1
|
Twala C, Malindisa S, Munnik C, Sooklal S, Ntwasa M. Ezetimibe Anticancer Activity via the p53/Mdm2 Pathway. Biomedicines 2025; 13:195. [PMID: 39857778 PMCID: PMC11761875 DOI: 10.3390/biomedicines13010195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Ezetimibe is used to treat cardiovascular disease as it blocks the sterol transporter Niemann-Pick C1-Like 1 (NPC1CL1) protein. However, recent evidence indicates that Ezetimibe inhibits several cancers indirectly by reducing circulating cholesterol or via specific signalling pathways. METHODS AND RESULTS Our in silico studies indicate that Ezetimibe binds to the Tp53 binding domain in Mdm2, forming a more thermodynamically stable complex than nutlin3a. Furthermore, a docking study of the newly developed inhibitors-RG7388 and RG7112-was conducted. This further showed lower binding energies of -6.337 kcal/mol and -6.222 kcal/mol, respectively, when compared to the -7.919 kcal/mol exhibited by Ezetimibe. We show that Ezetimibe inhibits the growth of several cancer cell lines at concentrations that are not toxic to a normal cell line. CONCLUSIONS Thus, Ezetimibe is probably active against cancers that overexpress Mdm2. Moreover, inhibitors of RBBP6 may be combined with Ezetimibe for effective anticancer activity. Due to poor oral bioavailability, Ezetimibe must be administered parenterally for cancer treatment.
Collapse
Affiliation(s)
- Charmy Twala
- Department of Life & Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Cnr. Pioneer and Christiaan de Wet Roads, B2-010 Calabash Building, Florida, Johannesburg 1710, South Africa; (C.T.); (S.M.); (C.M.); (S.S.)
| | - Sibusiso Malindisa
- Department of Life & Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Cnr. Pioneer and Christiaan de Wet Roads, B2-010 Calabash Building, Florida, Johannesburg 1710, South Africa; (C.T.); (S.M.); (C.M.); (S.S.)
| | - Chamone Munnik
- Department of Life & Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Cnr. Pioneer and Christiaan de Wet Roads, B2-010 Calabash Building, Florida, Johannesburg 1710, South Africa; (C.T.); (S.M.); (C.M.); (S.S.)
| | - Selisha Sooklal
- Department of Life & Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Cnr. Pioneer and Christiaan de Wet Roads, B2-010 Calabash Building, Florida, Johannesburg 1710, South Africa; (C.T.); (S.M.); (C.M.); (S.S.)
| | - Monde Ntwasa
- Department of Life & Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Cnr. Pioneer and Christiaan de Wet Roads, B2-010 Calabash Building, Florida, Johannesburg 1710, South Africa; (C.T.); (S.M.); (C.M.); (S.S.)
- Buboo Bioinnovations (Pty) Ltd., The Innovation Hub, Hatfield, Pretoria 0200, South Africa
| |
Collapse
|
2
|
Li K, Hu W, Wang Y, Chen W, Wen H, Liu J, Li W, Wang B. Searching for novel MDM2/MDMX dual inhibitors through a drug repurposing approach. J Enzyme Inhib Med Chem 2024; 39:2288810. [PMID: 38059334 PMCID: PMC11721856 DOI: 10.1080/14756366.2023.2288810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/10/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023] Open
Abstract
Disruption of p53-MDM2/MDMX interaction by smaller inhibitors is a promising therapeutic intervention gaining tremendous interest. However, no MDM2/MDMX inhibitors have been marketed so far. Drug repurposing is a validated, practical approach to drug discovery. In this regard, we employed structure-based virtual screening in a reservoir of marketed drugs and identified nintedanib as a new MDM2/MDMX dual inhibitor. The computational structure analysis and biochemical experiments uncover that nintedanib binds MDM2/MDMX similarly to RO2443, a dual MDM2/MDMX inhibitor. Furthermore, the mechanistic study reveals that nintedanib disrupts the physical interaction of p53-MDM2/MDMX, enabling the transcriptional activation of p53 and the subsequent cell cycle arrest and growth inhibition in p53+/+ cancer cells. Lastly, structural minimisation of nintedanib yields H3 with the equivalent potency. In summary, this work provides a solid foundation for reshaping nintedanib as a valuable lead compound for the further design of MDM2/MDMX dual inhibitors.
Collapse
Affiliation(s)
- Keting Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenshu Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yingjie Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenxing Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongmei Wen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jian Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bo Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
3
|
Cui Y, Zhang X, Liu J, Hou Y, Song Q, Cao M, Zhang J, Wang X, Liu C, Wang P, Wang Y. Myeloid ectopic viral integration site 2 accelerates the progression of Alzheimer's disease. Aging Cell 2024; 23:e14260. [PMID: 38994634 PMCID: PMC11464116 DOI: 10.1111/acel.14260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/29/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024] Open
Abstract
Amyloid plaques, a major pathological hallmark of Alzheimer's disease (AD), are caused by an imbalance between the amyloidogenic and non-amyloidogenic pathways of amyloid precursor protein (APP). BACE1 cleavage of APP is the rate-limiting step for amyloid-β production and plaque formation in AD. Although the alteration of BACE1 expression in AD has been investigated, the underlying mechanisms remain unknown. In this study, we determined MEIS2 was notably elevated in AD models and AD patients. Alterations in the expression of MEIS2 can modulate the levels of BACE1. MEIS2 downregulation improved the learning and memory retention of AD mice and decreased the number of amyloid plaques. MEIS2 binds to the BACE1 promoter, positively regulates BACE1 expression, and accelerates APP amyloid degradation in vitro. Therefore, our findings suggest that MEIS2 might be a critical transcription factor in AD, since it regulates BACE1 expression and accelerates BACE1-mediated APP amyloidogenic cleavage. MEIS2 is a promising early intervention target for AD treatment.
Collapse
Affiliation(s)
- Yuting Cui
- Clinical Laboratory of Xuanwu Hospital, Capital Medical UniversityBeijingPeople's Republic of China
| | - Xiaomin Zhang
- Clinical Laboratory of Xuanwu Hospital, Capital Medical UniversityBeijingPeople's Republic of China
| | - Jing Liu
- Clinical Laboratory of Xuanwu Hospital, Capital Medical UniversityBeijingPeople's Republic of China
| | - Yuli Hou
- Clinical Laboratory of Xuanwu Hospital, Capital Medical UniversityBeijingPeople's Republic of China
| | - Qiao Song
- Clinical Laboratory of Xuanwu Hospital, Capital Medical UniversityBeijingPeople's Republic of China
| | - Min Cao
- Department of Clinical LaboratoryBeijing Huairou HospitalBeijingPeople's Republic of China
| | - Jingjing Zhang
- Clinical Laboratory of Xuanwu Hospital, Capital Medical UniversityBeijingPeople's Republic of China
| | - Xiaoling Wang
- Clinical Laboratory of Xuanwu Hospital, Capital Medical UniversityBeijingPeople's Republic of China
| | - Congcong Liu
- Clinical Laboratory of Xuanwu Hospital, Capital Medical UniversityBeijingPeople's Republic of China
| | - Peichang Wang
- Clinical Laboratory of Xuanwu Hospital, Capital Medical UniversityBeijingPeople's Republic of China
| | - Yaqi Wang
- Clinical Laboratory of Xuanwu Hospital, Capital Medical UniversityBeijingPeople's Republic of China
| |
Collapse
|
4
|
Kinnersley B, Sud A, Everall A, Cornish AJ, Chubb D, Culliford R, Gruber AJ, Lärkeryd A, Mitsopoulos C, Wedge D, Houlston R. Analysis of 10,478 cancer genomes identifies candidate driver genes and opportunities for precision oncology. Nat Genet 2024; 56:1868-1877. [PMID: 38890488 PMCID: PMC11387197 DOI: 10.1038/s41588-024-01785-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 05/01/2024] [Indexed: 06/20/2024]
Abstract
Tumor genomic profiling is increasingly seen as a prerequisite to guide the treatment of patients with cancer. To explore the value of whole-genome sequencing (WGS) in broadening the scope of cancers potentially amenable to a precision therapy, we analysed whole-genome sequencing data on 10,478 patients spanning 35 cancer types recruited to the UK 100,000 Genomes Project. We identified 330 candidate driver genes, including 74 that are new to any cancer. We estimate that approximately 55% of patients studied harbor at least one clinically relevant mutation, predicting either sensitivity or resistance to certain treatments or clinical trial eligibility. By performing computational chemogenomic analysis of cancer mutations we identify additional targets for compounds that represent attractive candidates for future clinical trials. This study represents one of the most comprehensive efforts thus far to identify cancer driver genes in the real world setting and assess their impact on informing precision oncology.
Collapse
Affiliation(s)
- Ben Kinnersley
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
- University College London Cancer Institute, University College London, London, UK
| | - Amit Sud
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Andrew Everall
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Alex J Cornish
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Daniel Chubb
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Richard Culliford
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Andreas J Gruber
- Systems Biology & Biomedical Data Science Laboratory, University of Konstanz, Konstanz, Germany
| | - Adrian Lärkeryd
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Costas Mitsopoulos
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - David Wedge
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK
| | - Richard Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK.
| |
Collapse
|
5
|
Zhu W, Liu C, Xi K, Li A, Shen LA, Li Y, Jia M, He Y, Chen G, Liu C, Chen Y, Chen K, Sun F, Zhang D, Duan C, Wang H, Wang D, Zhao Y, Meng X, Zhu D. Discovery of Novel 1-Phenylpiperidine Urea-Containing Derivatives Inhibiting β-Catenin/BCL9 Interaction and Exerting Antitumor Efficacy through the Activation of Antigen Presentation of cDC1 Cells. J Med Chem 2024; 67:12485-12520. [PMID: 38912577 DOI: 10.1021/acs.jmedchem.3c02079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Aberrant activation of the Wnt/β-catenin signaling is associated with tumor development, and blocking β-catenin/BCL9 is a novel strategy for oncogenic Wnt/β-catenin signaling. Herein, we presented two novel β-catenin variations and exposed conformational dynamics in several β-catenin crystal structures at the BCL9 binding site. Furthermore, we identified a class of novel urea-containing compounds targeting β-catenin/BCL9 interaction. Notably, the binding modalities of inhibitors were greatly affected by the conformational dynamics of β-catenin. Among them, 28 had a strong affinity for β-catenin (Kd = 82 nM), the most potent inhibitor reported. In addition, 13 and 35 not only activate T cells but also promote the antigen presentation of cDC1, showing robust antitumor efficacy in the CT26 model. Collectively, our study demonstrated a series of potent small-molecule inhibitors targeting β-catenin/BCL9, which can enhance antigen presentation and activate cDC1 cells, delivering a potential strategy for boosting innate and adaptive immunity to overcome immunotherapy resistance.
Collapse
Affiliation(s)
- Wenhua Zhu
- Anhui University of Chinese Medicine, Hefei 230012, China
- Yangtze Delta Drug Advanced Research Institute and Yangtze Delta Pharmaceutical College, Nantong 226133, China
| | - Cuiting Liu
- Anhui University of Chinese Medicine, Hefei 230012, China
- Yangtze Delta Drug Advanced Research Institute and Yangtze Delta Pharmaceutical College, Nantong 226133, China
| | - Kang Xi
- Anhui University of Chinese Medicine, Hefei 230012, China
- Yangtze Delta Drug Advanced Research Institute and Yangtze Delta Pharmaceutical College, Nantong 226133, China
| | - Anqi Li
- School of Basic Medical Sciences, Fudan University, Shanghai 201210, China
| | - Li-An Shen
- School of Basic Medical Sciences, Fudan University, Shanghai 201210, China
| | - Yana Li
- Anhui University of Chinese Medicine, Hefei 230012, China
- Yangtze Delta Drug Advanced Research Institute and Yangtze Delta Pharmaceutical College, Nantong 226133, China
| | - Miaomiao Jia
- Anhui University of Chinese Medicine, Hefei 230012, China
- Yangtze Delta Drug Advanced Research Institute and Yangtze Delta Pharmaceutical College, Nantong 226133, China
| | - Yangbo He
- Anhui University of Chinese Medicine, Hefei 230012, China
- Yangtze Delta Drug Advanced Research Institute and Yangtze Delta Pharmaceutical College, Nantong 226133, China
| | - Gang Chen
- Anhui University of Chinese Medicine, Hefei 230012, China
- Yangtze Delta Drug Advanced Research Institute and Yangtze Delta Pharmaceutical College, Nantong 226133, China
| | - Chenglong Liu
- School of Basic Medical Sciences, Fudan University, Shanghai 201210, China
| | - Yangqiang Chen
- Anhui University of Chinese Medicine, Hefei 230012, China
- Yangtze Delta Drug Advanced Research Institute and Yangtze Delta Pharmaceutical College, Nantong 226133, China
| | - Kai Chen
- Shanghai Jiao Tong University, Shanghai 201210, China
| | - Fan Sun
- Shanghai Jiao Tong University, Shanghai 201210, China
| | - Daizhou Zhang
- Shandong Academy of Pharmaceutical Science, Jinan 250101, China
| | - Chonggang Duan
- Shandong Academy of Pharmaceutical Science, Jinan 250101, China
| | - Heng Wang
- School of Basic Medical Sciences, Fudan University, Shanghai 201210, China
| | | | - Yujun Zhao
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd., Shanghai 201203, China
| | - Xiangjing Meng
- Shandong Academy of Pharmaceutical Science, Jinan 250101, China
| | - Di Zhu
- School of Basic Medical Sciences, Fudan University, Shanghai 201210, China
| |
Collapse
|
6
|
Li T, Liu X, Qian H, Zhang S, Hou Y, Zhang Y, Luo G, Zhu X, Tao Y, Fan M, Wang H, Sha C, Lin A, Qin J, Gu K, Chen W, Fu T, Wang Y, Wei Y, Wu Q, Tan W. Blocker-SELEX: a structure-guided strategy for developing inhibitory aptamers disrupting undruggable transcription factor interactions. Nat Commun 2024; 15:6751. [PMID: 39117705 PMCID: PMC11310338 DOI: 10.1038/s41467-024-51197-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Despite the well-established significance of transcription factors (TFs) in pathogenesis, their utilization as pharmacological targets has been limited by the inherent challenges in modulating their protein interactions. The lack of defined small-molecule binding pockets and the nuclear localization of TFs do not favor the use of traditional tools. Aptamers possess large molecular weights, expansive blocking surfaces and efficient cellular internalization, making them compelling tools for modulating TF interactions. Here, we report a structure-guided design strategy called Blocker-SELEX to develop inhibitory aptamers (iAptamers) that selectively block TF interactions. Our approach leads to the discovery of iAptamers that cooperatively disrupt SCAF4/SCAF8-RNAP2 interactions, dysregulating RNAP2-dependent gene expression, which impairs cell proliferation. This approach is further applied to develop iAptamers blocking WDR5-MYC interactions. Overall, our study highlights the potential of iAptamers in disrupting pathogenic TF interactions, implicating their potential utility in studying the biological functions of TF interactions and in nucleic acids drug discovery.
Collapse
Affiliation(s)
- Tongqing Li
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Xueying Liu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Haifeng Qian
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Sheyu Zhang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Yu Hou
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Yuchao Zhang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Guoyan Luo
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Xun Zhu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Yanxin Tao
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
- Shanghai Institute of Material Medica, Chinese Academy of Sciences, Shanghai, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Mengyang Fan
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Hong Wang
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Chulin Sha
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Ailan Lin
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Jingjing Qin
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Kedan Gu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Weichang Chen
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Ting Fu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Yajun Wang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Yong Wei
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China.
| | - Qin Wu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China.
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| | - Weihong Tan
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China.
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
7
|
Nešić MD, Dučić T, Gemović B, Senćanski M, Algarra M, Gonçalves M, Stepić M, Popović IA, Kapuran Đ, Petković M. Prediction of Protein Targets in Ovarian Cancer Using a Ru-Complex and Carbon Dot Drug Delivery Therapeutic Nanosystems: A Bioinformatics and µ-FTIR Spectroscopy Approach. Pharmaceutics 2024; 16:997. [PMID: 39204341 PMCID: PMC11359177 DOI: 10.3390/pharmaceutics16080997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
We predicted the protein therapeutic targets specific to a Ru-based potential drug and its combination with pristine and N-doped carbon dot drug delivery systems, denoted as RuCN/CDs and RuCN/N-CDs. Synchrotron-based FTIR microspectroscopy (µFTIR) in addition to bioinformatics data on drug structures and protein sequences were applied to assess changes in the protein secondary structure of A2780 cancer cells. µFTIR revealed the moieties of the target proteins' secondary structure changes only after the treatment with RuCN and RuCN/N-CDs. A higher content of α-helices and a lower content of β-sheets appeared in A2780 cells after RuCN treatment. Treatment with RuCN/N-CDs caused a substantial increase in parallel β-sheet numbers, random coil content, and tyrosine residue numbers. The results obtained suggest that the mitochondrion-related proteins NDUFA1 and NDUFB5 are affected by RuCN either via overexpression or stabilisation of helical structures. RuCN/N-CDs either induce overexpression of the β-sheet-rich protein NDUFS1 and affect its random coil structure or interact and stabilise its structure via hydrogen bonding between -NH2 groups from N-CDs with protein C=O groups and -OH groups of serine, threonine, and tyrosine residues. The N-CD nanocarrier tunes this drug's action by directing it toward a specific protein target, changing this drug's coordination ability and inducing changes in the protein's secondary structures and function.
Collapse
Affiliation(s)
- Maja D. Nešić
- Center for Light-Based Research and Technologies COHERENCE, Department of Atomic Physics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (M.S.); (I.A.P.); (Đ.K.); (M.P.)
| | - Tanja Dučić
- ALBA-CELLS Synchrotron, 08290 Cerdanyola del Vallès, Spain
| | - Branislava Gemović
- Laboratory for Bioinformatics and Computational Chemistry, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (B.G.); (M.S.)
| | - Milan Senćanski
- Laboratory for Bioinformatics and Computational Chemistry, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (B.G.); (M.S.)
| | - Manuel Algarra
- INAMAT2—Institute for Advanced Materials and Mathematics, Department of Science, Public University of Navarre, Campus de Arrosadia, 31006 Pamplona, Spain;
| | - Mara Gonçalves
- CQM—Centro de Química da Madeira, Universidade da Madeira, 9020-105 Funchal, Portugal;
| | - Milutin Stepić
- Center for Light-Based Research and Technologies COHERENCE, Department of Atomic Physics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (M.S.); (I.A.P.); (Đ.K.); (M.P.)
| | - Iva A. Popović
- Center for Light-Based Research and Technologies COHERENCE, Department of Atomic Physics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (M.S.); (I.A.P.); (Đ.K.); (M.P.)
| | - Đorđe Kapuran
- Center for Light-Based Research and Technologies COHERENCE, Department of Atomic Physics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (M.S.); (I.A.P.); (Đ.K.); (M.P.)
| | - Marijana Petković
- Center for Light-Based Research and Technologies COHERENCE, Department of Atomic Physics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (M.S.); (I.A.P.); (Đ.K.); (M.P.)
| |
Collapse
|
8
|
Wang J, Zheng P, Yu J, Yang X, Zhang J. Rational design of small-sized peptidomimetic inhibitors disrupting protein-protein interaction. RSC Med Chem 2024; 15:2212-2225. [PMID: 39026653 PMCID: PMC11253864 DOI: 10.1039/d4md00202d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/04/2024] [Indexed: 07/20/2024] Open
Abstract
Protein-protein interactions are fundamental to nearly all biological processes. Due to their structural flexibility, peptides have emerged as promising candidates for developing inhibitors targeting large and planar PPI interfaces. However, their limited drug-like properties pose challenges. Hence, rational modifications based on peptide structures are anticipated to expedite the innovation of peptide-based therapeutics. This review comprehensively examines the design strategies for developing small-sized peptidomimetic inhibitors targeting PPI interfaces, which predominantly encompass two primary categories: peptidomimetics with abbreviated sequences and low molecular weights and peptidomimetics mimicking secondary structural conformations. We have also meticulously detailed several instances of designing and optimizing small-sized peptidomimetics targeting PPIs, including MLL1-WDR5, PD-1/PD-L1, and Bak/Bcl-xL, among others, to elucidate the potential application prospects of these design strategies. Hopefully, this review will provide valuable insights and inspiration for the future development of PPI small-sized peptidomimetic inhibitors in pharmaceutical research endeavors.
Collapse
Affiliation(s)
- Junyuan Wang
- School of Pharmacy, Ningxia Medical University Yinchuan 750004 China
| | - Ping Zheng
- School of Pharmacy, Ningxia Medical University Yinchuan 750004 China
| | - Jianqiang Yu
- School of Pharmacy, Ningxia Medical University Yinchuan 750004 China
| | - Xiuyan Yang
- Medicinal Chemistry and Bioinformatics Center, School of Medicine, Shanghai Jiao Tong University Shanghai 200025 China
| | - Jian Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University Yinchuan 750004 China
| |
Collapse
|
9
|
Liu W, Ma Y, He Y, Liu Y, Guo Z, He J, Han X, Hu Y, Li M, Jiang R, Wang S. Discovery of Novel p53-MDM2 Inhibitor (RG7388)-Conjugated Platinum IV Complexes as Potent Antitumor Agents. J Med Chem 2024; 67:9645-9661. [PMID: 38776419 DOI: 10.1021/acs.jmedchem.4c00784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
While a number of p53-MDM2 inhibitors have progressed into clinical trials for the treatment of cancer, their progression has been hampered by a variety of problems, including acquired drug resistance, dose-dependent toxicity, and limited clinical efficiency. To make more progress, we integrated the advantages of MDM2 inhibitors and platinum drugs to construct novel PtIV-RG7388 (a selective MDM2 inhibitor) complexes. Most complexes, especially 5a and 5b, displayed greatly improved antiproliferative activity against both wild-type and mutated p53 cancer cells. Remarkably, 5a exhibited potent in vivo tumor growth inhibition in the A549 xenograft model (66.5%) without apparent toxicity. It arrested the cell cycle at both the S phase and the G2/M phase and efficiently induced apoptosis via the synergistic effects of RG7388 and cisplatin. Altogether, PtIV-RG7388 complex 5a exhibited excellent in vitro and in vivo antitumor activities, highlighting the therapeutic potential of PtIV-RG7388 complexes as antitumor agents.
Collapse
Affiliation(s)
- Wei Liu
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Yi Ma
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Youyou He
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Yanhong Liu
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Zhongjie Guo
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jin He
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xiaodong Han
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yujiao Hu
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Muqiong Li
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ru Jiang
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Shengzheng Wang
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
10
|
Lin Z, Liu C, Yan Z, Cheng J, Wang X, Zhou F, Lyu X, Zhang S, Zhang D, Meng X, Zhao Y. Synthesis and biological evaluation of 4-imidazolidinone-containing compounds as potent inhibitors of the MDM2/p53 interaction. Eur J Med Chem 2024; 270:116366. [PMID: 38581730 DOI: 10.1016/j.ejmech.2024.116366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024]
Abstract
Inhibition of MDM2/p53 interaction with small-molecule inhibitors stabilizes p53 from MDM2 mediated degradation, which is a promising strategy for the treatment of cancer. In this report, a novel series of 4-imidazolidinone-containing compounds have been synthesized and tested in MDM2/p53 and MDM4/p53 FP binding assays. Upon SAR studies, compounds 2 (TB114) and 22 were identified as the most potent inhibitors of MDM2/p53 but not MDM4/p53 interactions. Both 2 and 22 exhibited strong antiproliferative activities in HCT-116 and MOLM-13 cell lines harboring wild type p53. Mechanistic studies show that 2 and 22 dose-dependently activated p53 and its target genes and induced apoptosis in cells based on the Western blot, qPCR, and flow cytometry assays. In addition, the antiproliferative activities of 2 and 22 were dependent on wild type p53, while they were not toxic to HEK-293 kidney cells. Furthermore, the on-target activities of 2 were general and applicable to other cancer cell lines with wild type p53. These attributes make 2 a good candidate for future optimization to discover a potential treatment of wild-type p53 cancer.
Collapse
Affiliation(s)
- Zhitong Lin
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road Shanghai, 201203, China
| | - Chen Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road Shanghai, 201203, China
| | - Ziqin Yan
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road Shanghai, 201203, China
| | - Jing Cheng
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Xiancheng Wang
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Feilong Zhou
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road Shanghai, 201203, China
| | - Xilin Lyu
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road Shanghai, 201203, China
| | - Shiyan Zhang
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Daizhou Zhang
- Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan, 250101, China
| | - Xiangjing Meng
- Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan, 250101, China.
| | - Yujun Zhao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China; Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan, 250101, China.
| |
Collapse
|
11
|
Patil BR, Nichinde CB, Chaudhari SS, Krishna GR, Kinage AK. Organocatalyzed [4 + 2] cycloaddition of α,β-unsaturated ketones and isatylidene malononitrile: accessing spiro[3-arylcyclohexanone]oxindole derivatives. RSC Adv 2024; 14:2873-2877. [PMID: 38239455 PMCID: PMC10793649 DOI: 10.1039/d3ra07652k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/29/2023] [Indexed: 01/22/2024] Open
Abstract
Herein, we developed a series of compounds featuring spiro[3-arylcyclohexanone]oxindoles through Barbas [4 + 2] cycloaddition reactions between isatylidene malononitrile and α,β-unsaturated ketones using l-proline as an organocatalyst. The reported methodology offers many advantages such as mild reaction conditions, diverse substrate scope with high yields, easy reaction setup, and use of easily synthesizable starting materials.
Collapse
Affiliation(s)
- Baliram R Patil
- Chemical Engineering and Process Development Division, Council of Scientific and Industrial Research-National Chemical Laboratory (CSIR-NCL) Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Chandrakant B Nichinde
- Chemical Engineering and Process Development Division, Council of Scientific and Industrial Research-National Chemical Laboratory (CSIR-NCL) Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Suryakant S Chaudhari
- Chemical Engineering and Process Development Division, Council of Scientific and Industrial Research-National Chemical Laboratory (CSIR-NCL) Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Gamidi Rama Krishna
- Organic Chemistry Division, Council of Scientific and Industrial Research-National Chemical Laboratory (CSIR-NCL) Pune 411008 India
| | - Anil K Kinage
- Chemical Engineering and Process Development Division, Council of Scientific and Industrial Research-National Chemical Laboratory (CSIR-NCL) Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
12
|
Luu JK, Johnson FD, Jajarmi J, Sihota T, Shi R, Lu D, Farnsworth D, Spencer SE, Negri GL, Morin GB, Lockwood WW. Characterizing the secretome of EGFR mutant lung adenocarcinoma. Front Oncol 2024; 13:1286821. [PMID: 38260835 PMCID: PMC10801028 DOI: 10.3389/fonc.2023.1286821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Background Lung cancer is the leading cause of cancer related death worldwide, mainly due to the late stage of disease at the time of diagnosis. Non-invasive biomarkers are needed to supplement existing screening methods to enable earlier detection and increased patient survival. This is critical to EGFR-driven lung adenocarcinoma as it commonly occurs in individuals who have never smoked and do not qualify for current screening protocols. Methods In this study, we performed mass spectrometry analysis of the secretome of cultured lung cells representing different stages of mutant EGFR driven transformation, from normal to fully malignant. Identified secreted proteins specific to the malignant state were validated using orthogonal methods and their clinical activity assessed in lung adenocarcinoma patient cohorts. Results We quantified 1020 secreted proteins, which were compared for differential expression between stages of transformation. We validated differentially expressed proteins at the transcriptional level in clinical tumor specimens, association with patient survival, and absolute concentration to yield three biomarker candidates: MDK, GDF15, and SPINT2. These candidates were validated using ELISA and increased levels were associated with poor patient survival specifically in EGFR mutant lung adenocarcinoma patients. Conclusions Our study provides insight into changes in secreted proteins during EGFR driven lung adenocarcinoma transformation that may play a role in the processes that promote tumor progression. The specific candidates identified can harnessed for biomarker use to identify high risk individuals for early detection screening programs and disease management for this molecular subgroup of lung adenocarcinoma patients.
Collapse
Affiliation(s)
- Jennifer K. Luu
- Department of Integrative Oncology, British Columbia (BC), Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Fraser D. Johnson
- Department of Integrative Oncology, British Columbia (BC), Cancer Research Institute, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Jana Jajarmi
- Department of Integrative Oncology, British Columbia (BC), Cancer Research Institute, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Tianna Sihota
- Department of Integrative Oncology, British Columbia (BC), Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Rocky Shi
- Department of Integrative Oncology, British Columbia (BC), Cancer Research Institute, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Daniel Lu
- Department of Integrative Oncology, British Columbia (BC), Cancer Research Institute, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Dylan Farnsworth
- Department of Integrative Oncology, British Columbia (BC), Cancer Research Institute, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Sandra E. Spencer
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Gian Luca Negri
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Gregg B. Morin
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - William W. Lockwood
- Department of Integrative Oncology, British Columbia (BC), Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia (UBC), Vancouver, BC, Canada
| |
Collapse
|
13
|
Cheng J, Yan Z, Jiang K, Liu C, Xu D, Lyu X, Hu X, Zhang S, Zhou Y, Li J, Zhao Y. Discovery of JN122, a Spiroindoline-Containing Molecule that Inhibits MDM2/p53 Protein-Protein Interaction and Exerts Robust In Vivo Antitumor Efficacy. J Med Chem 2023; 66:16991-17025. [PMID: 38062557 DOI: 10.1021/acs.jmedchem.3c01815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
MDM2 and MDM4 cooperatively and negatively regulate p53, while this pathway is often hijacked by cancer cells in favor of their survival. Blocking MDM2/p53 interaction with small-molecule inhibitors liberates p53 from MDM2 mediated degradation, which is an attractive strategy for drug discovery. We reported herein structure-based discovery of highly potent spiroindoline-containing MDM2 inhibitor (-)60 (JN122), which also exhibited moderate activities against MDM4/p53 interactions. In a panel of cancer cell lines harboring wild type p53, (-)60 efficiently promoted activation of p53 and its target genes, inhibited cell cycle progression, and induced cell apoptosis. Interestingly, (-)60 also promoted degradation of MDM4. More importantly, (-)60 exhibited good PK properties and exerted robust antitumor efficacies in a systemic mouse xenograft model of MOLM-13. Taken together, our study showcases a class of potent MDM2 inhibitors featuring a novel spiro-indoline scaffold, which is promising for future development targeting cancer cells with wild-type p53.
Collapse
Affiliation(s)
- Jing Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, P. R. China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, P. R. China
| | - Ziqin Yan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, P. R. China
| | - Kailong Jiang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, P. R. China
| | - Chen Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, P. R. China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Dehua Xu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, P. R. China
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124000, P. R. China
| | - Xilin Lyu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, P. R. China
| | - Xiaobei Hu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, P. R. China
| | - Shiyan Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, P. R. China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, P. R. China
| | - Yubo Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, P. R. China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, P. R. China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, P. R. China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, P. R. China
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124000, P. R. China
| | - Yujun Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, P. R. China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, P. R. China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
- Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, P. R. China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
14
|
Zhu LY, Sun J, Liu D, Yan CG. Construction of diverse spirooxindoles via a domino reaction of arylamines, but-2-ynedioates and 3-hydroxy-3-(indol-3-yl)indolin-2-ones. Org Biomol Chem 2023; 21:9392-9397. [PMID: 37981814 DOI: 10.1039/d3ob01560b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
An iodine-promoted domino reaction of arylamines/benzylamines, dialkyl but-2-ynedioates and 3-hydroxy-3-(indol-3-yl)indolin-2-ones showed very interesting molecular diversity. The reaction in acetonitrile at 65 °C in the presence of 30% mmol I2 resulted in spiro[indoline-3,1'-pyrido[4,3-b]indoles] in satisfactory yields. When anilines without para-substituents were used in the reaction, a direct substitution of the hydroxyl group to 2-(phenylamino)maleate at the para-position of aniline gave chain products in good yields. Additionally, similar reactions with benzylamines not only gave spiro[indoline-3,1'-pyrido[4,3-b]indoles], but also afforded spiro[indoline-3,1'-pyrano[4,3-b]indol]-2-ones in lower yields. A plausible domino annulation mechanism was rationally proposed for the formation of different kinds of polycyclic compounds.
Collapse
Affiliation(s)
- Ling-Yun Zhu
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Jing Sun
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Dan Liu
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Chao-Guo Yan
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| |
Collapse
|
15
|
Wu D, Li Y, Zheng L, Xiao H, Ouyang L, Wang G, Sun Q. Small molecules targeting protein-protein interactions for cancer therapy. Acta Pharm Sin B 2023; 13:4060-4088. [PMID: 37799384 PMCID: PMC10547922 DOI: 10.1016/j.apsb.2023.05.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/28/2023] [Accepted: 05/22/2023] [Indexed: 10/07/2023] Open
Abstract
Protein-protein interactions (PPIs) are fundamental to many biological processes that play an important role in the occurrence and development of a variety of diseases. Targeting the interaction between tumour-related proteins with emerging small molecule drugs has become an attractive approach for treatment of human diseases, especially tumours. Encouragingly, selective PPI-based therapeutic agents have been rapidly advancing over the past decade, providing promising perspectives for novel therapies for patients with cancer. In this review we comprehensively clarify the discovery and development of small molecule modulators of PPIs from multiple aspects, focusing on PPIs in disease, drug design and discovery strategies, structure-activity relationships, inherent dilemmas, and future directions.
Collapse
Affiliation(s)
- Defa Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Yang Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Lang Zheng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Huan Xiao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Liang Ouyang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Guan Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Qiu Sun
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
- West China Medical Publishers, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
16
|
Moreira J, Loureiro JB, Correia D, Palmeira A, Pinto MM, Saraiva L, Cidade H. Structure-Activity Relationship Studies of Chalcones and Diarylpentanoids with Antitumor Activity: Potency and Selectivity Optimization. Pharmaceuticals (Basel) 2023; 16:1354. [PMID: 37895825 PMCID: PMC10610188 DOI: 10.3390/ph16101354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
We previously reported that chalcone CM-M345 (1) and diarylpentanoid BP-C4 (2) induced p53-dependent growth inhibitory activity in human cancer cells. Herein, CM-M345 (1) and BP-C4 (2) analogues were designed and synthesized in order to obtain more potent and selective compounds. Compounds 16, 17, 19, 20, and 22-24 caused pronounced in vitro growth inhibitory activity in HCT116 cells (0.09 < GI50 < 3.10 μM). Chemical optimization of CM-M345 (1) led to the identification of compound 36 with increased selectivity for HCT116 cells expressing wild-type p53 compared to its p53-null isogenic derivative and low toxicity to non-tumor HFF-1 cells. The molecular modification of BP-C4 (2) resulted in the discovery of compound 16 with more pronounced antiproliferative activity and being selective for HCT116 cells with p53, as well as 17 with enhanced antiproliferative activity against HCT116 cells and low toxicity to non-tumor cells. Compound 16 behaved as an inhibitor of p53-MDM2 interaction, and compound 17 was shown to induce apoptosis, associated with an increase in cleaved PARP and decreased levels of the anti-apoptotic protein Bcl-2. In silico studies allowed us to predict the druglikeness and ADMET properties for 16 and 17. Docking and molecular dynamics studies predicted that 16 could bind stably to the MDM2 binding pocket.
Collapse
Affiliation(s)
- Joana Moreira
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal; (J.M.); (D.C.); (A.P.); (M.M.P.)
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal
| | - Joana B. Loureiro
- Laboratório Associado para a Química Verde (LAQV)/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
| | - Danilo Correia
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal; (J.M.); (D.C.); (A.P.); (M.M.P.)
| | - Andreia Palmeira
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal; (J.M.); (D.C.); (A.P.); (M.M.P.)
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal
| | - Madalena M. Pinto
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal; (J.M.); (D.C.); (A.P.); (M.M.P.)
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal
| | - Lucília Saraiva
- Laboratório Associado para a Química Verde (LAQV)/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
| | - Honorina Cidade
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal; (J.M.); (D.C.); (A.P.); (M.M.P.)
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal
| |
Collapse
|
17
|
Wang BR, Li YB, Zhang Q, Gao D, Tian P, Li Q, Yin L. Copper(I)-catalyzed asymmetric 1,3-dipolar cycloaddition of 1,3-enynes and azomethine ylides. Nat Commun 2023; 14:4688. [PMID: 37542041 PMCID: PMC10403559 DOI: 10.1038/s41467-023-40409-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/25/2023] [Indexed: 08/06/2023] Open
Abstract
Herein, we report a copper(I)-catalyzed asymmetric 1,3-dipolar cycloaddition of azomethine ylides and 1,3-enynes, which provides a series of chiral poly-substituted pyrrolidines in high regio-, diastereo-, and enantioselectivities. Both 4-aryl-1,3-enynes and 4-silyl-1,3-enynes serve as suitable dipolarophiles while 4-alkyl-1,3-enynes are inert. Moreover, the method is successfully applied in the construction of both tetrasubstituted stereogenic carbon centers and chiral spiro pyrrolidines. The DFT calculations are also conducted, which imply a concerted mechanism rather than a stepwise mechanism. Finally, various transformations started from the pyrrolidine bearing a triethylsilylethynyl group and centered on the alkyne group are achieved, which compensates for the inertness of 4-alkyl-1,3-enynes in the present reaction.
Collapse
Affiliation(s)
- Bo-Ran Wang
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yan-Bo Li
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Qi Zhang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Dingding Gao
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Ping Tian
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Qinghua Li
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Liang Yin
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
| |
Collapse
|
18
|
Hussain R, Rehman W, Rahim F, Mahmoud AM, Alanazi MM, Khan S, Rasheed L, Khan I. Synthetic transformation of 6-Fluoroimidazo[1,2-a]Pyridine-3-carbaldehyde into 6-Fluoroimidazo[1,2-a]Pyridine-Oxazole Derivatives: In vitro urease inhibition and in silico study. Saudi Pharm J 2023; 31:101667. [PMID: 37448838 PMCID: PMC10336670 DOI: 10.1016/j.jsps.2023.05.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 05/27/2023] [Indexed: 07/15/2023] Open
Abstract
Purpose Ulcer is a serious disease that is caused due to different bacteria and over usage of various NSAIDs which caused to reduce the defensive system of stomach. Therefore, some novel series are needed to overcome these issues. Methods Oxazole-based imidazopyridine scaffolds (4a-p) were designed and synthesized by two step reaction protocol and then subjected to urease inhibition profile (in vitro). All the newly afforded analogs (4a-p) were found potent and demonstrated moderate to significant inhibition profile. Results Particularly, the analogs 4i (IC50 = 5.68 ± 1.66 μM), 4o (IC50 = 7.11 ± 1.24 μM), 4 g (IC50 = 9.41 ± 1.19 μM) and 4 h (IC50 = 10.45 ± 2.57 μM) were identified to be more potent than standard thiourea drug (IC50 = 21.37 ± 1.76 μM). Additionally, the variety of spectroscopic tools such as 1H NMR, 13C NMR and HREI-MS analysis were employed to confirm the precise structures of all the newly afforded analogs. Discussion The structure-activity relationship (SAR) studies showed that analogs possess the substitution either capable of furnishing strong HB like -OH or had strong EW nature such as -CF3 & -NO2 groups displayed superior inhibitory potentials than the standard thiourea drug. A good PLI (protein-ligand interaction) profile was shown by most active analogs when subjected to molecular study against corresponding target with key significant interactions such as pi-pi stacking, pi-pi T shaped and hydrogen bonding.
Collapse
Affiliation(s)
- Rafaqat Hussain
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Wajid Rehman
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Fazal Rahim
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Ayman M. Mahmoud
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Shoaib Khan
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Liaqat Rasheed
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Imran Khan
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| |
Collapse
|
19
|
Albadari N, Xie Y, Liu T, Wang R, Gu L, Zhou M, Wu Z, Li W. Synthesis and biological evaluation of dual MDM2/XIAP inhibitors based on the tetrahydroquinoline scaffold. Eur J Med Chem 2023; 255:115423. [PMID: 37130471 PMCID: PMC10246915 DOI: 10.1016/j.ejmech.2023.115423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/04/2023]
Abstract
Overexpression of both human murine double minute 2 (MDM2) and X-linked inhibitor of apoptosis protein (XIAP) is detected in tumor cells from several cancer types, including childhood acute leukemia lymphoma (ALL), neuroblastoma (NB), and prostate cancer, and is associated with disease progression and treatment resistance. In this report, we described the design and syntheses of a series of dual MDM2/XIAP inhibitors based on the tetrahydroquinoline scaffold from our previously reported lead compound JW-2-107 and tested their cytotoxicity in a panel of human cancer cell lines. The best compound identified in this study is compound 3e. Western blot analyses demonstrated that treatments with 3e decreased MDM2 and XIAP protein levels and increased expression of p53, resulting in cancer cell growth inhibition and cell death. Furthermore, compound 3e effectively inhibited tumor growth in vivo when tested using a human 22Rv1 prostate cancer xenograft model. Collectively, results in this study strongly suggest that the tetrahydroquinoline scaffold, represented by 3e and our earlier lead compound JW-2-107, has abilities to dual target MDM2 and XIAP and is promising for further preclinical development.
Collapse
Affiliation(s)
- Najah Albadari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, United States
| | - Yang Xie
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, United States
| | - Tao Liu
- Department of Pediatrics and Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, 30322, United States
| | - Rui Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, United States
| | - Lubing Gu
- Department of Pediatrics and Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, 30322, United States
| | - Muxiang Zhou
- Department of Pediatrics and Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, 30322, United States.
| | - Zhongzhi Wu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, United States.
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, United States.
| |
Collapse
|
20
|
Pellot Ortiz KI, Rechberger JS, Nonnenbroich LF, Daniels DJ, Sarkaria JN. MDM2 Inhibition in the Treatment of Glioblastoma: From Concept to Clinical Investigation. Biomedicines 2023; 11:1879. [PMID: 37509518 PMCID: PMC10377337 DOI: 10.3390/biomedicines11071879] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Inhibition of the interaction between MDM2 and p53 has emerged as a promising strategy for combating cancer, including the treatment of glioblastoma (GBM). Numerous MDM2 inhibitors have been developed and are currently undergoing rigorous testing for their potential in GBM therapy. Encouraging results from studies conducted in cell culture and animal models suggest that MDM2 inhibitors could effectively treat a specific subset of GBM patients with wild-type TP53 or functional p53. Combination therapy with clinically established treatment modalities such as radiation and chemotherapy offers the potential to achieve a more profound therapeutic response. Furthermore, an increasing array of other molecularly targeted therapies are being explored in combination with MDM2 inhibitors to increase the effects of individual treatments. While some MDM2 inhibitors have progressed to early phase clinical trials in GBM, their efficacy, alone and in combination, is yet to be confirmed. In this article, we present an overview of MDM2 inhibitors currently under preclinical and clinical investigation, with a specific focus on the drugs being assessed in ongoing clinical trials for GBM patients.
Collapse
Affiliation(s)
| | - Julian S Rechberger
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
| | - Leo F Nonnenbroich
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Hopp Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), 69120 Heidelberg, Germany
| | - David J Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
21
|
Pourebrahim R, Heinz Montoya R, Alaniz Z, Ostermann L, Lin PP, Liu B, Ayoub E, Burks JK, Andreeff M. Mdm2/p53 levels in bone marrow mesenchymal stromal cells are essential for maintaining the hematopoietic niche in response to DNA damage. Cell Death Dis 2023; 14:371. [PMID: 37353528 PMCID: PMC10290070 DOI: 10.1038/s41419-023-05844-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 06/25/2023]
Abstract
Mesenchymal stromal cells (MSCs) are a key component of the bone marrow (BM) niche, providing essential support required for the maintenance of hematopoietic stem cells. To advance our understanding of physiological functions of p53 and Mdm2 in BM-MSCs, we developed traceable conditional mouse models targeting Mdm2 and/or Trp53 in vivo. We demonstrate that Mdm2 is essential for the emergence, maintenance, and hematopoietic support of BM-MSCs. Mdm2 haploinsufficiency in BM-MSCs resulted in genotoxic stress-associated thrombocytopenia, suggesting a functional role for Mdm2 in hematopoiesis. In a syngeneic mouse model of acute myeloid leukemia (AML), Trp53 deletion in BM-MSCs improved survival, and protected BM against hematopoietic toxicity from a murine Mdm2i, DS-5272. The transcriptional changes were associated with dysregulation of glycolysis, gluconeogenesis, and Hif-1α in BM-MSCs. Our results reveal a physiologic function of Mdm2 in BM-MSC, identify a previously unknown role of p53 pathway in BM-MSC-mediated support in AML and expand our understanding of the mechanism of hematopoietic toxicity of MDM2is.
Collapse
Affiliation(s)
- Rasoul Pourebrahim
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rafael Heinz Montoya
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zoe Alaniz
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lauren Ostermann
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patrick P Lin
- Department of Orthopedic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bin Liu
- Department of Epigenetic and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Edward Ayoub
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jared K Burks
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
22
|
Ali TE, Assiri MA, Alqahtani MN, Shati AA, Alfaifi MY, Elbehairi SEI. Recyclization of morpholinochromonylidene-thiazolidinone using nucleophiles: facile synthesis, cytotoxic evaluation, apoptosis, cell cycle and molecular docking studies of a novel series of azole, azine, azepine and pyran derivatives. RSC Adv 2023; 13:18658-18675. [PMID: 37346943 PMCID: PMC10281007 DOI: 10.1039/d3ra02777e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023] Open
Abstract
A convenient synthetic approach for construction of a novel series of substituted azoles, azines, azepines and pyrans clubbed with a morpholinothiazolidinone hybrid was achieved. The methodology depended on ring-opening and ring-closure (RORC) of chromone ring in 2-(morpholinoimino)-5-[(4-oxo-4H-chromen-3-yl)methylene]-3-phenylthiazolidin-4-one (3) through its reaction with a series of nitrogen and carbon nucleophiles under mild reaction conditions. The cytotoxic effects of all products were evaluated against three cancerous cell lines (MCF-7, HepG-2 and SKOV-3) by the standard SRB method. Fortunately, the products 7, 11, 12, 15, 19, 22, 26 and 28 were found to be the most active against all cancer cell lines, comparable to doxorubicin. Apoptosis was determined using flow cytometry along with cell cycle analysis and supported by molecular docking. The products 7, 11, 12, 15, 19, 22, 26 and 28 induced a significant early-and late-apoptotic effect against all tumor cells. In addition, these products preferred to arrest all cancer cells in the G1 and G2 phases. Finally, molecular docking was attempted to investigate the binding mode of products 12 and 22 with p53-MDM2 protein receptor.
Collapse
Affiliation(s)
- Tarik E Ali
- Department of Chemistry, Faculty of Science, King Khalid University Abha 61421 Saudi Arabia
| | - Mohammed A Assiri
- Department of Chemistry, Faculty of Science, King Khalid University Abha 61421 Saudi Arabia
| | - Maha N Alqahtani
- Department of Chemistry, Faculty of Science, King Khalid University Abha 61421 Saudi Arabia
| | - Ali A Shati
- Department of Biology, Faculty of Science, King Khalid University Abha 61421 Saudi Arabia
| | - Mohammad Y Alfaifi
- Department of Biology, Faculty of Science, King Khalid University Abha 61421 Saudi Arabia
| | - Serag E I Elbehairi
- Department of Biology, Faculty of Science, King Khalid University Abha 61421 Saudi Arabia
| |
Collapse
|
23
|
Dewis LI, Rudrakshula M, Williams C, Chiarparin E, Myers EL, Butts CP, Aggarwal VK. Conformationally Controlled sp 3 -Hydrocarbon-Based α-Helix Mimetics. Angew Chem Int Ed Engl 2023; 62:e202301209. [PMID: 37017133 PMCID: PMC10953326 DOI: 10.1002/anie.202301209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/06/2023]
Abstract
With over 60 % of protein-protein interfaces featuring an α-helix, the use of α-helix mimetics as inhibitors of these interactions is a prevalent therapeutic strategy. However, methods to control the conformation of mimetics, thus enabling maximum efficacy, can be restrictive. Alternatively, conformation can be controlled through the introduction of destabilizing syn-pentane interactions. This tactic, which is often adopted by Nature, is not a common feature of lead optimization owing to the significant synthetic effort required. Through assembly-line synthesis with NMR and computational analysis, we have shown that alternating syn-anti configured contiguously substituted hydrocarbons, by avoiding syn-pentane interactions, adopt well-defined conformations that present functional groups in an arrangement that mimics the α-helix. The design of a p53 mimetic that binds to Mdm2 with moderate to good affinity, demonstrates the therapeutic promise of these scaffolds.
Collapse
Affiliation(s)
- Lydia I. Dewis
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | | | | | | | - Eddie L. Myers
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
- School of Biological and Chemical SciencesUniversity of GalwayUniversity RoadGalwayIreland
| | - Craig P. Butts
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | | |
Collapse
|
24
|
Han X, Sun Y. PROTACs: A novel strategy for cancer drug discovery and development. MedComm (Beijing) 2023; 4:e290. [PMID: 37261210 PMCID: PMC10227178 DOI: 10.1002/mco2.290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 06/02/2023] Open
Abstract
Proteolysis targeting chimera (PROTAC) technology has become a powerful strategy in drug discovery, especially for undruggable targets/proteins. A typical PROTAC degrader consists of three components: a small molecule that binds to a target protein, an E3 ligase ligand (consisting of an E3 ligase and its small molecule recruiter), and a chemical linker that hooks first two components together. In the past 20 years, we have witnessed advancement of multiple PROTAC degraders into the clinical trials for anticancer therapies. However, one of the major challenges of PROTAC technology is that only very limited number of E3 ligase recruiters are currently available as E3 ligand for targeted protein degradation (TPD), although human genome encodes more than 600 E3 ligases. Thus, there is an urgent need to identify additional effective E3 ligase recruiters for TPD applications. In this review, we summarized the existing RING-type E3 ubiquitin ligase and their small molecule recruiters that act as effective E3 ligands of PROTAC degraders and their application in anticancer drug discovery. We believe that this review could serve as a reference in future development of efficient E3 ligands of PROTAC technology for cancer drug discovery and development.
Collapse
Affiliation(s)
- Xin Han
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionChina National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational MedicineZhejiang University School of MedicineHangzhouChina
- Cancer Center of Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for CANCERZhejiang ProvinceChina
- Key Laboratory of Molecular Biology in Medical SciencesZhejiang ProvinceChina
| | - Yi Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionChina National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational MedicineZhejiang University School of MedicineHangzhouChina
- Cancer Center of Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for CANCERZhejiang ProvinceChina
- Key Laboratory of Molecular Biology in Medical SciencesZhejiang ProvinceChina
- Research Center for Life Science and Human HealthBinjiang Institute of Zhejiang UniversityHangzhouChina
| |
Collapse
|
25
|
Chang X, Liu XT, Li F, Yang Y, Chung LW, Wang CJ. Electron-rich benzofulvenes as effective dipolarophiles in copper(i)-catalyzed asymmetric 1,3-dipolar cycloaddition of azomethine ylides. Chem Sci 2023; 14:5460-5469. [PMID: 37234882 PMCID: PMC10207880 DOI: 10.1039/d3sc00435j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
A series of benzofulvenes without any electron-withdrawing substituents were employed as 2π-type dipolarophiles for the first time to participate in Cu(i)-catalyzed asymmetric 1,3-dipolar cycloaddition (1,3-DC) reactions of azomethine ylides. An intrinsic non-benzenoid aromatic characteristic from benzofulvenes serves as a key driving force for activation of the electron-rich benzofulvenes. Utilizing the current methodology, a wide range of multi-substituted chiral spiro-pyrrolidine derivatives containing two contiguous all-carbon quaternary centers were formed in good yield with exclusive chemo-/regioselectivity and high to excellent stereoselectivity. Computational mechanistic studies elucidate the origin of the stereochemical outcome and the chemoselectivity, in which the thermostability of these cycloaddition products is the major factor.
Collapse
Affiliation(s)
- Xin Chang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry Shanghai 230021 China
| | - Xue-Tao Liu
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry Shanghai 230021 China
| | - Fangfang Li
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 China
| | - Yuhong Yang
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 China
| | - Lung Wa Chung
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 China
| | - Chun-Jiang Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry Shanghai 230021 China
| |
Collapse
|
26
|
Koo SY, Park EJ, Noh HJ, Jo SM, Ko BK, Shin HJ, Lee CW. Ubiquitination Links DNA Damage and Repair Signaling to Cancer Metabolism. Int J Mol Sci 2023; 24:ijms24098441. [PMID: 37176148 PMCID: PMC10179089 DOI: 10.3390/ijms24098441] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Changes in the DNA damage response (DDR) and cellular metabolism are two important factors that allow cancer cells to proliferate. DDR is a set of events in which DNA damage is recognized, DNA repair factors are recruited to the site of damage, the lesion is repaired, and cellular responses associated with the damage are processed. In cancer, DDR is commonly dysregulated, and the enzymes associated with DDR are prone to changes in ubiquitination. Additionally, cellular metabolism, especially glycolysis, is upregulated in cancer cells, and enzymes in this metabolic pathway are modulated by ubiquitination. The ubiquitin-proteasome system (UPS), particularly E3 ligases, act as a bridge between cellular metabolism and DDR since they regulate the enzymes associated with the two processes. Hence, the E3 ligases with high substrate specificity are considered potential therapeutic targets for treating cancer. A number of small molecule inhibitors designed to target different components of the UPS have been developed, and several have been tested in clinical trials for human use. In this review, we discuss the role of ubiquitination on overall cellular metabolism and DDR and confirm the link between them through the E3 ligases NEDD4, APC/CCDH1, FBXW7, and Pellino1. In addition, we present an overview of the clinically important small molecule inhibitors and implications for their practical use.
Collapse
Affiliation(s)
- Seo-Young Koo
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Eun-Ji Park
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Hyun-Ji Noh
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Su-Mi Jo
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Bo-Kyoung Ko
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Hyun-Jin Shin
- Team of Radiation Convergence Research, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Chang-Woo Lee
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
- SKKU Institute for Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
27
|
Mi D, Li Y, Gu H, Li Y, Chen Y. Current advances of small molecule E3 ligands for proteolysis-targeting chimeras design. Eur J Med Chem 2023; 256:115444. [PMID: 37178483 DOI: 10.1016/j.ejmech.2023.115444] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023]
Abstract
Proteolysis-targeting chimeras (PROTACs) as an emerging drug discovery modality has been extensively concerned in recent years. Over 20 years development, accumulated studies have demonstrated that PROTACs show unique advantages over traditional therapy in operable target scope, efficacy, and overcoming drug resistance. However, only limited E3 ligases, the essential elements of PROTACs, have been harnessed for PROTACs design. The optimization of novel ligands for well-established E3 ligases and the employment of additional E3 ligases remain urgent challenges for investigators. Here, we systematically summarize the current status of E3 ligases and corresponding ligands for PROTACs design with a focus on their discovery history, design principles, application benefits, and potential defects. Meanwhile, the prospects and future directions for this field are briefly discussed.
Collapse
Affiliation(s)
- Dazhao Mi
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yuzhan Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Haijun Gu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yan Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yihua Chen
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
28
|
Zanjirband M, Rahgozar S, Aberuyi N. miR-16-5p enhances sensitivity to RG7388 through targeting PPM1D expression (WIP1) in Childhood Acute Lymphoblastic Leukemia. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:242-256. [PMID: 37457129 PMCID: PMC10344722 DOI: 10.20517/cdr.2022.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/02/2023] [Accepted: 04/28/2023] [Indexed: 07/18/2023]
Abstract
Aim: Given the encouraging results of the p53-Mdm2 inhibitor RG7388 in clinical trials and the vital function of miR-16-5p in suppressing cell proliferation, the aim of the present study was to investigate the combined impact of RG7388 and miR-16-5p overexpression on the childhood acute lymphoblastic leukemia (chALL). Methods: miRTarBase and miRDB, along with KEGG and STRING databases, were used to predict miR-16-5p target genes and explore protein-protein interaction networks, respectively. B- and T-lymphoblastic cell lines, in addition to patient primary cells, were treated with RG7388. Ectopic overexpression of miR-16-5p in Nalm6 cell line was induced through cell electroporation and transfection of microRNA mimics was confirmed by qRT-PCR. Cell viability was evaluated using the MTT assay. Western blot analyses were performed to evaluate the effects of RG7388 and miR-16-5p upregulation on the protein levels of p53 and its downstream target genes in chALL cells. Paired sample t-test was employed for statistical analyses. Results: MTT assay showed RG7388-induced cytotoxicity in wild-type p53 Nalm6 cell line and p53 functional patient primary cells. However, CCRF-CEM and p53 non-functional leukemic cells indicated drug resistance. Western blot analyses validated the bioinformatics results, confirming the downregulation of WIP1, p53 stabilization, as well as overexpression of p21WAF1 and Mdm2 proteins in Nalm6 cells transfected with miR-16-5p. Moreover, enhanced sensitivity to RG7388 was observed in the transfected cells. Conclusion: This is the first study indicating the mechanistic importance of miR-16-5p overexpression in chALL and its inhibitory role in leukemia treatment when combined with the p53-Mdm2 antagonist, RG7388. These findings might be useful for researchers and clinicians to pave the way for better management of chALL.
Collapse
Affiliation(s)
- Maryam Zanjirband
- Correspondence to: Dr. Soheila Rahgozar, Dr. Maryam Zanjirband, Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar Jerib Avenue, Isfahan 15100, Iran. E-mail: ;
| | - Soheila Rahgozar
- Correspondence to: Dr. Soheila Rahgozar, Dr. Maryam Zanjirband, Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar Jerib Avenue, Isfahan 15100, Iran. E-mail: ;
| | | |
Collapse
|
29
|
Monti A, Vitagliano L, Caporale A, Ruvo M, Doti N. Targeting Protein-Protein Interfaces with Peptides: The Contribution of Chemical Combinatorial Peptide Library Approaches. Int J Mol Sci 2023; 24:7842. [PMID: 37175549 PMCID: PMC10178479 DOI: 10.3390/ijms24097842] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/22/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Protein-protein interfaces play fundamental roles in the molecular mechanisms underlying pathophysiological pathways and are important targets for the design of compounds of therapeutic interest. However, the identification of binding sites on protein surfaces and the development of modulators of protein-protein interactions still represent a major challenge due to their highly dynamic and extensive interfacial areas. Over the years, multiple strategies including structural, computational, and combinatorial approaches have been developed to characterize PPI and to date, several successful examples of small molecules, antibodies, peptides, and aptamers able to modulate these interfaces have been determined. Notably, peptides are a particularly useful tool for inhibiting PPIs due to their exquisite potency, specificity, and selectivity. Here, after an overview of PPIs and of the commonly used approaches to identify and characterize them, we describe and evaluate the impact of chemical peptide libraries in medicinal chemistry with a special focus on the results achieved through recent applications of this methodology. Finally, we also discuss the role that this methodology can have in the framework of the opportunities, and challenges that the application of new predictive approaches based on artificial intelligence is generating in structural biology.
Collapse
Affiliation(s)
- Alessandra Monti
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Napoli, Italy; (A.M.); (L.V.); (M.R.)
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Napoli, Italy; (A.M.); (L.V.); (M.R.)
| | - Andrea Caporale
- Institute of Crystallography (IC), National Research Council (CNR), Strada Statale 14 km 163.5, Basovizza, 34149 Triese, Italy;
| | - Menotti Ruvo
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Napoli, Italy; (A.M.); (L.V.); (M.R.)
| | - Nunzianna Doti
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Napoli, Italy; (A.M.); (L.V.); (M.R.)
| |
Collapse
|
30
|
Pourebrahim R, Montoya RH, Alaniz Z, Ostermann L, Lin PP, Liu B, Ayoub E, Burks JK, Andreeff M. Mdm2/p53 levels in bone marrow mesenchymal stromal cells is essential for maintaining the hematopoietic niche in response to DNA damage. RESEARCH SQUARE 2023:rs.3.rs-2544760. [PMID: 36909480 PMCID: PMC10002809 DOI: 10.21203/rs.3.rs-2544760/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Mesenchymal stromal cells (MSCs) are a key component of the bone marrow (BM) niche, providing essential support required for maintenance of hematopoietic stem cells. To advance our understanding of physiological functions of p53 and Mdm2 in BM-MSCs, we developed traceable conditional mouse models targeting Mdm2 and/or Trp53 in vivo . We demonstrate that Mdm2 is essential for the emergence, maintenance and hematopoietic support of BM-MSCs. Mdm2 haploinsufficiency in BM-MSCs resulted in genotoxic stress-associated thrombocytopenia, suggesting a functional role for Mdm2 in hematopoiesis. In a syngeneic mouse model of acute myeloid leukemia (AML), Trp53 deletion in BM-MSCs improved survival, and protected BM against hematopoietic toxicity from a murine Mdm2i, DS-5272. The transcriptional changes were associated with dysregulation of glycolysis, gluconeogenesis, and Hif-1α in BM-MSCs. Our results reveal a physiologic function of Mdm2 in BM-MSC, identify a previously unknown role of p53 pathway in BM-MSC-mediated support in AML and expand our understanding of the mechanism of hematopoietic toxicity of MDM2is.
Collapse
Affiliation(s)
| | | | | | | | | | - Bin Liu
- Epigenetic and Molecular Carcinogenesis
| | | | | | | |
Collapse
|
31
|
Sharma S, Kumar P. Decoding the Role of MDM2 as a Potential Ubiquitin E3 Ligase and Identifying the Therapeutic Efficiency of Alkaloids against MDM2 in Combating Glioblastoma. ACS OMEGA 2023; 8:5072-5087. [PMID: 36777618 PMCID: PMC9910072 DOI: 10.1021/acsomega.2c07904] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/17/2023] [Indexed: 05/28/2023]
Abstract
Glioblastomas (GBMs) represent the most aggressive form of brain tumor arising from the malignant transformation of astrocytes. Despite various advancements, treatment options remain limited to chemotherapy and radiotherapy followed by surgery giving an overall survival of 14-15 months. These therapies are somewhere restricted in giving a better survival and cure. There is a need for new therapeutics that could potentially target GBM based on molecular pathways and pathology. Here, ubiquitin E3 ligases can be used as targets as they bind a wide array of substrates and therefore can be attractive targets for new inhibitors. Through this study, we have tried to sort various ubiquitin E3 ligases based on their expression, pathways to which these ligases are associated, and mutational frequencies, and then we tried to screen potent inhibitors against the most favorable E3 ligase as very few studies are available concerning inhibition of E3 ligase in GBM. Our study found MDM2 to be the most ideal E3 ligase and further we tried to target MDM2 against various compounds under the alkaloid class. Molecular Docking and MD simulations combined with ADMET properties and BBB scores revealed that only evodiamine and sanguinarine were effective in inhibiting MDM2. We also tried to give a proposed mechanism of how these inhibitors mediate the p53 signaling in GBM. Therefore, the new scaffolds predicted by the computational approach could help in designing promising therapeutic agents targeting MDM2 in glioblastoma.
Collapse
|
32
|
Wang J, Mao J, Wang M, Le X, Wang Y. Explore drug-like space with deep generative models. Methods 2023; 210:52-59. [PMID: 36682423 DOI: 10.1016/j.ymeth.2023.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
The process of design/discovery of drugs involves the identification and design of novel molecules that have the desired properties and bind well to a given disease-relevant target. One of the main challenges to effectively identify potential drug candidates is to explore the vast drug-like chemical space to find novel chemical structures with desired physicochemical properties and biological characteristics. Moreover, the chemical space of currently available molecular libraries is only a small fraction of the total possible drug-like chemical space. Deep molecular generative models have received much attention and provide an alternative approach to the design and discovery of molecules. To efficiently explore the drug-like space, we first constructed the drug-like dataset and then performed the generative design of drug-like molecules using a Conditional Randomized Transformer approach with the molecular access system (MACCS) fingerprint as a condition and compared it with previously published molecular generative models. The results show that the deep molecular generative model explores the wider drug-like chemical space. The generated drug-like molecules share the chemical space with known drugs, and the drug-like space captured by the combination of quantitative estimation of drug-likeness (QED) and quantitative estimate of protein-protein interaction targeting drug-likeness (QEPPI) can cover a larger drug-like space. Finally, we show the potential application of the model in design of inhibitors of MDM2-p53 protein-protein interaction. Our results demonstrate the potential application of deep molecular generative models for guided exploration in drug-like chemical space and molecular design.
Collapse
Affiliation(s)
- Jianmin Wang
- The Interdisciplinary Graduate Program in Integrative Biotechnology and Translational Medicine, Yonsei University, Incheon 21983, Korea
| | - Jiashun Mao
- The Interdisciplinary Graduate Program in Integrative Biotechnology and Translational Medicine, Yonsei University, Incheon 21983, Korea
| | - Meng Wang
- Department of Biostatistics, School of Public Health, Harbin Medical University
| | - Xiangyang Le
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Yunyun Wang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China
| |
Collapse
|
33
|
Ivanenkov YA, Kukushkin ME, Beloglazkina AA, Shafikov RR, Barashkin AA, Ayginin AA, Serebryakova MS, Majouga AG, Skvortsov DA, Tafeenko VA, Beloglazkina EK. Synthesis and Biological Evaluation of Novel Dispiro-Indolinones with Anticancer Activity. Molecules 2023; 28:molecules28031325. [PMID: 36770991 PMCID: PMC9919490 DOI: 10.3390/molecules28031325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Novel variously substituted thiohydantoin-based dispiro-indolinones were prepared using a regio- and diastereoselective synthetic route from 5-arylidene-2-thiohydantoins, isatines, and sarcosine. The obtained molecules were subsequently evaluated in vitro against the cancer cell lines LNCaP, PC3, HCTwt, and HCT(-/-). Several compounds demonstrated a relatively high cytotoxic activity vs. LNCaP cells (IC50 = 1.2-3.5 µM) and a reasonable selectivity index (SI = 3-10). Confocal microscopy revealed that the conjugate of propargyl-substituted dispiro-indolinone with the fluorescent dye Sulfo-Cy5-azide was mainly localized in the cytoplasm of HEK293 cells. P388-inoculated mice and HCT116-xenograft BALB/c nude mice were used to evaluate the anticancer activity of compound 29 in vivo. Particularly, the TGRI value for the P388 model was 93% at the final control timepoint. No mortality was registered among the population up to day 31 of the study. In the HCT116 xenograft model, the compound (170 mg/kg, i.p., o.d., 10 days) provided a T/C ratio close to 60% on day 8 after the treatment was completed. The therapeutic index-estimated as LD50/ED50-for compound 29 in mice was ≥2.5. Molecular docking studies were carried out to predict the possible binding modes of the examined molecules towards MDM2 as the feasible biological target. However, such a mechanism was not confirmed by Western blot data and, apparently, the synthesized compounds have a different mechanism of cytotoxic action.
Collapse
Affiliation(s)
- Yan A. Ivanenkov
- Chemistry Department, Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
- The Federal State Unitary Enterprise Dukhov Automatics Research Institute (VNIIA), 22. ul. Sushchevskaya, 127055 Moscow, Russia
| | - Maxim E. Kukushkin
- Chemistry Department, Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | | | - Radik R. Shafikov
- Chemistry Department, Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, GSP-7, Ulitsa Mklukho-Maklaya 16/10, 17997 Moscow, Russia
- A. N. Belozersky Research Institute of Physico-Chemical Biology MSU, Leninskye Gory, House 1, Building 40, 119992 Moscow, Russia
| | - Alexander A. Barashkin
- Chemistry Department, Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Andrey A. Ayginin
- Chemistry Department, Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Marina S. Serebryakova
- Chemistry Department, Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Alexander G. Majouga
- College of New Materials and Nanotechnologies, National University of Science and Technology MISiS, 119049 Moscow, Russia
| | - Dmitry A. Skvortsov
- Chemistry Department, Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Viktor A. Tafeenko
- Chemistry Department, Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Elena K. Beloglazkina
- Chemistry Department, Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|
34
|
Design and Synthesis of Novel Helix Mimetics Based on the Covalent H-Bond Replacement and Amide Surrogate. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020780. [PMID: 36677838 PMCID: PMC9863496 DOI: 10.3390/molecules28020780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/27/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
A novel hydrogen bond surrogate-based (HBS) α-helix mimetic was designed by the combination of covalent H-bond replacement and the use of an ether linkage to substitute an amide bond within a short peptide sequence. The new helix template could be placed in position other than the N-terminus of a short peptide, and the CD studies demonstrate that the template adopts stable conformations in aqueous buffer at exceptionally high temperatures.
Collapse
|
35
|
Lei L, Lu Q, Ma G, Li T, Deng J, Li W. P53 protein and the diseases in central nervous system. Front Genet 2023; 13:1051395. [PMID: 36712862 PMCID: PMC9880595 DOI: 10.3389/fgene.2022.1051395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/08/2022] [Indexed: 01/11/2023] Open
Abstract
P53 protein is the product of P53 gene, which is a well acknowledged tumor suppressor gene. The function of P53 and the relevant mechanisms of anti-neoplasm have raised the interest of researchers since many years ago. It is demonstrated that P53 is a basic cell cycle regulator and a strong inhibitor for versatile cancers in humans. However, most research focuses on other organs and systems instead of the central nervous system (CNS). In fact, in recent years, more and more studies have been suggesting that P53 plays a significant role in multiple CNS tumors and other diseases and disorders such as cerebral stroke and neurodegenerative diseases. In this work, we mainly reviewed the P53's relationship with CNS tumors, cerebral stroke and neurodegenerative diseases, together with the relevant mechanisms, aiming to summarize the research achievements and providing new insight to the future study on diseases in CNS.
Collapse
Affiliation(s)
- Li Lei
- The Affiliated Hospital of Kunming University of Science and Technology, The Department of Neurosurgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Qixiong Lu
- The Affiliated Hospital of Kunming University of Science and Technology, The Department of Neurosurgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Guifang Ma
- Department of Ear, Nose and Throat (ENT) and Head and Neck (HN) Surgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Tao Li
- The Affiliated Hospital of Kunming University of Science and Technology, The Department of Neurosurgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Jiahong Deng
- Department of Ear, Nose and Throat (ENT) and Head and Neck (HN) Surgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China,*Correspondence: Jiahong Deng, ; Weijia Li,
| | - Weijia Li
- The Affiliated Hospital of Kunming University of Science and Technology, The Department of Neurosurgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China,*Correspondence: Jiahong Deng, ; Weijia Li,
| |
Collapse
|
36
|
Shiah JV, Johnson DE, Grandis JR. Transcription Factors and Cancer: Approaches to Targeting. Cancer J 2023; 29:38-46. [PMID: 36693157 PMCID: PMC9881838 DOI: 10.1097/ppo.0000000000000639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
ABSTRACT Cancer is defined by the presence of uncontrollable cell growth, whereby improper proliferative signaling has overcome regulation by cellular mechanisms. Transcription factors are uniquely situated at the helm of signaling, merging extracellular stimuli with intracellular responses. Therefore, this class of proteins plays a pivotal role in coordinating the correct gene expression levels for maintaining normal cellular functions. Dysregulation of transcription factor activity unsurprisingly drives tumorigenesis and oncogenic transformation. Although this imparts considerable therapeutic potential to targeting transcription factors, their lack of enzymatic activity renders intervention challenging and has contributed to a sense that transcription factors are "undruggable." Yet, enduring efforts to elucidate strategies for targeting transcription factors as well as a deeper understanding of their interactions with binding partners have led to advancements that are emerging to counter this narrative. Here, we highlight some of these approaches, focusing primarily on therapeutics that have advanced to the clinic.
Collapse
Affiliation(s)
- Jamie V Shiah
- From the Department Otolaryngology-Head and Neck Surgery, University of California at San Francisco, San Francisco, CA
| | | | | |
Collapse
|
37
|
Sanders LM, Chandra R, Zebarjadi N, Beale HC, Lyle AG, Rodriguez A, Kephart ET, Pfeil J, Cheney A, Learned K, Currie R, Gitlin L, Vengerov D, Haussler D, Salama SR, Vaske OM. Machine learning multi-omics analysis reveals cancer driver dysregulation in pan-cancer cell lines compared to primary tumors. Commun Biol 2022; 5:1367. [PMID: 36513728 PMCID: PMC9747808 DOI: 10.1038/s42003-022-04075-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/06/2022] [Indexed: 12/15/2022] Open
Abstract
Cancer cell lines have been widely used for decades to study biological processes driving cancer development, and to identify biomarkers of response to therapeutic agents. Advances in genomic sequencing have made possible large-scale genomic characterizations of collections of cancer cell lines and primary tumors, such as the Cancer Cell Line Encyclopedia (CCLE) and The Cancer Genome Atlas (TCGA). These studies allow for the first time a comprehensive evaluation of the comparability of cancer cell lines and primary tumors on the genomic and proteomic level. Here we employ bulk mRNA and micro-RNA sequencing data from thousands of samples in CCLE and TCGA, and proteomic data from partner studies in the MD Anderson Cell Line Project (MCLP) and The Cancer Proteome Atlas (TCPA), to characterize the extent to which cancer cell lines recapitulate tumors. We identify dysregulation of a long non-coding RNA and microRNA regulatory network in cancer cell lines, associated with differential expression between cell lines and primary tumors in four key cancer driver pathways: KRAS signaling, NFKB signaling, IL2/STAT5 signaling and TP53 signaling. Our results emphasize the necessity for careful interpretation of cancer cell line experiments, particularly with respect to therapeutic treatments targeting these important cancer pathways.
Collapse
Affiliation(s)
- Lauren M. Sanders
- grid.205975.c0000 0001 0740 6917Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, CA USA ,grid.205975.c0000 0001 0740 6917UC Santa Cruz Genomics Institute, Santa Cruz, CA USA
| | - Rahul Chandra
- grid.34477.330000000122986657Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA USA
| | - Navid Zebarjadi
- grid.205975.c0000 0001 0740 6917UC Santa Cruz Genomics Institute, Santa Cruz, CA USA ,grid.205975.c0000 0001 0740 6917Department of Molecular, Cell and Developmental Biology, UC Santa Cruz, Santa Cruz, CA USA
| | - Holly C. Beale
- grid.205975.c0000 0001 0740 6917UC Santa Cruz Genomics Institute, Santa Cruz, CA USA ,grid.205975.c0000 0001 0740 6917Department of Molecular, Cell and Developmental Biology, UC Santa Cruz, Santa Cruz, CA USA
| | - A. Geoffrey Lyle
- grid.205975.c0000 0001 0740 6917UC Santa Cruz Genomics Institute, Santa Cruz, CA USA ,grid.205975.c0000 0001 0740 6917Department of Molecular, Cell and Developmental Biology, UC Santa Cruz, Santa Cruz, CA USA
| | - Analiz Rodriguez
- grid.241054.60000 0004 4687 1637Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Ellen Towle Kephart
- grid.205975.c0000 0001 0740 6917UC Santa Cruz Genomics Institute, Santa Cruz, CA USA
| | - Jacob Pfeil
- grid.205975.c0000 0001 0740 6917Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, CA USA ,grid.205975.c0000 0001 0740 6917UC Santa Cruz Genomics Institute, Santa Cruz, CA USA
| | - Allison Cheney
- grid.205975.c0000 0001 0740 6917UC Santa Cruz Genomics Institute, Santa Cruz, CA USA ,grid.205975.c0000 0001 0740 6917Department of Molecular, Cell and Developmental Biology, UC Santa Cruz, Santa Cruz, CA USA
| | - Katrina Learned
- grid.205975.c0000 0001 0740 6917Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, CA USA ,grid.205975.c0000 0001 0740 6917UC Santa Cruz Genomics Institute, Santa Cruz, CA USA
| | - Rob Currie
- grid.205975.c0000 0001 0740 6917Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, CA USA ,grid.205975.c0000 0001 0740 6917UC Santa Cruz Genomics Institute, Santa Cruz, CA USA
| | - Leonid Gitlin
- grid.266102.10000 0001 2297 6811Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California USA
| | - David Vengerov
- grid.419799.b0000 0004 4662 4679Oracle Labs, Oracle Corporation, Pleasanton, CA USA
| | - David Haussler
- grid.205975.c0000 0001 0740 6917Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, CA USA ,grid.205975.c0000 0001 0740 6917UC Santa Cruz Genomics Institute, Santa Cruz, CA USA
| | - Sofie R. Salama
- grid.205975.c0000 0001 0740 6917Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, CA USA ,grid.205975.c0000 0001 0740 6917Howard Hughes Medical Institute, UC Santa Cruz, Santa Cruz, CA USA
| | - Olena M. Vaske
- grid.205975.c0000 0001 0740 6917UC Santa Cruz Genomics Institute, Santa Cruz, CA USA ,grid.205975.c0000 0001 0740 6917Department of Molecular, Cell and Developmental Biology, UC Santa Cruz, Santa Cruz, CA USA
| |
Collapse
|
38
|
Lou J, Lu Y, Cheng J, Zhou F, Yan Z, Zhang D, Meng X, Zhao Y. A chemical perspective on the modulation of TEAD transcriptional activities: Recent progress, challenges, and opportunities. Eur J Med Chem 2022; 243:114684. [DOI: 10.1016/j.ejmech.2022.114684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/02/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022]
|
39
|
Jackson LR, Masi MR, Selman BM, Sandusky GE, Zarrinmayeh H, Das SK, Maharjan S, Wang N, Zheng QH, Pollok KE, Snyder SE, Sun PZ, Hutchins GD, Butch ER, Veronesi MC. Use of multimodality imaging, histology, and treatment feasibility to characterize a transgenic Rag2-null rat model of glioblastoma. Front Oncol 2022; 12:939260. [PMID: 36483050 PMCID: PMC9722958 DOI: 10.3389/fonc.2022.939260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/20/2022] [Indexed: 11/23/2022] Open
Abstract
Many drugs that show potential in animal models of glioblastoma (GBM) fail to translate to the clinic, contributing to a paucity of new therapeutic options. In addition, animal model development often includes histologic assessment, but multiparametric/multimodality imaging is rarely included despite increasing utilization in patient cancer management. This study developed an intracranial recurrent, drug-resistant, human-derived glioblastoma tumor in Sprague-Dawley Rag2-Rag2 tm1Hera knockout rat and was characterized both histologically and using multiparametric/multimodality neuroimaging. Hybrid 18F-fluoroethyltyrosine positron emission tomography and magnetic resonance imaging, including chemical exchange saturation transfer (18F-FET PET/CEST MRI), was performed for full tumor viability determination and characterization. Histological analysis demonstrated human-like GBM features of the intracranially implanted tumor, with rapid tumor cell proliferation (Ki67 positivity: 30.5 ± 7.8%) and neovascular heterogeneity (von Willebrand factor VIII:1.8 to 5.0% positivity). Early serial MRI followed by simultaneous 18F-FET PET/CEST MRI demonstrated consistent, predictable tumor growth, with exponential tumor growth most evident between days 35 and 49 post-implantation. In a second, larger cohort of rats, 18F-FET PET/CEST MRI was performed in mature tumors (day 49 post-implantation) for biomarker determination, followed by evaluation of single and combination therapy as part of the model development and validation. The mean percentage of the injected dose per mL of 18F-FET PET correlated with the mean %CEST (r = 0.67, P < 0.05), but there was also a qualitative difference in hot spot location within the tumor, indicating complementary information regarding the tumor cell demand for amino acids and tumor intracellular mobile phase protein levels. Finally, the use of this glioblastoma animal model for therapy assessment was validated by its increased overall survival after treatment with combination therapy (temozolomide and idasanutlin) (P < 0.001). Our findings hold promise for a more accurate tumor viability determination and novel therapy assessment in vivo in a recently developed, reproducible, intracranial, PDX GBM.
Collapse
Affiliation(s)
- Luke R. Jackson
- Department of Radiology and Imaging Sciences, Indiana University (IU) School of Medicine, Indianapolis, IN, United States
| | - Megan R. Masi
- Department of Radiology and Imaging Sciences, Indiana University (IU) School of Medicine, Indianapolis, IN, United States
| | - Bryce M. Selman
- Department of Pathology and Laboratory Medicine, Indiana University (IU) School of Medicine, Indianapolis, IN, United States
| | - George E. Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University (IU) School of Medicine, Indianapolis, IN, United States
| | - Hamideh Zarrinmayeh
- Department of Radiology and Imaging Sciences, Indiana University (IU) School of Medicine, Indianapolis, IN, United States
| | - Sudip K. Das
- Department of Pharmaceutical Sciences, Butler University, Indianapolis, IN, United States
| | - Surendra Maharjan
- Department of Radiology and Imaging Sciences, Indiana University (IU) School of Medicine, Indianapolis, IN, United States
| | - Nian Wang
- Department of Radiology and Imaging Sciences, Indiana University (IU) School of Medicine, Indianapolis, IN, United States
| | - Qi-Huang Zheng
- Department of Radiology and Imaging Sciences, Indiana University (IU) School of Medicine, Indianapolis, IN, United States
| | - Karen E. Pollok
- Department of Pediatrics, Indiana University (IU) School of Medicine, Indianapolis, IN, United States
| | - Scott E. Snyder
- Department of Radiology and Imaging Sciences, Indiana University (IU) School of Medicine, Indianapolis, IN, United States
| | - Phillip Zhe Sun
- Department of Radiology and Imaging Sciences, Emory School of Medicine, Atlanta, GA, United States
| | - Gary D. Hutchins
- Department of Radiology and Imaging Sciences, Indiana University (IU) School of Medicine, Indianapolis, IN, United States
| | - Elizabeth R. Butch
- Department of Radiology and Imaging Sciences, Indiana University (IU) School of Medicine, Indianapolis, IN, United States
| | - Michael C. Veronesi
- Department of Radiology and Imaging Sciences, Indiana University (IU) School of Medicine, Indianapolis, IN, United States,*Correspondence: Michael C. Veronesi,
| |
Collapse
|
40
|
Yuan SP, Bao Q, Sun TJ, Zhao JQ, Wang ZH, You Y, Zhang YP, Zhou MQ, Yuan WC. Catalytic Enantioselective α-Allylation of Deconjugated Butenolides with Aza-π-allylpalladium 1,4-Dipoles: Access to Optically Pure 2-Piperidones Bearing an All-Carbon Quaternary Stereocenter. Org Lett 2022; 24:8348-8353. [DOI: 10.1021/acs.orglett.2c03383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shu-Pei Yuan
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Qing Bao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Ting-Jia Sun
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yan-Ping Zhang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Ming-Qiang Zhou
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Wei-Cheng Yuan
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
41
|
Babamohamadi M, Babaei E, Ahmed Salih B, Babamohammadi M, Jalal Azeez H, Othman G. Recent findings on the role of wild-type and mutant p53 in cancer development and therapy. Front Mol Biosci 2022; 9:903075. [PMID: 36225257 PMCID: PMC9549909 DOI: 10.3389/fmolb.2022.903075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
The p53 protein is a tumor suppressor encoded by the TP53 gene and consists of 393 amino acids with four main functional domains. This protein responds to various cellular stresses to regulate the expression of target genes, thereby causing DNA repair, cell cycle arrest, apoptosis, metabolic changes, and aging. Mutations in the TP53 gene and the functions of the wild-type p53 protein (wtp53) have been linked to various human cancers. Eight TP53 gene mutations are located in codons, constituting 28% of all p53 mutations. The p53 can be used as a biomarker for tumor progression and an excellent target for designing cancer treatment strategies. In wild-type p53-carrying cancers, abnormal signaling of the p53 pathway usually occurs due to other unusual settings, such as high MDM2 expression. These differences between cancer cell p53 and normal cells have made p53 one of the most important targets for cancer treatment. In this review, we have dealt with various issues, such as the relative contribution of wild-type p53 loss of function, including transactivation-dependent and transactivation-independent activities in oncogenic processes and their role in cancer development. We also discuss the role of p53 in the process of ferroptosis and its targeting in cancer treatment. Finally, we focus on p53-related drug delivery systems and investigate the challenges and solutions.
Collapse
Affiliation(s)
- Mehregan Babamohamadi
- Department of Biology, School of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Esmaeil Babaei
- Department of Biology, School of Natural Sciences, University of Tabriz, Tabriz, Iran
- Interfaculty Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, Germany
- *Correspondence: Esmaeil Babaei,
| | - Burhan Ahmed Salih
- Department of Medical Laboratory Technology, Erbil Health and Medical Technical College, Erbil Polytechnic University, Erbil, Iraq
- Department of Medical Laboratory Technology, AlQalam University College, Kirkuk, Iraq
| | - Mahshid Babamohammadi
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hewa Jalal Azeez
- Department of Biology, School of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Goran Othman
- Department of Medical Laboratory Technology, Erbil Health and Medical Technical College, Erbil Polytechnic University, Erbil, Iraq
- Department of Medical Laboratory Technology, AlQalam University College, Kirkuk, Iraq
| |
Collapse
|
42
|
Bower N, Achanzar WE, Boulifard V, Brinck PR, Kittel B, Vahle JL. The Dog as a Second Species for Toxicology Testing Provides Value to Drug Development. Int J Toxicol 2022; 41:431-441. [DOI: 10.1177/10915818221125670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The objective of the pharmaceutical industry is to develop new drugs that are safe for human use. In many cases, the accepted approach codified in guidance from regulatory authorities to assess the nonclinical safety profile of potential pharmaceuticals is to perform toxicity testing in two species. However, the use of a second species to establish the safety of new pharmaceuticals has been the subject of much scrutiny in recent years and the industry has been repeatedly challenged to reduce, refine, or replace some or all of the animals used to establish the safety of these pharmaceutical candidates. Specifically, the value of the dog in this testing paradigm has been questioned. Publications reviewing available data for marketed drugs suggest that for many drugs, the dog does not identify unique toxicities critical to human safety. The weakness of this approach, however, is that many of the cases where the dog (or any other species) has the greatest impact on drug development are cases for which development decisions based on safety concerns are not shared publicly. The European Federation of Pharmaceutical Industries and Associations (EFPIA) Preclinical Development Expert Group (PDEG) decided to share case studies collected from its membership and the literature to illustrate the value of the dog in drug development decision-making and clinical monitoring practices to protect the safety of trial subjects.
Collapse
Affiliation(s)
- Nancy Bower
- Global Nonclinical Regulatory Affairs, Eisai Inc, Woodcliff Lake, NJ, USA
| | | | | | | | - Birgit Kittel
- Preclinical Safety, Novartis Pharma, Basel, Switzerland
| | - John L. Vahle
- Lilly Corporate Center, Lilly Research Laboratories, Indianapolis, IN, USA
| |
Collapse
|
43
|
Hansen T, Baris J, Zhao M, Sutton RE. Cell-based and cell-free firefly luciferase complementation assay to quantify Human Immunodeficiency Virus type 1 Rev-Rev interaction. Virology 2022; 576:30-41. [DOI: 10.1016/j.virol.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022]
|
44
|
Srdanović S, Wolter M, Trinh CH, Ottmann C, Warriner SL, Wilson AJ. Understanding the interaction of 14-3-3 proteins with hDMX and hDM2: a structural and biophysical study. FEBS J 2022; 289:5341-5358. [PMID: 35286747 PMCID: PMC9541495 DOI: 10.1111/febs.16433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/11/2022] [Accepted: 03/11/2022] [Indexed: 01/06/2023]
Abstract
p53 plays a critical role in regulating diverse biological processes: DNA repair, cell cycle arrest, apoptosis and senescence. The p53 pathway has therefore served as the focus of multiple drug-discovery efforts. p53 is negatively regulated by hDMX and hDM2; prior studies have identified 14-3-3 proteins as hDMX and hDM2 client proteins. 14-3-3 proteins are adaptor proteins that modulate localization, degradation and interactions of their targets in response to phosphorylation. Thus, 14-3-3 proteins may indirectly modulate the interaction between hDMX or hDM2 and p53 and represent potential targets for modulation of the p53 pathway. In this manuscript, we report on the biophysical and structural characterization of peptide/protein interactions that are representative of the interaction between 14-3-3 and hDMX or hDM2. The data establish that proximal phosphosites spaced ~20-25 residues apart in both hDMX and hDM2 co-operate to facilitate high-affinity 14-3-3 binding and provide structural insight that can be utilized in future stabilizer/inhibitor discovery efforts.
Collapse
Affiliation(s)
- Sonja Srdanović
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsUK,School of ChemistryUniversity of LeedsUK
| | - Madita Wolter
- Laboratory of Chemical BiologyDepartment of Biomedical EngineeringTechnische Universiteit EindhovenThe Netherlands,Institute for Complex Molecular SystemsTechnische Universiteit EindhovenThe Netherlands
| | - Chi H. Trinh
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsUK,School of Molecular and Cellular BiologyUniversity of LeedsUK
| | - Christian Ottmann
- Laboratory of Chemical BiologyDepartment of Biomedical EngineeringTechnische Universiteit EindhovenThe Netherlands,Institute for Complex Molecular SystemsTechnische Universiteit EindhovenThe Netherlands
| | - Stuart L. Warriner
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsUK,School of ChemistryUniversity of LeedsUK
| | - Andrew J. Wilson
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsUK,School of ChemistryUniversity of LeedsUK
| |
Collapse
|
45
|
Han MH, Min KW, Noh YK, Kim JM, Cheong JH, Ryu JI, Won YD, Koh SH, Park YM. Identification of genes from ten oncogenic pathways associated with mortality and disease progression in glioblastoma. Front Oncol 2022; 12:965638. [PMID: 36033456 PMCID: PMC9399757 DOI: 10.3389/fonc.2022.965638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/20/2022] [Indexed: 11/28/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant brain tumor with an extremely poor prognosis. The Cancer Genome Atlas (TCGA) database has been used to confirm the roles played by 10 canonical oncogenic signaling pathways in various cancers. The purpose of this study was to evaluate the expression of genes in these 10 canonical oncogenic signaling pathways, which are significantly related to mortality and disease progression in GBM patients. Clinicopathological information and mRNA expression data of 525 patients with GBM were obtained from TCGA database. Gene sets related to the 10 oncogenic signaling pathways were investigated via Gene Set Enrichment Analysis. Multivariate Cox regression analysis was performed for all the genes significantly associated with mortality and disease progression for each oncogenic signaling pathway in GBM patients. We found 12 independent genes from the 10 oncogenic signaling pathways that were significantly related to mortality and disease progression in GBM patients. Considering the roles of these 12 significant genes in cancer, we suggest possible mechanisms affecting the prognosis of GBM. We also observed that the expression of 6 of the genes significantly associated with a poor prognosis of GBM, showed negative correlations with CD8+ T-cells in GBM tissue. Using a large-scale open database, we identified 12 genes belonging to 10 well-known oncogenic canonical pathways, which were significantly associated with mortality and disease progression in patients with GBM. We believe that our findings will contribute to a better understanding of the mechanisms underlying the pathophysiology of GBM in the future.
Collapse
Affiliation(s)
- Myung-Hoon Han
- Department of Neurosurgery, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, South Korea
| | - Kyueng-Whan Min
- Department of Pathology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, South Korea
- *Correspondence: Kyueng-Whan Min, ; Yung-Kyun Noh,
| | - Yung-Kyun Noh
- Department of Computer Science, Hanyang University, Seoul, South Korea
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul, South Korea
- *Correspondence: Kyueng-Whan Min, ; Yung-Kyun Noh,
| | - Jae Min Kim
- Department of Neurosurgery, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, South Korea
| | - Jin Hwan Cheong
- Department of Neurosurgery, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, South Korea
| | - Je Il Ryu
- Department of Neurosurgery, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, South Korea
| | - Yu Deok Won
- Department of Neurosurgery, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, South Korea
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, South Korea
| | - Young Mi Park
- Department of Pediatrics, Gangneung Asan Hospital, Ulsan University College of Medicine, Gangneung-si, South Korea
| |
Collapse
|
46
|
Terrell JR, Tang S, Faniyi OO, Jeong IH, Yin J, Nijampatnam B, Velu SE, Wang W, Zhang R, Luo M. Structural studies of antitumor compounds that target the RING domain of MDM2. Protein Sci 2022; 31:e4367. [PMID: 35900024 PMCID: PMC9301682 DOI: 10.1002/pro.4367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/11/2022] [Accepted: 05/27/2022] [Indexed: 08/03/2023]
Abstract
Mouse double minute 2 homolog (MDM2) is an E3 ubiquitin-protein ligase that is involved in the transfer of ubiquitin to p53 and other protein substrates. The expression of MDM2 is elevated in cancer cells and inhibitors of MDM2 showed potent anticancer activities. Many inhibitors target the p53 binding domain of MDM2. However, inhibitors such as Inulanolide A and MA242 are found to bind the RING domain of MDM2 to block ubiquitin transfer. In this report, crystal structures of MDM2 RING domain in complex with Inulanolide A and MA242 were solved. These inhibitors primarily bind in a hydrophobic site centered at the sidechain of Tyr489 at the C-terminus of MDM2 RING domain. The C-terminus of MDM2 RING domain, especially residue Tyr489, is required for ubiquitin discharge induced by MDM2. The binding of these inhibitors at Tyr489 may interrupt interactions between the MDM2 RING domain and the E2-Ubiquitin complex to inhibit ubiquitin transfer, regardless of what the substrate is. Our results suggest a new mechanism of inhibition of MDM2 E3 activity for a broad spectrum of substrates.
Collapse
Affiliation(s)
- James Ross Terrell
- Center for Diagnostics and TherapeuticsGeorgia State UniversityAtlantaGeorgiaUSA
- Department of ChemistryGeorgia State UniversityAtlantaGeorgiaUSA
| | - Sijia Tang
- Institute for Biomedical SciencesGeorgia State UniversityAtlantaGeorgiaUSA
| | - Oluwafoyinsola Omobodunde Faniyi
- Center for Diagnostics and TherapeuticsGeorgia State UniversityAtlantaGeorgiaUSA
- Department of ChemistryGeorgia State UniversityAtlantaGeorgiaUSA
| | - In Ho Jeong
- Department of ChemistryGeorgia State UniversityAtlantaGeorgiaUSA
| | - Jun Yin
- Center for Diagnostics and TherapeuticsGeorgia State UniversityAtlantaGeorgiaUSA
- Department of ChemistryGeorgia State UniversityAtlantaGeorgiaUSA
| | | | - Sadanandan E. Velu
- Department of ChemistryUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Wei Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of PharmacyUniversity of HoustonHoustonTexasUSA
- Drug Discovery InstituteUniversity of HoustonHoustonTexasUSA
| | - Ruiwen Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of PharmacyUniversity of HoustonHoustonTexasUSA
- Drug Discovery InstituteUniversity of HoustonHoustonTexasUSA
| | - Ming Luo
- Center for Diagnostics and TherapeuticsGeorgia State UniversityAtlantaGeorgiaUSA
- Department of ChemistryGeorgia State UniversityAtlantaGeorgiaUSA
| |
Collapse
|
47
|
Chang M, Gao F, Chen J, Gnawali G, Wang W. MDM2-BCL-X L PROTACs enable degradation of BCL-X L and stabilization of p53. ACTA MATERIA MEDICA 2022; 1:333-342. [PMID: 36910255 PMCID: PMC10004178 DOI: 10.15212/amm-2022-0022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Inhibition or degradation of anti-apoptotic protein BCL-XL is a viable strategy for cancer treatment. Despite the recent development of PROTACs for degradation of BCL-XL, the E3 ligases are confined to the commonly used VHL and CRBN. Herein we report the development of MDM2-BCL-XL PROTACs using MDM2 as E3 ligase for degradation of BCL-XL. Three MDM2-BCL-XL PROTACs derived from MDM2 inhibitor Nutlin-3, which can also upregulate p53, and BCL-2/BCL-XL inhibitor ABT-263 with different linker length were designed, synthesized, and evaluated in vitro. We found BMM4 exhibited potent, selective degradation activity against BCL-XL and stabilized tumor suppressor p53 in U87, A549 and MV-4-11 cancer cell lines. Moreover, combination of BMM4 and BCL-2 inhibitor ABT-199 showed synergistic antiproliferative activity. The unique dual-functional PROTACs offers an alternative strategy for targeted protein degradation.
Collapse
Affiliation(s)
- Mengyang Chang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Feng Gao
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Az, USA
| | - Jing Chen
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Az, USA
| | - Giri Gnawali
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Az, USA
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA.,Department of Pharmacology and Toxicology, University of Arizona, Tucson, Az, USA
| |
Collapse
|
48
|
Liu Y, Cao B, Hu L, Ye J, Tian W, He X. The Dual Roles of MAGE-C2 in p53 Ubiquitination and Cell Proliferation Through E3 Ligases MDM2 and TRIM28. Front Cell Dev Biol 2022; 10:922675. [PMID: 35927984 PMCID: PMC9344466 DOI: 10.3389/fcell.2022.922675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/17/2022] [Indexed: 01/10/2023] Open
Abstract
The tumor suppressor p53 is critical for the maintenance of genome stability and protection against tumor malignant transformation, and its homeostasis is usually regulated by ubiquitination. MDM2 is a major E3 ligase of p53 ubiquitination, and its activity is enhanced by TRIM28. TRIM28 also independently ubiquitinates p53 as an E3 ligase activated by MAGE-C2. Moreover, MAGE-C2 is highly expressed in various cancers, but the detailed mechanisms of MAGE-C2 involved in MDM2/TRIM28-mediated p53 ubiquitination remain unknown. Here, we found that MAGE-C2 directly interacts with MDM2 through its conserved MHD domain to inhibit the activity of MDM2 on p53 ubiquitination. Furthermore, TRIM28 acts as an MAGE-C2 binding partner and directly competes with MAGE-C2 for MDM2 interaction, thus releasing the inhibitory role of MAGE-C2 and promoting p53 ubiquitination. MAGE-C2 suppresses cell proliferation in TRIM28-deficient cells, but the overexpression of TRIM28 antagonizes the inhibitory role of MAGE-C2 and accumulates p53 ubiquitination to promote cell proliferation. This study clarified the molecular link of MAGE-C2 in two major E3 systems MDM2 and TRIM28 on p53 ubiquitination. Our results revealed the molecular function of how MAGE-C2 and TRIM28 contribute to p53 ubiquitination and cell proliferation, in which MAGE-C2 acts as a potential inhibitor of MDM2 and TRIM28 is a vital regulator for MAGE-C2 function in p53 protein level and cell proliferation. This work would be helpful to understand the regulation mechanism of tumor suppressor p53.
Collapse
|
49
|
Zhu H, Gao H, Ji Y, Zhou Q, Du Z, Tian L, Jiang Y, Yao K, Zhou Z. Targeting p53-MDM2 interaction by small-molecule inhibitors: learning from MDM2 inhibitors in clinical trials. J Hematol Oncol 2022; 15:91. [PMID: 35831864 PMCID: PMC9277894 DOI: 10.1186/s13045-022-01314-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/07/2022] [Indexed: 12/17/2022] Open
Abstract
p53, encoded by the tumor suppressor gene TP53, is one of the most important tumor suppressor factors in vivo and can be negatively regulated by MDM2 through p53–MDM2 negative feedback loop. Abnormal p53 can be observed in almost all tumors, mainly including p53 mutation and functional inactivation. Blocking MDM2 to restore p53 function is a hotspot in the development of anticancer candidates. Till now, nine MDM2 inhibitors with different structural types have entered clinical trials. However, no MDM2 inhibitor has been approved for clinical application. This review focused on the discovery, structural modification, preclinical and clinical research of the above compounds from the perspective of medicinal chemistry. Based on this, the possible defects in MDM2 inhibitors in clinical development were analyzed to suggest that the multitarget strategy or targeted degradation strategy based on MDM2 has the potential to reduce the dose-dependent hematological toxicity of MDM2 inhibitors and improve their anti-tumor activity, providing certain guidance for the development of agents targeting the p53–MDM2 interaction.
Collapse
Affiliation(s)
- Haohao Zhu
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, 214151, Jiangsu, China
| | - Hui Gao
- Jiangyin People's Hospital, Wuxi, 214400, Jiangsu, China
| | - Yingying Ji
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, 214151, Jiangsu, China
| | - Qin Zhou
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, 214151, Jiangsu, China
| | - Zhiqiang Du
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, 214151, Jiangsu, China
| | - Lin Tian
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, 214151, Jiangsu, China
| | - Ying Jiang
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, 214151, Jiangsu, China.
| | - Kun Yao
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, 214151, Jiangsu, China.
| | - Zhenhe Zhou
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, 214151, Jiangsu, China.
| |
Collapse
|
50
|
Yan J, Li T, Miao Z, Wang P, Sheng C, Zhuang C. Homobivalent, Trivalent, and Covalent PROTACs: Emerging Strategies for Protein Degradation. J Med Chem 2022; 65:8798-8827. [PMID: 35763424 DOI: 10.1021/acs.jmedchem.2c00728] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Proteolysis-targeting chimeras (PROTACs) is a fast-growing technology providing many strengths over inhibition of protein activity directly and is attracting increasing interest in new drug discovery and development. However, efficiently identifying potent and drug-like degraders is still challenging in the development of PROTACs. Complementary to traditional PROTACs, several emerging types of PROTACs, such as homobivalent PROTACs based on two E3 ligases (e.g., CRBN, VHL, MDM2, TRIM24), chemical- or biological-based trivalent/multitargeted PROTACs, and covalent PROTACs, are rising for targeted protein degradation. These new types of PROTACs have several advantages over the traditional PROTACs including high selectivity, low toxicity, better therapeutic effects, and so on. In this perspective, we will summarize the latest development of representative PROTACs focusing on research mainly in past 10 years and discuss their advantages and disadvantages. Moreover, the outlook and perspectives on the associated challenges and future directions will be provided.
Collapse
Affiliation(s)
- Jianyu Yan
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Tengfei Li
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Zhenyuan Miao
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Pei Wang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chunlin Zhuang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|