1
|
Huang JC, Jia XY, Lv YF, Xu HH, Han M, Yu QQ, Lu YT, Yang HX, Yang Y, Li JY, Hou AJ. Bicyclic polyprenylated acylphloroglucinol-related meroterpenoids as potent DRAK2 inhibitors from Hypericum patulum. PHYTOCHEMISTRY 2025; 232:114375. [PMID: 39733941 DOI: 10.1016/j.phytochem.2024.114375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/19/2024] [Accepted: 12/27/2024] [Indexed: 12/31/2024]
Abstract
As a both edible and medicinal plant, Hypericum patulum (Hypericaceae) is used as a natural herbal tea, scented tea, and folk medicine. In this study, eight undescribed bicyclic polyprenylated acylphloroglucinol-related meroterpenoids named hyperpatins A-H, along with eight known ones, were isolated from this plant. Their structures were elucidated on the basis of spectroscopic techniques, chemical method, X-ray crystallographic experiments, and electronic circular dichroism analyses. Hyperpatins A-H possess a characteristic pyran ring system diversely fused with the bicyclo[3.3.1]nonane-2,4,9-trione core, and hyperpatins C and D incorporate a unique α,β-unsaturated aldehyde moiety. Some of the isolates exhibited potent inhibitory effects on death-associated protein kinase-related apoptosis-inducing kinase 2 with IC50 values ranging from 2.60 ± 0.29 to 17.93 ± 3.08 μM. This is the first report of DRAK2 inhibitory activity for acylphloroglucinol-related meroterpenoids. The most active molecule hyperpatins C showed binding affinity with DRAK2 by hydrogen-bond and hydrophobic interactions in molecular docking and promoted the glucose-stimulated insulin secretion ability of primary islets.
Collapse
Affiliation(s)
- Jin-Chang Huang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin-Yu Jia
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yi-Fan Lv
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hong-Hong Xu
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ming Han
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Qiang-Qiang Yu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yu-Ting Lu
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hong-Xun Yang
- Sinopharm Chemical Reagent Co., Ltd. Shanghai, 200002, China
| | - Yang Yang
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Jing-Ya Li
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Ai-Jun Hou
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Pharmacy, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
2
|
Zhou PJ, Huang T, Ma GL, Zhao ZY, Jiang ZL, Zang Y, Xiong J, Li J, Hu JF. Structurally diverse terpenoids and their DRAK2 inhibitory activities: A follow-up study on the vulnerable conifer Pseudotsuga forrestii. J Mol Struct 2024; 1305:137754. [DOI: 10.1016/j.molstruc.2024.137754] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
3
|
Salem ME, Abdullah AH, Zaki MEA, Abdelhamid IA, Elwahy AHM. Utility of 2-Chloro- N-arylacetamide and 1,1'-(Piperazine-1,4-diyl)bis(2-chloroethanone) as Versatile Precursors for Novel Mono- and Bis[thienopyridines]. ACS OMEGA 2024; 9:10146-10159. [PMID: 38463260 PMCID: PMC10918660 DOI: 10.1021/acsomega.3c06653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/24/2024] [Accepted: 02/05/2024] [Indexed: 03/12/2024]
Abstract
A series of novel thieno[2,3-b]pyridines linked to N-aryl carboxamides or (carbonylphenoxy)-N-(aryl)acetamides, as well as bis(thieno[2,3-b]pyridines) linked to piperazine core via methanone or carbonylphenoxyethanone units, were synthesized by treating the appropriate chloroacetyl- or bis-bromoacetyl derivatives with 2-mercaptonicotinonitrile derivatives in ethanolic sodium ethoxide at reflux. The spectral data were used to determine the compositions of novel compounds.
Collapse
Affiliation(s)
- Mostafa E Salem
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Abbas H Abdullah
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Magdi E A Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Ismail A Abdelhamid
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Ahmed H M Elwahy
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
4
|
Lu Y, Xu J, Li Y, Wang R, Dai C, Zhang B, Zhang X, Xu L, Tao Y, Han M, Guo R, Wu Q, Wu L, Meng Z, Tan M, Li J. DRAK2 suppresses autophagy by phosphorylating ULK1 at Ser 56 to diminish pancreatic β cell function upon overnutrition. Sci Transl Med 2024; 16:eade8647. [PMID: 38324636 DOI: 10.1126/scitranslmed.ade8647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/12/2024] [Indexed: 02/09/2024]
Abstract
Impeded autophagy can impair pancreatic β cell function by causing apoptosis, of which DAP-related apoptosis-inducing kinase-2 (DRAK2) is a critical regulator. Here, we identified a marked up-regulation of DRAK2 in pancreatic tissue across humans, macaques, and mice with type 2 diabetes (T2D). Further studies in mice showed that conditional knockout (cKO) of DRAK2 in pancreatic β cells protected β cell function against high-fat diet feeding along with sustained autophagy and mitochondrial function. Phosphoproteome analysis in isolated mouse primary islets revealed that DRAK2 directly phosphorylated unc-51-like autophagy activating kinase 1 (ULK1) at Ser56, which was subsequently found to induce ULK1 ubiquitylation and suppress autophagy. ULK1-S56A mutation or pharmacological inhibition of DRAK2 preserved mitochondrial function and insulin secretion against lipotoxicity in mouse primary islets, Min6 cells, or INS-1E cells. In conclusion, these findings together indicate an indispensable role of the DRAK2-ULK1 axis in pancreatic β cells upon metabolic challenge, which offers a potential target to protect β cell function in T2D.
Collapse
Affiliation(s)
- Yuting Lu
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences. Shanghai, 201203, P. R. China
| | - Junyu Xu
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences. Shanghai, 201203, P. R. China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong 528400, P. R. China
| | - Yufeng Li
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences. Shanghai, 201203, P. R. China
| | - Ruoran Wang
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P. R. China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
| | - Chengqiu Dai
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences. Shanghai, 201203, P. R. China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bingqian Zhang
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences. Shanghai, 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xinwen Zhang
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences. Shanghai, 201203, P. R. China
| | - Lei Xu
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences. Shanghai, 201203, P. R. China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong 528400, P. R. China
| | - Yunhua Tao
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences. Shanghai, 201203, P. R. China
| | - Ming Han
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences. Shanghai, 201203, P. R. China
| | - Ren Guo
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences. Shanghai, 201203, P. R. China
| | - Qingqian Wu
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P. R. China
| | - Linshi Wu
- Shanghai Jiaotong University, School of Medicine, Renji Hospital, Shanghai, 201112, P. R. China
| | - Zhuoxian Meng
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P. R. China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P. R. China
| | - Minjia Tan
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences. Shanghai, 201203, P. R. China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong 528400, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jingya Li
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences. Shanghai, 201203, P. R. China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
5
|
Han M, Lu Y, Tao Y, Zhang X, Dai C, Zhang B, Xu H, Li J. Luteolin Protects Pancreatic β Cells against Apoptosis through Regulation of Autophagy and ROS Clearance. Pharmaceuticals (Basel) 2023; 16:975. [PMID: 37513887 PMCID: PMC10385282 DOI: 10.3390/ph16070975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/04/2023] [Accepted: 05/19/2023] [Indexed: 07/30/2023] Open
Abstract
Diabetes, which is mainly characterized by increased apoptosis and dysfunction of beta (β) cells, is a metabolic disease caused by impairment of pancreatic islet function. Previous studies have demonstrated that death-associated protein kinase-related apoptosis-inducing kinase-2 (Drak2) is involved in regulating β cell survival. Since natural products have multiple targets and often are multifunctional, making them promising compounds for the treatment of diabetes, we identified Drak2 inhibitors from a natural product library. Among the identified products, luteolin, a flavonoid, was found to be the most effective compound. In vitro, luteolin effectively alleviated palmitate (PA)-induced apoptosis of β cells and PA-induced impairment of primary islet function. In vivo, luteolin showed a tendency to lower blood glucose levels. It also alleviated STZ-induced apoptosis of β cells and metabolic disruption in mice. This function of luteolin partially relied on Drak2 inhibition. Furthermore, luteolin was also found to effectively relieve oxidative stress and promote autophagy in β cells, possibly improving β cell function and slowing the progression of diabetes. In conclusion, our findings show the promising effect of Drak2 inhibitors in relieving diabetes and offer a potential therapeutic target for the protection of β cells. We also reveal some of the underlying mechanisms of luteolin's cytoprotective function.
Collapse
Affiliation(s)
- Ming Han
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuting Lu
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yunhua Tao
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xinwen Zhang
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chengqiu Dai
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Bingqian Zhang
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Honghong Xu
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jingya Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
6
|
Huang JC, Xu HH, Shi Q, Lei C, Li JY, Hou AJ. Enantiomeric pairs of macrocyclic acylphloroglucinols from Syzygium szemaoense. Bioorg Chem 2023; 132:106381. [PMID: 36706532 DOI: 10.1016/j.bioorg.2023.106381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/09/2023] [Accepted: 01/15/2023] [Indexed: 01/22/2023]
Abstract
Two enantiomeric pairs of macrocyclic acylphloroglucinols (1a/1b and 2a/2b) with an unprecedented carbon skeleton featuring a bicyclo[12.3.1]octadecane core, together with an undescribed biogenetically related long-chain acylphloroglucinol (3), were isolated from Syzygium szemaoense. Their structures were fully established by spectroscopic method, X-ray crystallographic analysis, and ECD calculation. Compounds 1b and 2a/2b exhibited inhibition against death-associated protein kinase-related apoptosis inducing protein kinase 2 (DRAK2) and ATP citrate lyase (ACLY), respectively.
Collapse
Affiliation(s)
- Jin-Chang Huang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Hong-Hong Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Qing Shi
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Chun Lei
- School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Jing-Ya Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China.
| | - Ai-Jun Hou
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China.
| |
Collapse
|
7
|
Zhang L, Luo B, Lu Y, Chen Y. Targeting Death-Associated Protein Kinases for Treatment of Human Diseases: Recent Advances and Future Directions. J Med Chem 2023; 66:1112-1136. [PMID: 36645394 DOI: 10.1021/acs.jmedchem.2c01606] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The death-associated protein kinase (DAPK) family is a member of the calcium/calmodulin-regulated serine/threonine protein kinase family, and studies have shown that its role, as its name suggests, is mainly to regulate cell death. The DAPK family comprises five members, including DAPK1, DAPK2, DAPK3, DRAK1 and DRAK2, which show high homology in the common N-terminal kinase domain but differ in the extra-catalytic domain. Notably, previous research has suggested that the DAPK family plays an essential role in both the development and regulation of human diseases. However, only a few small-molecule inhibitors have been reported. In this Perspective, we mainly discuss the structure, biological function, and role of DAPKs in diseases and the currently discovered small-molecule inhibitors, providing valuable information for the development of the DAPK field.
Collapse
Affiliation(s)
- Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Boqin Luo
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yingying Lu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yi Chen
- State Key Laboratory of Biotherapy and Cancer Center and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
8
|
Park S, Kye S, Jung ME, Chae CH, Yang K, Kim S, Choi G, Lee K. Discovery of TRD‐93 as a novel
DRAK2
inhibitor. B KOREAN CHEM SOC 2023. [DOI: 10.1002/bkcs.12680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Sangjun Park
- Bio & Drug Discovery Division Korea Research Institute of Chemical Technology Daejeon South Korea
- Medicinal Chemistry & Pharmacology University of Science & Technology Daejeon South Korea
| | - Seungmin Kye
- Bio & Drug Discovery Division Korea Research Institute of Chemical Technology Daejeon South Korea
- Medicinal Chemistry & Pharmacology University of Science & Technology Daejeon South Korea
| | - Myoung Eun Jung
- Bio & Drug Discovery Division Korea Research Institute of Chemical Technology Daejeon South Korea
| | - Chong Hak Chae
- Bio & Drug Discovery Division Korea Research Institute of Chemical Technology Daejeon South Korea
| | | | | | - Gildon Choi
- Bio & Drug Discovery Division Korea Research Institute of Chemical Technology Daejeon South Korea
- Medicinal Chemistry & Pharmacology University of Science & Technology Daejeon South Korea
| | - Kwangho Lee
- Bio & Drug Discovery Division Korea Research Institute of Chemical Technology Daejeon South Korea
- Medicinal Chemistry & Pharmacology University of Science & Technology Daejeon South Korea
| |
Collapse
|
9
|
Zheng Y, Li X, Kuang L, Wang Y. New insights into the characteristics of DRAK2 and its role in apoptosis: From molecular mechanisms to clinically applied potential. Front Pharmacol 2022; 13:1014508. [PMID: 36386181 PMCID: PMC9649744 DOI: 10.3389/fphar.2022.1014508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/12/2022] [Indexed: 11/27/2022] Open
Abstract
As a member of the death-associated protein kinase (DAPK) family, DAP kinase-associated apoptosis-inducing kinase 2 (DRAK2) performs apoptosis-related functions. Compelling evidence suggests that DRAK2 is involved in regulating the activation of T lymphocytes as well as pancreatic β-cell apoptosis in type I diabetes. In addition, DRAK2 has been shown to be involved in the development of related tumor and non-tumor diseases through a variety of mechanisms, including exacerbation of alcoholic fatty liver disease (NAFLD) through SRSF6-associated RNA selective splicing mechanism, regulation of chronic lymphocytic leukemia and acute myeloid leukemia, and progression of colorectal cancer. This review focuses on the structure, function, and upstream pathways of DRAK2 and discusses the potential and challenges associated with the clinical application of DRAK2-based small-molecule inhibitors, with the aim of advancing DRAK2 research.
Collapse
Affiliation(s)
| | | | | | - Yong Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
Ferjancic Z, Kukuruzar A, Bihelovic F. Total Synthesis of (+)‐Alstonlarsine A. Angew Chem Int Ed Engl 2022; 61:e202210297. [DOI: 10.1002/anie.202210297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Indexed: 12/31/2022]
Affiliation(s)
- Zorana Ferjancic
- University of Belgrade— Faculty of Chemistry Studentski trg 16, POB 51 11158 Belgrade 118 Serbia
| | - Andrej Kukuruzar
- University of Belgrade— Faculty of Chemistry Studentski trg 16, POB 51 11158 Belgrade 118 Serbia
| | - Filip Bihelovic
- University of Belgrade— Faculty of Chemistry Studentski trg 16, POB 51 11158 Belgrade 118 Serbia
| |
Collapse
|
11
|
Ferjancic Z, Kukuruzar A, Bihelovic F. Total Synthesis of (+)‐Alstonlarsine A. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zorana Ferjancic
- Univerzitet u Beogradu Hemijski fakultet Faculty of Chemistry 11158 Belgrade SERBIA
| | - Andrej Kukuruzar
- Univerzitet u Beogradu Hemijski fakultet Faculty of Chemistry 11158 Belgrade SERBIA
| | - Filip Bihelovic
- University of Belgrade Faculty of Chemistry Studentski trg 12-16 11158 Belgrade SERBIA
| |
Collapse
|
12
|
He R, Liu Y, Feng Y, Chen L, Huang Y, Xie F, Li Y. Access to Thienopyridine and Thienoquinoline Derivatives via Site-Selective C-H Bond Functionalization and Annulation. Org Lett 2022; 24:3167-3172. [PMID: 35467892 DOI: 10.1021/acs.orglett.2c00903] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To develop of an effective synthetic methodology for biologically relevant thienopyridines, a concise and efficient protocol is described for the synthesis of a series of substituted thienopyridine and thienoquinoline derivatives with high selectivity using EtOCS2K as the sulfur source. The reaction proceeds via metal-free, site-selective C-H bond thiolation and cyclization of the alkynylpyridine and alkynylquinoline substrates.
Collapse
Affiliation(s)
- Runfa He
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529090, China
| | - Yang Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529090, China
| | - Yingqi Feng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529090, China
| | - Lu Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529090, China
| | - Yubing Huang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529090, China
| | - Feng Xie
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529090, China
| | - Yibiao Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529090, China
| |
Collapse
|
13
|
Li Y, Xu J, Lu Y, Bian H, Yang L, Wu H, Zhang X, Zhang B, Xiong M, Chang Y, Tang J, Yang F, Zhao L, Li J, Gao X, Xia M, Tan M, Li J. DRAK2 aggravates nonalcoholic fatty liver disease progression through SRSF6-associated RNA alternative splicing. Cell Metab 2021; 33:2004-2020.e9. [PMID: 34614409 DOI: 10.1016/j.cmet.2021.09.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/26/2021] [Accepted: 09/13/2021] [Indexed: 02/06/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is an advanced stage of nonalcoholic fatty liver disease (NAFLD) with serious consequences that currently lacks approved pharmacological therapies. Recent studies suggest the close relationship between the pathogenesis of NAFLD and the dysregulation of RNA splicing machinery. Here, we reveal death-associated protein kinase-related apoptosis-inducing kinase-2 (DRAK2) is markedly upregulated in the livers of both NAFLD/NASH patients and NAFLD/NASH diet-fed mice. Hepatic deletion of DRAK2 suppresses the progression of hepatic steatosis to NASH. Comprehensive analyses of the phosphoproteome and transcriptome indicated a crucial role of DRAK2 in RNA splicing and identified the splicing factor SRSF6 as a direct binding protein of DRAK2. Further studies demonstrated that binding to DRAK2 inhibits SRSF6 phosphorylation by the SRSF kinase SRPK1 and regulates alternative splicing of mitochondrial function-related genes. In conclusion, our findings reveal an indispensable role of DRAK2 in NAFLD/NASH and offer a potential therapeutic target for this disease.
Collapse
Affiliation(s)
- Yufeng Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junyu Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuting Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hua Bian
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Fudan Institute for Metabolic Diseases, Shanghai 200032, China
| | - Lin Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Honghong Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinwen Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Beilei Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Maoqian Xiong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yafei Chang
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Tang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Fan Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Lei Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jing Li
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Fudan Institute for Metabolic Diseases, Shanghai 200032, China
| | - Mingfeng Xia
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Fudan Institute for Metabolic Diseases, Shanghai 200032, China.
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jingya Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
14
|
Peglow TJ, Bartz RH, Barcellos T, Schumacher RF, Cargnelutti R, Perin G. Synthesis of 2‐Aryl‐(3‐Organochalcogenyl)Thieno[2,3‐
b
]Pyridines Promoted by Oxone®. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Thiago J. Peglow
- Laboratório de Síntese Orgânica Limpa – LASOL, CCQFA Universidade Federal de Pelotas – UFPel P.O. Box 354 96010-900 Pelotas, RS Brazil
| | - Ricardo H. Bartz
- Laboratório de Síntese Orgânica Limpa – LASOL, CCQFA Universidade Federal de Pelotas – UFPel P.O. Box 354 96010-900 Pelotas, RS Brazil
| | - Thiago Barcellos
- Laboratório de Biotecnologia de Produtos Naturais e Sintéticos Universidade de Caxias do Sul – UCS Caxias do Sul, RS Brazil
| | - Ricardo F. Schumacher
- Departamento de Química, CCNE Universidade Federal de Santa Maria – UFSM Santa Maria, RS Brazil
| | - Roberta Cargnelutti
- Departamento de Química, CCNE Universidade Federal de Santa Maria – UFSM Santa Maria, RS Brazil
| | - Gelson Perin
- Laboratório de Síntese Orgânica Limpa – LASOL, CCQFA Universidade Federal de Pelotas – UFPel P.O. Box 354 96010-900 Pelotas, RS Brazil
| |
Collapse
|
15
|
Hou X, Li JY, Zhao M, Dai C, Li Y, Liu Y. Synthesis, Characterization, and DRAK2 Inhibitory Activities of Hydroxyaurone Derivatives. HETEROCYCLES 2021. [DOI: 10.3987/com-21-14481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
16
|
Zhang Z, Dai C, Wu H, Li J, Nan F. Design and Synthesis of Alkyl Phenols Inhibitors of Death Associated Apoptotic Protein Kinase 2 (DRAK2). CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202103056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Recent advances in the chemistry of thieno[2,3-b]pyridines 1. Methods of synthesis of thieno[2,3-b]pyridines. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2969-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Peglow TJ, Bartz RH, Martins CC, Belladona AL, Luchese C, Wilhelm EA, Schumacher RF, Perin G. Synthesis of 2-Organylchalcogenopheno[2,3-b]pyridines from Elemental Chalcogen and NaBH 4 /PEG-400 as a Reducing System: Antioxidant and Antinociceptive Properties. ChemMedChem 2020; 15:1741-1751. [PMID: 32667720 DOI: 10.1002/cmdc.202000358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/13/2020] [Indexed: 12/29/2022]
Abstract
An alternative method to prepare 2-organylchalcogenopheno[2,3-b]pyridines was developed by the insertion of chalcogen species (selenium, sulfur or tellurium), generated in situ, into 2-chloro-3-(organylethynyl)pyridines by using the NaBH4 /PEG-400 reducing system, followed by an intramolecular cyclization. It was possible to obtain a series of compounds with up to 93 % yield in short reaction times. Among the synthesized products, 2-organyltelluropheno[2,3-b]pyridines have not been described in the literature so far. Moreover, the compounds 2-phenylthieno[2,3-b]pyridine (3 b) and 2-phenyltelluropheno[2,3-b]pyridine (3 c) exhibited significant antioxidant potential in different in vitro assays. Further studies demonstrated that compound 3 b exerted an antinociceptive effect in acute inflammatory and non-inflammatory pain models, thus indicating the involvement of the central and peripheral nervous systems on its pharmacological action. More specifically, our results suggest that the intrinsic antioxidant property of compound 3 b might contribute to attenuating the nociception and inflammatory process on local injury induced by complete Freund's adjuvant (CFA).
Collapse
Affiliation(s)
- Thiago J Peglow
- LASOL-CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Ricardo H Bartz
- LASOL-CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Carolina C Martins
- LaFarBio-CCQFA, Universidade Federal de Pelotas - UFPel, 96010-900, Pelotas, RS, Brazil
| | - Andrei L Belladona
- CCNE, Universidade Federal de Santa Maria - UFSM, 97105-900, Santa Maria, RS, Brazil
| | - Cristiane Luchese
- LaFarBio-CCQFA, Universidade Federal de Pelotas - UFPel, 96010-900, Pelotas, RS, Brazil
| | - Ethel A Wilhelm
- LaFarBio-CCQFA, Universidade Federal de Pelotas - UFPel, 96010-900, Pelotas, RS, Brazil
| | - Ricardo F Schumacher
- CCNE, Universidade Federal de Santa Maria - UFSM, 97105-900, Santa Maria, RS, Brazil
| | - Gelson Perin
- LASOL-CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| |
Collapse
|
19
|
|
20
|
Wang R, Yu S, Zhao X, Chen Y, Yang B, Wu T, Hao C, Zhao D, Cheng M. Design, synthesis, biological evaluation and molecular docking study of novel thieno[3,2-d]pyrimidine derivatives as potent FAK inhibitors. Eur J Med Chem 2019; 188:112024. [PMID: 31923858 DOI: 10.1016/j.ejmech.2019.112024] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/13/2019] [Accepted: 12/29/2019] [Indexed: 10/25/2022]
Abstract
A series of 2,7-disubstituted-thieno[3,2-d]pyrimidine derivatives were designed, synthesized and evaluated as novel focal adhesion kinase (FAK) inhibitors. The novel 2,7-disubstituted-thieno[3,2-d]pyrimidine scaffold has been designed as a new kinase inhibitor platform that mimics the bioactive conformation of the well-known diaminopyrimidine motif. Most of the compounds potently suppressed the enzymatic activities of FAK and potently inhibited the proliferation of U-87MG, A-549 and MDA-MB-231 cancer cell lines. Among these derivatives, the optimized compound 26f potently inhibited the enzyme (IC50 = 28.2 nM) and displayed stronger potency than TAE-226 in U-87MG, A-549 and MDA-MB-231 cells, with IC50 values of 0.16, 0.27, and 0.19 μM, respectively. Compound 26f also exhibited relatively less cytotoxicity (IC50 = 3.32 μM) toward a normal human cell line, HK2. According to the flow cytometry results, compound 26f induced the apoptosis of MDA-MB-231 cells in a dose-dependent manner and effectively arrested MDA-MB-231 cells in G0/G1 phase. Further investigations revealed that compound 26f potently suppressed the migration of MDA-MB-231 cells. Collectively, these data support the further development of compound 26f as a lead compound for FAK-targeted anticancer drug discovery.
Collapse
Affiliation(s)
- Ruifeng Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Sijia Yu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Xiangxin Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Yixuan Chen
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China; The School of Life Science and Biopharmaceutical, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Bowen Yang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Tianxiao Wu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Chenzhou Hao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Dongmei Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China.
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| |
Collapse
|
21
|
Verdonck S, Pu SY, Sorrell FJ, Elkins JM, Froeyen M, Gao LJ, Prugar LI, Dorosky DE, Brannan JM, Barouch-Bentov R, Knapp S, Dye JM, Herdewijn P, Einav S, Jonghe SD. Synthesis and Structure-Activity Relationships of 3,5-Disubstituted-pyrrolo[2,3- b]pyridines as Inhibitors of Adaptor-Associated Kinase 1 with Antiviral Activity. J Med Chem 2019; 62:5810-5831. [PMID: 31136173 PMCID: PMC6825517 DOI: 10.1021/acs.jmedchem.9b00136] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
There are currently no approved drugs for the treatment of emerging viral infections, such as dengue and Ebola. Adaptor-associated kinase 1 (AAK1) is a cellular serine-threonine protein kinase that functions as a key regulator of the clathrin-associated host adaptor proteins and regulates the intracellular trafficking of multiple unrelated RNA viruses. Moreover, AAK1 is overexpressed specifically in dengue virus-infected but not bystander cells. Because AAK1 is a promising antiviral drug target, we have embarked on an optimization campaign of a previously identified 7-azaindole analogue, yielding novel pyrrolo[2,3- b]pyridines with high AAK1 affinity. The optimized compounds demonstrate improved activity against dengue virus both in vitro and in human primary dendritic cells and the unrelated Ebola virus. These findings demonstrate that targeting cellular AAK1 may represent a promising broad-spectrum antiviral strategy.
Collapse
Affiliation(s)
- Sven Verdonck
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49 – bus 1041, 3000 Leuven, Belgium
| | - Szu-Yuan Pu
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Fiona J. Sorrell
- Nuffield Department of Clinical Medicine, Target Discovery Institute (TDI) and Structural Genomics Consortium (SGC), University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Jon M. Elkins
- Nuffield Department of Clinical Medicine, Target Discovery Institute (TDI) and Structural Genomics Consortium (SGC), University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
- Structural Genomics Consortium, Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz, Av. Dr. André Tosello, 550, Barão Geraldo, Campinas / SP 13083-886, Brazil
| | - Mathy Froeyen
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49 – bus 1041, 3000 Leuven, Belgium
| | - Ling-Jie Gao
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49 – bus 1041, 3000 Leuven, Belgium
| | - Laura I. Prugar
- US Army Medical Research Institute of Infectious Diseases, Viral Immunology Branch, Fort Detrick, Maryland 21702, USA
| | - Danielle E. Dorosky
- US Army Medical Research Institute of Infectious Diseases, Viral Immunology Branch, Fort Detrick, Maryland 21702, USA
| | - Jennifer M. Brannan
- US Army Medical Research Institute of Infectious Diseases, Viral Immunology Branch, Fort Detrick, Maryland 21702, USA
| | - Rina Barouch-Bentov
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Stefan Knapp
- Nuffield Department of Clinical Medicine, Target Discovery Institute (TDI) and Structural Genomics Consortium (SGC), University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
- Institute for Pharmaceutical Chemistry, Buchmann Institute for Life Sciences Campus Riedbeerg, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany
| | - John M. Dye
- US Army Medical Research Institute of Infectious Diseases, Viral Immunology Branch, Fort Detrick, Maryland 21702, USA
| | - Piet Herdewijn
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49 – bus 1041, 3000 Leuven, Belgium
| | - Shirit Einav
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Steven De Jonghe
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49 – bus 1041, 3000 Leuven, Belgium
| |
Collapse
|
22
|
Paronikyan EG, Ogannisyan AV, Paronikyan RG, Dzhagatspanyan IA, Nazaryan IM, Akopyan AG, Minasyan NS. Synthesis and Neurotropic Activity of 4-Phenylpyridine-3-Carboxylic Acid and 3-Hydroxy-4-Phenylthieno[2,3-b]-Pyridine Derivatives. Pharm Chem J 2019. [DOI: 10.1007/s11094-019-1911-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Li Y, Luo X, Shao Y, Chen L. 2-Acetylthienopyridine Synthesis via Thiolation and Copper-Catalyzed Cyclization of o-Propynol Fluoropyridine Using Xanthate as a Thiol Surrogate. J Org Chem 2018; 83:8768-8774. [DOI: 10.1021/acs.joc.8b01037] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yibiao Li
- School of Chemical & Environmental Engineering, Wuyi University, Jiangmen, Guangdong Province 529090, P. R. China
| | - Xianglin Luo
- School of Chemical & Environmental Engineering, Wuyi University, Jiangmen, Guangdong Province 529090, P. R. China
| | - Yan Shao
- School of Chemical & Environmental Engineering, Wuyi University, Jiangmen, Guangdong Province 529090, P. R. China
| | - Lu Chen
- School of Chemical & Environmental Engineering, Wuyi University, Jiangmen, Guangdong Province 529090, P. R. China
| |
Collapse
|
24
|
Farag AK, Roh EJ. Death-associated protein kinase (DAPK) family modulators: Current and future therapeutic outcomes. Med Res Rev 2018; 39:349-385. [PMID: 29949198 DOI: 10.1002/med.21518] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/06/2018] [Accepted: 06/03/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Ahmed Karam Farag
- Chemical Kinomics Research Center; Korea Institute of Science and Technology (KIST); Seoul Republic of Korea
- Division of Bio-Medical Science &Technology, Korea Institute of Science and Technology (KIST) School; University of Science and Technology; Seoul Republic of Korea
| | - Eun Joo Roh
- Chemical Kinomics Research Center; Korea Institute of Science and Technology (KIST); Seoul Republic of Korea
- Division of Bio-Medical Science &Technology, Korea Institute of Science and Technology (KIST) School; University of Science and Technology; Seoul Republic of Korea
| |
Collapse
|
25
|
Wang S, Xu L, Lu YT, Liu YF, Han B, Liu T, Tang J, Li J, Wu J, Li JY, Yu LF, Yang F. Discovery of benzofuran-3(2H)-one derivatives as novel DRAK2 inhibitors that protect islet β-cells from apoptosis. Eur J Med Chem 2017; 130:195-208. [PMID: 28249207 DOI: 10.1016/j.ejmech.2017.02.048] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/17/2017] [Accepted: 02/18/2017] [Indexed: 12/11/2022]
Abstract
Death-associated protein kinase-related apoptosis-inducing kinase-2 (DRAK2) is a serine/threonine kinase that plays a key role in a wide variety of cell death signaling pathways. Inhibition of DRAK2 was found to efficiently protect islet β-cells from apoptosis and hence DRAK2 inhibitors represent a promising therapeutic strategy for the treatment of diabetes. Only very few chemical entities targeting DRAK2 are currently known. We carried out a high throughput screening and identified compound 4 as a moderate DRAK2 inhibitor with an IC50 value of 3.15 μM. Subsequent SAR studies of hit compound 4 led to the development of novel benzofuran-3(2H)-one series of DRAK2 inhibitors with improved potency and favorable selectivity profiles against 26 selected kinases. Importantly, most potent compounds 40 (IC50 = 0.33 μM) and 41 (IC50 = 0.25 μM) were found to protect islet β-cells from apoptosis in dose-dependent manners. These data support the notion that small molecule inhibitors of DRAK2 represents a promising strategy for the treatment of diabetes.
Collapse
Affiliation(s)
- Sheng Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Lei Xu
- Chinese National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guoshoujing Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Yu-Ting Lu
- Chinese National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guoshoujing Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Yu-Fei Liu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Bing Han
- Laboratory of Immunology and Cardiovascular Research, Centre Hospitalier de l'Université de Montréal, 900 rue St-Denis, Montréal, Québec, Canada
| | - Ting Liu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Jie Tang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China; Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Jia Li
- Chinese National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guoshoujing Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Jiangping Wu
- Laboratory of Immunology and Cardiovascular Research, Centre Hospitalier de l'Université de Montréal, 900 rue St-Denis, Montréal, Québec, Canada.
| | - Jing-Ya Li
- Chinese National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guoshoujing Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China.
| | - Li-Fang Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China.
| | - Fan Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China.
| |
Collapse
|
26
|
Cai J, Huang S, He R, Chen L, Chen D, Jiang S, Li B, Li Y. Access to functionalized thienopyridines via a reagent-capsule-assisted coupling, thiolation and cyclization cascade sequence. Org Biomol Chem 2017; 15:333-337. [PMID: 27924330 DOI: 10.1039/c6ob02351g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thienopyridines and related heterocycles were prepared by a reagent-capsule-assisted palladium-catalyzed cross-coupling, thiolation and cyclization process in moderate to good yields.
Collapse
Affiliation(s)
- Jialing Cai
- School of Chemical & Environmental Engineering
- Wuyi University
- Jiangmen
- China
| | - Shuo Huang
- School of Chemical & Environmental Engineering
- Wuyi University
- Jiangmen
- China
| | - Ruenfa He
- School of Chemical & Environmental Engineering
- Wuyi University
- Jiangmen
- China
| | - Lu Chen
- School of Chemical & Environmental Engineering
- Wuyi University
- Jiangmen
- China
| | - Donghan Chen
- School of Chemical & Environmental Engineering
- Wuyi University
- Jiangmen
- China
| | - Shaohua Jiang
- School of Chemical & Environmental Engineering
- Wuyi University
- Jiangmen
- China
| | - Bin Li
- School of Chemical & Environmental Engineering
- Wuyi University
- Jiangmen
- China
| | - Yibiao Li
- School of Chemical & Environmental Engineering
- Wuyi University
- Jiangmen
- China
| |
Collapse
|
27
|
Discovery of novel pyrrolidineoxy-substituted heteroaromatics as potent and selective PI3K delta inhibitors with improved physicochemical properties. Bioorg Med Chem Lett 2016; 26:5657-5662. [DOI: 10.1016/j.bmcl.2016.10.069] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/20/2016] [Accepted: 10/23/2016] [Indexed: 12/19/2022]
|
28
|
Li F, Lu L, Liu P. Acceptorless Dehydrogenative Coupling of o-Aminobenzamides with the Activation of Methanol as a C1 Source for the Construction of Quinazolinones. Org Lett 2016; 18:2580-3. [DOI: 10.1021/acs.orglett.6b00925] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Feng Li
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Lei Lu
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Pengcheng Liu
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| |
Collapse
|
29
|
Discovery of indirubin derivatives as new class of DRAK2 inhibitors from high throughput screening. Bioorg Med Chem Lett 2016; 26:2719-23. [PMID: 27106709 DOI: 10.1016/j.bmcl.2016.03.111] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/27/2016] [Accepted: 03/31/2016] [Indexed: 01/14/2023]
Abstract
DRAK2 is a serine/threonine kinase belonging to the death-associated protein kinase (DAPK) family and has emerged as a promising drug target for the treatment of autoimmune diseases and cancers. To identify small molecule inhibitors for DRAK2, we performed a high throughput screening campaign using in-house chemical library and identified indirubin-3'-monoximes as novel class of DRAK2 inhibitors. Among the compounds tested, compound 16 exhibited the most potent inhibitory activity against DRAK2 (IC50=0.003μM). We also propose that compound 16 may bind to the ATP-binding site of the enzyme based on enzyme kinetics and molecular docking studies.
Collapse
|
30
|
Lilienthal N, Lohmann G, Crispatzu G, Vasyutina E, Zittrich S, Mayer P, Herling CD, Tur MK, Hallek M, Pfitzer G, Barth S, Herling M. A Novel Recombinant Anti-CD22 Immunokinase Delivers Proapoptotic Activity of Death-Associated Protein Kinase (DAPK) and Mediates Cytotoxicity in Neoplastic B Cells. Mol Cancer Ther 2016; 15:971-84. [PMID: 26826117 DOI: 10.1158/1535-7163.mct-15-0685] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 01/13/2016] [Indexed: 11/16/2022]
Abstract
The serine/threonine death-associated protein kinases (DAPK) provide pro-death signals in response to (oncogenic) cellular stresses. Lost DAPK expression due to (epi)genetic silencing is found in a broad spectrum of cancers. Within B-cell lymphomas, deficiency of the prototypic family member DAPK1 represents a predisposing or early tumorigenic lesion and high-frequency promoter methylation marks more aggressive diseases. On the basis of protein studies and meta-analyzed gene expression profiling data, we show here that within the low-level context of B-lymphocytic DAPK, particularly CLL cells have lost DAPK1 expression. To target this potential vulnerability, we conceptualized B-cell-specific cytotoxic reconstitution of the DAPK1 tumor suppressor in the format of an immunokinase. After rounds of selections for its most potent cytolytic moiety and optimal ligand part, a DK1KD-SGIII fusion protein containing a constitutive DAPK1 mutant, DK1KD, linked to the scFv SGIII against the B-cell-exclusive endocytic glyco-receptor CD22 was created. Its high purity and large-scale recombinant production provided a stable, selectively binding, and efficiently internalizing construct with preserved robust catalytic activity. DK1KD-SGIII specifically and efficiently killed CD22-positive cells of lymphoma lines and primary CLL samples, sparing healthy donor- or CLL patient-derived non-B cells. The mode of cell death was predominantly PARP-mediated and caspase-dependent conventional apoptosis as well as triggering of an autophagic program. The notoriously high apoptotic threshold of CLL could be overcome by DK1KD-SGIII in vitro also in cases with poor prognostic features, such as therapy resistance. The manufacturing feasibility of the novel CD22-targeting DAPK immunokinase and its selective antileukemic efficiency encourage intensified studies towards specific clinical application. Mol Cancer Ther; 15(5); 971-84. ©2016 AACR.
Collapse
MESH Headings
- Antineoplastic Agents/administration & dosage
- Apoptosis/drug effects
- Cell Line, Tumor
- Death-Associated Protein Kinases/antagonists & inhibitors
- Death-Associated Protein Kinases/chemistry
- Death-Associated Protein Kinases/genetics
- Death-Associated Protein Kinases/metabolism
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/metabolism
- Lymphoma, B-Cell/pathology
- Multigene Family
- Mutation
- Phosphorylation
- Protein Interaction Domains and Motifs/genetics
- Recombinant Fusion Proteins/administration & dosage
- Sialic Acid Binding Ig-like Lectin 2/antagonists & inhibitors
- Single-Chain Antibodies/administration & dosage
Collapse
Affiliation(s)
- Nils Lilienthal
- Laboratory of Lymphocyte Signaling and Oncoproteome, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), University of Cologne, Köln, Germany. Federal Institute for Drugs and Devices (BfArM), Bonn, Germany
| | - Gregor Lohmann
- Laboratory of Lymphocyte Signaling and Oncoproteome, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), University of Cologne, Köln, Germany
| | - Giuliano Crispatzu
- Laboratory of Lymphocyte Signaling and Oncoproteome, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), University of Cologne, Köln, Germany
| | - Elena Vasyutina
- Laboratory of Lymphocyte Signaling and Oncoproteome, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), University of Cologne, Köln, Germany
| | - Stefan Zittrich
- Institute of Vegetative Physiology; University of Cologne, Köln, Germany
| | - Petra Mayer
- Laboratory of Lymphocyte Signaling and Oncoproteome, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), University of Cologne, Köln, Germany
| | - Carmen Diana Herling
- Department I of Internal Medicine, Center for Integrated Oncology (CIO) Köln-Bonn, and CECAD, University of Cologne, Köln, Germany
| | - Mehmet Kemal Tur
- Institute of Pathology, University Hospital, Justus Liebig University Gießen, Gießen, Germany
| | - Michael Hallek
- Department I of Internal Medicine, Center for Integrated Oncology (CIO) Köln-Bonn, and CECAD, University of Cologne, Köln, Germany
| | - Gabriele Pfitzer
- Institute of Vegetative Physiology; University of Cologne, Köln, Germany
| | - Stefan Barth
- Department of Experimental Medicine and Immunotherapy, Institute for Applied Medical Engineering, RWTH Aachen, Aachen, Germany. South African Research Chair in Cancer Biotechnology, Institute of Infectious Disease and Molecular Medicine (IDM), Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Marco Herling
- Laboratory of Lymphocyte Signaling and Oncoproteome, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), University of Cologne, Köln, Germany. Department I of Internal Medicine, Center for Integrated Oncology (CIO) Köln-Bonn, and CECAD, University of Cologne, Köln, Germany.
| |
Collapse
|
31
|
Lucas SCC, Moore JE, Donald CS, Hawkins JL. Synthesis of 4-Arylthieno[2,3-b]pyridines and 4-Aminothieno[2,3-b]pyridines via a Regioselective Bromination of Thieno[2,3-b]pyridine. J Org Chem 2015; 80:12594-8. [DOI: 10.1021/acs.joc.5b01735] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Jane E. Moore
- AstraZeneca, Alderley Park, Macclesfield, SK10 4TG, United Kingdom
| | - Craig S. Donald
- AstraZeneca, Alderley Park, Macclesfield, SK10 4TG, United Kingdom
| | - Janet L. Hawkins
- AstraZeneca, Alderley Park, Macclesfield, SK10 4TG, United Kingdom
| |
Collapse
|
32
|
Abstract
INTRODUCTION Benzisoxazoles represent a class of heterocyclic compounds of great importance for the preparation of biologically active compounds. Benzisoxazoles are an important structure and some benzisoxazole-based medicines have been approved for human clinical use, including atypical antipsychotics (risperidone, paliperidone and iloperidone) and an anticonvulsant (zonisamide). AREAS COVERED This review puts emphasis on the recent progress in therapeutically attractive benzisoxazole derivatives especially 1,2-benzisoxazoles, which were published in the patent literature between 2009 and 2014. As for the class of medicines, the main focus is on atypical antipsychotics and potential therapeutic treatments for other CNS disorders. This review also covers the examples of benzisoxazole-based kinase inhibitors. Moreover, novel benzisoxazoles with significant therapeutic interest are also mentioned. EXPERT OPINION More recent examples of structural modification of existing drugs led to the discovery of some promising benzisoxazoles for antipsychotic use. The design of multi-target ligands is important for the manipulation of pharmacological properties and safety profiles for the use of antipsychotics. Benzisoxazoles have been widely used as pharmacophores in the search for novel drug candidates in a variety of therapeutic area. It is fair to assume that the wide and frequent use of benzisoxazoles in drug discovery and development will continue into the future.
Collapse
Affiliation(s)
- Yoshikazu Uto
- Daiichi Sankyo Co., Ltd, Venture Science Laboratories , 1-2-58, Hiromachi, Shinagawa-ku, Tokyo, 140-8710 , Japan
| |
Collapse
|