1
|
Thaler M, Ofman TP, Kok K, Heming JJA, Moran E, Pickles I, Leijs AA, van den Nieuwendijk AMC, van den Berg RJBHN, Ruijgrok G, Armstrong Z, Salgado-Benvindo C, Ninaber DK, Snijder EJ, van Boeckel CAA, Artola M, Davies GJ, Overkleeft HS, van Hemert MJ. Epi-Cyclophellitol Cyclosulfate, a Mechanism-Based Endoplasmic Reticulum α-Glucosidase II Inhibitor, Blocks Replication of SARS-CoV-2 and Other Coronaviruses. ACS CENTRAL SCIENCE 2024; 10:1594-1608. [PMID: 39220688 PMCID: PMC11363342 DOI: 10.1021/acscentsci.4c00506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024]
Abstract
The combined inhibition of endoplasmic reticulum (ER) α-glucosidases I and II has been shown to inhibit replication of a broad range of viruses that rely on ER protein quality control. We found, by screening a panel of deoxynojirimycin and cyclitol glycomimetics, that the mechanism-based ER α-glucosidase II inhibitor, 1,6-epi-cyclophellitol cyclosulfate, potently blocks SARS-CoV-2 replication in lung epithelial cells, halting intracellular generation of mature spike protein, reducing production of infectious progeny, and leading to reduced syncytium formation. Through activity-based protein profiling, we confirmed ER α-glucosidase II inhibition in primary airway epithelial cells, grown at the air-liquid interface. 1,6-epi-Cyclophellitol cyclosulfate inhibits early pandemic and more recent SARS-CoV-2 variants, as well as SARS-CoV and MERS-CoV. The reported antiviral activity is comparable to the best-in-class described glucosidase inhibitors, all competitive inhibitors also targeting ER α-glucosidase I and other glycoprocessing enzymes not involved in ER protein quality control. We propose selective blocking ER-resident α-glucosidase II in a covalent and irreversible manner as a new strategy in the search for effective antiviral agents targeting SARS-CoV-2 and other viruses that rely on ER protein quality control.
Collapse
Affiliation(s)
- Melissa Thaler
- Leiden
University Center for Infectious Diseases (LUCID), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Tim P. Ofman
- Leiden
Institute of Chemistry, Leiden University, 2311 EZ Leiden, The Netherlands
| | - Ken Kok
- Leiden
Institute of Chemistry, Leiden University, 2311 EZ Leiden, The Netherlands
| | | | - Elisha Moran
- Department
of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Isabelle Pickles
- Department
of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Anouk A. Leijs
- Leiden
University Center for Infectious Diseases (LUCID), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | | | | | - Gijs Ruijgrok
- Leiden
Institute of Chemistry, Leiden University, 2311 EZ Leiden, The Netherlands
| | - Zachary Armstrong
- Leiden
Institute of Chemistry, Leiden University, 2311 EZ Leiden, The Netherlands
| | - Clarisse Salgado-Benvindo
- Leiden
University Center for Infectious Diseases (LUCID), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Dennis K. Ninaber
- Department
of Pulmonology, Leiden University Medical
Center, 2333 ZA Leiden, The Netherlands
| | - Eric J. Snijder
- Leiden
University Center for Infectious Diseases (LUCID), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | | | - Marta Artola
- Leiden
Institute of Chemistry, Leiden University, 2311 EZ Leiden, The Netherlands
| | - Gideon J. Davies
- Department
of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Herman S. Overkleeft
- Leiden
Institute of Chemistry, Leiden University, 2311 EZ Leiden, The Netherlands
| | - Martijn J. van Hemert
- Leiden
University Center for Infectious Diseases (LUCID), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
2
|
Lee AH, Snider JM, Moorthi S, Coant N, Trayssac M, Canals D, Clarke CJ, Luberto C, Hannun YA. A comprehensive measure of Golgi sphingolipid flux using NBD C 6-ceramide: evaluation of sphingolipid inhibitors. J Lipid Res 2024; 65:100584. [PMID: 38925252 PMCID: PMC11326893 DOI: 10.1016/j.jlr.2024.100584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Measurements of sphingolipid metabolism are most accurately performed by LC-MS. However, this technique is expensive, not widely accessible, and without the use of specific probes, it does not provide insight into metabolic flux through the pathway. Employing the fluorescent ceramide analogue NBD-C6-ceramide as a tracer in intact cells, we developed a comprehensive HPLC-based method that simultaneously measures the main nodes of ceramide metabolism in the Golgi. Hence, by quantifying the conversion of NBD-C6-ceramide to NBD-C6-sphingomyelin, NBD-C6-hexosylceramides, and NBD-C6-ceramide-1-phosphate (NBD-C1P), the activities of Golgi resident enzymes sphingomyelin synthase 1, glucosylceramide synthase, and ceramide kinase (CERK) could be measured simultaneously. Importantly, the detection of NBD-C1P allowed us to quantify CERK activity in cells, a usually difficult task. By applying this method, we evaluated the specificity of commonly used sphingolipid inhibitors and discovered that 1-phenyl-2-decanoylamino-3-morpholino-1-propanol, which targets glucosylceramide synthase, and fenretinide (4HPR), an inhibitor for dihydroceramide desaturase, also suppress CERK activity. This study demonstrates the benefit of an expanded analysis of ceramide metabolism in the Golgi, and it provides a qualitative and easy-to-implement method.
Collapse
Affiliation(s)
- Allen H Lee
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Justin M Snider
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Sitapriya Moorthi
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Nicolas Coant
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Magali Trayssac
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Daniel Canals
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | | | - Chiara Luberto
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA; Department of Pathology, Stony Brook University, Stony Brook, NY, USA; Department of Medicine, The Northport Veterans Affairs Hospital, Northport, NY, USA.
| |
Collapse
|
3
|
Paquet Luzy C, Doppler E, Polasek TM, Giorgino R. First-in-human single-dose study of nizubaglustat, a dual inhibitor of ceramide glucosyltransferase and non-lysosomal glucosylceramidase: Safety, tolerability, pharmacokinetics, and pharmacodynamics of single ascending and multiple doses in healthy adults. Mol Genet Metab 2024; 141:108113. [PMID: 38113551 DOI: 10.1016/j.ymgme.2023.108113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
Nizubaglustat is a novel, orally available, brain penetrant, potent, and selective dual inhibitor of ceramide glucosyltranferase and non-lysosomal neutral glucosylceramidase (NLGase), which is currently under development for the treatment of subjects with neurological manifestations in primary and secondary gangliosidoses. The objectives of this first-in-human study were to evaluate the safety and tolerability, pharmacokinetics, and pharmacodynamics (PD) of single oral doses of nizubaglustat after single (1, 3, and 9 mg) and multiple oral doses (9 mg once per day (QD) over 14 days) in healthy adults. Nizubaglustat was rapidly absorbed and systemic exposure was dose-proportional. Steady-state was achieved after three days of QD multiple dosing with minimal accumulation. Renal clearance accounted for around 15% of nizubaglustat elimination. Following multiple dosing, plasma concentrations of glucosylceramide (GlcCer), lactosylceramide (LacCer), and monosialodihexosylganglioside (GM3) decreased to a nadir at Day 10. PD target engagement of GCS inhibition was shown by a median decrease from baseline of plasma concentrations of GlcCer, LacCer, and GM3 ganglioside by 70%, 50%, and 48%, respectively. NLGase inhibition was also manifested by increased concentrations of GlcCer in cerebrospinal fluid from Day 1 to Day 14. Nizubaglustat was safe and well-tolerated at all doses tested. Consistent with the high selectivity, and the absence of intestinal disaccharidases inhibition, no cases of diarrhea were reported. No decreased appetite or weight loss was noted. Only treatment-emergent adverse events with preferred terms belonging to the system organ class skin and subcutaneous disorders of mild intensity were reported as drug-related in the nizubaglustat arm, in line with the pharmacological mechanism targeting glucosylceramide metabolism. Taken together, these data support QD dosing of nizubaglustat and its ongoing development in patients with primary and secondary forms of gangliosidoses.
Collapse
Affiliation(s)
| | | | - Thomas M Polasek
- Principal Investigator, CMAX Research Phase 1 Unit, Ground Floor 21-24 North Terrace, Adelaide, 5000, SA, Australia; Department of Clinical Pharmacology, Royal Adelaide Hospital, Port Rd, Adelaide, SA 5000, Australia
| | | |
Collapse
|
4
|
van der Gracht D, Rowland RJ, Roig-Zamboni V, Ferraz MJ, Louwerse M, Geurink PP, Aerts JMFG, Sulzenbacher G, Davies GJ, Overkleeft HS, Artola M. Fluorescence polarisation activity-based protein profiling for the identification of deoxynojirimycin-type inhibitors selective for lysosomal retaining alpha- and beta-glucosidases. Chem Sci 2023; 14:9136-9144. [PMID: 37655021 PMCID: PMC10466331 DOI: 10.1039/d3sc01021j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/02/2023] [Indexed: 09/02/2023] Open
Abstract
Lysosomal exoglycosidases are responsible for processing endocytosed glycans from the non-reducing end to produce the corresponding monosaccharides. Genetic mutations in a particular lysosomal glycosidase may result in accumulation of its particular substrate, which may cause diverse lysosomal storage disorders. The identification of effective therapeutic modalities to treat these diseases is a major yet poorly realised objective in biomedicine. One common strategy comprises the identification of effective and selective competitive inhibitors that may serve to stabilize the proper folding of the mutated enzyme, either during maturation and trafficking to, or residence in, endo-lysosomal compartments. The discovery of such inhibitors is greatly aided by effective screening assays, the development of which is the focus of the here-presented work. We developed and applied fluorescent activity-based probes reporting on either human GH30 lysosomal glucosylceramidase (GBA1, a retaining β-glucosidase) or GH31 lysosomal retaining α-glucosidase (GAA). FluoPol-ABPP screening of our in-house 358-member iminosugar library yielded compound classes selective for either of these enzymes. In particular, we identified a class of N-alkyldeoxynojirimycins that inhibit GAA, but not GBA1, and that may form the starting point for the development of pharmacological chaperone therapeutics for the lysosomal glycogen storage disease that results from genetic deficiency in GAA: Pompe disease.
Collapse
Affiliation(s)
- Daniël van der Gracht
- Leiden Institute of Chemistry, Leiden University P. O. Box 9502 2300 RA Leiden The Netherlands
| | - Rhianna J Rowland
- York Structural Biology Laboratory, Department of Chemistry, The University of York York YO10 5DD UK
| | - Véronique Roig-Zamboni
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille University Marseille France
| | - Maria J Ferraz
- Leiden Institute of Chemistry, Leiden University P. O. Box 9502 2300 RA Leiden The Netherlands
| | - Max Louwerse
- Leiden Institute of Chemistry, Leiden University P. O. Box 9502 2300 RA Leiden The Netherlands
| | - Paul P Geurink
- Department of Cell and Chemical Biology, Leiden University Medical Centre 2333 ZC Leiden The Netherlands
| | - Johannes M F G Aerts
- Leiden Institute of Chemistry, Leiden University P. O. Box 9502 2300 RA Leiden The Netherlands
| | - Gerlind Sulzenbacher
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille University Marseille France
| | - Gideon J Davies
- York Structural Biology Laboratory, Department of Chemistry, The University of York York YO10 5DD UK
| | - Herman S Overkleeft
- Leiden Institute of Chemistry, Leiden University P. O. Box 9502 2300 RA Leiden The Netherlands
| | - Marta Artola
- Leiden Institute of Chemistry, Leiden University P. O. Box 9502 2300 RA Leiden The Netherlands
| |
Collapse
|
5
|
Pavlova EV, Lev D, Michelson M, Yosovich K, Michaeli HG, Bright NA, Manna PT, Dickson VK, Tylee KL, Church HJ, Luzio JP, Cox TM. Juvenile mucopolysaccharidosis plus disease caused by a missense mutation in VPS33A. Hum Mutat 2022; 43:2265-2278. [PMID: 36153662 PMCID: PMC10091966 DOI: 10.1002/humu.24479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 01/25/2023]
Abstract
A rare and fatal disease resembling mucopolysaccharidosis in infants, is caused by impaired intracellular endocytic trafficking due to deficiency of core components of the intracellular membrane-tethering protein complexes, HOPS, and CORVET. Whole exome sequencing identified a novel VPS33A mutation in a patient suffering from a variant form of mucopolysaccharidosis. Electron and confocal microscopy, immunoblotting, and glycosphingolipid trafficking experiments were undertaken to investigate the effects of the mutant VPS33A in patient-derived skin fibroblasts. We describe an attenuated juvenile form of VPS33A-related syndrome-mucopolysaccharidosis plus in a man who is homozygous for a hitherto unknown missense mutation (NM_022916.4: c.599 G>C; NP_075067.2:p. Arg200Pro) in a conserved region of the VPS33A gene. Urinary glycosaminoglycan (GAG) analysis revealed increased heparan, dermatan sulphates, and hyaluronic acid. We showed decreased abundance of VPS33A in patient derived fibroblasts and provided evidence that the p.Arg200Pro mutation leads to destablization of the protein and proteasomal degradation. As in the infantile form of mucopolysaccharidosis plus, the endocytic compartment in the fibroblasts also expanded-a phenomenon accompanied by increased endolysosomal acidification and impaired intracellular glycosphingolipid trafficking. Experimental treatment of the patient's cultured fibroblasts with the proteasome inhibitor, bortezomib, or exposure to an inhibitor of glucosylceramide synthesis, eliglustat, improved glycosphingolipid trafficking. To our knowledge this is the first report of an attenuated juvenile form of VPS33A insufficiency characterized by appreciable residual endosomal-lysosomal trafficking and a milder mucopolysaccharidosis plus than the disease in infants. Our findings expand the proof of concept of redeploying clinically approved drugs for therapeutic exploitation in patients with juvenile as well as infantile forms of mucopolysaccharidosis plus disease.
Collapse
Affiliation(s)
- Elena V Pavlova
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Dorit Lev
- Wolfson Medical Centre, Institute of Medical Genetics, Holon, Israel.,The Rina Mor Institute of Medical Genetics, Holon, Israel.,The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Marina Michelson
- Wolfson Medical Centre, Institute of Medical Genetics, Holon, Israel
| | - Keren Yosovich
- Wolfson Medical Centre, Institute of Medical Genetics, Holon, Israel
| | - Hila Gur Michaeli
- Wolfson Medical Centre, Institute of Medical Genetics, Holon, Israel
| | - Nicholas A Bright
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, The Keith Peters Building, University of Cambridge, Cambridge, UK
| | - Paul T Manna
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, The Keith Peters Building, University of Cambridge, Cambridge, UK.,Department of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Veronica Kane Dickson
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, The Keith Peters Building, University of Cambridge, Cambridge, UK
| | - Karen L Tylee
- Willink Biochemical Genetics Unit, Genomic Diagnostics Laboratory, Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust St Mary's Hospital, Manchester, UK
| | - Heather J Church
- Willink Biochemical Genetics Unit, Genomic Diagnostics Laboratory, Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust St Mary's Hospital, Manchester, UK
| | - J Paul Luzio
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, The Keith Peters Building, University of Cambridge, Cambridge, UK
| | - Timothy M Cox
- Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
6
|
Katzy RE, Ferraz MJ, Hazeu M, Overkleeft HS, Aerts JMFG. In situ glucosylceramide synthesis and its pharmacological inhibition analysed in cells by 13 C 5 -sphingosine precursor feeding and mass spectrometry. FEBS Lett 2022; 596:2400-2408. [PMID: 35796054 DOI: 10.1002/1873-3468.14448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/21/2022] [Accepted: 06/30/2022] [Indexed: 11/08/2022]
Abstract
Glycosphingolipids fulfil diverse functions in cells. Abnormalities in their metabolism are associated with specific pathologies and, consequently, the pharmacological modulation of glycosphingolipids is considered a therapeutic avenue. The accurate measurement of in situ metabolism of glycosphingolipids and the modulatory impact of drugs is warranted. Employing synthesized sphingosine and sphinganine containing 13 C atoms, we developed a method to monitor the de novo synthesis of glucosylceramide, the precursor of complex glycosphingolipids, by the enzyme glucosylceramide synthase (GCS). We show that feeding cells with isotope-labelled precursor combined with LC-MS/MS analysis allows accurate determination of the IC50 values of therapeutically considered inhibitors (iminosugars and ceramide mimics) of GCS in cultured cells. Acquired data were comparable to those obtained with an earlier method using artificial fluorescently labelled ceramide to feed cells.
Collapse
Affiliation(s)
- Rebecca E Katzy
- Dept. Medical Biochemistry, Leiden Institute of Chemistry (LIC), Leiden University, The Netherlands
| | - Maria J Ferraz
- Dept. Medical Biochemistry, Leiden Institute of Chemistry (LIC), Leiden University, The Netherlands
| | - Marc Hazeu
- Dept. Medical Biochemistry, Leiden Institute of Chemistry (LIC), Leiden University, The Netherlands
| | - Hermen S Overkleeft
- Dept. Bio-organic Synthesis, Leiden Institute of Chemistry (LIC), Leiden University, The Netherlands
| | - Johannes M F G Aerts
- Dept. Medical Biochemistry, Leiden Institute of Chemistry (LIC), Leiden University, The Netherlands
| |
Collapse
|
7
|
Lu TT, Shimadate Y, Cheng B, Kanekiyo U, Kato A, Wang JZ, Li YX, Jia YM, Fleet GWJ, Yu CY. Synthesis and glycosidase inhibition of 5-C-alkyl-DNJ and 5-C-alkyl-l-ido-DNJ derivatives. Eur J Med Chem 2021; 224:113716. [PMID: 34340042 DOI: 10.1016/j.ejmech.2021.113716] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 11/26/2022]
Abstract
5-C-Alkyl-DNJ and 5-C-alkyl-l-ido-DNJ derivatives have been designed and synthesized efficiently from an l-sorbose-derived cyclic nitrone. The DNJ and l-ido-DNJ derivatives with C-5 alkyl chains ranging from methyl to dodecyl were assayed against various glycosidases to study the effect of chain length on enzyme inhibition. Glycosidase inhibition study of DNJ derivatives showed potent and selective inhibitions of α-glucosidase; DNJ derivatives with methyl, pentyl to octyl, undecyl and dodecyl as C-5 branched chains showed significantly improved rat intestinal maltase inhibition. In contrast, most 5-C-alkyl-l-ido-DNJ derivatives were weak or moderate inhibitors of the enzymes tested, with only three compounds found to be potent α-glucosidase inhibitors. Docking studies showed different interaction modes of 5-C-ethyl-DNJ and 5-C-octyl-DNJ with ntMGAM and also different binding modes of 5-C-alkyl-DNJ and 5-C-alkyl-l-ido-DNJ derivatives; the importance of the degree of accommodation of the C-5 substituent in the hydrophobic groove and pocket may account for the variation of glycosidase inhibition in the two series of derivatives. The results reported herein are helpful in the design and development of α-glucosidase inhibitors; this may lead to novel agents for the treatment of viral infection and type II diabetes.
Collapse
Affiliation(s)
- Tian-Tian Lu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuna Shimadate
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Bin Cheng
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Uta Kanekiyo
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| | - Jun-Zhe Wang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi-Xian Li
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yue-Mei Jia
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - George W J Fleet
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX13TA, UK; National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, China
| | - Chu-Yi Yu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China; National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, China.
| |
Collapse
|
8
|
Abstract
Iminosugars are naturally occurring carbohydrate analogues known since 1967. These natural compounds and hundreds of their synthetic derivatives prepared over five decades have been mainly exploited to inhibit the glycosidases, the enzymes catalysing the glycosidic bond cleavage, in order to find new drugs for the treatment of type 2 diabetes and other diseases. However, iminosugars are also inhibitors of glycosyltransferases, the enzymes responsible for the synthesis of oligosaccharides and glycoconjugates. The selective inhibition of specific glycosyltransferases involved in cancer or bacterial infections could lead to innovative therapeutic agents. The synthesis and biological properties of all the iminosugars assayed to date as glycosyltransferase inhibitors are reviewed in the present article.
Collapse
Affiliation(s)
- Irene Conforti
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier, 8 Rue de l'Ecole Normale, 34296 Montpellier cedex 5, France.
| | - Alberto Marra
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier, 8 Rue de l'Ecole Normale, 34296 Montpellier cedex 5, France.
| |
Collapse
|
9
|
Jongsma MLM, de Waard AA, Raaben M, Zhang T, Cabukusta B, Platzer R, Blomen VA, Xagara A, Verkerk T, Bliss S, Kong X, Gerke C, Janssen L, Stickel E, Holst S, Plomp R, Mulder A, Ferrone S, Claas FHJ, Heemskerk MHM, Griffioen M, Halenius A, Overkleeft H, Huppa JB, Wuhrer M, Brummelkamp TR, Neefjes J, Spaapen RM. The SPPL3-Defined Glycosphingolipid Repertoire Orchestrates HLA Class I-Mediated Immune Responses. Immunity 2021; 54:132-150.e9. [PMID: 33271119 PMCID: PMC8722104 DOI: 10.1016/j.immuni.2020.11.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 09/25/2020] [Accepted: 11/06/2020] [Indexed: 12/26/2022]
Abstract
HLA class I (HLA-I) glycoproteins drive immune responses by presenting antigens to cognate CD8+ T cells. This process is often hijacked by tumors and pathogens for immune evasion. Because options for restoring HLA-I antigen presentation are limited, we aimed to identify druggable HLA-I pathway targets. Using iterative genome-wide screens, we uncovered that the cell surface glycosphingolipid (GSL) repertoire determines effective HLA-I antigen presentation. We show that absence of the protease SPPL3 augmented B3GNT5 enzyme activity, resulting in upregulation of surface neolacto-series GSLs. These GSLs sterically impeded antibody and receptor interactions with HLA-I and diminished CD8+ T cell activation. Furthermore, a disturbed SPPL3-B3GNT5 pathway in glioma correlated with decreased patient survival. We show that the immunomodulatory effect could be reversed through GSL synthesis inhibition using clinically approved drugs. Overall, our study identifies a GSL signature that inhibits immune recognition and represents a potential therapeutic target in cancer, infection, and autoimmunity.
Collapse
Affiliation(s)
- Marlieke L M Jongsma
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands; Oncode Institute and Department of Cell and Chemical Biology, LUMC, Leiden, the Netherlands
| | - Antonius A de Waard
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Matthijs Raaben
- Oncode Institute, Division of Biochemistry, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Tao Zhang
- Center for Proteomics and Metabolics, LUMC, Leiden, the Netherlands
| | - Birol Cabukusta
- Oncode Institute and Department of Cell and Chemical Biology, LUMC, Leiden, the Netherlands
| | - René Platzer
- Institut für Hygiene und Angewandte Immunologie, Vienna, Austria
| | - Vincent A Blomen
- Oncode Institute, Division of Biochemistry, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Anastasia Xagara
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Tamara Verkerk
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Sophie Bliss
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Xiangrui Kong
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Carolin Gerke
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany; Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Lennert Janssen
- Oncode Institute and Department of Cell and Chemical Biology, LUMC, Leiden, the Netherlands
| | - Elmer Stickel
- Oncode Institute, Division of Biochemistry, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Stephanie Holst
- Center for Proteomics and Metabolics, LUMC, Leiden, the Netherlands
| | - Rosina Plomp
- Center for Proteomics and Metabolics, LUMC, Leiden, the Netherlands
| | - Arend Mulder
- Department of Immunology, LUMC, Leiden, the Netherlands
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Mirjam H M Heemskerk
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Marieke Griffioen
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Anne Halenius
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hermen Overkleeft
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Johannes B Huppa
- Institut für Hygiene und Angewandte Immunologie, Vienna, Austria
| | - Manfred Wuhrer
- Center for Proteomics and Metabolics, LUMC, Leiden, the Netherlands
| | - Thijn R Brummelkamp
- Oncode Institute, Division of Biochemistry, the Netherlands Cancer Institute, Amsterdam, the Netherlands; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Cancer Genomics Center, Amsterdam, the Netherlands
| | - Jacques Neefjes
- Oncode Institute and Department of Cell and Chemical Biology, LUMC, Leiden, the Netherlands
| | - Robbert M Spaapen
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
10
|
Lashin WH, Nassar IF, El Farargy AF, Abdelhamid AO. Synthesis of New Furanone Derivatives with Potent Anticancer Activity. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020060163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
N-Alkylated Iminosugar Based Ligands: Synthesis and Inhibition of Human Lysosomal β-Glucocerebrosidase. Molecules 2020; 25:molecules25204618. [PMID: 33050585 PMCID: PMC7594070 DOI: 10.3390/molecules25204618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 01/01/2023] Open
Abstract
The scope of a series of N-alkylated iminosugar based inhibitors in the d-gluco as well as d-xylo configuration towards their interaction with human lysosomal β-glucocerebrosidase has been evaluated. A versatile synthetic toolbox has been developed for the synthesis of N-alkylated iminosugar scaffolds conjugated to a variety of terminal groups via a benzoic acid ester linker. The terminal groups such as nitrile, azide, alkyne, nonafluoro-tert-butyl and amino substituents enable follow-up chemistry as well as visualisation experiments. All compounds showed promising inhibitory properties as well as selectivities for β-glucosidases, some exhibiting activities in the low nanomolar range for β-glucocerebrosidase.
Collapse
|
12
|
Synthesis and Therapeutic Applications of Iminosugars in Cystic Fibrosis. Int J Mol Sci 2020; 21:ijms21093353. [PMID: 32397443 PMCID: PMC7247015 DOI: 10.3390/ijms21093353] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
Iminosugars are sugar analogues endowed with a high pharmacological potential. The wide range of biological activities exhibited by these glycomimetics associated with their excellent drug profile make them attractive therapeutic candidates for several medical interventions. The ability of iminosugars to act as inhibitors or enhancers of carbohydrate-processing enzymes suggests their potential use as therapeutics for the treatment of cystic fibrosis (CF). Herein we review the most relevant advances in the field, paying attention to both the chemical synthesis of the iminosugars and their biological evaluations, resulting from in vitro and in vivo assays. Starting from the example of the marketed drug NBDNJ (N-butyl deoxynojirimycin), a variety of iminosugars have exhibited the capacity to rescue the trafficking of F508del-CFTR (deletion of F508 residue in the CF transmembrane conductance regulator), either alone or in combination with other correctors. Interesting results have also been obtained when iminosugars were considered as anti-inflammatory agents in CF lung disease. The data herein reported demonstrate that iminosugars hold considerable potential to be applied for both therapeutic purposes.
Collapse
|
13
|
Yang J, Cao C, Luo D, Lan S, Luo M, Shan H, Ma X, Liu Y, Yu S, Zhong X, Li R. Discovery of 4-(3,5-dimethoxy-4-(((4-methoxyphenethyl)amino)methyl)phenoxy)-N-phenylaniline as a novel c-myc inhibitor against colorectal cancer in vitro and in vivo. Eur J Med Chem 2020; 198:112336. [PMID: 32387836 DOI: 10.1016/j.ejmech.2020.112336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 02/08/2023]
Abstract
Proto-oncogene c-Myc plays an essential role in the development of colorectal cancer (CRC), since downregulation of c-Myc inhibits intestinal polyposis, which is the most cardinal pathological change in the development of CRC. Herein, a series of novel phenoxy-N-phenylaniline derivatives were designed and synthesized. The cytotoxicity activities of all the derivatives were measured by MTT assay in different colon cancer cells, 4-(3,5-dimethoxy-4-(((4-methoxyphenethyl)amino)methyl)phenoxy)-N-phenylaniline (42) was discovered, the lead compound 42 with excellent cytotoxicity activity of IC50 = 0.32 μM, IC50 = 0.51 μM, in HT29 and HCT 15 cells, respectively. Compound 42 had a good inhibitory activity of c-Myc/MAX dimerization and DNA binding. Besides, compound 42 could effectively induce apoptosis and induced G2/M arrest in low concentration and G0/G1 arrest in high concentration to prevent the proliferation and differentiation in colon cancer cells. Western blot analysis confirmed the 42 strongly down-regulated expression of c-Myc. Furthermore, during 30 days treatment 42 exhibited excellent efficacy in HT29 tumor xenograft model without causing significant weight loss and toxicity. Consequently, 42 could be a promising drug candidate for CRC therapy.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Chaoguo Cao
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Dan Luo
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Suke Lan
- College of Chemistry & Environment Protection Engineering, Southwest Minzu University, Chengdu, 610041, China
| | - Meng Luo
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Huifang Shan
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xinyu Ma
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yuanyuan Liu
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Su Yu
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xinxin Zhong
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Rui Li
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
14
|
Akiyama H, Ide M, Nagatsuka Y, Sayano T, Nakanishi E, Uemura N, Yuyama K, Yamaguchi Y, Kamiguchi H, Takahashi R, Aerts JMFG, Greimel P, Hirabayashi Y. Glucocerebrosidases catalyze a transgalactosylation reaction that yields a newly-identified brain sterol metabolite, galactosylated cholesterol. J Biol Chem 2020; 295:5257-5277. [PMID: 32144204 PMCID: PMC7170530 DOI: 10.1074/jbc.ra119.012502] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/18/2020] [Indexed: 01/05/2023] Open
Abstract
β-Glucocerebrosidase (GBA) hydrolyzes glucosylceramide (GlcCer) to generate ceramide. Previously, we demonstrated that lysosomal GBA1 and nonlysosomal GBA2 possess not only GlcCer hydrolase activity, but also transglucosylation activity to transfer the glucose residue from GlcCer to cholesterol to form β-cholesterylglucoside (β-GlcChol) in vitro β-GlcChol is a member of sterylglycosides present in diverse species. How GBA1 and GBA2 mediate β-GlcChol metabolism in the brain is unknown. Here, we purified and characterized sterylglycosides from rodent and fish brains. Although glucose is thought to be the sole carbohydrate component of sterylglycosides in vertebrates, structural analysis of rat brain sterylglycosides revealed the presence of galactosylated cholesterol (β-GalChol), in addition to β-GlcChol. Analyses of brain tissues from GBA2-deficient mice and GBA1- and/or GBA2-deficient Japanese rice fish (Oryzias latipes) revealed that GBA1 and GBA2 are responsible for β-GlcChol degradation and formation, respectively, and that both GBA1 and GBA2 are responsible for β-GalChol formation. Liquid chromatography-tandem MS revealed that β-GlcChol and β-GalChol are present throughout development from embryo to adult in the mouse brain. We found that β-GalChol expression depends on galactosylceramide (GalCer), and developmental onset of β-GalChol biosynthesis appeared to be during myelination. We also found that β-GlcChol and β-GalChol are secreted from neurons and glial cells in association with exosomes. In vitro enzyme assays confirmed that GBA1 and GBA2 have transgalactosylation activity to transfer the galactose residue from GalCer to cholesterol to form β-GalChol. This is the first report of the existence of β-GalChol in vertebrates and how β-GlcChol and β-GalChol are formed in the brain.
Collapse
Affiliation(s)
- Hisako Akiyama
- RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan; RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Mitsuko Ide
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan; Cellular Informatics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | | | - Tomoko Sayano
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Etsuro Nakanishi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Norihito Uemura
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Kohei Yuyama
- Lipid Biofunction Section, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Yoshiki Yamaguchi
- Laboratory of Pharmaceutical Physical Chemistry, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981-8558, Japan
| | - Hiroyuki Kamiguchi
- RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan; RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Johannes M F G Aerts
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden 2333 CC, The Netherlands
| | - Peter Greimel
- RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Yoshio Hirabayashi
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan; Cellular Informatics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
15
|
Aerts JMFG, Artola M, van Eijk M, Ferraz MJ, Boot RG. Glycosphingolipids and Infection. Potential New Therapeutic Avenues. Front Cell Dev Biol 2019; 7:324. [PMID: 31867330 PMCID: PMC6908816 DOI: 10.3389/fcell.2019.00324] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022] Open
Abstract
Glycosphingolipids (GSLs), the main topic of this review, are a subclass of sphingolipids. With their glycans exposed to the extracellular space, glycosphingolipids are ubiquitous components of the plasma membrane of cells. GSLs are implicated in a variety of biological processes including specific infections. Several pathogens use GSLs at the surface of host cells as binding receptors. In addition, lipid-rafts in the plasma membrane of host cells may act as platform for signaling the presence of pathogens. Relatively common in man are inherited deficiencies in lysosomal glycosidases involved in the turnover of GSLs. The associated storage disorders (glycosphingolipidoses) show lysosomal accumulation of substrate(s) of the deficient enzyme. In recent years compounds have been identified that allow modulation of GSLs levels in cells. Some of these agents are well tolerated and already used to treat lysosomal glycosphingolipidoses. This review summarizes present knowledge on the role of GSLs in infection and subsequent immune response. It concludes with the thought to apply glycosphingolipid-lowering agents to prevent and/or combat infections.
Collapse
Affiliation(s)
| | - M Artola
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - M van Eijk
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - M J Ferraz
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - R G Boot
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| |
Collapse
|
16
|
Design, properties and applications of fluorinated and fluoroalkylated N-containing monosaccharides and their analogues. J Fluor Chem 2019. [DOI: 10.1016/j.jfluchem.2019.109364] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Lelieveld LT, Mirzaian M, Kuo CL, Artola M, Ferraz MJ, Peter REA, Akiyama H, Greimel P, van den Berg RJBHN, Overkleeft HS, Boot RG, Meijer AH, Aerts JMFG. Role of β-glucosidase 2 in aberrant glycosphingolipid metabolism: model of glucocerebrosidase deficiency in zebrafish. J Lipid Res 2019; 60:1851-1867. [PMID: 31562193 DOI: 10.1194/jlr.ra119000154] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/24/2019] [Indexed: 11/20/2022] Open
Abstract
β-glucosidases [GBA1 (glucocerebrosidase) and GBA2] are ubiquitous essential enzymes. Lysosomal GBA1 and cytosol-facing GBA2 degrade glucosylceramide (GlcCer); GBA1 deficiency causes Gaucher disease, a lysosomal storage disorder characterized by lysosomal accumulation of GlcCer, which is partly converted to glucosylsphingosine (GlcSph). GBA1 and GBA2 also may transfer glucose from GlcCer to cholesterol, yielding glucosylated cholesterol (GlcChol). Here, we aimed to clarify the role of zebrafish Gba2 in glycosphingolipid metabolism during Gba1 deficiency in zebrafish (Danio rerio), which are able to survive total Gba1 deficiency. We developed Gba1 (gba1 -/-), Gba2 (gba2 -/-), and double (gba1 -/- :gba2 -/-) zebrafish knockouts using CRISPR/Cas9 and explored the effects of both genetic and pharmacological interventions on GlcCer metabolism in individual larvae. Activity-based probes and quantification of relevant glycolipid metabolites confirmed enzyme deficiency. GlcSph increased in gba1 -/- larvae (0.09 pmol/fish) but did not increase more in gba1 -/- :gba2 -/- larvae. GlcCer was comparable in gba1 -/- and WT larvae but increased in gba2 -/- and gba1 -/- :gba2 -/- larvae. Independent of Gba1 status, GlcChol was low in all gba2 -/- larvae (0.05 vs. 0.18 pmol/fish in WT). Pharmacologic inactivation of zebrafish Gba1 comparably increased GlcSph. Inhibition of GlcCer synthase (GCS) in Gba1-deficient larvae reduced GlcCer and GlcSph, and concomitant inhibition of GCS and Gba2 with iminosugars also reduced excessive GlcChol. Finally, overexpression of human GBA1 and injection of recombinant GBA1 both decreased GlcSph. We determined that zebrafish larvae offer an attractive model to study glucosidase actions in glycosphingolipid metabolism in vivo, and we identified distinguishing characteristics of zebrafish Gba2 deficiency.
Collapse
Affiliation(s)
- Lindsey T Lelieveld
- Department of Medical Biochemistry Leiden Institute of Chemistry, Leiden, The Netherlands
| | - Mina Mirzaian
- Department of Medical Biochemistry Leiden Institute of Chemistry, Leiden, The Netherlands
| | - Chi-Lin Kuo
- Department of Medical Biochemistry Leiden Institute of Chemistry, Leiden, The Netherlands
| | - Marta Artola
- Department of Medical Biochemistry Leiden Institute of Chemistry, Leiden, The Netherlands.,Bio-organic Synthesis Group, Leiden Institute of Chemistry, Leiden, The Netherlands
| | - Maria J Ferraz
- Department of Medical Biochemistry Leiden Institute of Chemistry, Leiden, The Netherlands
| | - Remco E A Peter
- Department of Medical Biochemistry Leiden Institute of Chemistry, Leiden, The Netherlands
| | | | | | | | - Herman S Overkleeft
- Bio-organic Synthesis Group, Leiden Institute of Chemistry, Leiden, The Netherlands
| | - Rolf G Boot
- Department of Medical Biochemistry Leiden Institute of Chemistry, Leiden, The Netherlands
| | | | - Johannes M F G Aerts
- Department of Medical Biochemistry Leiden Institute of Chemistry, Leiden, The Netherlands
| |
Collapse
|
18
|
Khodair AI, Attia AM, Gendy EA, Elshaier YAMM, El‐Magd MA. Discovery of New
S
‐Glycosides and
N
‐Glycosides of Pyridine‐biphenyl System with Antiviral Activity and Induction of Apoptosis in
MCF
7 Cells. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3527] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Ahmed I. Khodair
- Chemistry Department, Faculty of ScienceKafrelsheikh University El‐Geish Street, P.O. Box 33516 Kafrelsheikh Egypt
| | - Adel M. Attia
- Chemistry Department, Faculty of ScienceKafrelsheikh University El‐Geish Street, P.O. Box 33516 Kafrelsheikh Egypt
| | - Eman A. Gendy
- Chemistry Department, Faculty of ScienceKafrelsheikh University El‐Geish Street, P.O. Box 33516 Kafrelsheikh Egypt
| | - Yaseen A. M. M. Elshaier
- Department of Organic and Medicinal Chemistry, Faculty of PharmacyUniversity of Sadat City Menoufiya 32897 Egypt
| | - Mohammed A. El‐Magd
- Anatomy Department, Faculty of Veterinary MedicineKafrelsheikh University El‐Geish Street, P.O. Box 33516 Kafrelsheikh Egypt
| |
Collapse
|
19
|
De Fenza M, D'Alonzo D, Esposito A, Munari S, Loberto N, Santangelo A, Lampronti I, Tamanini A, Rossi A, Ranucci S, De Fino I, Bragonzi A, Aureli M, Bassi R, Tironi M, Lippi G, Gambari R, Cabrini G, Palumbo G, Dechecchi MC, Guaragna A. Exploring the effect of chirality on the therapeutic potential of N-alkyl-deoxyiminosugars: anti-inflammatory response to Pseudomonas aeruginosa infections for application in CF lung disease. Eur J Med Chem 2019; 175:63-71. [PMID: 31075609 DOI: 10.1016/j.ejmech.2019.04.061] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/04/2019] [Accepted: 04/21/2019] [Indexed: 12/28/2022]
Abstract
In the frame of a research program aimed to explore the relationship between chirality of iminosugars and their therapeutic potential, herein we report the synthesis of N-akyl l-deoxyiminosugars and the evaluation of the anti-inflammatory properties of selected candidates for the treatment of Pseudomonas aeruginosa infections in Cystic Fibrosis (CF) lung disease. Target glycomimetics were prepared by the shortest and most convenient approach reported to date, relying on the use of the well-known PS-TPP/I2 reagent system to prepare reactive alkoxyalkyl iodides, acting as key intermediates. Iminosugars ent-1-3 demonstrated to efficiently reduce the inflammatory response induced by P. aeruginosa in CuFi cells, either alone or in synergistic combination with their d-enantiomers, by selectively inhibiting NLGase. Surprisingly, the evaluation in murine models of lung disease showed that the amount of ent-1 required to reduce the recruitment of neutrophils was 40-fold lower than that of the corresponding d-enantiomer. The remarkably low dosage of the l-iminosugar, combined with its inability to act as inhibitor for most glycosidases, is expected to limit the onset of undesired effects, which are typically associated with the administration of its d-counterpart. Biological results herein obtained place ent-1 and congeners among the earliest examples of l-iminosugars acting as anti-inflammatory agents for therapeutic applications in Cystic Fibrosis.
Collapse
Affiliation(s)
- Maria De Fenza
- Department of Chemical Sciences, University of Napoli Federico II, via Cintia, 80126 Napoli, Italy
| | - Daniele D'Alonzo
- Department of Chemical Sciences, University of Napoli Federico II, via Cintia, 80126 Napoli, Italy.
| | - Anna Esposito
- Department of Chemical Sciences, University of Napoli Federico II, via Cintia, 80126 Napoli, Italy
| | - Silvia Munari
- Laboratory of Molecular Pathology-Department of Pathology and Diagnostics, University Hospital of Verona, Verona, Italy
| | - Nicoletta Loberto
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Alessandra Santangelo
- Laboratory of Molecular Pathology-Department of Pathology and Diagnostics, University Hospital of Verona, Verona, Italy
| | - Ilaria Lampronti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Anna Tamanini
- Laboratory of Molecular Pathology-Department of Pathology and Diagnostics, University Hospital of Verona, Verona, Italy
| | - Alice Rossi
- CFaCore, Infection and CF Unit, San Raffaele Scientific Institute, Milano, Italy
| | - Serena Ranucci
- CFaCore, Infection and CF Unit, San Raffaele Scientific Institute, Milano, Italy
| | - Ida De Fino
- CFaCore, Infection and CF Unit, San Raffaele Scientific Institute, Milano, Italy
| | - Alessandra Bragonzi
- CFaCore, Infection and CF Unit, San Raffaele Scientific Institute, Milano, Italy
| | - Massimo Aureli
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Rosaria Bassi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Matteo Tironi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Giuseppe Lippi
- Laboratory of Molecular Pathology-Department of Pathology and Diagnostics, University Hospital of Verona, Verona, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giulio Cabrini
- Laboratory of Molecular Pathology-Department of Pathology and Diagnostics, University Hospital of Verona, Verona, Italy
| | - Giovanni Palumbo
- Department of Chemical Sciences, University of Napoli Federico II, via Cintia, 80126 Napoli, Italy
| | - Maria Cristina Dechecchi
- Laboratory of Molecular Pathology-Department of Pathology and Diagnostics, University Hospital of Verona, Verona, Italy.
| | - Annalisa Guaragna
- Department of Chemical Sciences, University of Napoli Federico II, via Cintia, 80126 Napoli, Italy
| |
Collapse
|
20
|
Ben Bdira F, Artola M, Overkleeft HS, Ubbink M, Aerts JMFG. Distinguishing the differences in β-glycosylceramidase folds, dynamics, and actions informs therapeutic uses. J Lipid Res 2018; 59:2262-2276. [PMID: 30279220 PMCID: PMC6277158 DOI: 10.1194/jlr.r086629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/04/2018] [Indexed: 12/12/2022] Open
Abstract
Glycosyl hydrolases (GHs) are carbohydrate-active enzymes that hydrolyze a specific β-glycosidic bond in glycoconjugate substrates; β-glucosidases degrade glucosylceramide, a ubiquitous glycosphingolipid. GHs are grouped into structurally similar families that themselves can be grouped into clans. GH1, GH5, and GH30 glycosidases belong to clan A hydrolases with a catalytic (β/α)8 TIM barrel domain, whereas GH116 belongs to clan O with a catalytic (α/α)6 domain. In humans, GH abnormalities underlie metabolic diseases. The lysosomal enzyme glucocerebrosidase (family GH30), deficient in Gaucher disease and implicated in Parkinson disease etiology, and the cytosol-facing membrane-bound glucosylceramidase (family GH116) remove the terminal glucose from the ceramide lipid moiety. Here, we compare enzyme differences in fold, action, dynamics, and catalytic domain stabilization by binding site occupancy. We also explore other glycosidases with reported glycosylceramidase activity, including human cytosolic β-glucosidase, intestinal lactase-phlorizin hydrolase, and lysosomal galactosylceramidase. Last, we describe the successful translation of research to practice: recombinant glycosidases and glucosylceramide metabolism modulators are approved drug products (enzyme replacement therapies). Activity-based probes now facilitate the diagnosis of enzyme deficiency and screening for compounds that interact with the catalytic pocket of glycosidases. Future research may deepen the understanding of the functional variety of these enzymes and their therapeutic potential.
Collapse
Affiliation(s)
- Fredj Ben Bdira
- Departments of Macromolecular Biochemistry,Leiden Institute of Chemistry, Leiden, The Netherlands
| | - Marta Artola
- Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden, The Netherlands
| | - Herman S Overkleeft
- Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden, The Netherlands
| | - Marcellus Ubbink
- Departments of Macromolecular Biochemistry,Leiden Institute of Chemistry, Leiden, The Netherlands
| | | |
Collapse
|
21
|
Rugen MD, Vernet MMJL, Hantouti L, Soenens A, Andriotis VME, Rejzek M, Brett P, van den Berg RJBHN, Aerts JMFG, Overkleeft HS, Field RA. A chemical genetic screen reveals that iminosugar inhibitors of plant glucosylceramide synthase inhibit root growth in Arabidopsis and cereals. Sci Rep 2018; 8:16421. [PMID: 30401902 PMCID: PMC6219604 DOI: 10.1038/s41598-018-34749-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/19/2018] [Indexed: 01/11/2023] Open
Abstract
Iminosugars are carbohydrate mimics that are useful as molecular probes to dissect metabolism in plants. To analyse the effects of iminosugar derivatives on germination and seedling growth, we screened a library of 390 N-substituted iminosugar analogues against Arabidopsis and the small cereal Eragrostis tef (Tef). The most potent compound identified in both systems, N-5-(adamantane-1-yl-ethoxy)pentyl- L-ido-deoxynojirimycin (L-ido-AEP-DNJ), inhibited root growth in agar plate assays by 92% and 96% in Arabidopsis and Tef respectively, at 10 µM concentration. Phenocopying the effect of L-ido-AEP-DNJ with the commercial inhibitor (PDMP) implicated glucosylceramide synthase as the target responsible for root growth inhibition. L-ido-AEP-DNJ was twenty-fold more potent than PDMP. Liquid chromatography-mass spectrometry (LC-MS) analysis of ceramide:glucosylceramide ratios in inhibitor-treated Arabidopsis seedlings showed a decrease in the relative quantity of the latter, confirming that glucosylceramide synthesis is perturbed in inhibitor-treated plants. Bioinformatic analysis of glucosylceramide synthase indicates gene conservation across higher plants. Previous T-DNA insertional inactivation of glucosylceramide synthase in Arabidopsis caused seedling lethality, indicating a role in growth and development. The compounds identified herein represent chemical alternatives that can overcome issues caused by genetic intervention. These inhibitors offer the potential to dissect the roles of glucosylceramides in polyploid crop species.
Collapse
Affiliation(s)
- Michael D Rugen
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Mathieu M J L Vernet
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Laila Hantouti
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Amalia Soenens
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Pozuelo de Alarcón, Madrid, Spain
| | - Vasilios M E Andriotis
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
- School of Natural and Environmental Sciences, Devonshire Building, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - Martin Rejzek
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Paul Brett
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Richard J B H N van den Berg
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, 2300 RA, Leiden, The Netherlands
| | - Johannes M F G Aerts
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Hermen S Overkleeft
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, 2300 RA, Leiden, The Netherlands
| | - Robert A Field
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| |
Collapse
|
22
|
Zhang MY, Shi DB. Crystal structure of methyl 4′-amino-3′,5′-dimethyl-[1,1′-biphenyl]-4-carboxylate, C 16H 17NO 2. Z KRIST-NEW CRYST ST 2018. [DOI: 10.1515/ncrs-2017-0329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C16H17NO2, orthorhombic, P212121 (no. 19), a = 6.3761(2) Å, b = 12.0521(4) Å, c = 17.3288(5) Å, V = 1331.64(7) Å3, Z = 4, R
gt(F) = 0.0462, wR
ref(F
2) = 0.1243, T = 153(2) K.
Collapse
Affiliation(s)
- Mao-Yuan Zhang
- School of Pharmaceutical Sciences, Zunyi Medical College , Zunyi 563000 , People’s Republic of China
| | - Da-Bin Shi
- School of Pharmaceutical Sciences, Zunyi Medical College , Zunyi 563000 , People’s Republic of China
| |
Collapse
|
23
|
Zhang G, Liu R, Chou Y, Wang Y, Cheng T, Liu G. Multiple Functionalized Hyperbranched Polyethoxysiloxane Promotes Suzuki Coupling Asymmetric Transfer Hydrogenation One-Pot Enantioselective Organic Transformations. ChemCatChem 2017. [DOI: 10.1002/cctc.201701256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Genwei Zhang
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key, Laboratory of Rare Earth Functional Materials; Shanghai Normal University; No.100 Guilin Rd. Shanghai Shi 200234 P.R. China
| | - Rui Liu
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key, Laboratory of Rare Earth Functional Materials; Shanghai Normal University; No.100 Guilin Rd. Shanghai Shi 200234 P.R. China
| | - Yajie Chou
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key, Laboratory of Rare Earth Functional Materials; Shanghai Normal University; No.100 Guilin Rd. Shanghai Shi 200234 P.R. China
| | - Yu Wang
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key, Laboratory of Rare Earth Functional Materials; Shanghai Normal University; No.100 Guilin Rd. Shanghai Shi 200234 P.R. China
| | - Tanyu Cheng
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key, Laboratory of Rare Earth Functional Materials; Shanghai Normal University; No.100 Guilin Rd. Shanghai Shi 200234 P.R. China
| | - Guohua Liu
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key, Laboratory of Rare Earth Functional Materials; Shanghai Normal University; No.100 Guilin Rd. Shanghai Shi 200234 P.R. China
| |
Collapse
|
24
|
Gu X, Gupta V, Yang Y, Zhu JY, Carlson EJ, Kingsley C, Tash JS, Schönbrunn E, Hawkinson J, Georg GI. Structure-Activity Studies of N-Butyl-1-deoxynojirimycin (NB-DNJ) Analogues: Discovery of Potent and Selective Aminocyclopentitol Inhibitors of GBA1 and GBA2. ChemMedChem 2017; 12:1977-1984. [PMID: 28975712 PMCID: PMC5725710 DOI: 10.1002/cmdc.201700558] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Indexed: 12/26/2022]
Abstract
Analogues of N‐butyl‐1‐deoxynojirimycin (NB‐DNJ) were prepared and assayed for inhibition of ceramide‐specific glucosyltransferase (CGT), non‐lysosomal β‐glucosidase 2 (GBA2) and the lysosomal β‐glucosidase 1 (GBA1). Compounds 5 a–6 f, which carry sterically demanding nitrogen substituents, and compound 13, devoid of the C3 and C5 hydroxy groups present in DNJ/NB‐DGJ (N‐butyldeoxygalactojirimycin) showed no inhibitory activity for CGT or GBA2. Inversion of stereochemistry at C4 of N‐(n‐butyl)‐ and N‐(n‐nonyl)‐DGJ (compounds 24) also led to a loss of activity in these assays. The aminocyclopentitols N‐(n‐butyl)‐ (35 a), N‐(n‐nonyl)‐4‐amino‐5‐(hydroxymethyl)cyclopentane‐ (35 b), and N‐(1‐(pentyloxy)methyl)adamantan‐1‐yl)‐1,2,3‐triol (35 f), were found to be selective inhibitors of GBA1 and GBA2 that did not inhibit CGT (>1 mm), with the exception of 35 f, which inhibited CGT with an IC50 value of 1 mm. The N‐butyl analogue 35 a was 100‐fold selective for inhibiting GBA1 over GBA2 (Ki values of 32 nm and 3.3 μm for GBA1 and GBA2, respectively). The N‐nonyl analogue 35 b displayed a Ki value of ≪14 nm for GBA1 inhibition and a Ki of 43 nm for GBA2. The N‐(1‐(pentyloxy)methyl)adamantan‐1‐yl) derivative 35 f had Ki values of ≈16 and 14 nm for GBA1 and GBA2, respectively. The related N‐bis‐substituted aminocyclopentitols were found to be significantly less potent inhibitors than their mono‐substituted analogues. The aminocyclopentitol scaffold should hold promise for further inhibitor development.
Collapse
Affiliation(s)
- Xingxian Gu
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, 66045, USA.,Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN, 55414, USA
| | | | - Yan Yang
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Jin-Yi Zhu
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Erick J Carlson
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Carolyn Kingsley
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Joseph S Tash
- University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Ernst Schönbrunn
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Jon Hawkinson
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Gunda I Georg
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN, 55414, USA
| |
Collapse
|
25
|
Sevšek A, Sastre Toraño J, Quarles van Ufford L, Moret EE, Pieters RJ, Martin NI. Orthoester functionalized N-guanidino derivatives of 1,5-dideoxy-1,5-imino-d-xylitol as pH-responsive inhibitors of β-glucocerebrosidase. MEDCHEMCOMM 2017; 8:2050-2054. [PMID: 30108721 PMCID: PMC6072142 DOI: 10.1039/c7md00480j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/09/2017] [Indexed: 01/14/2023]
Abstract
Alkylated guanidino derivatives of 1,5-dideoxy-1,5-imino-d-xylitol bearing an orthoester moiety were prepared using a concise synthetic protocol. Inhibition assays with a panel of glycosidases revealed that one of the compounds prepared displays potent inhibition against human β-glucocerebrosidase (GBA) at pH 7.0 with IC50 values in the low nanomolar range. Notably, a significant drop in inhibitory activity is observed when the same compound is tested at pH 5.2. This pH sensitive activity is due to degradation of the orthoester functionality at lower pH accompanied by loss of the alkyl group. This approach provides a degree of control in tuning enzyme inhibition based on the local pH. Compounds like those here described may serve as tools for studying various lysosomal storage disorders such as Gaucher disease. In this regard, the most active compound was also evaluated as a potential pharmacological chaperone by assessing its effect on GBA activity in an assay employing fibroblasts from Gaucher patients.
Collapse
Affiliation(s)
- Alen Sevšek
- Utrecht Institute for Pharmaceutical Sciences , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands . ;
| | - Javier Sastre Toraño
- Utrecht Institute for Pharmaceutical Sciences , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands . ;
| | - Linda Quarles van Ufford
- Utrecht Institute for Pharmaceutical Sciences , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands . ;
| | - Ed E Moret
- Utrecht Institute for Pharmaceutical Sciences , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands . ;
| | - Roland J Pieters
- Utrecht Institute for Pharmaceutical Sciences , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands . ;
| | - Nathaniel I Martin
- Utrecht Institute for Pharmaceutical Sciences , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands . ;
| |
Collapse
|
26
|
Lindbäck E, Lopéz Ó, Tobiesen Å, Fernández-Bolaños JG, Sydnes MO. Sugar hydrazide imides: a new family of glycosidase inhibitors. Org Biomol Chem 2017; 15:8709-8712. [PMID: 29039854 DOI: 10.1039/c7ob01673e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The preparation of a novel type of iminosugar including a hydrazide imide moiety is described. The sugar hydrazide imides (3S,4S,5R,6R)-1-amino-3,4,5-trihydroxy-6-(hydroxymethyl)-2-iminopiperidine acetate and (3S,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-imino-1-(methylamino)piperidine acetate presented here behave as inhibitors of α/β-glucosidases in the low micromolar concentration range. The former inhibitor displays a pH-dependent inhibition of β-glucosidase. The N-methylated counterpart behaves as an anomer-selective competitive micromolar inhibitor of α-glucosidase.
Collapse
Affiliation(s)
- Emil Lindbäck
- Faculty of Science and Technology, Department of Mathematics and Natural Science, University of Stavanger, NO-4036 Stavanger, Norway.
| | | | | | | | | |
Collapse
|
27
|
Wu YC, Luo SH, Mei WJ, Cao L, Wu HQ, Wang ZY. Synthesis and biological evaluation of 4-biphenylamino-5-halo-2( 5H )-furanones as potential anticancer agents. Eur J Med Chem 2017; 139:84-94. [DOI: 10.1016/j.ejmech.2017.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/15/2017] [Accepted: 08/02/2017] [Indexed: 10/19/2022]
|
28
|
Beenakker TM, Wander DPA, Offen WA, Artola M, Raich L, Ferraz MJ, Li KY, Houben JHPM, van Rijssel ER, Hansen T, van der Marel GA, Codée JDC, Aerts JMF, Rovira C, Davies GJ, Overkleeft HS. Carba-cyclophellitols Are Neutral Retaining-Glucosidase Inhibitors. J Am Chem Soc 2017; 139:6534-6537. [PMID: 28463498 PMCID: PMC5437670 DOI: 10.1021/jacs.7b01773] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Indexed: 01/15/2023]
Abstract
The conformational analysis of glycosidases affords a route to their specific inhibition through transition-state mimicry. Inspired by the rapid reaction rates of cyclophellitol and cyclophellitol aziridine-both covalent retaining β-glucosidase inhibitors-we postulated that the corresponding carba "cyclopropyl" analogue would be a potent retaining β-glucosidase inhibitor for those enzymes reacting through the 4H3 transition-state conformation. Ab initio metadynamics simulations of the conformational free energy landscape for the cyclopropyl inhibitors show a strong bias for the 4H3 conformation, and carba-cyclophellitol, with an N-(4-azidobutyl)carboxamide moiety, proved to be a potent inhibitor (Ki = 8.2 nM) of the Thermotoga maritima TmGH1 β-glucosidase. 3-D structural analysis and comparison with unreacted epoxides show that this compound indeed binds in the 4H3 conformation, suggesting that conformational strain induced through a cyclopropyl unit may add to the armory of tight-binding inhibitor designs.
Collapse
Affiliation(s)
- Thomas
J. M. Beenakker
- Department
of Bio-organic Synthesis and Department of Medical Biochemistry,
Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Dennis P. A. Wander
- Department
of Bio-organic Synthesis and Department of Medical Biochemistry,
Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Wendy A. Offen
- Department
of Chemistry, University of York, Heslington, York, YO10
5DD, U.K.
| | - Marta Artola
- Department
of Bio-organic Synthesis and Department of Medical Biochemistry,
Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Lluís Raich
- Departament
de Química Inorgànica i Orgànica (Secció
de Química Orgànica) & Institut de Quimica Teòrica
i Computacional (IQTCUB), Universitat de
Barcelona, Martí
i Franquès 1, 08028 Barcelona, Spain
| | - Maria J. Ferraz
- Department
of Bio-organic Synthesis and Department of Medical Biochemistry,
Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Kah-Yee Li
- Department
of Bio-organic Synthesis and Department of Medical Biochemistry,
Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Judith H. P. M. Houben
- Department
of Bio-organic Synthesis and Department of Medical Biochemistry,
Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Erwin R. van Rijssel
- Department
of Bio-organic Synthesis and Department of Medical Biochemistry,
Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Thomas Hansen
- Department
of Bio-organic Synthesis and Department of Medical Biochemistry,
Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Gijsbert A. van der Marel
- Department
of Bio-organic Synthesis and Department of Medical Biochemistry,
Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Jeroen D. C. Codée
- Department
of Bio-organic Synthesis and Department of Medical Biochemistry,
Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Johannes M. F.
G. Aerts
- Department
of Bio-organic Synthesis and Department of Medical Biochemistry,
Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Carme Rovira
- Departament
de Química Inorgànica i Orgànica (Secció
de Química Orgànica) & Institut de Quimica Teòrica
i Computacional (IQTCUB), Universitat de
Barcelona, Martí
i Franquès 1, 08028 Barcelona, Spain
- Institució
Catalana de Recerca i Estudis Avançats (ICREA), 08020 Barcelona, Spain
| | - Gideon J. Davies
- Department
of Chemistry, University of York, Heslington, York, YO10
5DD, U.K.
| | - Herman S. Overkleeft
- Department
of Bio-organic Synthesis and Department of Medical Biochemistry,
Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| |
Collapse
|
29
|
Sevšek A, Šrot L, Rihter J, Čelan M, van Ufford LQ, Moret EE, Martin NI, Pieters RJ. N-Guanidino Derivatives of 1,5-Dideoxy-1,5-imino-d-xylitol are Potent, Selective, and Stable Inhibitors of β-Glucocerebrosidase. ChemMedChem 2017; 12:483-486. [PMID: 28328014 DOI: 10.1002/cmdc.201700050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/09/2017] [Indexed: 01/29/2023]
Abstract
A series of lipidated guanidino and urea derivatives of 1,5-dideoxy-1,5-imino-d-xylitol were prepared from d-xylose using a concise synthetic protocol. Inhibition assays with a panel of glycosidases revealed that the guanidino analogues display potent inhibition against human recombinant β-glucocerebrosidase with IC50 values in the low nanomolar range. Related urea analogues of 1,5-dideoxy-1,5-imino-d-xylitol were also synthesized and evaluated in the same fashion and found to be selective for β-galactosidase from bovine liver. No inhibition of human recombinant β-glucocerebrosidase was observed for the urea analogues. Computational studies provided insight into the potent activity of analogues bearing the substituted guanidine moiety in the inhibition of lysosomal glucocerebrosidase (GBA).
Collapse
Affiliation(s)
- Alen Sevšek
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 3508 TB, 3508, TB, Utrecht, The Netherlands
| | - Luka Šrot
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 3508 TB, 3508, TB, Utrecht, The Netherlands
| | - Jakob Rihter
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 3508 TB, 3508, TB, Utrecht, The Netherlands
| | - Maša Čelan
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 3508 TB, 3508, TB, Utrecht, The Netherlands
| | - Linda Quarles van Ufford
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 3508 TB, 3508, TB, Utrecht, The Netherlands
| | - Ed E Moret
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 3508 TB, 3508, TB, Utrecht, The Netherlands
| | - Nathaniel I Martin
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 3508 TB, 3508, TB, Utrecht, The Netherlands
| | - Roland J Pieters
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 3508 TB, 3508, TB, Utrecht, The Netherlands
| |
Collapse
|
30
|
Saturated Heterocycles with Applications in Medicinal Chemistry. ADVANCES IN HETEROCYCLIC CHEMISTRY 2017. [DOI: 10.1016/bs.aihch.2016.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
31
|
Olsen JI, Plata GB, Padrón JM, López Ó, Bols M, Fernández-Bolaños JG. Selenoureido-iminosugars: A new family of multitarget drugs. Eur J Med Chem 2016; 123:155-160. [DOI: 10.1016/j.ejmech.2016.07.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 07/09/2016] [Accepted: 07/11/2016] [Indexed: 01/08/2023]
|
32
|
Zhao K, Zhou G, Nie H, Chen W. Three-step synthesis of l-ido-1-deoxynojirimycin derivatives by reductive amination in water, “borrowing hydrogen” under neat conditions and deprotection. Org Biomol Chem 2016; 14:9466-9471. [DOI: 10.1039/c6ob01864e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A three-step synthesis of l-ido-1-deoxynojirimycin derivatives, starting from readily available 2,3,4,6-tetra-O-benzyl-d-glucopyranose via Ir-catalyzed reductive amination in water, “borrowing hydrogen” under neat conditions, and Pd-catalyzed debenzylation, is reported.
Collapse
Affiliation(s)
- Kai Zhao
- School of Pharmacy
- Fourth Military Medical University
- Xian
- P. R. China
| | - Gang Zhou
- School of Pharmacy
- Fourth Military Medical University
- Xian
- P. R. China
| | - Huifang Nie
- School of Pharmacy
- Fourth Military Medical University
- Xian
- P. R. China
| | - Weiping Chen
- School of Pharmacy
- Fourth Military Medical University
- Xian
- P. R. China
| |
Collapse
|
33
|
Moynihan L, Chadda R, McArdle P, Murphy PV. Allylic Azide Rearrangement in Tandem with Huisgen Cycloaddition for Stereoselective Annulation: Synthesis of C-Glycosyl Iminosugars. Org Lett 2015; 17:6226-9. [PMID: 26650965 DOI: 10.1021/acs.orglett.5b03209] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Allylic azide rearrangement is used in tandem with intramolecular azide-alkene cycloaddition to give a triazoline that when subsequently decomposed in the presence of a nucleophile gives piperidines. The tandem reaction gives two stereocenters that are generated with high control. The formation of the piperidines required the presence of innate conformational constraint. The applicability of the annulation reaction is demonstrated by the synthesis of iminosugars. A proposal is included to account for the observed stereoselectivity, which is influenced by the precursor structure.
Collapse
Affiliation(s)
- Lorna Moynihan
- School of Chemistry, National University of Ireland Galway , University Road, Galway, Ireland
| | - Rekha Chadda
- School of Chemistry, National University of Ireland Galway , University Road, Galway, Ireland
| | - Patrick McArdle
- School of Chemistry, National University of Ireland Galway , University Road, Galway, Ireland
| | - Paul V Murphy
- School of Chemistry, National University of Ireland Galway , University Road, Galway, Ireland
| |
Collapse
|
34
|
van den Berg RJBHN, van Rijssel ER, Ferraz MJ, Houben J, Strijland A, Donker-Koopman WE, Wennekes T, Bonger KM, Ghisaidoobe ABT, Hoogendoorn S, van der Marel GA, Codée JDC, Overkleeft HS, Aerts JMFG. Synthesis and Evaluation of Hybrid Structures Composed of Two Glucosylceramide Synthase Inhibitors. ChemMedChem 2015; 10:2042-62. [DOI: 10.1002/cmdc.201500407] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Indexed: 01/08/2023]
Affiliation(s)
| | - Erwin R. van Rijssel
- Leiden Institute of Chemistry; Leiden University; Gorlaeus Laboratories; Einsteinweg 55 2300 RA Leiden The Netherlands
| | - Maria Joao Ferraz
- Leiden Institute of Chemistry; Leiden University; Gorlaeus Laboratories; Einsteinweg 55 2300 RA Leiden The Netherlands
| | - Judith Houben
- Leiden Institute of Chemistry; Leiden University; Gorlaeus Laboratories; Einsteinweg 55 2300 RA Leiden The Netherlands
| | - Anneke Strijland
- Department of Medical Biochemistry; Academic Medical Center; University of Amsterdam; Meibergdreef 9 1105 AZ Amsterdam The Netherlands
| | - Wilma E. Donker-Koopman
- Department of Medical Biochemistry; Academic Medical Center; University of Amsterdam; Meibergdreef 9 1105 AZ Amsterdam The Netherlands
| | - Tom Wennekes
- Leiden Institute of Chemistry; Leiden University; Gorlaeus Laboratories; Einsteinweg 55 2300 RA Leiden The Netherlands
- Laboratory of Organic Chemistry; Wageningen University; Dreijenplein 8 6703 HB Wageningen The Netherlands
| | - Kimberly M. Bonger
- Leiden Institute of Chemistry; Leiden University; Gorlaeus Laboratories; Einsteinweg 55 2300 RA Leiden The Netherlands
| | - Amar B. T. Ghisaidoobe
- Leiden Institute of Chemistry; Leiden University; Gorlaeus Laboratories; Einsteinweg 55 2300 RA Leiden The Netherlands
| | - Sascha Hoogendoorn
- Leiden Institute of Chemistry; Leiden University; Gorlaeus Laboratories; Einsteinweg 55 2300 RA Leiden The Netherlands
| | - Gijsbert A. van der Marel
- Leiden Institute of Chemistry; Leiden University; Gorlaeus Laboratories; Einsteinweg 55 2300 RA Leiden The Netherlands
| | - Jeroen D. C. Codée
- Leiden Institute of Chemistry; Leiden University; Gorlaeus Laboratories; Einsteinweg 55 2300 RA Leiden The Netherlands
| | - Herman S. Overkleeft
- Leiden Institute of Chemistry; Leiden University; Gorlaeus Laboratories; Einsteinweg 55 2300 RA Leiden The Netherlands
| | - Johannes M. F. G. Aerts
- Leiden Institute of Chemistry; Leiden University; Gorlaeus Laboratories; Einsteinweg 55 2300 RA Leiden The Netherlands
- Department of Medical Biochemistry; Academic Medical Center; University of Amsterdam; Meibergdreef 9 1105 AZ Amsterdam The Netherlands
| |
Collapse
|
35
|
Herrera Moro Chao D, Kallemeijn WW, Marques ARA, Orre M, Ottenhoff R, van Roomen C, Foppen E, Renner MC, Moeton M, van Eijk M, Boot RG, Kamphuis W, Hol EM, Aten J, Overkleeft HS, Kalsbeek A, Aerts JMFG. Visualization of Active Glucocerebrosidase in Rodent Brain with High Spatial Resolution following In Situ Labeling with Fluorescent Activity Based Probes. PLoS One 2015; 10:e0138107. [PMID: 26418157 PMCID: PMC4587854 DOI: 10.1371/journal.pone.0138107] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/26/2015] [Indexed: 11/30/2022] Open
Abstract
Gaucher disease is characterized by lysosomal accumulation of glucosylceramide due to deficient activity of lysosomal glucocerebrosidase (GBA). In cells, glucosylceramide is also degraded outside lysosomes by the enzyme glucosylceramidase 2 (GBA2) of which inherited deficiency is associated with ataxias. The interest in GBA and glucosylceramide metabolism in the brain has grown following the notion that mutations in the GBA gene impose a risk factor for motor disorders such as α-synucleinopathies. We earlier developed a β-glucopyranosyl-configured cyclophellitol-epoxide type activity based probe (ABP) allowing in vivo and in vitro visualization of active molecules of GBA with high spatial resolution. Labeling occurs through covalent linkage of the ABP to the catalytic nucleophile residue in the enzyme pocket. Here, we describe a method to visualize active GBA molecules in rat brain slices using in vivo labeling. Brain areas related to motor control, like the basal ganglia and motor related structures in the brainstem, show a high content of active GBA. We also developed a β-glucopyranosyl cyclophellitol-aziridine ABP allowing in situ labeling of GBA2. Labeled GBA2 in brain areas can be identified and quantified upon gel electrophoresis. The distribution of active GBA2 markedly differs from that of GBA, being highest in the cerebellar cortex. The histological findings with ABP labeling were confirmed by biochemical analysis of isolated brain areas. In conclusion, ABPs offer sensitive tools to visualize active GBA and to study the distribution of GBA2 in the brain and thus may find application to establish the role of these enzymes in neurodegenerative disease conditions such as α-synucleinopathies and cerebellar ataxia.
Collapse
Affiliation(s)
- Daniela Herrera Moro Chao
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, The Netherlands
| | - Wouter W. Kallemeijn
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
- Department of Biochemistry, Leiden Insitute of Chemistry, Leiden, The Netherlands
| | - Andre R. A. Marques
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Marie Orre
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Roelof Ottenhoff
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Cindy van Roomen
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Ewout Foppen
- Department of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, The Netherlands
| | - Maria C. Renner
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Martina Moeton
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Marco van Eijk
- Department of Biochemistry, Leiden Insitute of Chemistry, Leiden, The Netherlands
| | - Rolf G. Boot
- Department of Biochemistry, Leiden Insitute of Chemistry, Leiden, The Netherlands
| | - Willem Kamphuis
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Elly M. Hol
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan Aten
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | - Hermen S. Overkleeft
- Department of Bio-organic Synthesis, Leiden institute of Chemistry, Leiden, The Netherlands
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | | |
Collapse
|
36
|
Hoogendoorn S, Mock ED, Strijland A, Donker-Koopman WE, van den Elst H, van den Berg RJBHN, Aerts JMFG, van der Marel GA, Overkleeft HS. ortho-Carborane-ModifiedN-Substituted Deoxynojirimycins. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500364] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
37
|
Cendret V, Legigan T, Mingot A, Thibaudeau S, Adachi I, Forcella M, Parenti P, Bertrand J, Becq F, Norez C, Désiré J, Kato A, Blériot Y. Synthetic deoxynojirimycin derivatives bearing a thiolated, fluorinated or unsaturated N-alkyl chain: identification of potent α-glucosidase and trehalase inhibitors as well as F508del-CFTR correctors. Org Biomol Chem 2015; 13:10734-44. [DOI: 10.1039/c5ob01526j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthetic DNJs bearing a thiolated, fluorinated or unsaturated N-substituent exhibit trehalase inhibition or F508del-CFTR correction.
Collapse
|
38
|
Le Guen C, Mena-Barragán T, Ortiz Mellet C, Gueyrard D, Pfund E, Lequeux T. Fluorinated hydroxypiperidines as selective β-glucosidase inhibitors. Org Biomol Chem 2015; 13:5983-96. [DOI: 10.1039/c5ob00721f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Synthesis and glucosidase inhibitory activity of piperidines revealed a reverse selectivity between F- and H-alkenes.
Collapse
Affiliation(s)
- Clothilde Le Guen
- Laboratoire de Chimie Moléculaire et Thioorganique
- UMR CNRS 6507
- FR 3038
- ENSICAEN Université de Caen Basse-Normandie
- 14050 Caen Cedex
| | - Teresa Mena-Barragán
- Departamento de Química Orgánica
- Facultad de Química
- Universidad de Sevilla
- 41012 Sevilla
- Spain
| | - Carmen Ortiz Mellet
- Departamento de Química Orgánica
- Facultad de Química
- Universidad de Sevilla
- 41012 Sevilla
- Spain
| | - David Gueyrard
- Laboratoire de Chimie Organique 2 Glycochimie
- Université de Lyon
- ICBMS
- UMR 5246 – CNRS
- Bat. 308 – Curien (CPE Lyon)
| | - Emmanuel Pfund
- Laboratoire de Chimie Moléculaire et Thioorganique
- UMR CNRS 6507
- FR 3038
- ENSICAEN Université de Caen Basse-Normandie
- 14050 Caen Cedex
| | - Thierry Lequeux
- Laboratoire de Chimie Moléculaire et Thioorganique
- UMR CNRS 6507
- FR 3038
- ENSICAEN Université de Caen Basse-Normandie
- 14050 Caen Cedex
| |
Collapse
|