1
|
Kukułowicz J, Siwek A, Wolak M, Bröer A, Yadav A, Bröer S, Bajda M. Insight into the Structure of the Neutral Amino Acid Transporter B 0AT2 Enabled the Discovery of Tiagabine as an Inhibitor. ACS Chem Neurosci 2025; 16:262-274. [PMID: 39729024 DOI: 10.1021/acschemneuro.4c00800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
The sodium-dependent membrane transporter SLC6A15 (B0AT2) belongs to the SLC6 family, which comprises carriers of amino acids and monoamines. B0AT2 is expressed in the central nervous system (CNS), including the glutaminergic and GABAergic system. SLC6A15 supplies neurons with neutral amino acids. Its main substrates, branched-chain amino acids, and proline serve for glutamate biosynthesis, whereas silencing of B0AT2 leads to lower levels of neuronal glutamate. Recent research revealed that polymorphisms in the vicinity of slc6a15 are associated with major depressive disorder and anxiety. Mouse B0AT2 knockouts, by contrast, showed an antianxiety feature. Applying computational tools, we constructed models of B0AT2. Their structure was discussed extensively, enabling insight into the determinants of transport mechanism and substrate selectivity. Understanding the molecular basis of the B0AT2 inhibition by loratadine led to the discovery of a new inhibitor that is tiagabine, an anticonvulsant drug prescribed off-label in the treatment of anxiety and possessing antidepressant features. The results showed that tiagabine appears to have a higher affinity to the transporter than loratadine, which is the most potent inhibitor to date. Our findings support the development of new B0AT2 inhibitors that could be useful for investigating their therapeutic relevance, while the identification of tiagabine as a novel SLC6A15 inhibitor adds a new dimension to the pharmacological complexity of this drug.
Collapse
Affiliation(s)
- Jędrzej Kukułowicz
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow 30-688, Poland
| | - Agata Siwek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow 30-688, Poland
| | - Małgorzata Wolak
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow 30-688, Poland
| | - Angelika Bröer
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Aditya Yadav
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Stefan Bröer
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Marek Bajda
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow 30-688, Poland
| |
Collapse
|
2
|
Kukułowicz J, Bajda M. In silico structural studies on the vesicular neutral amino acid transporter NTT4 (SLC6A17). Comput Struct Biotechnol J 2024; 23:3342-3347. [PMID: 39310277 PMCID: PMC11416165 DOI: 10.1016/j.csbj.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
NTT4 is one of the neutral amino acid transporters that regulate neural concentration of precursors for glutamate biosynthesis. Here, we provide insight into the structure of NTT4 and rationalize substrate selectivity. Furthermore, we demonstrate how the mutations associated with mental disabilities imply malfunction of the transporter at the molecular level. We also compared the structures of NTT4 and B0AT2 (SLC6A15), which is a close homolog, sharing 66 % of the common amino acids. Our analyses may be useful in the search for compounds that inhibit substrate transport. Moreover, they allow a better understanding of the function of these transporters.
Collapse
Affiliation(s)
- Jędrzej Kukułowicz
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30–688, Poland
| | - Marek Bajda
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30–688, Poland
| |
Collapse
|
3
|
Chu Z, Cen L, Xu Q, Lin G, Mo J, Shao L, Zhao Y, Li J, Ye W, Fang T, Ren W, Zhu Q, He G, Xu Y. Discovery of the novel and potent histamine H1 receptor antagonists for treatment of allergic diseases. Eur J Med Chem 2024; 268:116197. [PMID: 38368709 DOI: 10.1016/j.ejmech.2024.116197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/27/2024] [Accepted: 01/28/2024] [Indexed: 02/20/2024]
Abstract
Desloratadine, a second-generation histamine H1 receptor antagonist, has established itself as a first-line drug for the treatment of allergic diseases. Despite its effectiveness, desloratadine exhibits an antagonistic effect on muscarinic M3 receptor, which can cause side effects such as dry mouth and urinary retention, ultimately limiting its clinical application. Herein, we describe the discovery of compound Ⅲ-4, a novel H1 receptor antagonist with significant H1 receptor antagonistic activity (IC50 = 24.12 nM) and enhanced selectivity towards peripheral H1 receptor. In particular, Ⅲ-4 exhibits reduced M3 receptor inhibitory potency (IC50 > 10,000 nM) and acceptable hERG inhibitory activity (17.6 ± 2.1 μM) compare with desloratadine. Additionally, Ⅲ-4 exhibits favorable pharmacokinetic properties, as well as in vivo efficacy and safety profiles. All of these reveal that Ⅲ-4 has potential to emerge as a novel H1 receptor antagonist for the treatment of allergic diseases. More importantly, the compound Ⅲ-4 (HY-078020) has recently been granted clinical approval.
Collapse
Affiliation(s)
- Zhaoxing Chu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China; Hefei Institute of Pharmaceutical Industry Co., Ltd., Hefei, 230088, China
| | - Lifang Cen
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Qinlong Xu
- Hefei Institute of Pharmaceutical Industry Co., Ltd., Hefei, 230088, China
| | - Gaofeng Lin
- Hefei Institute of Pharmaceutical Industry Co., Ltd., Hefei, 230088, China
| | - Jiajia Mo
- Hefei Institute of Pharmaceutical Industry Co., Ltd., Hefei, 230088, China
| | - Li Shao
- Hefei Institute of Pharmaceutical Industry Co., Ltd., Hefei, 230088, China
| | - Yan Zhao
- Hefei Institute of Pharmaceutical Industry Co., Ltd., Hefei, 230088, China
| | - Jiaming Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Wenfeng Ye
- Hefei Institute of Pharmaceutical Industry Co., Ltd., Hefei, 230088, China
| | - Tao Fang
- Hefei Institute of Pharmaceutical Industry Co., Ltd., Hefei, 230088, China
| | - Weijie Ren
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Qihua Zhu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China.
| | - Guangwei He
- Hefei Institute of Pharmaceutical Industry Co., Ltd., Hefei, 230088, China.
| | - Yungen Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
4
|
Liang Y, Pan C, Yin T, Wang L, Gao X, Wang E, Quang H, Huang D, Tan L, Xiang K, Wang Y, Alexander PB, Li Q, Yao T, Zhang Z, Wang X. Branched-Chain Amino Acid Accumulation Fuels the Senescence-Associated Secretory Phenotype. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303489. [PMID: 37964763 PMCID: PMC10787106 DOI: 10.1002/advs.202303489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/07/2023] [Indexed: 11/16/2023]
Abstract
The essential branched-chain amino acids (BCAAs) leucine, isoleucine, and valine play critical roles in protein synthesis and energy metabolism. Despite their widespread use as nutritional supplements, BCAAs' full effects on mammalian physiology remain uncertain due to the complexities of BCAA metabolic regulation. Here a novel mechanism linking intrinsic alterations in BCAA metabolism is identified to cellular senescence and the senescence-associated secretory phenotype (SASP), both of which contribute to organismal aging and inflammation-related diseases. Altered BCAA metabolism driving the SASP is mediated by robust activation of the BCAA transporters Solute Carrier Family 6 Members 14 and 15 as well as downregulation of the catabolic enzyme BCAA transaminase 1 during onset of cellular senescence, leading to highly elevated intracellular BCAA levels in senescent cells. This, in turn, activates the mammalian target of rapamycin complex 1 (mTORC1) to establish the full SASP program. Transgenic Drosophila models further indicate that orthologous BCAA regulators are involved in the induction of cellular senescence and age-related phenotypes in flies, suggesting evolutionary conservation of this metabolic pathway during aging. Finally, experimentally blocking BCAA accumulation attenuates the inflammatory response in a mouse senescence model, highlighting the therapeutic potential of modulating BCAA metabolism for the treatment of age-related and inflammatory diseases.
Collapse
Affiliation(s)
- Yaosi Liang
- Department of Pharmacology and Cancer BiologyDuke University Medical CenterDurhamNC27710USA
| | - Christopher Pan
- Department of Pharmacology and Cancer BiologyDuke University Medical CenterDurhamNC27710USA
| | - Tao Yin
- Department of Pharmacology and Cancer BiologyDuke University Medical CenterDurhamNC27710USA
| | - Lu Wang
- Department of Pharmacology and Cancer BiologyDuke University Medical CenterDurhamNC27710USA
- State Key Laboratory of Molecular BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghai200031China
| | - Xia Gao
- Department of Pharmacology and Cancer BiologyDuke University Medical CenterDurhamNC27710USA
- Children's Nutrition Research CenterDepartment of PediatricsBaylor College of MedicineHoustonTX77030USA
| | - Ergang Wang
- Department of Pharmacology and Cancer BiologyDuke University Medical CenterDurhamNC27710USA
| | - Holly Quang
- Children's Nutrition Research CenterDepartment of PediatricsBaylor College of MedicineHoustonTX77030USA
| | - De Huang
- Department of Pharmacology and Cancer BiologyDuke University Medical CenterDurhamNC27710USA
- School of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230026China
| | - Lianmei Tan
- Department of Pharmacology and Cancer BiologyDuke University Medical CenterDurhamNC27710USA
| | - Kun Xiang
- Department of Pharmacology and Cancer BiologyDuke University Medical CenterDurhamNC27710USA
| | - Yu Wang
- Center for Regenerative MedicineMassachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
| | - Peter B. Alexander
- Department of Pharmacology and Cancer BiologyDuke University Medical CenterDurhamNC27710USA
| | - Qi‐Jing Li
- Department of ImmunologyDuke University Medical CenterDurhamNC27710USA
- Institute of Molecular and Cell BiologyAgency for ScienceTechnology and Research (A*STAR)Singapore138673Singapore
- Singapore Immunology NetworkAgency for ScienceTechnology and Research (A*STAR)Singapore138673Singapore
| | - Tso‐Pang Yao
- Department of Pharmacology and Cancer BiologyDuke University Medical CenterDurhamNC27710USA
| | - Zhao Zhang
- Department of Pharmacology and Cancer BiologyDuke University Medical CenterDurhamNC27710USA
| | - Xiao‐Fan Wang
- Department of Pharmacology and Cancer BiologyDuke University Medical CenterDurhamNC27710USA
| |
Collapse
|
5
|
Kukułowicz J, Pietrzak-Lichwa K, Klimończyk K, Idlin N, Bajda M. The SLC6A15-SLC6A20 Neutral Amino Acid Transporter Subfamily: Functions, Diseases, and Their Therapeutic Relevance. Pharmacol Rev 2023; 76:142-193. [PMID: 37940347 DOI: 10.1124/pharmrev.123.000886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/07/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023] Open
Abstract
The neutral amino acid transporter subfamily that consists of six members, consecutively SLC6A15-SLC620, also called orphan transporters, represents membrane, sodium-dependent symporter proteins that belong to the family of solute carrier 6 (SLC6). Primarily, they mediate the transport of neutral amino acids from the extracellular milieu toward cell or storage vesicles utilizing an electric membrane potential as the driving force. Orphan transporters are widely distributed throughout the body, covering many systems; for instance, the central nervous, renal, or intestinal system, supplying cells into molecules used in biochemical, signaling, and building pathways afterward. They are responsible for intestinal absorption and renal reabsorption of amino acids. In the central nervous system, orphan transporters constitute a significant medium for the provision of neurotransmitter precursors. Diseases related with aforementioned transporters highlight their significance; SLC6A19 mutations are associated with metabolic Hartnup disorder, whereas altered expression of SLC6A15 has been associated with a depression/stress-related disorders. Mutations of SLC6A18-SLCA20 cause iminoglycinuria and/or hyperglycinuria. SLC6A18-SLC6A20 to reach the cellular membrane require an ancillary unit ACE2 that is a molecular target for the spike protein of the SARS-CoV-2 virus. SLC6A19 has been proposed as a molecular target for the treatment of metabolic disorders resembling gastric surgery bypass. Inhibition of SLC6A15 appears to have a promising outcome in the treatment of psychiatric disorders. SLC6A19 and SLC6A20 have been suggested as potential targets in the treatment of COVID-19. In this review, we gathered recent advances on orphan transporters, their structure, functions, related disorders, and diseases, and in particular their relevance as therapeutic targets. SIGNIFICANCE STATEMENT: The following review systematizes current knowledge about the SLC6A15-SLCA20 neutral amino acid transporter subfamily and their therapeutic relevance in the treatment of different diseases.
Collapse
Affiliation(s)
- Jędrzej Kukułowicz
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Krzysztof Pietrzak-Lichwa
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Klaudia Klimończyk
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Nathalie Idlin
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Marek Bajda
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
6
|
Impact of Inhibition of Glutamine and Alanine Transport on Cerebellar Glial and Neuronal Metabolism. Biomolecules 2022; 12:biom12091189. [PMID: 36139028 PMCID: PMC9496060 DOI: 10.3390/biom12091189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
The cerebellum, or “little brain”, is often overlooked in studies of brain metabolism in favour of the cortex. Despite this, anomalies in cerebellar amino acid homeostasis in a range of disorders have been reported. Amino acid homeostasis is central to metabolism, providing recycling of carbon backbones and ammonia between cell types. Here, we examined the role of cerebellar amino acid transporters in the cycling of glutamine and alanine in guinea pig cerebellar slices by inhibiting amino acid transporters and examining the resultant metabolism of [1-13C]d-glucose and [1,2-13C]acetate by NMR spectroscopy and LCMS. While the lack of specific inhibitors of each transporter makes interpretation difficult, by viewing results from experiments with multiple inhibitors we can draw inferences about the major cell types and transporters involved. In cerebellum, glutamine and alanine transfer is dominated by system A, blockade of which has maximum effect on metabolism, with contributions from System N. Inhibition of neural system A isoform SNAT1 by MeAIB resulted in greatly decreased metabolite pools and reduced net fluxes but showed little effect on fluxes from [1,2-13C]acetate unlike inhibition of SNAT3 and other glutamine transporters by histidine where net fluxes from [1,2-13C]acetate are reduced by ~50%. We interpret the data as further evidence of not one but several glutamate/glutamine exchange pools. The impact of amino acid transport inhibition demonstrates that the cerebellum has tightly coupled cells and that glutamate/glutamine, as well as alanine cycling, play a major role in that part of the brain.
Collapse
|
7
|
Gauthier-Coles G, Vennitti J, Zhang Z, Comb WC, Xing S, Javed K, Bröer A, Bröer S. Quantitative modelling of amino acid transport and homeostasis in mammalian cells. Nat Commun 2021; 12:5282. [PMID: 34489418 PMCID: PMC8421413 DOI: 10.1038/s41467-021-25563-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 08/13/2021] [Indexed: 12/20/2022] Open
Abstract
Homeostasis is one of the fundamental concepts in physiology. Despite remarkable progress in our molecular understanding of amino acid transport, metabolism and signaling, it remains unclear by what mechanisms cytosolic amino acid concentrations are maintained. We propose that amino acid transporters are the primary determinants of intracellular amino acid levels. We show that a cell’s endowment with amino acid transporters can be deconvoluted experimentally and used this data to computationally simulate amino acid translocation across the plasma membrane. Transport simulation generates cytosolic amino acid concentrations that are close to those observed in vitro. Perturbations of the system are replicated in silico and can be applied to systems where only transcriptomic data are available. This work explains amino acid homeostasis at the systems-level, through a combination of secondary active transporters, functionally acting as loaders, harmonizers and controller transporters to generate a stable equilibrium of all amino acid concentrations. Cytosolic amino acid concentrations are carefully maintained, but how homeostasis occurs is unclear. Here, the authors show that amino acid transporters primarily determine intracellular amino acid levels and develop a model that predicts a perturbation response similar to experimental data.
Collapse
Affiliation(s)
| | - Jade Vennitti
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Zhiduo Zhang
- Division of Genome Science and Cancer, ACRF INCITe Centre - ANU Node, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | | | | | - Kiran Javed
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Angelika Bröer
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Stefan Bröer
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
8
|
Almutairi FM, Ajmal MR, Siddiqi MK, Alalawy AI, Khan RH. On the binding reaction of loratadine with human serum acute phase protein alpha 1-acid glycoprotein. J Biomol Struct Dyn 2021; 40:9484-9491. [PMID: 34121623 DOI: 10.1080/07391102.2021.1930164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Loratadine is an important anti-allergic drug. It is a second generation antihistamine drug used to treat allergic rhinitis, hay fever and urticaria. Human serum alpha 1-acid glycoprotein (AG) is an important acute phase protein and its serum concentration is found to increase in inflammation and acute response.The binding interaction between loratadine and AG is studied using spectroscopy and molecular docking techniques. The results obtained from fluorescence quenching experiments demonstrated that the fluorescence intensity of AG is quenched by loratadine. Loratadine was found to bind AG with the binding constant of ≈104 at 298 K. The Gibb's free energy change was found to be negative for the interaction of loratadine with AG indicating the binding process is spontaneous. Binding of loratadine with AG induced ordered structures in the protein. Hydrogen bonding and hydrophobic interactions were the main bonding forces between AG-loratadine as revealed by molecular docking results. This study suggests the importance of binding of anti-allergic drug to AG spatially in the diseases where the plasma concentration of AG increases many folds and interaction with this protein becomes significant. This study will help in design of drug dosage and adjustment accordingly to achieve optimal treatment outcome. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fahad M Almutairi
- Physical Biochemistry Research Laboratory, Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammad Rehan Ajmal
- Physical Biochemistry Research Laboratory, Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | | | - Adel I Alalawy
- Physical Biochemistry Research Laboratory, Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
9
|
Schraut KG, Kalnytska O, Lamp D, Jastroch M, Eder M, Hausch F, Gassen NC, Moore S, Nagaraj N, Lopez JP, Chen A, Schmidt MV. Loss of the psychiatric risk factor SLC6A15 is associated with increased metabolic functions in primary hippocampal neurons. Eur J Neurosci 2020; 53:390-401. [PMID: 33007132 DOI: 10.1111/ejn.14990] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/25/2020] [Accepted: 09/22/2020] [Indexed: 11/30/2022]
Abstract
Major depressive disorder (MDD) is one of the most severe global health problems with millions of people affected, however, the mechanisms underlying this disorder is still poorly understood. Genome-wide association studies have highlighted a link between the neutral amino acid transporter SLC6A15 and MDD. Additionally, a number of preclinical studies support the function of this transporter in modulating levels of brain neurotransmitters, stress system regulation and behavioural phenotypes related to MDD. However, the molecular and functional mechanisms involved in this interaction are still unresolved. Therefore, to investigate the effects of the SLC6A15 transporter, we used hippocampal tissue from Slc6a15-KO and wild-type mice, together with several in-vitro assays in primary hippocampal neurons. Utilizing a proteomics approach we identified differentially regulated proteins that formed a regulatory network and pathway analysis indicated significantly affected cellular domains, including metabolic, mitochondrial and structural functions. Furthermore, we observed reduced release probability at glutamatergic synapses, increased mitochondrial function, higher GSH/GSSG redox ratio and an improved neurite outgrowth in primary neurons lacking SLC6A15. In summary, we hypothesize that by controlling the intracellular concentrations of neutral amino acids, SLC6A15 affects mitochondrial activity, which could lead to alterations in neuronal structure and activity. These data provide further indication that a pharmacological or genetic reduction of SLC6A15 activity may indeed be a promising approach for antidepressant therapy.
Collapse
Affiliation(s)
- Karla-Gerlinde Schraut
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Oleksandra Kalnytska
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Daniel Lamp
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
| | - Martin Jastroch
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
| | - Matthias Eder
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Felix Hausch
- Structure-Based Drug Research, Technische Universität Darmstadt, Darmstadt, Germany
| | - Nils C Gassen
- Department of Psychiatry and Psychotherapy, Bonn Clinical Center, University of Bonn, Bonn, Germany
| | - Sarah Moore
- Department of Medical Genetics, University of British Columbia, BC Children's Hospital Research Institute, Vancouver, Canada.,Department Translational Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Nagarjuna Nagaraj
- Biochemistry Core Facility, Max Planck Institute of Biochemistry, Munich, Germany
| | - Juan P Lopez
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Alon Chen
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Mathias V Schmidt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
10
|
Stone EA, Cutrona KJ, Miller SJ. Asymmetric Catalysis upon Helically Chiral Loratadine Analogues Unveils Enantiomer-Dependent Antihistamine Activity. J Am Chem Soc 2020; 142:12690-12698. [PMID: 32579347 DOI: 10.1021/jacs.0c03904] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Analogues of the conformationally dynamic Claritin (loratadine) and Clarinex (desloratadine) scaffolds have been enantio- and chemoselectively N-oxidized using an aspartic acid containing peptide catalyst to afford stable, helically chiral products in up to >99:1 er. The conformational dynamics and enantiomeric stability of the N-oxide products have been investigated experimentally and computationally with the aid of crystallographic data. Furthermore, biological assays show that rigidifying the core structure of loratadine and related analogues through N-oxidation affects antihistamine activity in an enantiomer-dependent fashion. Computational docking studies illustrate the observed activity differences.
Collapse
Affiliation(s)
- Elizabeth A Stone
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Kara J Cutrona
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Scott J Miller
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
11
|
Lall MS, Bassyouni A, Bradow J, Brown M, Bundesmann M, Chen J, Ciszewski G, Hagen AE, Hyek D, Jenkinson S, Liu B, Obach RS, Pan S, Reilly U, Sach N, Smaltz DJ, Spracklin DK, Starr J, Wagenaar M, Walker GS. Late-Stage Lead Diversification Coupled with Quantitative Nuclear Magnetic Resonance Spectroscopy to Identify New Structure–Activity Relationship Vectors at Nanomole-Scale Synthesis: Application to Loratadine, a Human Histamine H1 Receptor Inverse Agonist. J Med Chem 2020; 63:7268-7292. [DOI: 10.1021/acs.jmedchem.0c00483] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Manjinder S. Lall
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Asser Bassyouni
- Pfizer Worldwide Research and Development, Science Center Drive, San Diego, California 92121, United States
| | - James Bradow
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Maria Brown
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Mark Bundesmann
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jinshan Chen
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Gregory Ciszewski
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Anne E. Hagen
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Dennis Hyek
- Spectrix Analytical Services, LLC, 410 Sackett Point Road, Bldg 20, North Haven, Connecticut 06473, United States
| | - Stephen Jenkinson
- Pfizer Worldwide Research and Development, Science Center Drive, San Diego, California 92121, United States
| | - Bo Liu
- Spectrix Analytical Services, LLC, 410 Sackett Point Road, Bldg 20, North Haven, Connecticut 06473, United States
| | - R. Scott Obach
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Senliang Pan
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Usa Reilly
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Neal Sach
- Pfizer Worldwide Research and Development, Science Center Drive, San Diego, California 92121, United States
| | - Daniel J. Smaltz
- Pfizer Worldwide Research and Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Douglas K. Spracklin
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jeremy Starr
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Melissa Wagenaar
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Gregory S. Walker
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
12
|
Karunakaran KB, Chaparala S, Ganapathiraju MK. Potentially repurposable drugs for schizophrenia identified from its interactome. Sci Rep 2019; 9:12682. [PMID: 31481665 PMCID: PMC6722087 DOI: 10.1038/s41598-019-48307-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 07/11/2019] [Indexed: 12/13/2022] Open
Abstract
We previously presented the protein-protein interaction network of schizophrenia associated genes, and from it, the drug-protein interactome which showed the drugs that target any of the proteins in the interactome. Here, we studied these drugs further to identify whether any of them may potentially be repurposable for schizophrenia. In schizophrenia, gene expression has been described as a measurable aspect of the disease reflecting the action of risk genes. We studied each of the drugs from the interactome using the BaseSpace Correlation Engine, and shortlisted those that had a negative correlation with differential gene expression of schizophrenia. This analysis resulted in 12 drugs whose differential gene expression (drug versus normal) had an anti-correlation with differential expression for schizophrenia (disorder versus normal). Some of these drugs were already being tested for their clinical activity in schizophrenia and other neuropsychiatric disorders. Several proteins in the protein interactome of the targets of several of these drugs were associated with various neuropsychiatric disorders. The network of genes with opposite drug-induced versus schizophrenia-associated expression profiles were significantly enriched in pathways relevant to schizophrenia etiology and GWAS genes associated with traits or diseases that had a pathophysiological overlap with schizophrenia. Drugs that targeted the same genes as the shortlisted drugs, have also demonstrated clinical activity in schizophrenia and other related disorders. This integrated computational analysis will help translate insights from the schizophrenia drug-protein interactome to clinical research - an important step, especially in the field of psychiatric drug development which faces a high failure rate.
Collapse
Affiliation(s)
- Kalyani B Karunakaran
- Supercomputer Education and Research Centre, Indian Institute of Science, Indian Institute of Science, Bengaluru, India
| | | | - Madhavi K Ganapathiraju
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, USA.
- Intelligent Systems Program, University of Pittsburgh, Pittsburgh, USA.
| |
Collapse
|
13
|
Li SS, Fu S, Wang L, Xu L, Xiao J. t-BuOK-Mediated Oxidative Dehydrogenative C(sp 3)-H Arylation of 2-Alkylazaarenes with Nitroarenes. J Org Chem 2017; 82:8703-8709. [PMID: 28737943 DOI: 10.1021/acs.joc.7b00732] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The first transition-metal free and regioselective C(sp3)-H arylation of 2-alkylazaarenes with nitroarenes has been achieved via t-BuOK-mediated dehydrogenative C(sp3)-C(sp2) coupling. This reaction provides an efficient access to the biologically important and synthetically useful 2-benzyl-substituted azaarenes under mild conditions without the need of prefunctionalization of 2-alkylazaarenes or using the specialized arylating agents.
Collapse
Affiliation(s)
- Shuai-Shuai Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University , Qingdao 266109, China
| | - Shiheng Fu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University , Qingdao 266109, China
| | - Liang Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University , Qingdao 266109, China
| | - Lubin Xu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University , Qingdao 266109, China
| | - Jian Xiao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University , Qingdao 266109, China
| |
Collapse
|
14
|
Cheng Q, Shah N, Bröer A, Fairweather S, Jiang Y, Schmoll D, Corry B, Bröer S. Identification of novel inhibitors of the amino acid transporter B 0 AT1 (SLC6A19), a potential target to induce protein restriction and to treat type 2 diabetes. Br J Pharmacol 2017; 174:468-482. [PMID: 28176326 DOI: 10.1111/bph.13711] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 12/28/2016] [Accepted: 01/04/2017] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND AND PURPOSE The neutral amino acid transporter B0 AT1 (SLC6A19) has recently been identified as a possible target to treat type 2 diabetes and related disorders. B0 AT1 mediates the Na+ -dependent uptake of all neutral amino acids. For surface expression and catalytic activity, B0 AT1 requires coexpression of collectrin (TMEM27). In this study, we established tools to identify and evaluate novel inhibitors of B0 AT1. EXPERIMENTAL APPROACH A CHO-based cell line was generated, stably expressing collectrin and B0 AT1. Using this cell line, a high-throughput screening assay was developed, which uses a fluorescent dye to detect depolarisation of the cell membrane during amino acid uptake via B0 AT1. In parallel to these functional assays, we ran a computational compound screen using AutoDock4 and a homology model of B0 AT1 based on the high-resolution structure of the highly homologous Drosophila dopamine transporter. KEY RESULTS We characterized a series of novel inhibitors of the B0 AT1 transporter. Benztropine was identified as a competitive inhibitor of the transporter showing an IC50 of 44 ± 9 μM. The compound was selective with regard to related transporters and blocked neutral amino acid uptake in inverted sections of mouse intestine. CONCLUSION AND IMPLICATIONS The tools established in this study can be widely used to identify new transport inhibitors. Using these tools, we were able to identify compounds that can be used to study epithelial transport, to induce protein restriction, or be developed further through medicinal chemistry.
Collapse
Affiliation(s)
- Qi Cheng
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Nishank Shah
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Angelika Bröer
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Stephen Fairweather
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Yang Jiang
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Dieter Schmoll
- Industriepark Hoechst, Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany
| | - Ben Corry
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Stefan Bröer
- Research School of Biology, The Australian National University, Canberra, Australia
| |
Collapse
|
15
|
Li B, Xue S, Yang Y, Feng J, Liu P, Zhang Y, Zhu J, Xu Z, Hall A, Zhao B, Shi J, Zhu W. Regioselectivity and Mechanism of Synthesizing N-Substituted 2-Pyridones and 2-Substituted Pyridines via Metal-Free C-O and C-N Bond-Cleaving of Oxazoline[3,2-a]pyridiniums. Sci Rep 2017; 7:41287. [PMID: 28120894 PMCID: PMC5264182 DOI: 10.1038/srep41287] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/19/2016] [Indexed: 12/18/2022] Open
Abstract
Novel intermediate oxazoline[3,2-a]pyridiniums were facilely prepared from 2-(2,2-dimethoxyethoxy)-pyridines via acid promoted intramolecular cyclization. Sequentially, the quaternary ammonium salts were treated with different nucleophiles for performing regioselective metal-free C-O and C-N bond-cleaving to afford prevalent heterocyclic structures of N-substituted pyridones and 2-substituted pyridines. The reaction mechanism and regioselectivity were then systematically explored by quantum chemistry calculations at B3LYP/6-31 g(d) level. The calculated free energy barrier of the reactions revealed that aniline and aliphatic amines (e.g., methylamine) prefer to attack C8 of intermediate 4a, affording N-substituted pyridones, while phenylmethanamine, 2-phenylethan-1-amine and 3-phenylpropan-1-amine favor to attack C2 of the intermediate to form 2-substituted pyridines. With the optimized geometries of the transition states, we found that the aromatic ring of the phenyl aliphatic amines may form cation-π interaction with the pyridinium of the intermediates, which could stabilize the transition states and facilitate the formation of 2-substituted pyridines.
Collapse
Affiliation(s)
- Bo Li
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.,State Key Laboratory of Natural and Biomimetic Drugs, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Susu Xue
- College of Chemistry and Environmental Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210097, China
| | - Yang Yang
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Jia Feng
- Nano Science and Technology Institute, University of Science and Technology of China, 166 Renai Road, Suzhou, 215123, China
| | - Peng Liu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Yong Zhang
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Jianming Zhu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Zhijian Xu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Adrian Hall
- UCB Biopharma SPRL, Chemin du Foriest, Braine-l'Alleud, Belgium
| | - Bo Zhao
- College of Chemistry and Environmental Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210097, China
| | - Jiye Shi
- UCB Biopharma SPRL, Chemin du Foriest, Braine-l'Alleud, Belgium.,Kellogg College, University of Oxford, 60-62 Banbury Road, Oxford, OX2 6PN, United Kingdom
| | - Weiliang Zhu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
16
|
Naporra F, Gobleder S, Wittmann HJ, Spindler J, Bodensteiner M, Bernhardt G, Hübner H, Gmeiner P, Elz S, Strasser A. Dibenzo[b,f][1,4]oxazepines and dibenzo[b,e]oxepines: Influence of the chlorine substitution pattern on the pharmacology at the H 1R, H 4R, 5-HT 2AR and other selected GPCRs. Pharmacol Res 2016; 113:610-625. [PMID: 27697645 DOI: 10.1016/j.phrs.2016.09.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/28/2016] [Accepted: 09/29/2016] [Indexed: 11/19/2022]
Abstract
Inspired by VUF6884 (7-Chloro-11-(4-methylpiperazin-1-yl)dibenzo[b,f][1,4]oxazepine), reported as a dual H1/H4 receptor ligand (pKi: 8.11 (human H1R (hH1R)), 7.55 (human H4R (hH4R))), four known and 28 new oxazepine and related oxepine derivatives were synthesised and pharmacologically characterized at histamine receptors and selected aminergic GPCRs. In contrast to the oxazepine series, within the oxepine series, the new compounds showed high affinity to the hH1R (pKi: 6.8-8.7), but no or moderate affinity to the hH4R (pKi:≤5.3). For one oxepine derivative (1-(2-Chloro-6,11-dihydrodibenzo[b,e]oxepin-11-yl)-4-methylpiperazine), the enantiomers were separated and the R-enantiomer was identified as the eutomer at the hH1R (pKi: 8.83 (R), 7.63 (S)) and the guinea-pig H1R (gpH1R) (pKi: 8.82 (R), 7.41 (S)). Molecular dynamic studies suggest that the tricyclic core of the compounds is bound in a similar mode into the binding pocket, as described for doxepine in the hH1R crystal structure. Moreover, docking studies of all oxepine derivatives at the hH1R indicate that the oxygen and the position of the chlorine in the tricyclic core determines, if the R- or the S-enantiomer is the eutomer. For some of the oxazepines and oxepines the affinity to other aminergic GPCRs is in the same range as to hH1R or hH4R, thus, those compounds have to be classified as dirty drugs. However, one oxazepine derivative (3,7-Dichloro-11-(4-methylpiperazin-1-yl)dibenzo[b,f][1,4]oxazepine was identified as dual hH1/h5-HT2A receptor ligand (pKi: 9.23 (hH1R), 8.74 (h5-HT2AR), ≤7 at other analysed GPCRs), whereas one oxepine derivative (1-(3,8-Dichloro-6,11-dihydrodibenzo[b,e]oxepin-11-yl)-4-methylpiperazine) was identified as selective hH1R antagonist (pKi: 8.44 (hH1R), ≤6.7 at other analyzed GPCRs). Thus, the pharmacological results suggest that the oxazepine/oxepine moiety and additionally the chlorine substitution pattern toggles receptor selectivity and specificity.
Collapse
Affiliation(s)
- Franziska Naporra
- Department of Pharmaceutical/Medicinal Chemistry I, Institute of Pharmacy, University of Regensburg, D-93040 Regensburg, Germany
| | - Susanne Gobleder
- Department of Pharmaceutical/Medicinal Chemistry I, Institute of Pharmacy, University of Regensburg, D-93040 Regensburg, Germany
| | - Hans-Joachim Wittmann
- Department of Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, D-93040 Regensburg, Germany
| | - Julia Spindler
- Department of Pharmaceutical/Medicinal Chemistry I, Institute of Pharmacy, University of Regensburg, D-93040 Regensburg, Germany
| | - Michael Bodensteiner
- Institute of Inorganic Chemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Günther Bernhardt
- Department of Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, D-93040 Regensburg, Germany
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91052 Erlangen, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91052 Erlangen, Germany
| | - Sigurd Elz
- Department of Pharmaceutical/Medicinal Chemistry I, Institute of Pharmacy, University of Regensburg, D-93040 Regensburg, Germany
| | - Andrea Strasser
- Department of Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, D-93040 Regensburg, Germany.
| |
Collapse
|
17
|
Gaali S, Feng X, Hähle A, Sippel C, Bracher A, Hausch F. Rapid, Structure-Based Exploration of Pipecolic Acid Amides as Novel Selective Antagonists of the FK506-Binding Protein 51. J Med Chem 2016; 59:2410-22. [PMID: 26954324 DOI: 10.1021/acs.jmedchem.5b01355] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The FK506-binding protein 51 (FKBP51) is a key regulator of stress hormone receptors and an established risk factor for stress-related disorders. Drug development for FKBP51 has been impaired by the structurally similar but functionally opposing homologue FKBP52. High selectivity between FKBP51 and FKBP52 can be achieved by ligands that stabilize a recently discovered FKBP51-favoring conformation. However, drug-like parameters for these ligands remained unfavorable. In the present study, we replaced the potentially labile pipecolic ester group of previous FKBP51 ligands by various low molecular weight amides. This resulted in the first series of pipecolic acid amides, which had much lower molecular weights without affecting FKBP51 selectivity. We discovered a geminally substituted cyclopentyl amide as a preferred FKBP51-binding motif and elucidated its binding mode to provide a new lead structure for future drug optimization.
Collapse
Affiliation(s)
- Steffen Gaali
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry , Kraepelinstrasse 2, 80804 Munich, Germany
| | - Xixi Feng
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry , Kraepelinstrasse 2, 80804 Munich, Germany
| | - Andreas Hähle
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry , Kraepelinstrasse 2, 80804 Munich, Germany
| | - Claudia Sippel
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry , Kraepelinstrasse 2, 80804 Munich, Germany
| | - Andreas Bracher
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry , Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Felix Hausch
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry , Kraepelinstrasse 2, 80804 Munich, Germany
| |
Collapse
|
18
|
Meta-analysis identifies seven susceptibility loci involved in the atopic march. Nat Commun 2015; 6:8804. [PMID: 26542096 PMCID: PMC4667629 DOI: 10.1038/ncomms9804] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/06/2015] [Indexed: 12/20/2022] Open
Abstract
Eczema often precedes the development of asthma in a disease course called the ‘atopic march'. To unravel the genes underlying this characteristic pattern of allergic disease, we conduct a multi-stage genome-wide association study on infantile eczema followed by childhood asthma in 12 populations including 2,428 cases and 17,034 controls. Here we report two novel loci specific for the combined eczema plus asthma phenotype, which are associated with allergic disease for the first time; rs9357733 located in EFHC1 on chromosome 6p12.3 (OR 1.27; P=2.1 × 10−8) and rs993226 between TMTC2 and SLC6A15 on chromosome 12q21.3 (OR 1.58; P=5.3 × 10−9). Additional susceptibility loci identified at genome-wide significance are FLG (1q21.3), IL4/KIF3A (5q31.1), AP5B1/OVOL1 (11q13.1), C11orf30/LRRC32 (11q13.5) and IKZF3 (17q21). We show that predominantly eczema loci increase the risk for the atopic march. Our findings suggest that eczema may play an important role in the development of asthma after eczema. The development of asthma following eczema is known as the atopic march. Here the authors conduct a GWAS on affected children and identify two novel loci associated with the disease phenotype.
Collapse
|