetic resonance imaging contrast agents, and anticancer and antidiabetic agents. In recent years, this compound class has demonstrated potential in discovering and developing metalloenzyme inhibitors. This review article summarizes recent literature on hydroxy-(thio)pyr(id)ones as inhibitors for metalloenzymes such as histone deacetylases, tyrosinase and metallo-β-lactamase. Different approaches to the design of hydroxy-(thio)pyr(id)ones and their biological properties against selected metalloenzymes are discussed.
Collapse
Affiliation(s)
- Jahan Zaib Arshad
- Department of Chemistry, Government College Women University Sialkot Sialkot Pakistan
| | - Muhammad Hanif
- School of Chemical Sciences, University of Auckland Private Bag 92019 Auckland 1142 New Zealand (+64) 9 373 7599 ext. 87422
- MacDiarmid Institute for Advanced Materials and Nanotechnology Wellington New Zealand
| |
Collapse
|
18
|
Cruz-Vicente P, Gonçalves AM, Barroca-Ferreira J, Silvestre SM, Romão MJ, Queiroz JA, Gallardo E, Passarinha LA. Unveiling the biopathway for the design of novel COMT inhibitors. Drug Discov Today 2022; 27:103328. [PMID: 35907613 DOI: 10.1016/j.drudis.2022.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 06/27/2022] [Accepted: 07/25/2022] [Indexed: 12/15/2022]
Abstract
Catechol-O-methyltransferase (COMT) is an enzyme responsible for the O-methylation of biologically active catechol-based molecules. It has been associated with several neurological disorders, especially Parkinson's disease (PD), because of its involvement in catecholamine metabolism, and has been considered an important therapeutic target for central nervous system disorders. In this review, we summarize the biophysical, structural, and therapeutical relevance of COMT; the medicinal chemistry behind the development of COMT inhibitors and the application of computer-aided design to support the design of novel molecules; current methodologies for the biosynthesis, isolation, and purification of COMT; and revise existing bioanalytical approaches for the assessment of enzymatic activity in several biological matrices.
Collapse
Affiliation(s)
- Pedro Cruz-Vicente
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
| | - Ana M Gonçalves
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
| | - Jorge Barroca-Ferreira
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
| | - Samuel M Silvestre
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Maria J Romão
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
| | - João A Queiroz
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Eugénia Gallardo
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; Laboratório de Fármaco-Toxicologia-UBIMedical, Universidade da Beira Interior, 6201-506 Covilhã, Portugal
| | - Luis A Passarinha
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal; Laboratório de Fármaco-Toxicologia-UBIMedical, Universidade da Beira Interior, 6201-506 Covilhã, Portugal.
| |
Collapse
|
19
|
Królicka E, Kieć-Kononowicz K, Łażewska D. Chalcones as Potential Ligands for the Treatment of Parkinson's Disease. Pharmaceuticals (Basel) 2022; 15:ph15070847. [PMID: 35890146 PMCID: PMC9317344 DOI: 10.3390/ph15070847] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 12/16/2022] Open
Abstract
Along with the increase in life expectancy, a significant increase of people suffering from neurodegenerative diseases (ND) has been noticed. The second most common ND, after Alzheimer’s disease, is Parkinson’s disease (PD), which manifests itself with a number of motor and non-motor symptoms that hinder the patient’s life. Current therapies can only alleviate those symptoms and slow down the progression of the disease, but not effectively cure it. So now, in addition to understanding the mechanism and causes of PD, it is also important to find a powerful way of treatment. It has been proved that in the etiology and course of PD, the essential roles are played by dopamine (DA) (an important neurotransmitter), enzymes regulating its level (e.g., COMT, MAO), and oxidative stress leading to neuroinflammation. Chalcones, due to their “simple” structure and valuable biological properties are considered as promising candidates for treatment of ND, also including PD. Here, we provide a comprehensive review of chalcones and related structures as potential new therapeutics for cure and prevention of PD. For this purpose, three databases (Pubmed, Scopus and Web of Science) were searched to collect articles published during the last 5 years (January 2018–February 2022). Chalcones have been described as promising enzyme inhibitors (MAO B, COMT, AChE), α-synuclein imaging probes, showing anti-neuroinflammatory activity (inhibition of iNOS or activation of Nrf2 signaling), as well as antagonists of adenosine A1 and/or A2A receptors. This review focused on the structure–activity relationships of these compounds to determine how a particular substituent or its position in the chalcone ring(s) (ring A and/or B) affects biological activity.
Collapse
|
20
|
Smolyaninov IV, Burmistrova DA, Arsenyev MV, Polovinkina MA, Pomortseva NP, Fukin GK, Poddel’sky AI, Berberova NT. Synthesis and Antioxidant Activity of New Catechol Thioethers with the Methylene Linker. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103169. [PMID: 35630646 PMCID: PMC9144179 DOI: 10.3390/molecules27103169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 11/16/2022]
Abstract
Novel catechol thio-ethers with different heterocyclic substituents at sulfur atom were prepared by reacting 3,5-di-tert-butyl-6-methoxymethylcatechol with functionalized thiols under acidic conditions. A common feature of compounds is a methylene bridge between the catechol ring and thioether group. Two catechols with the thio-ether group, bound directly to the catechol ring, were also considered to assess the effect of the methylene linker on the antioxidant properties. The crystal structures of thio-ethers with benzo-thiazole moieties were established by single-crystal X-ray analysis. The radical scavenging and antioxidant activities were determined using 2,2′-diphenyl-1-picrylhydrazyl radical test, ABTS∙+, CUPRAC (TEAC) assays, the reaction with superoxide radical anion generated by xanthine oxidase (NBT assay), the oxidative damage of the DNA, and the process of lipid peroxidation of rat liver (Wistar) homogenates in vitro. Most catechol-thioethers exhibit the antioxidant effect, which varies from mild to moderate depending on the model system. The dual anti/prooxidant activity characterizes compounds with adamantyl or thio-phenol substituent at the sulfur atom. Catechol thio-ethers containing heterocyclic groups (thiazole, thiazoline, benzo-thiazole, benzo-xazole) can be considered effective antioxidants with cytoprotective properties. These compounds can protect molecules of DNA and lipids from the different radical species.
Collapse
Affiliation(s)
- Ivan V. Smolyaninov
- Department of Chemistry, Astrakhan State Technical University, 16 Tatisheva Str., 414056 Astrakhan, Russia; (D.A.B.); (N.P.P.); (N.T.B.)
- Correspondence: (I.V.S.); (A.I.P.)
| | - Daria A. Burmistrova
- Department of Chemistry, Astrakhan State Technical University, 16 Tatisheva Str., 414056 Astrakhan, Russia; (D.A.B.); (N.P.P.); (N.T.B.)
| | - Maxim V. Arsenyev
- G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, 49 Tropinina Str., 603137 Nizhny Novgorod, Russia; (M.V.A.); (G.K.F.)
| | - Maria A. Polovinkina
- Toxicology Research Group of Southern Scientific Centre of Russian Academy of Science, 41 Chekhova Str., 344006 Rostov-on-Don, Russia;
| | - Nadezhda P. Pomortseva
- Department of Chemistry, Astrakhan State Technical University, 16 Tatisheva Str., 414056 Astrakhan, Russia; (D.A.B.); (N.P.P.); (N.T.B.)
| | - Georgy K. Fukin
- G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, 49 Tropinina Str., 603137 Nizhny Novgorod, Russia; (M.V.A.); (G.K.F.)
| | - Andrey I. Poddel’sky
- G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, 49 Tropinina Str., 603137 Nizhny Novgorod, Russia; (M.V.A.); (G.K.F.)
- Correspondence: (I.V.S.); (A.I.P.)
| | - Nadezhda T. Berberova
- Department of Chemistry, Astrakhan State Technical University, 16 Tatisheva Str., 414056 Astrakhan, Russia; (D.A.B.); (N.P.P.); (N.T.B.)
| |
Collapse
|
21
|
Roy RK, Patra N. Prediction of COMT Inhibitors Using Machine Learning and Molecular Dynamics Methods. J Phys Chem B 2022; 126:3477-3492. [PMID: 35533359 DOI: 10.1021/acs.jpcb.1c10278] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Catechol O-methyltransferase (COMT) plays a vital role in deactivating neurotransmitters like dopamine, norepinephrine, etc., by methylating those compounds. However, the deactivation of an excess amount of neurotransmitters leads to serious mental ailments such as Parkinson's disease. Molecules that bind inside the enzyme's active site inhibit this methylation mechanism by methylating themselves, termed COMT inhibitors. Our study is focused on designing these inhibitors by various machine learning methods. First, we have developed a classification model with experimentally available COMT inhibitors, which helped us generate a new data set of small inhibitor-like molecules. Then, to predict the activity of the new molecules, we have applied regression techniques such as Random Forest, AdaBoost, gradient boosting, and support vector machines. Each of the regression models yielded an R2 value > 70% for both training and test data sets. Finally, to validate our models, 200 ns long molecular dynamics (MD) simulations of the two known inhibitors with known IC50 values and the resultant inhibitors were performed inside the binding pockets to check their stability within. The free energy barrier of the methyl transfer from S-adenosyl-l-methionine (SAM) to each inhibitor was determined by combining steered molecular dynamics (SMD) and umbrella sampling using the quantum mechanics/molecular mechanics (QM/MM) method.
Collapse
Affiliation(s)
- Rakesh Kumar Roy
- Department of Chemistry & Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| | - Niladri Patra
- Department of Chemistry & Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| |
Collapse
|
22
|
Loureiro AI, Rocha F, Santos AT, Singh N, Bonifácio MJ, Pinto R, Kiss LE, Soares-da-Silva P. Absorption, metabolism and excretion of opicapone in human healthy volunteers. Br J Clin Pharmacol 2022; 88:4540-4551. [PMID: 35508762 PMCID: PMC9546099 DOI: 10.1111/bcp.15383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 11/30/2022] Open
Abstract
Aims The absorption, metabolism and excretion of opicapone (2,5‐dichloro‐3‐(5‐[3,4‐dihydroxy‐5‐nitrophenyl]‐1,2,4‐oxadiazol‐3‐yl)‐4,6‐dimethylpyridine 1‐oxide), a selective catechol‐O‐methyltransferase inhibitor, were investigated. Methods Plasma, urine and faeces were collected from healthy male subjects following a single oral dose of 100 mg [14C]‐opicapone. The mass balance of [14C]‐opicapone and metabolic profile were evaluated. Results The recovery of total administered radioactivity averaged >90% after 144 hours. Faeces were the major route of elimination, representing 70% of the administered dose; 5% and 20% were excreted in urine and expired air, respectively. The Cmax of total radioactivity matched that of unchanged opicapone, whereas the total radioactivity remained quantifiable for a longer period, attributed to the contribution of opicapone metabolites, involving primarily 3‐O‐sulfate conjugation (58.6% of total circulating radioactivity) at the nitrocatechol ring. Other circulating metabolites, accounting for <10% of the radioactivity exposure, were formed by glucuronidation, methylation, N‐oxide reduction and gluthatione conjugation. Additionally, various other metabolites resulting from combinations with the opicapone N‐oxide reduced form at the 2,5‐dichloro‐4,6‐dimethylpyridine 1‐oxide moiety, including nitro reduction and N‐acetylation, reductive opening and cleavage of the 1,2,4‐oxadiazole ring and the subsequent hydrolysis products were identified, but only in faeces, suggesting the involvement of gut bacteria. Conclusion [14C]‐opicapone was fully excreted through multiple metabolic pathways. The main route of excretion was in faeces, where opicapone may be further metabolized via reductive metabolism involving the 1,2,4‐oxadiazole ring‐opening and subsequent hydrolysis.
Collapse
Affiliation(s)
- Ana I Loureiro
- Department of Research and Development, BIAL - Portela & Cª. S.A., S Mamede do Coronado, Portugal
| | - Francisco Rocha
- Department of Research and Development, BIAL - Portela & Cª. S.A., S Mamede do Coronado, Portugal
| | - Ana T Santos
- Department of Research and Development, BIAL - Portela & Cª. S.A., S Mamede do Coronado, Portugal
| | - Nand Singh
- Quotient Sciences, Sherwood House Mere Way Ruddington Fields Ruddington Nottingham
| | | | - Rui Pinto
- Department of Research and Development, BIAL - Portela & Cª. S.A., S Mamede do Coronado, Portugal
| | - Laszlo E Kiss
- Department of Research and Development, BIAL - Portela & Cª. S.A., S Mamede do Coronado, Portugal
| | - Patrício Soares-da-Silva
- Department of Research and Development, BIAL - Portela & Cª. S.A., S Mamede do Coronado, Portugal.,Department of Biomedecine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal.,MedInUp, Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal
| |
Collapse
|
23
|
Hassan E, Allam S, Mansour AM, Shaheen A, Salama SA. The potential protective effects of estradiol and 2-methoxyestradiol in ischemia reperfusion-induced kidney injury in ovariectomized female rats. Life Sci 2022; 296:120441. [PMID: 35240160 DOI: 10.1016/j.lfs.2022.120441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/17/2022] [Accepted: 02/25/2022] [Indexed: 01/26/2023]
Abstract
AIMS Investigating the impact of 17β estradiol (E2) and its endogenous non-hormonal metabolite 2-methoxyestradiol (2ME) on renal ischemia-reperfusion (RIR) induced kidney injury in ovariectomized (OVX) rats and the role of catechol-O-methyltransferase (COMT) in their effects. MAIN METHODS Eighty female rats were allocated into eight groups. Control group, Sham group, OVX group, OVX and RIR group, OVX + RIR + E2 group, OVX + RIR + 2ME group, OVX + RIR + E2 + Entacapone group and OVX + RIR + 2ME + Entacapone group, respectively. Twenty-four hours post RIR, creatinine (Cr) and blood urea nitrogen (BUN) were determined in serum, while malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), Glutathione (GSH), myeloperoxidase (MPO), as well as the expressions of COMT, hypoxia inducible factor-1α (HIF-1α) and tyrosine hydroxylase (TH) were assessed in the kidney tissues. KEY FINDINGS Serum Cr, BUN, MPO, as well as HIF-1α and TH expressions were significantly higher with concomitant decrease in COMT expression, SOD and CAT activities and GSH content observed in OVX and RIR group compared to sham group. E2 and 2ME treatment significantly ameliorated all parameters measured in OVX and RIR rats. On the other hand, Entacapone significantly decreased the effect of E2, with no effect on 2ME treatment. SIGNIFICANCE E2 ameliorates RIR-induced kidney injury and this effect is mediated, at least in part, via its COMT-mediated conversion to 2ME. Thus, 2ME by the virtue of its pleiotropic pharmacological effects can be used as a safe and effective treatment of RIR injury.
Collapse
Affiliation(s)
- Eslam Hassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Shady Allam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | - Ahmed M Mansour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Aya Shaheen
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Salama A Salama
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
| |
Collapse
|
24
|
1-Hydroxy-2(1 H)-pyridinone-Based Chelators with Potential Catechol O-Methyl Transferase Inhibition and Neurorescue Dual Action against Parkinson's Disease. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092816. [PMID: 35566171 PMCID: PMC9101691 DOI: 10.3390/molecules27092816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 11/17/2022]
Abstract
Two analogues of tolcapone where the nitrocatechol group has been replaced by a 1-hydroxy-2(1H)-pyridinone have been designed and synthesised. These compounds are expected to have a dual mode of action both beneficial against Parkinson’s disease: they are designed to be inhibitors of catechol O-methyl transferase, which contribute to the reduction of dopamine in the brain, and to protect neurons against oxidative damage. To assess whether these compounds are worthy of biological assessment to demonstrate these effects, measurement of their pKa and stability constants for Fe(III), in silico modelling of their potential to inhibit COMT and blood–brain barrier scoring were performed. These results demonstrate that the compounds may indeed have the desired properties, indicating they are indeed promising candidates for further evaluation.
Collapse
|
25
|
Guo H, Yang Y, Zhang Q, Deng JR, Yang Y, Li S, So PK, Lam TC, Wong MK, Zhao Q. Integrated Mass Spectrometry Reveals Celastrol As a Novel Catechol-O-methyltransferase Inhibitor. ACS Chem Biol 2022; 17:2003-2009. [PMID: 35302751 DOI: 10.1021/acschembio.2c00011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Natural product celastrol is known to have various biological activities, yet its molecular targets that correspond to many activities remain unclear. Here, we used multiple mass-spectrometry-based approaches to identify catechol-O-methyltransferase (COMT) as a major binding target of celastrol and characterized their interaction comprehensively. Celastrol was found to inhibit the enzymatic activity of COMT and increased the dopamine level in neuroendocrine chromaffin cells significantly. Our study not only revealed a novel binding target of celastrol but also provided a new scaffold and cysteine hot spot for developing new generation COMT inhibitors in combating neurological disorders.
Collapse
Affiliation(s)
- Haijun Guo
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR 999077, China
| | - Yang Yang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR 999077, China
| | - Qi Zhang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR 999077, China
- Centre for Eye and Vision Research, 17W Hong Kong Science Park, Hong Kong, SAR 999077, China
| | - Jie-Ren Deng
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR 999077, China
| | - Ying Yang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR 999077, China
| | - Shuqi Li
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR 999077, China
| | - Pui-Kin So
- University Research Facility in Life Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR 999077, China
| | - Thomas C. Lam
- Centre for Eye and Vision Research, 17W Hong Kong Science Park, Hong Kong, SAR 999077, China
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong, SAR 999077, China
- Research Centre for SHARP Vision, The Hong Kong Polytechnic University, Hong Kong, SAR 999077, China
| | - Man-kin Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR 999077, China
| | - Qian Zhao
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR 999077, China
| |
Collapse
|
26
|
Schneider JS, Kortagere S. Current concepts in treating mild cognitive impairment in Parkinson's disease. Neuropharmacology 2022; 203:108880. [PMID: 34774549 DOI: 10.1016/j.neuropharm.2021.108880] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022]
Abstract
Impairment in various aspects of cognition is recognized as an important non-motor symptom of Parkinson's disease (PD). Mild cognitive impairment in PD (PD-MCI) is common in non-demented PD patients and is often associated with severity of motor symptoms, disease duration and increasing age. Further, PD-MCI can have a significant negative effect on performance of daily life activities and may be a harbinger of development of PD dementia. Thus, there is significant interest in developing therapeutic strategies to ameliorate cognitive deficits in PD and improve cognitive functioning of PD patients. However, due to significant questions that remain regarding the pathophysiology of cognitive dysfunction in PD, remediation of cognitive dysfunction in PD has proven difficult. In this paper, we will focus on PD-MCI and will review some of the current therapeutic approaches being taken to try to improve cognitive functioning in patients with PD-MCI.
Collapse
Affiliation(s)
- Jay S Schneider
- Dept. of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| |
Collapse
|
27
|
Wang Y, Huang J, Wang Z, Wang X, Liu H, Li X, Qiao H, Wang L, Chen J, Chen X, Li J. Extra virgin olive oil-based phospholipid complex/self-microemulsion enhances oral absorption of salvianolic acid B through inhibition of catechol-O-methyltransferase-mediated metabolism. Int J Pharm 2022; 611:121330. [PMID: 34864120 DOI: 10.1016/j.ijpharm.2021.121330] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 01/05/2023]
Abstract
The oral bioavailability of many phenolic acid drugs is severely limited due to the high hydrophilicity and extensive first-pass effect induced by catechol-O-methyltransferase (COMT) metabolism. The present study investigated the inhibitory activity of the pharmaceutical excipients of extra virgin olive oil (EVOO) against COMT and evaluated the potential of a self-microemulsion loaded with a phospholipid complex containing EVOO for oral absorption enhancement of salvianolic acid B (SAB), a model phenolic acid. In vitro COMT assay showed that EVOO could effectively inhibit enzyme activity in the rat liver cytosol. Next, the SAB phospholipid complex/self-microemulsion containing EVOO (named SP-SME1) was prepared and characterized (particle size, 243.60 ± 6.96 nm and zeta potential, -23.67 ± -1.36 mV). The phospholipid complex/self-microemulsion containing ethyl oleate (EO) (named SP-SME2) was taken as the control group. Compared with free SAB, the apparent permeability coefficient (Papp value) of the two SP-SMEs significantly increased (12.0-fold and 10.90-fold). Pharmacokinetic study demonstrated that the AUC0-∞ value of SAB for the SP-SME1 group significantly increased by 4.72 and 2.82 times compared to those for free SAB (p < 0.001) and SP-SME2 (p < 0.01), respectively. Moreover, the AUC0-∞ value of monomethyl-SAB (metabolite of SAB, MMS) for the SP-SME1 group decreased by 0.83 times compared to that for SP-SME2. In conclusion, the EVOO-based phospholipid complex/self-microemulsion greatly enhanced the oral absorption of SAB, which was mainly attributed to the inhibition of COMT activity induced by EVOO.
Collapse
Affiliation(s)
- Yutong Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinyu Huang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zilin Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xitong Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Heng Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiangwei Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hongzhi Qiao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lingchong Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jing Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiao Chen
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Junsong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
28
|
Discovery of Small Molecules as Membrane-Bound Catechol- O-methyltransferase Inhibitors with Interest in Parkinson's Disease: Pharmacophore Modeling, Molecular Docking and In Vitro Experimental Validation Studies. Pharmaceuticals (Basel) 2021; 15:ph15010051. [PMID: 35056108 PMCID: PMC8780549 DOI: 10.3390/ph15010051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 12/22/2022] Open
Abstract
A pharmacophore-based virtual screening methodology was used to discover new catechol-O-methyltransferase (COMT) inhibitors with interest in Parkinson’s disease therapy. To do so, pharmacophore models were constructed using the structure of known inhibitors and then they were used in a screening in the ZINCPharmer database to discover hit molecules with the desired structural moieties and drug-likeness properties. Following this, the 50 best ranked molecules were submitted to molecular docking to better understand their atomic interactions and binding poses with the COMT (PDB#6I3C) active site. Additionally, the hits’ ADMET properties were also studied to improve the obtained results and to select the most promising compounds to advance for in-vitro studies. Then, the 10 compounds selected were purchased and studied regarding their in-vitro inhibitory potency on human recombinant membrane-bound COMT (MBCOMT), as well as their cytotoxicity in rat dopaminergic cells (N27) and human dermal fibroblasts (NHDF). Of these, the compound ZIN27985035 displayed the best results: For MBCOMT inhibition an IC50 of 17.6 nM was determined, and low cytotoxicity was observed in both cell lines (61.26 and 40.32 μM, respectively). Therefore, the promising results obtained, combined with the structure similarity with commercial COMT inhibitors, can allow for the future development of a potential new Parkinson’s disease drug candidate with improved properties.
Collapse
|
29
|
Jenner P, Rocha JF, Ferreira JJ, Rascol O, Soares-da-Silva P. Redefining the strategy for the use of COMT inhibitors in Parkinson's disease: the role of opicapone. Expert Rev Neurother 2021; 21:1019-1033. [PMID: 34525893 DOI: 10.1080/14737175.2021.1968298] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Levodopa remains the gold-standard Parkinson's disease (PD) treatment, but the inevitable development of motor complications has led to intense activity in pursuit of its optimal delivery. AREAS COVERED Peripheral inhibition of dopa-decarboxylase has long been considered an essential component of levodopa treatment at every stage of illness. In contrast, only relatively recently have catechol-O-methyltransferase (COMT) inhibitors been utilized to block the other major pathway of degradation and optimize levodopa delivery to the brain. First and second-generation COMT inhibitors were deficient because of toxicity, sub-optimal pharmacokinetics or a short duration of effect. As such, they have only been employed once 'wearing-off' has developed. However, the third-generation COMT inhibitor, opicapone has overcome these difficulties and exhibits long-lasting enzyme inhibition without the toxicity observed with previous generations of COMT inhibitors. In clinical trials and real-world PD studies opicapone improves the levodopa plasma profile and results in a significant improvement in ON time in 'fluctuating' disease, but it has not yet been included in the algorithm for early treatment. EXPERT OPINION This review argues for a shift in the positioning of COMT inhibition with opicapone in the PD algorithm and lays out a pathway for proving its effectiveness in early disease.
Collapse
Affiliation(s)
- Peter Jenner
- Institute of Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | | | - Joaquim J Ferreira
- Laboratory of Clinical Pharmacology and Therapeutics, Faculdade De Medicina, Universidade De Lisboa, Lisboa, Portugal.,CNS - Campus Neurológico, Torres Vedras, Portugal
| | - Olivier Rascol
- Clinical Investigation Center CIC1436, Departments of Clinical Pharmacology and Neurosciences, NS-Park/FCRIN Network and Toulouse NeuroToul Coen Center; Inserm, University Hospital of Toulouse, and University of Toulouse 3, Toulouse, France
| | - Patrício Soares-da-Silva
- Department of Research & Development, BIAL - Portela & Ca SA, Portugal.,Department of Pharmacology and Therapeutics, Faculty of Medicine, University Porto, Porto, Portugal
| |
Collapse
|
30
|
Li R, Du T, Liu J, Aquino AJA, Zhang J. Theoretical Study of O-CH 3 Bond Dissociation Enthalpy in Anisole Systems. ACS OMEGA 2021; 6:21952-21959. [PMID: 34497890 PMCID: PMC8412933 DOI: 10.1021/acsomega.1c02310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Understanding ubiquitous methyl transfer reactions requires a systematic study of thermodynamical parameters that could reveal valuable information about the nature of the chemical bond and the feasibility of those processes. In the present study, the O-CH3 bond dissociation enthalpies (BDEs) of 67 compounds belonging to phenol/anisole systems were calculated employing the Gaussian-4 (G4) method. Those compounds contain different substituents including alkyl groups, electron-donating groups (EDGs), and electron-withdrawing groups (EWGs). The results show that the bigger branched alkyl groups and EDGs will destabilize the O-CH3 bond, while EWGs have the opposite effect. A combination of different effects including steric effects, hydrogen bonds, and substituents and their position can achieve around 20 kcal/mol difference compared to the basic phenyl frame. Also, the linear correlation between σp + and O-CH3 BDE can provide a reference for the O-CH3 BDE prediction. The present study represents a step forward to establish a comprehensive O-CH3 BDE database to understand the substituent effect and make its contribution to the rational design of inhibitors and drugs.
Collapse
Affiliation(s)
- Rui Li
- School
of Pharmaceutical Science and Technology, Tianjin University, No. 92 Weijin Road, Naikai District, Tianjin 300072, P. R. China
| | - Tianshu Du
- School
of Pharmaceutical Science and Technology, Tianjin University, No. 92 Weijin Road, Naikai District, Tianjin 300072, P. R. China
| | - Jingxing Liu
- School
of Pharmaceutical Science and Technology, Tianjin University, No. 92 Weijin Road, Naikai District, Tianjin 300072, P. R. China
| | - Adelia J. A. Aquino
- School
of Pharmaceutical Science and Technology, Tianjin University, No. 92 Weijin Road, Naikai District, Tianjin 300072, P. R. China
- Department
of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
- Institute
for Soil Research, University of Natural
Resources and Life Sciences, Peter-Jordan-Strasse 82, A-1190 Vienna, Austria
| | - Jianyu Zhang
- School
of Pharmaceutical Science and Technology, Tianjin University, No. 92 Weijin Road, Naikai District, Tianjin 300072, P. R. China
| |
Collapse
|
31
|
Abstract
Purpose: Levodopa formulations are the workhorses of the labor against motor symptoms management in Parkinson's disease (PD). Progression of PD on levodopa inevitably leads to motor fluctuations. It is important to understand the safety and efficacy of opicapone, the most recent addition to the clinician's armamentarium against these fluctuations.Materials and methods: We review the development of COMT inhibitors in the treatment of PD as well as the efficacy and safety data reported in the currently published literature of opicapone in PD. The "currently published literature" is defined as all published, PubMed indexed trials including the word "opicapone." Finally, we compare opicapone to the competitor pharmaceuticals on the market to treat symptom fluctuations in PD and share our opinion of opicapone's place in clinical practice.Results: From the reported results of phase 3 and 4 trials of opicapone in PD, it is a safe and efficacious option to combat motor fluctuations for our PD patients taking levodopa. A reduction of "off" time by up to 1 h per day can be expected, increasing "on" time with fewer dyskinesias. Opicapone is not generally hepatotoxic, and the most reported side-effects-dyskinesia, dry mouth, dizziness, diarrhea, and constipation-were seen in only 1.4% of the OPTIPARK (a large phase 4 clinical trial) study population.Conclusions: One should consider utilizing opicapone, perhaps in combination with other augmenting medications with different mechanisms of action, to help treat motor and non-motor fluctuations in PD.
Collapse
Affiliation(s)
- Matthew Feldman
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jason Margolesky
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
32
|
de Beer J, Petzer JP, Lourens ACU, Petzer A. Design, synthesis and evaluation of 3-hydroxypyridin-4-ones as inhibitors of catechol-O-methyltransferase. Mol Divers 2021; 25:753-762. [PMID: 32108308 PMCID: PMC7224104 DOI: 10.1007/s11030-020-10053-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/13/2020] [Indexed: 11/30/2022]
Abstract
The most effective treatment of Parkinson's disease is restoring central dopamine levels with levodopa, the metabolic precursor of dopamine. However, due to extensive peripheral metabolism by aromatic L-amino acid decarboxylase and catechol-O-methyltransferase (COMT), only a fraction of the levodopa dose reaches the brain unchanged. Thus, by preventing levodopa metabolism and increasing the availability of levodopa for uptake into the brain, the inhibition of COMT would be beneficial in Parkinson's disease. Although nitrocatechol COMT inhibitors have been used in the treatment of Parkinson's disease, efforts have been made to discover non-nitrocatechol inhibitors. In the present study, the 3-hydroxypyridin-4-one scaffold was selected for the design and synthesis of non-nitrocatechol COMT inhibitors since the COMT inhibitory potential of this class has been illustrated. Using COMT obtained from porcine liver, it was shown that a synthetic series of ten 3-hydroxypyridin-4-ones are in vitro inhibitors with IC50 values ranging from 4.55 to 19.8 µM. Although these compounds are not highly potent inhibitors, they may act as leads for the development of non-nitrocatechol COMT inhibitors. Such compounds would be appropriate for the treatment of Parkinson's disease. 3-Hydroxypyridin-4-ones have been synthesised and evaluated as non-nitrocatechol COMT inhibitors. In vitro, the IC50 values ranged from 4.55 to 19.8 μM.
Collapse
Affiliation(s)
- Johannie de Beer
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Jacobus P Petzer
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Anna C U Lourens
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Anél Petzer
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| |
Collapse
|
33
|
Zhao DF, Fan YF, Yu HN, Hou FB, Xiang YW, Wang P, Ge GB, Yang L, Xu JG. Discovery and characterization of flavonoids in vine tea as catechol-O-methyltransferase inhibitors. Fitoterapia 2021; 152:104913. [PMID: 33932529 DOI: 10.1016/j.fitote.2021.104913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/25/2021] [Accepted: 04/25/2021] [Indexed: 10/21/2022]
Abstract
Vine tea has been used as a traditionally functional herbal tea in China for centuries, which exhibits paramount potential for chronic metabolic diseases. Herein, the inhibitory potential of vine tea toward human catechol-O-methyltransferase (hCOMT) was investigated. A practical bioactivity-guided fractionation combined with chemical profiling strategy was developed to identify the naturally occurring hCOMT inhibitors. Five flavonoids in vine tea displayed moderate to strong inhibition on hCOMT with IC50 values ranging from 0.96 μM to 42.47 μM, in which myricetin was the critically potent constituent against hCOMT. Inhibition kinetics assays and molecular docking simulations showed that myricetin could bind to the active site of COMT and inhibited COMT-catalyzed 3-BTD methylation in a mixed manner. Collectively, our findings not only suggested that the strong hCOMT inhibition of vine tea has guiding significance in the drug exposure of catechol drugs, but also identified a promising lead compound for developing more efficacious hCOMT inhibitors.
Collapse
Affiliation(s)
- Dong-Fang Zhao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yu-Fan Fan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hao-Nan Yu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Fan-Bin Hou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yan-Wei Xiang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ping Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Guang-Bo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Ling Yang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
34
|
Xue W, Tan Y, Liu Y, Xu C, Cong D, Zhong L, Song J, Hui A, Qi W, Wang J, Liu X, Li K. Pharmacokinetics of Opicapone and Its Metabolites in Healthy White and Chinese Subjects. Clin Pharmacol Drug Dev 2021; 10:1316-1324. [PMID: 33864709 DOI: 10.1002/cpdd.922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/28/2021] [Indexed: 02/04/2023]
Abstract
Opicapone (OPC) is a third-generation catechol-O-methyltransferase inhibitor developed to treat Parkinson disease and motor fluctuations. This open-label, single-center, phase 1 study aimed to evaluate the pharmacokinetics (PK) of OPC and its metabolites when administered as single and multiple doses in healthy White and Chinese subjects. The study enrolled a total of 30 White and Chinese healthy subjects, equally balanced among groups. The first dose of OPC was administered orally as a single dose of 50 mg on day 1, followed by a 10-day once-daily treatment from day 5 to day 14. Plasma concentrations of OPC and its metabolites were measured at 0 to 72 and 0 to 144 hours after dosing for single dose and multiple dose, respectively. Moreover, urine concentrations of OPC and its metabolite were measured 0 to 24 hours after dosing. PK parameters were derived from noncompartmental analysis. Geometric mean ratios and 90% confidence intervals for the main PK parameters were conducted to evaluate the ethnic difference between White and Chinese subjects. The plasma and urine exposure of OPC and its metabolites in Chinese subjects were similar to those in White subjects. These results indicated that ethnicity had no significant impact on PK of OPC between White and Chinese subjects.
Collapse
Affiliation(s)
- Wei Xue
- Clinical Trial Center, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Assessment of Clinical Drugs Risk and Individual Application Key Laboratory, Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Tan
- Clinical Research Department, Shanghai Fosun Pharmaceutical Industrial Development Co., Ltd, Shanghai, China
| | - Yue Liu
- Clinical Trial Center, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Assessment of Clinical Drugs Risk and Individual Application Key Laboratory, Chinese Academy of Medical Sciences, Beijing, China
| | - Changjiang Xu
- Clinical Research Department, Shanghai Fosun Pharmaceutical Industrial Development Co., Ltd, Shanghai, China
| | - Duanduan Cong
- Clinical Trial Center, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Assessment of Clinical Drugs Risk and Individual Application Key Laboratory, Chinese Academy of Medical Sciences, Beijing, China
| | - Liping Zhong
- Clinical Research Department, Shanghai Fosun Pharmaceutical Industrial Development Co., Ltd, Shanghai, China
| | - Jie Song
- Clinical Research Department, Shanghai Fosun Pharmaceutical Industrial Development Co., Ltd, Shanghai, China
| | - Aimin Hui
- Clinical Research Department, Shanghai Fosun Pharmaceutical Industrial Development Co., Ltd, Shanghai, China
| | - Wenyuan Qi
- Clinical Trial Center, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Assessment of Clinical Drugs Risk and Individual Application Key Laboratory, Chinese Academy of Medical Sciences, Beijing, China
| | - Juan Wang
- Clinical Trial Center, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Assessment of Clinical Drugs Risk and Individual Application Key Laboratory, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaohui Liu
- Clinical Trial Center, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Assessment of Clinical Drugs Risk and Individual Application Key Laboratory, Chinese Academy of Medical Sciences, Beijing, China
| | - Kexin Li
- Clinical Trial Center, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Assessment of Clinical Drugs Risk and Individual Application Key Laboratory, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
35
|
Cruz-Vicente P, Passarinha LA, Silvestre S, Gallardo E. Recent Developments in New Therapeutic Agents against Alzheimer and Parkinson Diseases: In-Silico Approaches. Molecules 2021; 26:2193. [PMID: 33920326 PMCID: PMC8069930 DOI: 10.3390/molecules26082193] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/17/2022] Open
Abstract
Neurodegenerative diseases (ND), including Alzheimer's (AD) and Parkinson's Disease (PD), are becoming increasingly more common and are recognized as a social problem in modern societies. These disorders are characterized by a progressive neurodegeneration and are considered one of the main causes of disability and mortality worldwide. Currently, there is no existing cure for AD nor PD and the clinically used drugs aim only at symptomatic relief, and are not capable of stopping neurodegeneration. Over the last years, several drug candidates reached clinical trials phases, but they were suspended, mainly because of the unsatisfactory pharmacological benefits. Recently, the number of compounds developed using in silico approaches has been increasing at a promising rate, mainly evaluating the affinity for several macromolecular targets and applying filters to exclude compounds with potentially unfavorable pharmacokinetics. Thus, in this review, an overview of the current therapeutics in use for these two ND, the main targets in drug development, and the primary studies published in the last five years that used in silico approaches to design novel drug candidates for AD and PD treatment will be presented. In addition, future perspectives for the treatment of these ND will also be briefly discussed.
Collapse
Affiliation(s)
- Pedro Cruz-Vicente
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, Faculty of Sciences and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Luís A. Passarinha
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, Faculty of Sciences and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- Laboratory of Pharmaco-Toxicology—UBIMedical, University of Beira Interior, 6200-001 Covilhã, Portugal
| | - Samuel Silvestre
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal;
- Laboratory of Pharmaco-Toxicology—UBIMedical, University of Beira Interior, 6200-001 Covilhã, Portugal
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Eugenia Gallardo
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal;
- Laboratory of Pharmaco-Toxicology—UBIMedical, University of Beira Interior, 6200-001 Covilhã, Portugal
| |
Collapse
|
36
|
Zhao DF, Fan YF, Wang FY, Hou FB, Gonzalez FJ, Li SY, Wang P, Xia YL, Ge GB, Yang L. Discovery and characterization of naturally occurring potent inhibitors of catechol- O-methyltransferase from herbal medicines. RSC Adv 2021; 11:10385-10392. [PMID: 35423513 PMCID: PMC8695704 DOI: 10.1039/d0ra10425f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/28/2021] [Indexed: 12/19/2022] Open
Abstract
Human catechol-O-methyltransferase (hCOMT) is considered a therapeutic target due to its crucial roles in the metabolic inactivation of endogenous neurotransmitters and xenobiotic drugs. There are nevertheless few safe and effective COMT inhibitors and there lacks a diversity in structure. To discover novel safe and effective hCOMT inhibitors from herbal products, in this study, 53 herbal products were collected and their inhibitory effects against hCOMT were investigated. Among them, Scutellariae radix (SR) displayed the most potent inhibitory effect on hCOMT with an IC50 value of 0.75 μg mL-1. To further determine specific chemicals as COMT inhibitors, an affinity ultrafiltration coupled with liquid chromatography-mass spectrometry method was developed and successfully applied to identify COMT inhibitors from SR extract. The results demonstrated that scutellarein 2, baicalein 9 and oroxylin A 12 were potent COMT inhibitors, showing a high binding index (>3) and very low IC50 values (32.9 ± 3.43 nM, 37.3 ± 4.32 nM and 18.3 ± 2.96 nM). The results of inhibition kinetics assays and docking simulations showed that compounds 2, 9 and 12 were potent competitive inhibitors against COMT-mediated 3-BTD methylation, and they could stably bind to the active site of COMT. These findings suggested that affinity ultrafiltration allows a rapid identification of natural COMT inhibitors from a complex plant extract matrix. Furthermore, scutellarein 2, baicalein 9 and oroxylin A 12 are potent inhibitors of hCOMT in SR, which could be used as promising lead compounds to develop more efficacious non-nitrocatechol COMT inhibitors for biomedical applications.
Collapse
Affiliation(s)
- Dong-Fang Zhao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine Shanghai 201203 China
| | - Yu-Fan Fan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine Shanghai 201203 China
| | - Fang-Yuan Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine Shanghai 201203 China
| | - Fan-Bin Hou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine Shanghai 201203 China
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health Bethesda MD 20892 USA
| | - Shi-Yang Li
- Analytical Central Laboratory, Shenyang Harmony Health Medical Laboratory Co. Ltd Shenyang 210112 China
| | - Ping Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine Shanghai 201203 China
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health Bethesda MD 20892 USA
| | - Yang-Liu Xia
- School of Life Science and Medicine, Dalian University of Technology Panjin 124221 China
| | - Guang-Bo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine Shanghai 201203 China
| | - Ling Yang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine Shanghai 201203 China
| |
Collapse
|
37
|
Prepubertal exposure to high dose of cadmium induces hypothalamic injury through transcriptome profiling alteration and neuronal degeneration in female rats. Chem Biol Interact 2021; 337:109379. [PMID: 33453195 DOI: 10.1016/j.cbi.2021.109379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/23/2020] [Accepted: 01/10/2021] [Indexed: 11/20/2022]
Abstract
Cadmium (Cd) is a toxic metal, which seems to be crucial during the prepubertal period. Cd can destroy the structural integrity of the blood-brain barrier (BBB) and enters into the brain. Although the brain is susceptible to neurotoxicity induced by Cd, the effects of Cd on the brain, particularly hypothalamic transcriptome, are still relatively poorly understood. Therefore, we investigated the molecular effects of Cd exposure on the hypothalamus by profiling the transcriptomic response of the hypothalamus to high dose of Cd (25 mg/kg bw/day cadmium chloride (CdCl2)) during the prepubertal period in Sprague-Dawley female rats. After sequencing and annotation, differential expression analysis revealed 1656 genes that were differentially expressed that 108 of them were classified into 37 transcription factor (TF) families. According to gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, these differentially expressed genes (DEGs) were involved in different biological processes and neurological disorders including Alzheimer's disease (AD), Huntington's disease (HD), and Parkinson's disease (PD), prolactin signaling pathway, PI3K/Akt signaling, and dopaminergic synapse. Five transcripts were selected for further analyses with Real-time quantitative PCR (RT-qPCR). The RT-qPCR results were mostly consistent with those from the high throughput RNA sequencing (RNA-seq). Cresyl violet staining clearly showed an increased neuronal degeneration in the dorsomedial hypothalamus (DMH) and arcuate (Arc) nuclei of the CdCl2 group. Overall, this study demonstrates that prepubertal exposure to high doses of Cd induces hypothalamic injury through transcriptome profiling alteration in female rats, which reveals the new mechanisms of pathogenesis of Cd in the hypothalamus.
Collapse
|
38
|
Applications of gellan natural polymer microspheres in recombinant catechol-O-methyltransferase direct capture from a Komagataella pastoris lysate. Int J Biol Macromol 2021; 172:186-196. [PMID: 33421470 DOI: 10.1016/j.ijbiomac.2020.12.225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/23/2020] [Accepted: 12/31/2020] [Indexed: 11/24/2022]
Abstract
The present work shows the application of nickel- and magnesium-crosslinked gellan microspheres in ionic and affinity capture strategies to directly extract hSCOMT from the complex Komagataella pastoris lysate through a simple batch method. Both formulations present similar morphology, but nickel-crosslinked microspheres present higher crosslinker content and smaller diameters. Four different capture strategies were established, by manipulating the ionic strength, pH, temperature and competing agents' presence. The most promising results for hSCOMT capture and clarification were obtained employing an ionic strategy with nickel-crosslinked microspheres and an affinity strategy with magnesium-crosslinked microspheres at 4 °C. The bioactivity results (200%) and purification degree (70%) of hSCOMT captured by the ionic strategy were more satisfactory probably due to the soft ionic conditions used (100 mM NaCl). For the first time, the gellan polysaccharide versatility was demonstrated in the microsphere application for the direct capture of hSCOMT from a complex lysate, simplifying isolation biotechnological procedures.
Collapse
|
39
|
Jalkanen A, Lassheikki V, Torsti T, Gharib E, Lehtonen M, Juvonen RO. Tissue and interspecies comparison of catechol- O-methyltransferase mediated catalysis of 6- O-methylation of esculetin to scopoletin and its inhibition by entacapone and tolcapone. Xenobiotica 2020; 51:268-278. [PMID: 33289420 DOI: 10.1080/00498254.2020.1853850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Catechol-O-methyltransferase (COMT) methylates both endogenous and exogenous catechol compounds to inactive and safe metabolites. We first optimised conditions for a convenient and sensitive continuous fluorescence-based 6-O-methylation assay of esculetin, which we used for investigating the COMT activity in human, mouse, rat, dog, rabbit, and sheep liver cytosols and microsomes and in ten different rat tissues. Furthermore, we compared the inhibition potencies and mechanisms of two clinically used COMT inhibitors, entacapone and tolcapone, in these species. In most tissues, the COMT activity was at least three times higher in cytosol than in microsomes. In the rat, the highest COMT activity was found in the liver, followed by kidney, ileum, thymus, spleen, lung, pancreas, heart, brain, and finally, skeletal muscle. Entacapone and tolcapone were characterised as highly potent mixed type tight-binding inhibitors. The competitive inhibition type dominated over the uncompetitive inhibition with entacapone, whereas uncompetitive inhibition dominated with tolcapone. Rats, dogs, pigs, and sheep are high COMT activity species, in contrast to humans, mice, and rabbits; COMT activity is highest in the liver. Both entacapone and tolcapone are potent COMT inhibitors, but their inhibition mechanisms differ.
Collapse
Affiliation(s)
- Aaro Jalkanen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Veera Lassheikki
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tommi Torsti
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Elham Gharib
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Marko Lehtonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Risto O Juvonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
40
|
Liu Z, Zhang W, Sun B, Ma Y, He M, Pan Y, Wang F. Probing conformational hotspots for the recognition and intervention of protein complexes by lysine reactivity profiling. Chem Sci 2020; 12:1451-1457. [PMID: 34163908 PMCID: PMC8179027 DOI: 10.1039/d0sc05330a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Probing the conformational and functional hotspot sites within aqueous native protein complexes is still a challenging task. Herein, a mass spectrometry (MS)-based two-step isotope labeling-lysine reactivity profiling (TILLRP) strategy is developed to quantify the reactivities of lysine residues and probe the molecular details of protein–protein interactions as well as evaluate the conformational interventions by small-molecule active compounds. The hotspot lysine sites that are crucial to the SARS-CoV-2 S1–ACE2 combination could be successfully probed, such as S1 Lys417 and Lys444. Significant alteration of the reactivities of lysine residues at the interaction interface of S1-RBD Lys386–Lys462 was observed during the formation of complexes, which might be utilized as indicators for investigating the S1-ACE2 dynamic recognition and intervention at the molecular level in high throughput. A mass spectrometry-based two-step isotope labeling-lysine reactivity profiling strategy is developed to probe the molecular details of protein–protein interactions and evaluate the conformational interventions by small-molecule active compounds.![]()
Collapse
Affiliation(s)
- Zheyi Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Wenxiang Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China .,Department of Chemistry, Zhejiang University Hangzhou 310027 China
| | - Binwen Sun
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Yaolu Ma
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Min He
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University Hangzhou 310027 China
| | - Fangjun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China .,University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
41
|
López-Ríos L, Wiebe JC, Vega-Morales T, Gericke N. Central nervous system activities of extract Mangifera indica L. JOURNAL OF ETHNOPHARMACOLOGY 2020; 260:112996. [PMID: 32473365 DOI: 10.1016/j.jep.2020.112996] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/02/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
ETHNOBOTANICAL RELEVANCE Leaves of Mangifera indica L. have folk-uses in tropical regions of the world as health teas, as a remedy for exhaustion and fatigue, as a vegetable, and as a medicine. Mangifera indica leaf extract (MLE) had previously been demonstrated to alter brain electrical activity in-vivo. The aim of the present series of studies was to investigate whether mangiferin, a major compound in leaves and in MLE, is responsible for the neurocognitive activity of MLE, and if the CNS activities of MLE have translational potential. MATERIALS AND METHODS MLE, tradename Zynamite, is produced by Nektium Pharma, Spain. Isolated mangiferin was tested in-vitro in radioligand binding and enzyme inhibition studies against 106 CNS targets. Changes in the electroencephalograms (EEG's) of MLE and mangiferin were recorded in-vivo from four brain regions. Two double blind randomized placebo-controlled crossover clinical trials were conducted, each with 16 subjects. At 90 min and at 60 min respectively, after oral intake of 500 mg MLE, EEG recordings, psychometric tests, mood state, and tolerability were studied. RESULTS Isolated mangiferin is a selective inhibitor of catechol-O-methyltransferase (COMT) with an IC50 of 1.1 μM, with no activity on the CNS targets of caffeine. Both mangiferin and MLE induce similar changes in long-term potentiation (LTP) in the hippocampus in-vitro, and induce a similar pattern of EEG changes in-vivo. In both translational clinical trials MLE was well tolerated, with no cardiovascular side-effects. In both studies MLE caused significant spectral changes in brain electrical activity in cortical regions during cognitive challenges, different to the attenuated spectral changes induced by caffeine. There were no significant changes in the psychometric tests other than reaction time for all groups. In the second study there was a trend to faster reaction time within group for MLE (p = 0.066) and the percentage improvement in reaction time for MLE compared to placebo was significant (p = 0.049). In the first study MLE improved all scores for Profile of Mood States (POMS), with the score for "fatigue" significantly improved (p = 0.015); in the second study the POMS score for "dejection" was improved in the caffeine group, p = 0.05. CONCLUSIONS Mangiferin is a COMT inhibitor of moderate potency and is the major CNS-active compound in MLE. Both mangiferin and MLE increase hippocampal LTP in-vitro, and induce a similar pattern of changes in brain electrical activity in-vivo. While the translational clinical trials of MLE are limited by being single dose studies in a small number of subjects, they provide the first clinical evidence that the extract is well tolerated with no cardiovascular side-effects, can induce changes in brain electrical activity, may give a faster reaction time, and decrease fatigue. These CNS activities support the reported folk-uses use of mango leaf tea as a substitute for tea and as a traditional remedy for fatigue and exhaustion. Extract Mangifera indica L., Zynamite, has nootropic potential, and larger clinical studies are needed to realise this potential.
Collapse
Affiliation(s)
- Laura López-Ríos
- Department of Research, Development and Innovation, Nektium Pharma SL, 35118, Las Palmas de Gran Canaria, Spain.
| | - Julia C Wiebe
- Department of Research, Development and Innovation, Nektium Pharma SL, 35118, Las Palmas de Gran Canaria, Spain.
| | - Tanausú Vega-Morales
- Department of Research, Development and Innovation, Nektium Pharma SL, 35118, Las Palmas de Gran Canaria, Spain.
| | - Nigel Gericke
- Department of Research, Development and Innovation, Nektium Pharma SL, 35118, Las Palmas de Gran Canaria, Spain; Department of Botany and Plant Biotechnology, University of Johannesburg, Auckland Park, 2006, Johannesburg, South Africa.
| |
Collapse
|
42
|
Lees A, Ferreira JJ, Rocha JF, Rascol O, Poewe W, Gama H, Soares-da-Silva P. Safety Profile of Opicapone in the Management of Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2020; 9:733-740. [PMID: 31498127 DOI: 10.3233/jpd-191593] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Opicapone is a catechol O-methyltransferase (COMT) inhibitor indicated for use as adjunct to levodopa therapy in patients with Parkinson's disease (PD) and motor fluctuations. OBJECTIVE To characterize the safety and tolerability of adjunct opicapone (25 and 50 mg) in a pooled population of levodopa-treated PD patients who participated in the opicapone Phase-3 clinical program. METHODS Patient-level data (placebo, opicapone 25 mg and 50 mg) from the BIPARK-1 and BIPARK-2 double-blind and open-label studies were combined. RESULTS Pooled analyses included 766 patients from the double-blind studies and 848 patients from the open-label studies. In the double-blind studies, 63.3% of opicapone-treated patients reported treatment-emergent adverse events (TEAEs) versus 57.2% in the placebo group. The most common TEAEs reported in the opicapone group compared to placebo were dyskinesia, constipation and insomnia. The incidence of serious TEAEs was similar across opicapone and placebo groups (3.5% versus 4.3%, respectively). Overall, 71.3% patients treated with open-label opicapone reported at least one TEAE; most occurred within the first 2 months of the open-label studies, and then decreased thereafter. Throughout the Phase-3 clinical program, there were no serious AEs suggestive of hepatic toxicity, and the incidence of gastrointestinal disorders such as nausea and diarrhea remained low (<2%). There were no relevant changes in laboratory parameters including liver enzymes, vital signs, physical or neurological examinations, or ECG readings. CONCLUSIONS Long-term use of opicapone once-daily over 1-year at doses of 25 mg or 50 mg was generally safe and well tolerated, supporting its clinical usefulness in the management of PD motor fluctuations.
Collapse
Affiliation(s)
- Andrew Lees
- University College London, Reta Lila Weston Institute, London, UK
| | - Joaquim J Ferreira
- Instituto de Medicina Molecular, Faculty of Medicine, University of Lisbon, Portugal.,CNS - Campus Neurológico Sénior, Torres Vedras, Portugal
| | - José-Francisco Rocha
- Department of Research and Development, BIAL - Portela & Ca SA, S. Mamede do Coronado, Portugal
| | - Olivier Rascol
- Department of Clinical Pharmacology and Neurosciences, INSERM and University Hospital of Toulouse, Toulouse, France
| | - Werner Poewe
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Helena Gama
- Department of Research and Development, BIAL - Portela & Ca SA, S. Mamede do Coronado, Portugal
| | - Patrício Soares-da-Silva
- Department of Research and Development, BIAL - Portela & Ca SA, S. Mamede do Coronado, Portugal.,Department of Pharmacology and Therapeutics, Faculty of Medicine, University Porto, Porto, Portugal.,MedInUP, Center for Drug Discovery and Innovative Medicines, University Porto, Porto, Portugal
| |
Collapse
|
43
|
Wu S, Wang P, Tao R, Yang P, Yu X, Li Y, Shao Q, Nie F, Ha J, Zhang R, Tian Y, Ma J. Schizophrenia‑associated microRNA‑148b‑3p regulates COMT and PRSS16 expression by targeting the ZNF804A gene in human neuroblastoma cells. Mol Med Rep 2020; 22:1429-1439. [PMID: 32626976 PMCID: PMC7339789 DOI: 10.3892/mmr.2020.11230] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 03/31/2020] [Indexed: 01/17/2023] Open
Abstract
Zinc finger protein 804A (ZNF804A) has been identified by genome-wide association studies as a robust risk gene in schizophrenia, but how ZNF804A contributes to schizophrenia and its upstream regulation remains unknown. Previous studies have indicated that microRNAs (miRs) are key factors that regulate the expression levels of their target genes. The present study revealed significantly increased expression of miR-148b-3p in the peripheral blood of patients with first-onset schizophrenia compared with healthy controls, and bioinformatics analysis predicted that the ZNF804A gene is a target of miR-148b-3p. Therefore, the present study investigated the possible upstream regulation of ZNF804A by miR-148b-3p in the human neuroblastoma SH-SY5Y cell line, and assessed the implications for schizophrenia. The results revealed significantly reversed expression levels of miR-148b-3p (P=0.0051) and ZNF804A (P=0.0218) in the peripheral blood of patients with first-onset schizophrenia compared with healthy individuals. Furthermore, it was demonstrated that miR-148b-3p directly targeted ZNF804A via binding to conserved target sites in the 3′-untranslated region of ZNF804A mRNA, where it inhibited the endogenous expression of ZNF804A at both the mRNA (P=0.048) and protein levels (P=0.013) in SH-SY5Y cells. Furthermore, miR-148b-3p was revealed to regulate the expression levels of catechol-O-methyltransferase (COMT) and serine protease 16 (PRSS16) by targeting ZNF804A in SH-SY5Y cells. Collectively, the present results indicated that there was a direct upstream regulation of the schizophrenia risk gene ZNF804A by miR-148b-3p, which contributed to the regulation of the downstream genes COMT and PRSS16. Thus, the miR-148b-3p/ZNF804A/COMT/PRSS16 pathway may play an important role in the pathophysiology of schizophrenia, and may serve as a potential target in drug discovery and gene therapy for this disorder.
Collapse
Affiliation(s)
- Shanshan Wu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Pengjie Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Ran Tao
- Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Pengbo Yang
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaorui Yu
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Ye Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Qiuya Shao
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Fayi Nie
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Jing Ha
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Rui Zhang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Ye Tian
- Medical Research Center, Xi'an No. 3 Hospital, Xi'an, Shaanxi 710018, P.R. China
| | - Jie Ma
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
44
|
Ettcheto M, Busquets O, Sánchez-Lopez E, Cano A, Manzine PR, Verdaguer E, Olloquequi J, Auladell C, Folch J, Camins A. The preclinical discovery and development of opicapone for the treatment of Parkinson's disease. Expert Opin Drug Discov 2020; 15:993-1004. [PMID: 32450711 DOI: 10.1080/17460441.2020.1767580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Opicapone (OPC) is a well-established catechol-O-methyltransferase (COMT) inhibitor that is approved for the treatment of Parkinson's disease (PD) associated with L-DOPA/L-amino acid decarboxylase inhibitor (DDI) therapy allowing for prolonged activity due to a more continuous supply of L-DOPA in the brain. Thus, OPC decreases fluctuation in L-DOPA plasma levels and favors more constant central dopaminergic receptor stimulation, thus improving PD symptomatology. AREAS COVERED This review evaluates the preclinical development, pharmacology, pharmacokinetics and safety profile of OPC. Data was extracted from published preclinical and clinical studies published on PUBMED and SCOPUS (Search period: 2000-2019). Clinical and post-marketing data are also evaluated. EXPERT OPINION OPC is a third generation COMT inhibitor with a novel structure. It has an efficacy and tolerability superior to its predecessors, tolcapone (TOL) and entacapone (ENT). It also provides a safe and simplified drug regimen that allows neurologists to individually adjust the existing daily administration of L-DOPA. OPC is indicated as an adjunctive therapy to L-DOPA/DDI in patients with PD and end-of-dose motor fluctuations who cannot be stabilized on those combinations.
Collapse
Affiliation(s)
- Miren Ettcheto
- Departament of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona , Barcelona, Spain.,Department of Biochemistry and Biotechnology, Faculty of Medicine and Life Science, University Rovira i Virgili , Reus, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED) , Madrid, Spain.,Institute of Neuroscience, University of Barcelona , Barcelona, Spain
| | - Oriol Busquets
- Departament of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona , Barcelona, Spain.,Department of Biochemistry and Biotechnology, Faculty of Medicine and Life Science, University Rovira i Virgili , Reus, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED) , Madrid, Spain.,Institute of Neuroscience, University of Barcelona , Barcelona, Spain
| | - Elena Sánchez-Lopez
- Institute of Neuroscience, University of Barcelona , Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona , Barcelona, Spain.,Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona , Barcelona, Spain
| | - Amanda Cano
- Institute of Neuroscience, University of Barcelona , Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona , Barcelona, Spain.,Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona , Barcelona, Spain
| | - Patricia R Manzine
- Departament of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona , Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED) , Madrid, Spain.,Institute of Neuroscience, University of Barcelona , Barcelona, Spain.,Department of Gerontology, Federal University of São Carlos (Ufscar) , São Carlos, Brazil
| | - Ester Verdaguer
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED) , Madrid, Spain.,Institute of Neuroscience, University of Barcelona , Barcelona, Spain.,Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona , Barcelona, Spain
| | - Jordi Olloquequi
- Laboratory of Cellular and Molecular Pathology, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile , Talca, Chile
| | - Carme Auladell
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED) , Madrid, Spain.,Institute of Neuroscience, University of Barcelona , Barcelona, Spain.,Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona , Barcelona, Spain
| | - Jaume Folch
- Department of Biochemistry and Biotechnology, Faculty of Medicine and Life Science, University Rovira i Virgili , Reus, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED) , Madrid, Spain
| | - Antoni Camins
- Departament of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona , Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED) , Madrid, Spain.,Institute of Neuroscience, University of Barcelona , Barcelona, Spain.,Laboratory of Cellular and Molecular Pathology, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile , Talca, Chile
| |
Collapse
|
45
|
Reichmann H, Lees A, Rocha JF, Magalhães D, Soares-da-Silva P. Effectiveness and safety of opicapone in Parkinson's disease patients with motor fluctuations: the OPTIPARK open-label study. Transl Neurodegener 2020; 9:9. [PMID: 32345378 PMCID: PMC7055125 DOI: 10.1186/s40035-020-00187-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/17/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The efficacy and safety of opicapone, a once-daily catechol-O-methyltransferase inhibitor, have been established in two large randomized, placebo-controlled, multinational pivotal trials. Still, clinical evidence from routine practice is needed to complement the data from the pivotal trials. METHODS OPTIPARK (NCT02847442) was a prospective, open-label, single-arm trial conducted in Germany and the UK under clinical practice conditions. Patients with Parkinson's disease and motor fluctuations were treated with opicapone 50 mg for 3 (Germany) or 6 (UK) months in addition to their current levodopa and other antiparkinsonian treatments. The primary endpoint was the Clinician's Global Impression of Change (CGI-C) after 3 months. Secondary assessments included Patient Global Impressions of Change (PGI-C), the Unified Parkinson's Disease Rating Scale (UPDRS), Parkinson's Disease Questionnaire (PDQ-8), and the Non-Motor Symptoms Scale (NMSS). Safety assessments included evaluation of treatment-emergent adverse events (TEAEs) and serious adverse events (SAEs). RESULTS Of the 506 patients enrolled, 495 (97.8%) took at least one dose of opicapone. Of these, 393 (79.4%) patients completed 3 months of treatment. Overall, 71.3 and 76.9% of patients experienced any improvement on CGI-C and PGI-C after 3 months, respectively (full analysis set). At 6 months, for UK subgroup only (n = 95), 85.3% of patients were judged by investigators as improved since commencing treatment. UPDRS scores at 3 months showed statistically significant improvements in activities of daily living during OFF (mean ± SD change from baseline: - 3.0 ± 4.6, p < 0.0001) and motor scores during ON (- 4.6 ± 8.1, p < 0.0001). The mean ± SD improvements of - 3.4 ± 12.8 points for PDQ-8 and -6.8 ± 19.7 points for NMSS were statistically significant versus baseline (both p < 0.0001). Most of TEAEs (94.8% of events) were of mild or moderate intensity. TEAEs considered to be at least possibly related to opicapone were reported for 45.1% of patients, with dyskinesia (11.5%) and dry mouth (6.5%) being the most frequently reported. Serious TEAEs considered at least possibly related to opicapone were reported for 1.4% of patients. CONCLUSIONS Opicapone 50 mg was effective and generally well-tolerated in PD patients with motor fluctuations treated in clinical practice. TRIAL REGISTRATION Registered in July 2016 at clinicaltrials.gov (NCT02847442).
Collapse
Affiliation(s)
- Heinz Reichmann
- Department of Neurology, University of Dresden, Dresden, Germany
| | - Andrew Lees
- University College London, Reta Lila Weston Institute, London, UK
| | - José-Francisco Rocha
- Global Parkinson's Disease Department, BIAL - Portela & CA S.A, Coronado, Portugal
| | - Diogo Magalhães
- Global Parkinson's Disease Department, BIAL - Portela & CA S.A, Coronado, Portugal.,Department of Pharmacology and Therapeutics, Faculty of Medicine, University Porto, Porto, Portugal
| | - Patrício Soares-da-Silva
- Research and Development Department, BIAL - Portela & CA S.A, da Siderurgia Nacional, 4745-457 S, Mamede do Coronado, Portugal. .,Department of Pharmacology and Therapeutics, Faculty of Medicine, University Porto, Porto, Portugal. .,MedInUP, Center for Drug Discovery and Innovative Medicines, University Porto, Porto, Portugal.
| | | |
Collapse
|
46
|
Zherebtsov MA, Arsenyev MV, Chesnokov SA, Cherkasov VK. Synthesis of 1-Substituted
5,5,8,8-Tetramethyl5,6,7,8-tetrahydronaphthalene-2,3-diols and
5,5,8,8-Tetramethyl-5,6,7,8-tetrahydronaphthalene-2,3-dione. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1070428020030264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Akhtar MJ, Yar MS, Grover G, Nath R. Neurological and psychiatric management using COMT inhibitors: A review. Bioorg Chem 2020; 94:103418. [DOI: 10.1016/j.bioorg.2019.103418] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/27/2019] [Accepted: 10/31/2019] [Indexed: 12/18/2022]
|
48
|
Abstract
For decades, there has been debate regarding the origin of the catalytic power of enzymes. In this work, we use the approach of computational chemistry to study the enzyme catechol O-methyltransferase (COMT) and reveal that the two current views on the catalytic mechanism of enzymes, the rate-promoting vibrations and the electric field, may both be viewed as part of the chemical step catalyzed by COMT. However, we show that the rate-promoting vibrations cause the electrostatic effect. This work provides insight into the catalytic mechanism of COMT and resolves a longstanding controversy regarding this enzyme's mechanism.
Collapse
Affiliation(s)
- Xi Chen
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Steven D. Schwartz
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| |
Collapse
|
49
|
Proteomics Identification and Validation of Desmocollin‐1 and Catechol‐O‐Methyltransferase as Proteins Associated with Breast Cancer Cell Migration and Metastasis. Proteomics 2019; 19:e1900073. [DOI: 10.1002/pmic.201900073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 09/26/2019] [Indexed: 12/16/2022]
|
50
|
Czarnota S, Johannissen LO, Baxter NJ, Rummel F, Wilson AL, Cliff MJ, Levy CW, Scrutton NS, Waltho JP, Hay S. Equatorial Active Site Compaction and Electrostatic Reorganization in Catechol- O-methyltransferase. ACS Catal 2019; 9:4394-4401. [PMID: 31080692 PMCID: PMC6503465 DOI: 10.1021/acscatal.9b00174] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/26/2019] [Indexed: 12/18/2022]
Abstract
Catechol-O-methyltransferase (COMT) is a model S-adenosyl-l-methionine (SAM) dependent methyl transferase, which catalyzes the methylation of catecholamine neurotransmitters such as dopamine in the primary pathway of neurotransmitter deactivation in animals. Despite extensive study, there is no consensus view of the physical basis of catalysis in COMT. Further progress requires experimental data that directly probes active site geometry, protein dynamics and electrostatics, ideally in a range of positions along the reaction coordinate. Here we establish that sinefungin, a fungal-derived inhibitor of SAM-dependent enzymes that possess transition state-like charge on the transferring group, can be used as a transition state analog of COMT when combined with a catechol. X-ray crystal structures and NMR backbone assignments of the ternary complexes of the soluble form of human COMT containing dinitrocatechol, Mg2+ and SAM or sinefungin were determined. Comparison and further analysis with the aid of density functional theory calculations and molecular dynamics simulations provides evidence for active site "compaction", which is driven by electrostatic stabilization between the transferring methyl group and "equatorial" active site residues that are orthogonal to the donor-acceptor (pseudo reaction) coordinate. We propose that upon catecholamine binding and subsequent proton transfer to Lys 144, the enzyme becomes geometrically preorganized, with little further movement along the donor-acceptor coordinate required for methyl transfer. Catalysis is then largely facilitated through stabilization of the developing charge on the transferring methyl group via "equatorial" H-bonding and electrostatic interactions orthogonal to the donor-acceptor coordinate.
Collapse
Affiliation(s)
- Sylwia Czarnota
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Linus O. Johannissen
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Nicola J. Baxter
- Krebs
Institute for Biomolecular Research, Department of Molecular Biology
and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Felix Rummel
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Alex L. Wilson
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Matthew J. Cliff
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Colin W. Levy
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Nigel S. Scrutton
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Jonathan P. Waltho
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
- Krebs
Institute for Biomolecular Research, Department of Molecular Biology
and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Sam Hay
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| |
Collapse
|