1
|
Huo T, Zhao X, Cheng Z, Wei J, Zhu M, Dou X, Jiao N. Late-stage modification of bioactive compounds: Improving druggability through efficient molecular editing. Acta Pharm Sin B 2024; 14:1030-1076. [PMID: 38487004 PMCID: PMC10935128 DOI: 10.1016/j.apsb.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/14/2023] [Accepted: 11/13/2023] [Indexed: 03/17/2024] Open
Abstract
Synthetic chemistry plays an indispensable role in drug discovery, contributing to hit compounds identification, lead compounds optimization, candidate drugs preparation, and so on. As Nobel Prize laureate James Black emphasized, "the most fruitful basis for the discovery of a new drug is to start with an old drug"1. Late-stage modification or functionalization of drugs, natural products and bioactive compounds have garnered significant interest due to its ability to introduce diverse elements into bioactive compounds promptly. Such modifications alter the chemical space and physiochemical properties of these compounds, ultimately influencing their potency and druggability. To enrich a toolbox of chemical modification methods for drug discovery, this review focuses on the incorporation of halogen, oxygen, and nitrogen-the ubiquitous elements in pharmacophore components of the marketed drugs-through late-stage modification in recent two decades, and discusses the state and challenges faced in these fields. We also emphasize that increasing cooperation between chemists and pharmacists may be conducive to the rapid discovery of new activities of the functionalized molecules. Ultimately, we hope this review would serve as a valuable resource, facilitating the application of late-stage modification in the construction of novel molecules and inspiring innovative concepts for designing and building new drugs.
Collapse
Affiliation(s)
- Tongyu Huo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xinyi Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zengrui Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jialiang Wei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Changping Laboratory, Beijing 102206, China
| | - Minghui Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaodong Dou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Changping Laboratory, Beijing 102206, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, China
| |
Collapse
|
2
|
Leal ES, Pascual MJ, Adler NS, Arrupe N, Merwaiss F, Giordano L, Fidalgo D, Álvarez D, Bollini M. Unveiling tetrahydroquinolines as promising BVDV entry inhibitors: Targeting the envelope protein. Virology 2024; 590:109968. [PMID: 38141499 DOI: 10.1016/j.virol.2023.109968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 12/25/2023]
Abstract
Bovine viral diarrhea virus (BVDV) is known to cause financial losses and decreased productivity in the cattle industry worldwide. Currently, there are no available antiviral treatments for effectively controlling BVDV infections in laboratories or farms. The BVDV envelope protein (E2) mediates receptor recognition on the cell surface and is required for fusion of virus and cell membranes after the endocytic uptake of the virus during the entry process. Therefore, E2 is an attractive target for the development of antiviral strategies. To identify BVDV antivirals targeting E2 function, we defined a binding site in silico located in domain IIIc at the interface between monomers in the disulfide linked dimer of E2. Employing a de novo design methodology to identify compounds with the potential to inhibit the E2 function, compound 9 emerged as a promising candidate with remarkable antiviral activity and minimal toxicity. In line with targeting of E2 function, compound 9 was found to block the virus entry into host cells. Furthermore, we demonstrated that compound 9 selectively binds to recombinant E2 in vitro. Molecular dynamics simulations (MD) allowed describing a possible interaction pattern between compound 9 and E2 and indicated that the S enantiomer of compound 9 may be responsible for the antiviral activity. Future research endeavors will focus on synthesizing enantiomerically pure compounds to further support these findings. These results highlight the usefulness of de novo design strategies to identify a novel class of BVDV inhibitors that block E2 function inhibiting virus entry into the host cell.
Collapse
Affiliation(s)
- Emilse S Leal
- Centro de Investigaciones en Bionanociencias (CIBION)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María J Pascual
- Instituto de Investigaciones Biotecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de San Martín, Argentina
| | - Natalia S Adler
- Centro de Investigaciones en Bionanociencias (CIBION)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Nicolás Arrupe
- Centro de Investigaciones en Bionanociencias (CIBION)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Fernando Merwaiss
- Instituto de Investigaciones Biotecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de San Martín, Argentina
| | - Luciana Giordano
- Centro de Investigaciones en Bionanociencias (CIBION)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Daniela Fidalgo
- Centro de Investigaciones en Bionanociencias (CIBION)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Diego Álvarez
- Instituto de Investigaciones Biotecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de San Martín, Argentina.
| | - Mariela Bollini
- Centro de Investigaciones en Bionanociencias (CIBION)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
3
|
Hollander K, Chan AH, Frey KM, Hunker O, Ippolito JA, Spasov KA, Yeh YJ, Jorgensen WL, Ho Y, Anderson KS. Exploring novel HIV-1 reverse transcriptase inhibitors with drug-resistant mutants: A double mutant surprise. Protein Sci 2023; 32:e4814. [PMID: 37861472 PMCID: PMC10659932 DOI: 10.1002/pro.4814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023]
Abstract
HIV-1 reverse transcriptase (RT) remains a key target for HIV drug development. As successful management of the disease requires lifelong treatment, the emergence of resistance mutations is inevitable, making development of new RT inhibitors, which remain effective against resistant variants crucial. To this end, previous computationally guided drug design efforts have resulted in catechol diether compounds, which inhibit wildtype RT with picomolar affinities and appear to be promising preclinical candidates. To confirm that these compounds remain potent against Y181C, a widespread mutation conferring resistance to first generation inhibitors, they were screened against the HIV-1 N119 clinical isolate, reported as a Y181C single mutant. In comparison to a molecular clone with the same mutation, N119 appears less susceptible to inhibition by our preclinical candidate compounds. A more detailed sequencing effort determined that N119 was misidentified and carries V106A in combination with Y181C. While both indolizine and naphthalene substituted catechol diethers are potent against the classical Y181C single mutant, the addition of V106A confers more resistance against the indolizine derivatives than the naphthalene derivatives. Crystal structures presented in this study highlight key features of the naphthyl group, which allow these compounds to remain potent in the double mutant, including stronger interactions with F227 and less reliance on V106 for stabilization of the ethoxy-uracil ring, which makes critical hydrogen bonds with other residues in the binding pocket.
Collapse
Affiliation(s)
- Klarissa Hollander
- Department of Molecular Biophysics and BiochemistryYale University School of MedicineNew HavenConnecticutUSA
- Department of PharmacologyYale University School of MedicineNew HavenConnecticutUSA
| | - Albert H. Chan
- Department of PharmacologyYale University School of MedicineNew HavenConnecticutUSA
| | - Kathleen M. Frey
- Department of PharmacologyYale University School of MedicineNew HavenConnecticutUSA
| | - Olivia Hunker
- Department of Molecular Biophysics and BiochemistryYale University School of MedicineNew HavenConnecticutUSA
| | - Joseph A. Ippolito
- Department of PharmacologyYale University School of MedicineNew HavenConnecticutUSA
- Department of ChemistryYale UniversityNew HavenConnecticutUSA
| | - Krasimir A. Spasov
- Department of PharmacologyYale University School of MedicineNew HavenConnecticutUSA
| | - Yang‐Hui J. Yeh
- Department of Microbial PathogenesisYale University School of MedicineNew HavenConnecticutUSA
| | | | - Ya‐Chi Ho
- Department of Microbial PathogenesisYale University School of MedicineNew HavenConnecticutUSA
| | - Karen S. Anderson
- Department of Molecular Biophysics and BiochemistryYale University School of MedicineNew HavenConnecticutUSA
- Department of PharmacologyYale University School of MedicineNew HavenConnecticutUSA
| |
Collapse
|
4
|
Vanangamudi M, Palaniappan S, Kathiravan MK, Namasivayam V. Strategies in the Design and Development of Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs). Viruses 2023; 15:1992. [PMID: 37896769 PMCID: PMC10610861 DOI: 10.3390/v15101992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
AIDS (acquired immunodeficiency syndrome) is a potentially life-threatening infectious disease caused by human immunodeficiency virus (HIV). To date, thousands of people have lost their lives annually due to HIV infection, and it continues to be a big public health issue globally. Since the discovery of the first drug, Zidovudine (AZT), a nucleoside reverse transcriptase inhibitor (NRTI), to date, 30 drugs have been approved by the FDA, primarily targeting reverse transcriptase, integrase, and/or protease enzymes. The majority of these drugs target the catalytic and allosteric sites of the HIV enzyme reverse transcriptase. Compared to the NRTI family of drugs, the diverse chemical class of non-nucleoside reverse transcriptase inhibitors (NNRTIs) has special anti-HIV activity with high specificity and low toxicity. However, current clinical usage of NRTI and NNRTI drugs has limited therapeutic value due to their adverse drug reactions and the emergence of multidrug-resistant (MDR) strains. To overcome drug resistance and efficacy issues, combination therapy is widely prescribed for HIV patients. Combination antiretroviral therapy (cART) includes more than one antiretroviral agent targeting two or more enzymes in the life cycle of the virus. Medicinal chemistry researchers apply different optimization strategies including structure- and fragment-based drug design, prodrug approach, scaffold hopping, molecular/fragment hybridization, bioisosterism, high-throughput screening, covalent-binding, targeting highly hydrophobic channel, targeting dual site, and multi-target-directed ligand to identify and develop novel NNRTIs with high antiviral activity against wild-type (WT) and mutant strains. The formulation experts design various delivery systems with single or combination therapies and long-acting regimens of NNRTIs to improve pharmacokinetic profiles and provide sustained therapeutic effects.
Collapse
Affiliation(s)
- Murugesan Vanangamudi
- Department of Pharmaceutical Chemistry, Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior 474005, Madhya Pradesh, India;
| | - Senthilkumar Palaniappan
- Faculty of Pharmacy, Karpagam Academy of Higher Education, Coimbatore 641021, Tamilnadu, India;
- Center for Active Pharmaceutical Ingredients, Karpagam Academy of Higher Education, Coimbatore 641021, Tamilnadu, India
| | - Muthu Kumaradoss Kathiravan
- Dr. APJ Abdul Kalam Research Lab, SRM College of Pharmacy, SRMIST, Kattankulathur 603203, Tamilnadu, India;
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRMIST, Kattankulathur 603203, Tamilnadu, India
| | - Vigneshwaran Namasivayam
- Pharmaceutical Chemistry, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
- LIED, University of Lübeck and University Medical Center Schleswig-Holstein, Ratzeburger Allee 160, 23538 Lübeck, Germany
| |
Collapse
|
5
|
Prener L, Baszczyňski O, Kaiser MM, Dračínský M, Stepan G, Lee YJ, Brumshtein B, Yu H, Jansa P, Lansdon EB, Janeba Z. Design and Synthesis of Novel HIV-1 NNRTIs with Bicyclic Cores and with Improved Physicochemical Properties. J Med Chem 2023; 66:1761-1777. [PMID: 36652602 PMCID: PMC10017027 DOI: 10.1021/acs.jmedchem.2c01574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Indexed: 01/19/2023]
Abstract
Non-nucleoside reverse transcriptase inhibitors (NNRTIs) represent cornerstones of current regimens for treatment of human immunodeficiency virus type 1 (HIV-1) infections. However, NNRTIs usually suffer from low aqueous solubility and the emergence of resistant viral strains. In the present work, novel bicyclic NNRTIs derived from etravirine (ETV) and rilpivirine (RPV), bearing modified purine, tetrahydropteridine, and pyrimidodiazepine cores, were designed and prepared. Compounds 2, 4, and 6 carrying the acrylonitrile moiety displayed single-digit nanomolar activities against the wild-type (WT) virus (EC50 = 2.5, 2.7, and 3.0 nM, respectively), where the low nanomolar activity was retained against HXB2 (EC50 = 2.2-2.8 nM) and the K103N and Y181C mutated strains (fold change, 1.2-6.7×). Most importantly, compound 2 exhibited significantly improved phosphate-buffered saline solubility (10.4 μM) compared to ETV and RPV (≪1 μM). Additionally, the binding modes of compounds 2, 4, and 6 to the reverse transcriptase were studied by X-ray crystallography.
Collapse
Affiliation(s)
- Ladislav Prener
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, Prague 6 160 00, Czech Republic
| | - Ondřej Baszczyňski
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, Prague 6 160 00, Czech Republic
- Department
of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2 128
43, Czech Republic
| | - Martin M. Kaiser
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, Prague 6 160 00, Czech Republic
| | - Martin Dračínský
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, Prague 6 160 00, Czech Republic
| | - George Stepan
- Gilead
Sciences Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Yu-Jen Lee
- Gilead
Sciences Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Boris Brumshtein
- Gilead
Sciences Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Helen Yu
- Gilead
Sciences Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Petr Jansa
- Gilead
Sciences Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Eric B. Lansdon
- Gilead
Sciences Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Zlatko Janeba
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, Prague 6 160 00, Czech Republic
| |
Collapse
|
6
|
Wang Z, Cherukupalli S, Xie M, Wang W, Jiang X, Jia R, Pannecouque C, De Clercq E, Kang D, Zhan P, Liu X. Contemporary Medicinal Chemistry Strategies for the Discovery and Development of Novel HIV-1 Non-nucleoside Reverse Transcriptase Inhibitors. J Med Chem 2022; 65:3729-3757. [PMID: 35175760 DOI: 10.1021/acs.jmedchem.1c01758] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Currently, HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) are a major component of the highly active anti-retroviral therapy (HAART) regimen. However, the occurrence of drug-resistant strains and adverse reactions after long-term usage have inevitably compromised the clinical application of NNRTIs. Therefore, the development of novel inhibitors with distinct anti-resistance profiles and better pharmacological properties is still an enormous challenge. Herein, we summarize state-of-the-art medicinal chemistry strategies for the discovery of potent NNRTIs, such as structure-based design strategies, contemporary computer-aided drug design, covalent-binding strategies, and the application of multi-target-directed ligands. The strategies described here will facilitate the identification of promising HIV-1 NNRTIs.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Srinivasulu Cherukupalli
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Minghui Xie
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Wenbo Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Xiangyi Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Ruifang Jia
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China.,China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China.,China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China.,China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| |
Collapse
|
7
|
Frey KM, Bertoletti N, Chan AH, Ippolito JA, Bollini M, Spasov KA, Jorgensen WL, Anderson KS. Structural Studies and Structure Activity Relationships for Novel Computationally Designed Non-nucleoside Inhibitors and Their Interactions With HIV-1 Reverse Transcriptase. Front Mol Biosci 2022; 9:805187. [PMID: 35237658 PMCID: PMC8882919 DOI: 10.3389/fmolb.2022.805187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Reverse transcriptase (RT) from the human immunodeficiency virus continues to be an attractive drug target for antiretroviral therapy. June 2022 will commemorate the 30th anniversary of the first Human Immunodeficiency Virus (HIV) RT crystal structure complex that was solved with non-nucleoside reverse transcriptase inhibitor nevirapine. The release of this structure opened opportunities for designing many families of non-nucleoside reverse transcriptase inhibitors (NNRTIs). In paying tribute to the first RT-nevirapine structure, we have developed several compound classes targeting the non-nucleoside inhibitor binding pocket of HIV RT. Extensive analysis of crystal structures of RT in complex with the compounds informed iterations of structure-based drug design. Structures of seven additional complexes were determined and analyzed to summarize key interactions with residues in the non-nucleoside inhibitor binding pocket (NNIBP) of RT. Additional insights comparing structures with antiviral data and results from molecular dynamics simulations elucidate key interactions and dynamics between the nucleotide and non-nucleoside binding sites.
Collapse
Affiliation(s)
- Kathleen M. Frey
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
| | - Nicole Bertoletti
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
| | - Albert H. Chan
- Department of Chemistry, Yale University, New Haven, CT, United States
| | | | - Mariela Bollini
- Department of Chemistry, Yale University, New Haven, CT, United States
| | - Krasimir A. Spasov
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
| | | | - Karen S. Anderson
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
8
|
Skoreński M, Sieńczyk M. The Fellowship of Privileged Scaffolds-One Structure to Inhibit Them All. Pharmaceuticals (Basel) 2021; 14:ph14111164. [PMID: 34832946 PMCID: PMC8622370 DOI: 10.3390/ph14111164] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 12/22/2022] Open
Abstract
Over the past few years, the application of privileged structure has emerged as a powerful approach to the discovery of new biologically active molecules. Privileged structures are molecular scaffolds with binding properties to the range of different biological targets. Moreover, privileged structures typically exhibit good drug-like properties, thus assuring more drug-like properties of modified compound. Our main objective is to discuss the privileged structures used for the development of antiviral agents.
Collapse
|
9
|
Zavitsanou S, Tsengenes A, Papadourakis M, Amendola G, Chatzigoulas A, Dellis D, Cosconati S, Cournia Z. FEPrepare: A Web-Based Tool for Automating the Setup of Relative Binding Free Energy Calculations. J Chem Inf Model 2021; 61:4131-4138. [PMID: 34519200 DOI: 10.1021/acs.jcim.1c00215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Relative binding free energy calculations in drug design are becoming a useful tool in facilitating lead binding affinity optimization in a cost- and time-efficient manner. However, they have been limited by technical challenges such as the manual creation of large numbers of input files to set up, run, and analyze free energy simulations. In this Application Note, we describe FEPrepare, a novel web-based tool, which automates the setup procedure for relative binding FEP calculations for the dual-topology scheme of NAMD, one of the major MD engines, using OPLS-AA force field topology and parameter files. FEPrepare provides the user with all necessary files needed to run a FEP/MD simulation with NAMD. FEPrepare can be accessed and used at https://feprepare.vi-seem.eu/.
Collapse
Affiliation(s)
- Stamatia Zavitsanou
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece.,Information Technologies in Medicine and Biology, Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Alexandros Tsengenes
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece
| | - Michail Papadourakis
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece
| | - Giorgio Amendola
- DiSTABiF, Università della Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Alexios Chatzigoulas
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece.,Information Technologies in Medicine and Biology, Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Dimitris Dellis
- Greek Research and Technology Network, S.A., 7 Kifissias Avenue, 11523 Athens, Greece
| | - Sandro Cosconati
- DiSTABiF, Università della Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Zoe Cournia
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece
| |
Collapse
|
10
|
Huang B, Ginex T, Luque FJ, Jiang X, Gao P, Zhang J, Kang D, Daelemans D, De Clercq E, Pannecouque C, Zhan P, Liu X. Structure-Based Design and Discovery of Pyridyl-Bearing Fused Bicyclic HIV-1 Inhibitors: Synthesis, Biological Characterization, and Molecular Modeling Studies. J Med Chem 2021; 64:13604-13621. [PMID: 34496571 DOI: 10.1021/acs.jmedchem.1c00987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Two series of new pyridyl-bearing fused bicyclic analogues designed to target the dual-tolerant regions of the non-nucleoside reverse transcriptase inhibitor (NNRTI)-binding pocket were synthesized and evaluated for their anti-HIV activities. Several compounds, such as 6, 14, 15, 21, 30, and 33, were found to be potent inhibitors against the wild-type (WT) HIV-1 strain or multiple NNRTI-resistant strains at low nanomolar levels. Detailed structure-activity relationships were obtained by utilizing the variation of moieties within the corresponding pharmacophores. In vitro metabolic stability profiles and some drug-like properties of selected compounds were assessed, furnishing the preliminary structure-metabolic stability relationships. Furthermore, molecular modeling studies elucidated the binding modes of compounds 6, 15, 21, and 30 in the binding pocket of WT, E138K, K103N, or Y181C HIV-1 RTs. These promising compounds can be used as lead compounds and warrant further structural optimization to yield more active HIV-1 inhibitors.
Collapse
Affiliation(s)
- Boshi Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Tiziana Ginex
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy, Campus Torribera, Institute of Biomedicine (IBUB) and Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, Santa Coloma de Gramenet, 08921 Barcelona, Spain
| | - F Javier Luque
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy, Campus Torribera, Institute of Biomedicine (IBUB) and Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, Santa Coloma de Gramenet, 08921 Barcelona, Spain
| | - Xiangyi Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Ping Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Jian Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China.,China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Dirk Daelemans
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, K.U.Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Erik De Clercq
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, K.U.Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Christophe Pannecouque
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, K.U.Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China.,China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China.,China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| |
Collapse
|
11
|
Tabassum T, Azeem SM, Muwonge AN, Frey KM. Application of Structure-based Methods to Analyze Resistance Mutations for Chemically Diverse Non-Nucleoside Reverse Transcriptase Inhibitors. Curr HIV Res 2021; 18:283-291. [PMID: 32493197 DOI: 10.2174/1570162x18666200603141209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/17/2020] [Accepted: 05/12/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are used in combination with antiretroviral therapy to suppress viral loads in HIV patients. The chemical design of NNRTIs has changed in recent years in response to resistance-associated mutations (RAMs) and resistance. NNRTIs are chemically diverse compounds that bind an allosteric site of HIV RT. Resistance- associated mutations (RAMs) identified in HIV patients are associated with NNRTI resistance. RAMs confer amino acid changes that alter both structural and physiochemical properties of the allosteric site. Ultimately, these changes reduce NNRTI affinity. Previously, we used a combination of computational and experimental methods to analyze and validate RAMs for 3 diarylpyrimidine (DAPY) NNRTIs. OBJECTIVE The objective of this study is to apply these methods to other chemically diverse, non- DAPY NNRTIs. MATERIALS AND METHODS We selected MIV-150 (experimental microbicide) and doravirine for this study. A computational and molecular modeling strategy was used to evaluate the effects of RAMs. Calculated changes in drug affinity and stability (ΔS + ΔA) were used to determine overall resistance levels: susceptible, low, intermediate, and high. The ΔS + ΔA values for K101P suggest that this mutation confers intermediate/high-level resistance to MIV-150, but remains susceptible to doravirine. Based on the determined resistance levels, we analyzed the models and used Molecular Dynamics (MD) to compare the interactions of MIV-150/doravirine with RT wild-type (WT) and RT (K101P). From MD, we found that key interactions were lost with RT (K101P), but were retained with doravirine. To experimentally validate our findings, we conducted a fluorescence-based reverse transcription assay for MIV-150 with RT (WT) and RT (K101P). IC50 values determined in assays showed a 101-fold change in potency for MIV-150, but essentially no change for doravirine. RESULTS Our computational and experimental results are also consistent with antiviral data reported in the literature. CONCLUSION We believe that this approach is effective for analyzing mutations to determine resistance profiles for chemically diverse NNRTIs in development.
Collapse
Affiliation(s)
- Tasnim Tabassum
- Long Island University, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Brooklyn, NY 11201, United States
| | - Syeda M Azeem
- Long Island University, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Brooklyn, NY 11201, United States
| | - Alecia N Muwonge
- Long Island University, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Brooklyn, NY 11201, United States
| | - Kathleen M Frey
- Fairleigh Dickinson University, School of Pharmacy and Health Sciences, Florham Park, NJ, United States
| |
Collapse
|
12
|
Chatzigoulas A, Cournia Z. Rational design of allosteric modulators: Challenges and successes. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1529] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Alexios Chatzigoulas
- Biomedical Research Foundation Academy of Athens Athens Greece
- Department of Informatics and Telecommunications National and Kapodistrian University of Athens Athens Greece
| | - Zoe Cournia
- Biomedical Research Foundation Academy of Athens Athens Greece
| |
Collapse
|
13
|
Battini L, Fidalgo DM, Álvarez DE, Bollini M. Discovery of a Potent and Selective Chikungunya Virus Envelope Protein Inhibitor through Computer-Aided Drug Design. ACS Infect Dis 2021; 7:1503-1518. [PMID: 34048233 DOI: 10.1021/acsinfecdis.0c00915] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The worldwide expansion of chikungunya virus (CHIKV) into tropical and subtropical areas in the last 15 years has posed a currently unmet need for vaccines and therapeutics. The E2-E1 envelope glycoprotein complex binds receptors on the host cell and promotes membrane fusion during CHIKV entry, thus constituting an attractive target for the development of antiviral drugs. In order to identify CHIKV antivirals acting through inhibition of the envelope glycoprotein complex function, our first approach was to search for amenable druggable sites within the E2-E1 heterodimer. We identified a pocket located in the interface between E2 and E1 around the fusion loop. Then, via a structure-based virtual screening approach and in vitro assay of antiviral activity, we identified compound 7 as a specific inhibitor of CHIKV. Through a lead optimization process, we obtained compound 11 that demonstrated increased antiviral activity and low cytotoxicity (EC50 1.6 μM, CC50 56.0 μM). Molecular dynamics simulations were carried out and described a possible interaction pattern of compound 11 and the E1-E2 dimer that could be useful for further optimization. As expected from target site selection, compound 11 inhibited virus internalization during CHIKV entry. In addition, virus populations resistant to compound 11 included mutation E2-P173S, which mapped to the proposed binding pocket, and second site mutation E1-Y24H. Construction of recombinant viruses showed that these mutations conferred antiviral resistance in the parental background. Finally, compound 11 presents acceptable solubility values and is chemically and enzymatically stable in different media. Altogether, these findings uncover a suitable pocket for the design of CHIKV entry inhibitors with promising antiviral activity and pharmacological profiles.
Collapse
Affiliation(s)
- Leandro Battini
- Laboratorio de Química Medicinal, Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1425FQD, Argentina
- Instituto de Investigaciones Biotecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de San Martín, San Martín B1650, Argentina
| | - Daniela M. Fidalgo
- Laboratorio de Química Medicinal, Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1425FQD, Argentina
| | - Diego E. Álvarez
- Instituto de Investigaciones Biotecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de San Martín, San Martín B1650, Argentina
| | - Mariela Bollini
- Laboratorio de Química Medicinal, Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1425FQD, Argentina
| |
Collapse
|
14
|
Duong VN, Ippolito JA, Chan AH, Lee W, Spasov KA, Jorgensen WL, Anderson KS. Structural investigation of 2-naphthyl phenyl ether inhibitors bound to WT and Y181C reverse transcriptase highlights key features of the NNRTI binding site. Protein Sci 2020; 29:1902-1910. [PMID: 32643196 PMCID: PMC7454559 DOI: 10.1002/pro.3910] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 01/04/2023]
Abstract
Human immunodeficiency virus (HIV)-1 remains as a global health issue that is primarily treated with highly active antiretroviral therapy, a combination of drugs that target the viral life cycle. One class of these drugs are non-nucleoside reverse transcriptase inhibitors (NNRTIs) that target the viral reverse transcriptase (RT). First generation NNRTIs were troubled with poor pharmacological properties and drug resistance, incentivizing the development of improved compounds. One class of developed compounds are the 2-naphthyl phenyl ethers, showing promising efficacy against the Y181C RT mutation. Further biochemical and structural work demonstrated differences in potency against the Y181C mutation and binding mode of the compounds. This work aims to understand the relationship between the binding mode and ability to overcome drug resistance using macromolecular x-ray crystallography. Comparison of 2-naphthyl phenyl ethers bound to Y181C RT reveal that compounds that interact with the invariant W229 are more capable of retaining efficacy against the resistance mutation. Additional modifications to these compounds at the 4-position, computationally designed to compensate for the Y181C mutation, do not demonstrate improved potency. Ultimately, we highlight important considerations for the development of future HIV-1 drugs that are able to combat drug resistance.
Collapse
Affiliation(s)
- Vincent N. Duong
- Department of PharmacologyYale University School of MedicineNew HavenConnecticutUSA
| | - Joseph A. Ippolito
- Department of PharmacologyYale University School of MedicineNew HavenConnecticutUSA
| | - Albert H. Chan
- Department of PharmacologyYale University School of MedicineNew HavenConnecticutUSA
| | - Won‐Gil Lee
- Department of ChemistryYale UniversityNew HavenConnecticutUSA
| | - Krasimir A. Spasov
- Department of PharmacologyYale University School of MedicineNew HavenConnecticutUSA
| | | | - Karen S. Anderson
- Department of PharmacologyYale University School of MedicineNew HavenConnecticutUSA
- Department of Molecular Biophysics and BiochemistryYale University School of MedicineNew HavenConnecticutUSA
| |
Collapse
|
15
|
Leal ES, Adler NS, Fernández GA, Gebhard LG, Battini L, Aucar MG, Videla M, Monge ME, Hernández de Los Ríos A, Acosta Dávila JA, Morell ML, Cordo SM, García CC, Gamarnik AV, Cavasotto CN, Bollini M. De novo design approaches targeting an envelope protein pocket to identify small molecules against dengue virus. Eur J Med Chem 2019; 182:111628. [PMID: 31472473 DOI: 10.1016/j.ejmech.2019.111628] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/03/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023]
Abstract
Dengue fever is a mosquito-borne viral disease that has become a major public health concern worldwide. This disease presents with a wide range of clinical manifestations, from a mild cold-like illness to the more serious hemorrhagic dengue fever and dengue shock syndrome. Currently, neither an approved drug nor an effective vaccine for the treatment are available to fight the disease. The envelope protein (E) is a major component of the virion surface. This protein plays a key role during the viral entry process, constituting an attractive target for the development of antiviral drugs. The crystal structure of the E protein reveals the existence of a hydrophobic pocket occupied by the detergent n-octyl-β-d-glucoside (β-OG). This pocket lies at the hinge region between domains I and II and is important for the low pH-triggered conformational rearrangement required for the fusion of the virion with the host's cell. Aiming at the design of novel molecules which bind to E and act as virus entry inhibitors, we undertook a de novo design approach by "growing" molecules inside the hydrophobic site (β-OG). From more than 240000 small-molecules generated, the 2,4 pyrimidine scaffold was selected as the best candidate, from which one synthesized compound displayed micromolar activity. Molecular dynamics-based optimization was performed on this hit, and thirty derivatives were designed in silico, synthesized and evaluated on their capacity to inhibit dengue virus entry into the host cell. Four compounds were found to be potent antiviral compounds in the low-micromolar range. The assessment of drug-like physicochemical and in vitro pharmacokinetic properties revealed that compounds 3e and 3h presented acceptable solubility values and were stable in mouse plasma, simulated gastric fluid, simulated intestinal fluid, and phosphate buffered saline solution.
Collapse
Affiliation(s)
- Emilse S Leal
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, 2390, Ciudad Autónoma de Buenos Aires, Argentina
| | - Natalia S Adler
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, 2390, Ciudad Autónoma de Buenos Aires, Argentina; Computational Drug Design and Molecular Informatics Laboratory, Translational Medicine Research Institute (IIMT), CONICET-Universidad Austral, Pilar-Derqui, Buenos Aires, Argentina
| | - Gabriela A Fernández
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, 2390, Ciudad Autónoma de Buenos Aires, Argentina
| | - Leopoldo G Gebhard
- CONICET-Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, B1876, Bernal, Buenos Aires, Argentina
| | - Leandro Battini
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, 2390, Ciudad Autónoma de Buenos Aires, Argentina
| | - Maria G Aucar
- Computational Drug Design and Molecular Informatics Laboratory, Translational Medicine Research Institute (IIMT), CONICET-Universidad Austral, Pilar-Derqui, Buenos Aires, Argentina
| | - Mariela Videla
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, 2390, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Eugenia Monge
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, 2390, Ciudad Autónoma de Buenos Aires, Argentina
| | - Alejandro Hernández de Los Ríos
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Estrategias Antivirales, CONICET, Instituto de Química Biológica (IQUIBICEN), Buenos Aires, Argentina
| | - John Alejandro Acosta Dávila
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Estrategias Antivirales, CONICET, Instituto de Química Biológica (IQUIBICEN), Buenos Aires, Argentina
| | - María L Morell
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Estrategias Antivirales, CONICET, Instituto de Química Biológica (IQUIBICEN), Buenos Aires, Argentina
| | - Sandra M Cordo
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Estrategias Antivirales, CONICET, Instituto de Química Biológica (IQUIBICEN), Buenos Aires, Argentina
| | - Cybele C García
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Estrategias Antivirales, CONICET, Instituto de Química Biológica (IQUIBICEN), Buenos Aires, Argentina
| | - Andrea V Gamarnik
- Fundación Instituto Leloir-CONICET, Av. Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires, Argentina Buenos Aires, Argentina
| | - Claudio N Cavasotto
- Computational Drug Design and Molecular Informatics Laboratory, Translational Medicine Research Institute (IIMT), CONICET-Universidad Austral, Pilar-Derqui, Buenos Aires, Argentina; Facultad de Ciencias Biomédicas, y Facultad de Ingeniería, Universidad Austral, Pilar-Derqui, Buenos Aires, Argentina; Austral Institute for Artificial Intelligence, Universidad Austral, Pilar-Derqui, Buenos Aires, Argentina
| | - Mariela Bollini
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, 2390, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
16
|
Sasaki T, Gannam ZTK, Kudalkar SN, Frey KM, Lee WG, Spasov KA, Jorgensen WL, Anderson KS. Molecular and cellular studies evaluating a potent 2-cyanoindolizine catechol diether NNRTI targeting wildtype and Y181C mutant HIV-1 reverse transcriptase. Bioorg Med Chem Lett 2019; 29:2182-2188. [PMID: 31281023 PMCID: PMC6690785 DOI: 10.1016/j.bmcl.2019.06.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 10/26/2022]
Abstract
The development of efficacious NNRTIs for HIV/AIDS therapy is commonly met with the emergence of drug resistant strains, including the Y181C variant. Using a computationally-guided approach, we synthesized the catechol diether series of NNRTIs, which display sub-nanomolar potency in cellular assays. Among the most potent were a series of 2-cyanoindolizine substituted catechol diethers, including Compound 1. We present here a thorough evaluation of this compound, including biochemical, cellular, and structural studies. The compound demonstrates low nanomolar potency against both WT and Y181C HIV-1 RT in in vitro and cellular assays. Our crystal structures of both the wildtype and mutant forms of RT in complex with Compound 1 allow the interrogation of this compound's features that allow it to maintain strong efficacy against the drug resistant mutant. Among these are compensatory shifts in the NNRTI binding pocket, persistence of multiple hydrogen bonds, and van der Waals contacts throughout the binding site. Further, the fluorine at the C6 position of the indolizine moiety makes multiple favorable interactions with both RT forms. The present study highlights the indolizine-substituted catechol diether class of NNRTIs as promising therapeutic candidates possessing optimal pharmacological properties and significant potency against multiple RT variants.
Collapse
Affiliation(s)
- Tomoaki Sasaki
- Department of Pharmacology, Yale University, 333 Cedar Street, New Haven, CT 06520, United States
| | - Zira T K Gannam
- Department of Pharmacology, Yale University, 333 Cedar Street, New Haven, CT 06520, United States
| | - Shalley N Kudalkar
- Department of Pharmacology, Yale University, 333 Cedar Street, New Haven, CT 06520, United States
| | - Kathleen M Frey
- Department of Pharmacology, Yale University, 333 Cedar Street, New Haven, CT 06520, United States
| | - Won-Gil Lee
- Department of Chemistry, Yale University, 225 Prospect Street, PO Box 208107, New Haven, CT 06520, United States
| | - Krasimir A Spasov
- Department of Pharmacology, Yale University, 333 Cedar Street, New Haven, CT 06520, United States
| | - William L Jorgensen
- Department of Chemistry, Yale University, 225 Prospect Street, PO Box 208107, New Haven, CT 06520, United States
| | - Karen S Anderson
- Department of Pharmacology, Yale University, 333 Cedar Street, New Haven, CT 06520, United States; Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar Street, New Haven, CT 06520, United States.
| |
Collapse
|
17
|
Frey KM, Tabassum T. Current structure-based methods for designing non-nucleoside reverse transcriptase inhibitors. Future Virol 2019. [DOI: 10.2217/fvl-2019-0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In 2019, structure-based methods continue to guide the design of novel antiretroviral therapies targeting HIV reverse transcriptase. This Review summarizes key findings from reverse transcriptase–non-nucleoside reverse transcriptase inhibitor analog crystal structure complexes reported from 2015 to 2019. Results from the literature and structure analysis have informed new ideas for structure-guided non-nucleoside reverse transcriptase inhibitor drug design.
Collapse
Affiliation(s)
- Kathleen M Frey
- Fairleigh Dickinson University, Division of Pharmaceutical Sciences, School of Pharmacy & Health Sciences, 230 Park Avenue, M-SP1-01, Florham Park, NJ 07932, USA
| | - Tasnim Tabassum
- Long Island University, Division of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy & Health Sciences, 75 Dekalb Avenue, Brooklyn, NY 11201, USA
| |
Collapse
|
18
|
Zorn KM, Lane TR, Russo DP, Clark AM, Makarov V, Ekins S. Multiple Machine Learning Comparisons of HIV Cell-based and Reverse Transcriptase Data Sets. Mol Pharm 2019; 16:1620-1632. [PMID: 30779585 DOI: 10.1021/acs.molpharmaceut.8b01297] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The human immunodeficiency virus (HIV) causes over a million deaths every year and has a huge economic impact in many countries. The first class of drugs approved were nucleoside reverse transcriptase inhibitors. A newer generation of reverse transcriptase inhibitors have become susceptible to drug resistant strains of HIV, and hence, alternatives are urgently needed. We have recently pioneered the use of Bayesian machine learning to generate models with public data to identify new compounds for testing against different disease targets. The current study has used the NIAID ChemDB HIV, Opportunistic Infection and Tuberculosis Therapeutics Database for machine learning studies. We curated and cleaned data from HIV-1 wild-type cell-based and reverse transcriptase (RT) DNA polymerase inhibition assays. Compounds from this database with ≤1 μM HIV-1 RT DNA polymerase activity inhibition and cell-based HIV-1 inhibition are correlated (Pearson r = 0.44, n = 1137, p < 0.0001). Models were trained using multiple machine learning approaches (Bernoulli Naive Bayes, AdaBoost Decision Tree, Random Forest, support vector classification, k-Nearest Neighbors, and deep neural networks as well as consensus approaches) and then their predictive abilities were compared. Our comparison of different machine learning methods demonstrated that support vector classification, deep learning, and a consensus were generally comparable and not significantly different from each other using 5-fold cross validation and using 24 training and test set combinations. This study demonstrates findings in line with our previous studies for various targets that training and testing with multiple data sets does not demonstrate a significant difference between support vector machine and deep neural networks.
Collapse
Affiliation(s)
- Kimberley M Zorn
- Collaborations Pharmaceuticals, Inc. , Main Campus Drive, Lab 3510 , Raleigh , North Carolina 27606 , United States
| | - Thomas R Lane
- Collaborations Pharmaceuticals, Inc. , Main Campus Drive, Lab 3510 , Raleigh , North Carolina 27606 , United States
| | - Daniel P Russo
- Collaborations Pharmaceuticals, Inc. , Main Campus Drive, Lab 3510 , Raleigh , North Carolina 27606 , United States.,The Rutgers Center for Computational and Integrative Biology , Camden , New Jersey 08102 , United States
| | - Alex M Clark
- Molecular Materials Informatics, Inc. , 2234 Duvernay Street , Montreal , Quebec H3J2Y3 , Canada
| | - Vadim Makarov
- Bach Institute of Biochemistry , Research Center of Biotechnology of the Russian Academy of Sciences , Leninsky Prospekt 33-2 , Moscow 119071 , Russia
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc. , Main Campus Drive, Lab 3510 , Raleigh , North Carolina 27606 , United States
| |
Collapse
|
19
|
Namasivayam V, Vanangamudi M, Kramer VG, Kurup S, Zhan P, Liu X, Kongsted J, Byrareddy SN. The Journey of HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) from Lab to Clinic. J Med Chem 2018; 62:4851-4883. [PMID: 30516990 DOI: 10.1021/acs.jmedchem.8b00843] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human immunodeficiency virus (HIV) infection is now pandemic. Targeting HIV-1 reverse transcriptase (HIV-1 RT) has been considered as one of the most successful targets for the development of anti-HIV treatment. Among the HIV-1 RT inhibitors, non-nucleoside reverse transcriptase inhibitors (NNRTIs) have gained a definitive place due to their unique antiviral potency, high specificity, and low toxicity in antiretroviral combination therapies used to treat HIV. Until now, >50 structurally diverse classes of compounds have been reported as NNRTIs. Among them, six NNRTIs were approved for HIV-1 treatment, namely, nevirapine (NVP), delavirdine (DLV), efavirenz (EFV), etravirine (ETR), rilpivirine (RPV), and doravirine (DOR). In this perspective, we focus on the six NNRTIs and lessons learned from their journey through development to clinical studies. It demonstrates the obligatory need of understanding the physicochemical and biological principles (lead optimization), resistance mutations, synthesis, and clinical requirements for drugs.
Collapse
Affiliation(s)
- Vigneshwaran Namasivayam
- Pharmaceutical Institute, Pharmaceutical Chemistry II , University of Bonn , 53121 Bonn , Germany
| | - Murugesan Vanangamudi
- Department of Medicinal and Pharmaceutical Chemistry , Sree Vidyanikethan College of Pharmacy , Tirupathi , Andhra Pradesh 517102 , India
| | | | - Sonali Kurup
- College of Pharmacy , Roosevelt University , Schaumburg , Illinois 60173 , United States
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , Jinan 250012 , P.R. China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , Jinan 250012 , P.R. China
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy , University of Southern Denmark , DK-5230 , Odense M , Denmark
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience , University of Nebraska Medical Center , Omaha 68198-5880 , United States
| |
Collapse
|
20
|
Torsional flexibility of undecorated catechol diether compound as potent NNRTI targeting HIV-1 reverse transcriptase. J Mol Graph Model 2018; 86:286-297. [PMID: 30445408 DOI: 10.1016/j.jmgm.2018.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/28/2018] [Accepted: 10/29/2018] [Indexed: 11/22/2022]
Abstract
Conformational adaptation of non-nucleoside reverse transcriptase inhibitor (NNRTI) via torsional flexibility is found to be very significant for targeting human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) mutants. Catechol diether derivative including flexible torsions is new potent NNRTI with picomolar activity. Moreover, this derivative also reveals the good solubility, low toxicity and potent inhibition for HIV-1 mutants. In this study, torsional flexibility of an undecorated catechol diether compound in the binding pocket of wild type and mutants (Y181C and K103N/Y181C) HIV-1 RT is investigated by using QM/MM calculations. From the results, the uracil ring is found to exhibit more flexibility in the NNIBP. On the contrary, potential energy surfaces show that high energy is encountered by changing of the corresponding torsion of the cyanovinyl aryl ring indicating the limitation for torsional flexibility. For pointing out the key interaction for the binding, the residual interaction energies are performed by means of QM calculations. Important attractive interactions through hydrogen bonds between the inhibitor and K102, K/N103, V106, and Y188 are observed. The catechol ring is proposed to be modified in order to strengthen interactions with surrounding amino acids. The results may help for the designing of new potent NNRTIs.
Collapse
|
21
|
Tetenbaum-Novatt JE, Lonie JM, Elkowitz DE, Frey KM. A novel learning approach to pharmaceutical sciences research in a pharmacy research advanced pharmacy practice experience (APPE) elective course. CURRENTS IN PHARMACY TEACHING & LEARNING 2018; 10:1529-1540. [PMID: 30514546 DOI: 10.1016/j.cptl.2018.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 06/18/2018] [Accepted: 08/03/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND AND PURPOSE This project investigates the use of pharmacy student metacognitive learning in a laboratory-based science research advanced pharmacy practice experience (APPE). EDUCATIONAL ACTIVITY AND SETTING We describe a five-week research APPE. This course is separated into two parts which run simultaneously. In part 1, students read and discuss papers from primary literature to learn the context of the project and the theory behind each laboratory procedure. In part 2, students perform experiments in the laboratory that contribute to the primary investigator's (PI's) ongoing research project and relate directly to the readings from part 1. Metacognitive processes allow students to better understand and evaluate the primary literature and to connect that information with the hands-on experiments being performed. FINDINGS Currently, this APPE has run five times with a total of eight students. Student learning was assessed by several written and oral assignments graded with rubrics. Students' perceptions of their own learning and metacognitive development following the course was assessed using a survey. SUMMARY This APPE seems to be a useful experience for both faculty and students. Students obtain laboratory and metacognitive skill development, while the collaborating laboratory is supplied with material required for further experiments. Importantly, the APPE preceptor is not the PI, so the preceptor is able to focus on the learning skills (both metacognition and hands-on) portion of the APPE.
Collapse
Affiliation(s)
- Jaclyn E Tetenbaum-Novatt
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, 75 DeKalb Avenue, Brooklyn, NY 11201, United States.
| | - John M Lonie
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, 75 DeKalb Avenue, Brooklyn, NY 11201, United States.
| | - David E Elkowitz
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra University, Hempstead, NY 11549, United States; Department of Pathology and Laboratory Medicine, Northwell Health, 500 Hofstra University, Hempstead, NY 11549, United States.
| | - Kathleen M Frey
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, 75 DeKalb Avenue, Brooklyn, NY 11201, United States.
| |
Collapse
|
22
|
Yang Y, Kang D, Nguyen LA, Smithline ZB, Pannecouque C, Zhan P, Liu X, Steitz TA. Structural basis for potent and broad inhibition of HIV-1 RT by thiophene[3,2- d]pyrimidine non-nucleoside inhibitors. eLife 2018; 7:e36340. [PMID: 30044217 PMCID: PMC6080946 DOI: 10.7554/elife.36340] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/18/2018] [Indexed: 12/18/2022] Open
Abstract
Rapid generation of drug-resistant mutations in HIV-1 reverse transcriptase (RT), a prime target for anti-HIV therapy, poses a major impediment to effective anti-HIV treatment. Our previous efforts have led to the development of two novel non-nucleoside reverse transcriptase inhibitors (NNRTIs) with piperidine-substituted thiophene[3,2-d]pyrimidine scaffolds, compounds K-5a2 and 25a, which demonstrate highly potent anti-HIV-1 activities and improved resistance profiles compared with etravirine and rilpivirine, respectively. Here, we have determined the crystal structures of HIV-1 wild-type (WT) RT and seven RT variants bearing prevalent drug-resistant mutations in complex with K-5a2 or 25a at ~2 Å resolution. These high-resolution structures illustrate the molecular details of the extensive hydrophobic interactions and the network of main chain hydrogen bonds formed between the NNRTIs and the RT inhibitor-binding pocket, and provide valuable insights into the favorable structural features that can be employed for designing NNRTIs that are broadly active against drug-resistant HIV-1 variants.
Collapse
Affiliation(s)
- Yang Yang
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenUnited States
- Howard Hughes Medical InstituteYale UniversityNew HavenUnited States
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical SciencesShandong UniversityJinanChina
| | - Laura A Nguyen
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenUnited States
| | - Zachary B Smithline
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenUnited States
| | | | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical SciencesShandong UniversityJinanChina
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical SciencesShandong UniversityJinanChina
| | - Thomas A Steitz
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenUnited States
- Howard Hughes Medical InstituteYale UniversityNew HavenUnited States
- Department of ChemistryYale UniversityNew HavenUnited States
| |
Collapse
|
23
|
Vilseck JZ, Armacost KA, Hayes RL, Goh GB, Brooks CL. Predicting Binding Free Energies in a Large Combinatorial Chemical Space Using Multisite λ Dynamics. J Phys Chem Lett 2018; 9:3328-3332. [PMID: 29847134 PMCID: PMC6091208 DOI: 10.1021/acs.jpclett.8b01284] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this study, we demonstrate the extensive scalability of the biasing potential replica exchange multisite λ dynamics (BP-REX MSλD) free energy method by calculating binding affinities for 512 inhibitors to HIV Reverse Transcriptase (HIV-RT). This is the largest exploration of chemical space using free energy methods known to date, requires only a few simulations, and identifies 55 new inhibitor designs against HIV-RT predicted to be at least as potent as a tight binding reference compound (i.e., as potent as 56 nM). We highlight that BP-REX MSλD requires an order of magnitude less computational resources than conventional free energy methods while maintaining a similar level of precision, overcomes the inherent poor scalability of conventional free energy methods, and enables the exploration of combinatorially large chemical spaces in the context of in silico drug discovery.
Collapse
Affiliation(s)
- Jonah Z. Vilseck
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kira A. Armacost
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ryan L. Hayes
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Garrett B. Goh
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Charles L. Brooks
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
24
|
Structural optimization of N1-aryl-benzimidazoles for the discovery of new non-nucleoside reverse transcriptase inhibitors active against wild-type and mutant HIV-1 strains. Bioorg Med Chem 2018; 26:661-674. [DOI: 10.1016/j.bmc.2017.12.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 11/20/2022]
|
25
|
Structure-based methods to predict mutational resistance to diarylpyrimidine non-nucleoside reverse transcriptase inhibitors. J Mol Graph Model 2018; 79:133-139. [DOI: 10.1016/j.jmgm.2017.10.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 11/19/2022]
|
26
|
Frączek T, Kamiński R, Krakowiak A, Naessens E, Verhasselt B, Paneth P. Diaryl ethers with carboxymethoxyphenacyl motif as potent HIV-1 reverse transcriptase inhibitors with improved solubility. J Enzyme Inhib Med Chem 2017; 33:9-16. [PMID: 29098886 PMCID: PMC6009982 DOI: 10.1080/14756366.2017.1387542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In search of new non-nucleoside reverse transcriptase inhibitors (NNRTIs) with improved solubility, two series of novel diaryl ethers with phenacyl moiety were designed and evaluated for their HIV-1 reverse transcriptase inhibition potentials. All compounds exhibited good to excellent results with IC50 at low micromolar to submicromolar concentrations. Two most active compounds (7e and 7 g) exhibit inhibitory potency comparable or even better than that of nevirapine and rilpivirine. Furthermore, SupT1 and CD4+ cell infectivity assays for the most promising (7e) have confirmed its strong antiviral potential while docking studies indicate a novel binding interactions responsible for high activity.
Collapse
Affiliation(s)
- Tomasz Frączek
- a Institute of Applied Radiation Chemistry , Lodz University of Technology , Lodz , Poland
| | - Rafał Kamiński
- a Institute of Applied Radiation Chemistry , Lodz University of Technology , Lodz , Poland
| | - Agnieszka Krakowiak
- a Institute of Applied Radiation Chemistry , Lodz University of Technology , Lodz , Poland.,b Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies , Polish Academy of Sciences , Lodz , Poland
| | - Evelien Naessens
- c Department of Clinical Chemistry, Microbiology and Immunology , Ghent University, Ghent University Hospital , Ghent , Belgium
| | - Bruno Verhasselt
- c Department of Clinical Chemistry, Microbiology and Immunology , Ghent University, Ghent University Hospital , Ghent , Belgium
| | - Piotr Paneth
- a Institute of Applied Radiation Chemistry , Lodz University of Technology , Lodz , Poland
| |
Collapse
|
27
|
Chan AH, Lee WG, Spasov KA, Cisneros JA, Kudalkar SN, Petrova ZO, Buckingham AB, Anderson KS, Jorgensen WL. Covalent inhibitors for eradication of drug-resistant HIV-1 reverse transcriptase: From design to protein crystallography. Proc Natl Acad Sci U S A 2017; 114:9725-9730. [PMID: 28827354 PMCID: PMC5594698 DOI: 10.1073/pnas.1711463114] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Development of resistance remains a major challenge for drugs to treat HIV-1 infections, including those targeting the essential viral polymerase, HIV-1 reverse transcriptase (RT). Resistance associated with the Tyr181Cys mutation in HIV-1 RT has been a key roadblock in the discovery of nonnucleoside RT inhibitors (NNRTIs). It is the principal point mutation that arises from treatment of HIV-infected patients with nevirapine, the first-in-class drug still widely used, especially in developing countries. We report covalent inhibitors of Tyr181Cys RT (CRTIs) that can completely knock out activity of the resistant mutant and of the particularly challenging Lys103Asn/Tyr181Cys variant. Conclusive evidence for the covalent modification of Cys181 is provided from enzyme inhibition kinetics, mass spectrometry, protein crystallography, and antiviral activity in infected human T-cell assays. The CRTIs are also shown to be selective for Cys181 and have lower cytotoxicity than the approved NNRTI drugs efavirenz and rilpivirine.
Collapse
Affiliation(s)
- Albert H Chan
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520-8066
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520-8066
| | - Won-Gil Lee
- Department of Chemistry, Yale University, New Haven, CT 06520-8107
| | - Krasimir A Spasov
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520-8066
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520-8066
| | - José A Cisneros
- Department of Chemistry, Yale University, New Haven, CT 06520-8107
| | - Shalley N Kudalkar
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520-8066
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520-8066
| | - Zaritza O Petrova
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520-8066
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520-8066
| | - Amanda B Buckingham
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520-8066
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520-8066
| | - Karen S Anderson
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520-8066;
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520-8066
| | | |
Collapse
|
28
|
Samanta PN, Das KK. Inhibition activities of catechol diether based non-nucleoside inhibitors against the HIV reverse transcriptase variants: Insights from molecular docking and ONIOM calculations. J Mol Graph Model 2017. [DOI: 10.1016/j.jmgm.2017.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Kang D, Huo Z, Wu G, Xu J, Zhan P, Liu X. Novel fused pyrimidine and isoquinoline derivatives as potent HIV-1 NNRTIs: a patent evaluation of WO2016105532A1, WO2016105534A1 and WO2016105564A1. Expert Opin Ther Pat 2017; 27:383-391. [PMID: 28276283 DOI: 10.1080/13543776.2017.1303046] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
INTRODUCTION In the three patent applications, the impact of changing the pyrimidine core of the rilpivirine (RPV) to a variety of alternative fused cores was explored, culminating in the identification of a series of conformationally restricted compounds with comparable potencies against WT and mutant HIV-1 strains with those of efavirenz (EFV) and RPV, and higher security in the Human Ether-a-go-go-Related Gene (hERG) assay. Areas covered: The present review provides a fused pyrimidine and isoquinoline derivatives as potent HIV-1 NNRTIs, and highlights the conformational restriction strategies in the development of NNRTIs. Expert opinion: The molecular docking analysis of the newly synthesized compounds maintain the classical horseshoe conformation and shares similar binding mode with RPV. The conformational restriction strategies have greatly accelerated the optimization of the DAPY NNRTIs and contribute to finding new chemical entities (NCEs) with favorable druggability.
Collapse
Affiliation(s)
- Dongwei Kang
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Shandong , PR China
| | - Zhipeng Huo
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Shandong , PR China
| | - Gaochan Wu
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Shandong , PR China
| | - Jiabao Xu
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Shandong , PR China
| | - Peng Zhan
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Shandong , PR China
| | - Xinyong Liu
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Shandong , PR China
| |
Collapse
|
30
|
Kudalkar SN, Beloor J, Chan AH, Lee WG, Jorgensen WL, Kumar P, Anderson KS. Structural and Preclinical Studies of Computationally Designed Non-Nucleoside Reverse Transcriptase Inhibitors for Treating HIV infection. Mol Pharmacol 2017; 91:383-391. [PMID: 28167742 DOI: 10.1124/mol.116.107755] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/02/2017] [Indexed: 12/31/2022] Open
Abstract
The clinical benefits of HIV-1 non-nucleoside reverse transcriptase (RT) inhibitors (NNRTIs) are hindered by their unsatisfactory pharmacokinetic (PK) properties along with the rapid development of drug-resistant variants. However, the clinical efficacy of these inhibitors can be improved by developing compounds with enhanced pharmacological profiles and heightened antiviral activity. We used computational and structure-guided design to develop two next-generation NNRTI drug candidates, compounds I and II, which are members of a class of catechol diethers. We evaluated the preclinical potential of these compounds in BALB/c mice because of their high solubility (510 µg/ml for compound I and 82.9 µg/ml for compound II), low cytotoxicity, and enhanced antiviral activity against wild-type (WT) HIV-1 RT and resistant variants. Additionally, crystal structures of compounds I and II with WT RT suggested an optimal binding to the NNRTI binding pocket favoring the high anti-viral potency. A single intraperitoneal dose of compounds I and II exhibited a prolonged serum residence time of 48 hours and concentration maximum (Cmax) of 4000- to 15,000-fold higher than their therapeutic/effective concentrations. These Cmax values were 4- to 15-fold lower than their cytotoxic concentrations observed in MT-2 cells. Compound II showed an enhanced area under the curve (0-last) and decreased plasma clearance over compound I and efavirenz, the standard of care NNRTI. Hence, the overall (PK) profile of compound II was excellent compared with that of compound I and efavirenz. Furthermore, both compounds were very well tolerated in BALB/c mice without any detectable acute toxicity. Taken together, these data suggest that compounds I and II possess improved anti-HIV-1 potency, remarkable in vivo safety, and prolonged in vivo circulation time, suggesting strong potential for further development as new NNRTIs for the potential treatment of HIV infection.
Collapse
Affiliation(s)
- Shalley N Kudalkar
- Departments of Pharmacology, School of Medicine (S.N.K., A.H.C., K.S.A.), Infectious Diseases/Internal Medicine, School of Medicine (J.B., P.K.), and Chemistry (W.-G.L., W.L.J.), Yale University, New Haven, Connecticut
| | - Jagadish Beloor
- Departments of Pharmacology, School of Medicine (S.N.K., A.H.C., K.S.A.), Infectious Diseases/Internal Medicine, School of Medicine (J.B., P.K.), and Chemistry (W.-G.L., W.L.J.), Yale University, New Haven, Connecticut
| | - Albert H Chan
- Departments of Pharmacology, School of Medicine (S.N.K., A.H.C., K.S.A.), Infectious Diseases/Internal Medicine, School of Medicine (J.B., P.K.), and Chemistry (W.-G.L., W.L.J.), Yale University, New Haven, Connecticut
| | - Won-Gil Lee
- Departments of Pharmacology, School of Medicine (S.N.K., A.H.C., K.S.A.), Infectious Diseases/Internal Medicine, School of Medicine (J.B., P.K.), and Chemistry (W.-G.L., W.L.J.), Yale University, New Haven, Connecticut
| | - William L Jorgensen
- Departments of Pharmacology, School of Medicine (S.N.K., A.H.C., K.S.A.), Infectious Diseases/Internal Medicine, School of Medicine (J.B., P.K.), and Chemistry (W.-G.L., W.L.J.), Yale University, New Haven, Connecticut
| | - Priti Kumar
- Departments of Pharmacology, School of Medicine (S.N.K., A.H.C., K.S.A.), Infectious Diseases/Internal Medicine, School of Medicine (J.B., P.K.), and Chemistry (W.-G.L., W.L.J.), Yale University, New Haven, Connecticut
| | - Karen S Anderson
- Departments of Pharmacology, School of Medicine (S.N.K., A.H.C., K.S.A.), Infectious Diseases/Internal Medicine, School of Medicine (J.B., P.K.), and Chemistry (W.-G.L., W.L.J.), Yale University, New Haven, Connecticut
| |
Collapse
|
31
|
Devale TL, Parikh J, Miniyar P, Sharma P, Shrivastava B, Murumkar P. Dihydropyrimidinone-isatin hybrids as novel non-nucleoside HIV-1 reverse transcriptase inhibitors. Bioorg Chem 2017; 70:256-266. [PMID: 28160944 DOI: 10.1016/j.bioorg.2017.01.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 12/17/2016] [Accepted: 01/15/2017] [Indexed: 02/08/2023]
Abstract
A novel series of substituted N-(2-(2,3-dioxoindolin-1-yl)acetyl)-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxamide was designed, synthesized and evaluated for in vitro Reverse Transcriptase (RT) inhibitory activity. This series is a combination of peculiar structural features from leading scaffolds of [(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine (HEPT) and oxyindole. In vitro screening led to identification of two hybrids (9c and 9d) possessing higher RT inhibitory activity than the standard rilpivirine. Docking study was performed to study the binding orientations of synthesized hybrids towards RT enzyme.
Collapse
Affiliation(s)
- Titiksh L Devale
- Jaipur National University, Jagatpura, Jaipur, India; Sinhgad Institute of Pharmacy, Narhe, Pune, India.
| | | | | | - Pankaj Sharma
- Jaipur National University, Jagatpura, Jaipur, India.
| | | | - Prashant Murumkar
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, India.
| |
Collapse
|
32
|
Palladium-catalysed cross-coupling as a key step in the synthesis of pyridyl-benzamides, -benzylamines and -sulfonamides. Tetrahedron 2017. [DOI: 10.1016/j.tet.2016.11.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
33
|
The "Sticky Patch" Model of Crystallization and Modification of Proteins for Enhanced Crystallizability. Methods Mol Biol 2017; 1607:77-115. [PMID: 28573570 DOI: 10.1007/978-1-4939-7000-1_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Crystallization of macromolecules has long been perceived as a stochastic process, which cannot be predicted or controlled. This is consistent with another popular notion that the interactions of molecules within the crystal, i.e., crystal contacts, are essentially random and devoid of specific physicochemical features. In contrast, functionally relevant surfaces, such as oligomerization interfaces and specific protein-protein interaction sites, are under evolutionary pressures so their amino acid composition, structure, and topology are distinct. However, current theoretical and experimental studies are significantly changing our understanding of the nature of crystallization. The increasingly popular "sticky patch" model, derived from soft matter physics, describes crystallization as a process driven by interactions between select, specific surface patches, with properties thermodynamically favorable for cohesive interactions. Independent support for this model comes from various sources including structural studies and bioinformatics. Proteins that are recalcitrant to crystallization can be modified for enhanced crystallizability through chemical or mutational modification of their surface to effectively engineer "sticky patches" which would drive crystallization. Here, we discuss the current state of knowledge of the relationship between the microscopic properties of the target macromolecule and its crystallizability, focusing on the "sticky patch" model. We discuss state-of-the-art in silico methods that evaluate the propensity of a given target protein to form crystals based on these relationships, with the objective to design variants with modified molecular surface properties and enhanced crystallization propensity. We illustrate this discussion with specific cases where these approaches allowed to generate crystals suitable for structural analysis.
Collapse
|
34
|
Lee WG, Chan AH, Spasov KA, Anderson KS, Jorgensen WL. Design, Conformation, and Crystallography of 2-Naphthyl Phenyl Ethers as Potent Anti-HIV Agents. ACS Med Chem Lett 2016; 7:1156-1160. [PMID: 27994756 DOI: 10.1021/acsmedchemlett.6b00390] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 10/31/2016] [Indexed: 01/10/2023] Open
Abstract
Catechol diethers that incorporate a 7-cyano-2-naphthyl substituent are reported as non-nucleoside inhibitors of HIV-1 reverse transcriptase (NNRTIs). Many of the compounds have 1-10 nM potencies toward wild-type HIV-1. An interesting conformational effect allows two unique conformers for the naphthyl group in complexes with HIV-RT. X-ray crystal structures for 4a and 4f illustrate the alternatives.
Collapse
Affiliation(s)
- Won-Gil Lee
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Albert H. Chan
- Department
of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8066, United States
| | - Krasimir A. Spasov
- Department
of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8066, United States
| | - Karen S. Anderson
- Department
of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8066, United States
| | - William L. Jorgensen
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
35
|
Shahid K, Wang Q, Jia Q, Li L, Cui X, Xia S, Ma P. Proposal and evaluation of a new norm index-based QSAR model to predict pEC 50 and pCC 50 activities of HEPT derivatives. Chin J Chem Eng 2016. [DOI: 10.1016/j.cjche.2016.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
36
|
De Vivo M, Masetti M, Bottegoni G, Cavalli A. Role of Molecular Dynamics and Related Methods in Drug Discovery. J Med Chem 2016; 59:4035-61. [DOI: 10.1021/acs.jmedchem.5b01684] [Citation(s) in RCA: 538] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Marco De Vivo
- Laboratory
of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- IAS-5/INM-9 Computational
Biomedicine Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Matteo Masetti
- Department
of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro
6, I-40126 Bologna, Italy
| | - Giovanni Bottegoni
- CompuNet, Istituto
Italiano di Tecnologia, Via Morego
30, 16163 Genova, Italy
- BiKi Technologies
srl, Via XX Settembre 33/10, 16121 Genova, Italy
| | - Andrea Cavalli
- Department
of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro
6, I-40126 Bologna, Italy
- CompuNet, Istituto
Italiano di Tecnologia, Via Morego
30, 16163 Genova, Italy
| |
Collapse
|
37
|
Wu S, Yin Q, Zhao L, Fan N, Tang X, Zhao J, Sheng T, Guo Y, Tian C, Zhang Z, Xu W, Liu Z, Jiang S, Ma L, Liu J, Wang X. A stereo configuration-activity study of 3-iodo-4-(2-methylcyclohexyloxy)-6-phenethylpyridin-2(2H)-ones as potency inhibitors of HIV-1 variants. Org Biomol Chem 2016; 14:1413-20. [DOI: 10.1039/c5ob02154e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The trans-(S, S)-enantiomer 2e turned out to be significantly more potent than its enantiomer 2d against wild-type and mutant strains with high selectivity indexes.
Collapse
|
38
|
Tazeem T, Han X, Zhou Q, Wei J, Tien P, Yang G, Wu S, Dong C. A facile one-pot multi-component synthesis of novel adamantine substituted imidazo[1,2-a]pyridine derivatives: identification and structure–activity relationship study of their anti-HIV-1 activity. RSC Adv 2016. [DOI: 10.1039/c6ra17656a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A series of adamantine substituted imidazo[1,2-a]pyridine derivatives were developed through a one-pot multi-component Groebke–Blackburn–Bienaymé reaction, among them several compounds were identified to be the potent inhibitors against HIV-1 cells.
Collapse
Affiliation(s)
- Tazeem Tazeem
- State Key Laboratory of Virology
- College of Life Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Xin Han
- State Key Laboratory of Virology
- College of Life Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Qingjun Zhou
- Hubei Collaborative Innovation Center for Advanced Organochemical Materials
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules
- Hubei University
- Wuhan 430062
- China
| | - Jingchen Wei
- Department of Pharmacology
- Guilin Medical University
- Guilin
- China
| | - Po Tien
- State Key Laboratory of Virology
- College of Life Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Guichun Yang
- Hubei Collaborative Innovation Center for Advanced Organochemical Materials
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules
- Hubei University
- Wuhan 430062
- China
| | - Shuwen Wu
- State Key Laboratory of Virology
- College of Life Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Chune Dong
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals
- Wuhan University School of Pharmaceutical Sciences
- Wuhan 430071
- China
| |
Collapse
|
39
|
Vite-Caritino H, Méndez-Lucio O, Reyes H, Cabrera A, Chávez D, Medina-Franco JL. Advances in the development of pyridinone derivatives as non-nucleoside reverse transcriptase inhibitors. RSC Adv 2016. [DOI: 10.1039/c5ra25722k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Medicinal chemistry, computational design and biological screening have advanced pyridin-2(1H)-one derivatives as a promising class of non-nucleoside reverse transcriptase inhibitors for the treatment of HIV/AIDS.
Collapse
Affiliation(s)
- Hugo Vite-Caritino
- Facultad de Química
- Departamento de Farmacia
- Universidad Nacional Autónoma de México
- Mexico City 04510
- Mexico
| | - Oscar Méndez-Lucio
- Unilever Centre for Molecular Science Informatics
- Department of Chemistry
- University of Cambridge
- Cambridge CB2 1EW
- UK
| | - Héctor Reyes
- Centro de Graduados e Investigación en Química del Instituto Tecnológico de Tijuana
- Tijuana
- Mexico
| | - Alberto Cabrera
- Centro de Graduados e Investigación en Química del Instituto Tecnológico de Tijuana
- Tijuana
- Mexico
| | - Daniel Chávez
- Centro de Graduados e Investigación en Química del Instituto Tecnológico de Tijuana
- Tijuana
- Mexico
| | - José L. Medina-Franco
- Facultad de Química
- Departamento de Farmacia
- Universidad Nacional Autónoma de México
- Mexico City 04510
- Mexico
| |
Collapse
|
40
|
Huang B, Kang D, Yang J, Zhan P, Liu X. Novel diarylpyrimidines and diaryltriazines as potent HIV-1 NNRTIs with dramatically improved solubility: a patent evaluation of US20140378443A1. Expert Opin Ther Pat 2015; 26:281-9. [PMID: 26559996 DOI: 10.1517/13543776.2016.1113256] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Diarylpyrimidine and diaryltriazine derivatives, two representative structurally related classes of HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) with robust potencies against wild-type and several mutant strains of HIV-1, have attracted more and more attention in the last decade. However, they have been suffering from poor aqueous solubility. A series of novel diarylpyrimidines and diaryltriazines with solubilizing substituents attached to the central rings were reported as potent NNRTIs in the patent US20140378443A1. Some compounds exhibited potencies against wild-type HIV-1 which were comparable or even superior to those of dapivirine, etravirine and rilpivirine. In addition, dramatically enhanced solubilities were observed for these new compounds. Moreover, some structure optimization strategies for improving aqueous solubility are detailed in this review, providing new insights into development of next-generation NNRTIs endowed with favorable solubility. We anticipate that application of these strategies will ultimately lead to discovery of new anti-HIV drug candidates.
Collapse
Affiliation(s)
- Boshi Huang
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , Shandong , P. R. China
| | - Dongwei Kang
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , Shandong , P. R. China
| | - Jiapei Yang
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , Shandong , P. R. China
| | - Peng Zhan
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , Shandong , P. R. China
| | - Xinyong Liu
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , Shandong , P. R. China
| |
Collapse
|
41
|
Lee WG, Frey KM, Gallardo-Macias R, Spasov KA, Chan AH, Anderson KS, Jorgensen WL. Discovery and crystallography of bicyclic arylaminoazines as potent inhibitors of HIV-1 reverse transcriptase. Bioorg Med Chem Lett 2015; 25:4824-4827. [PMID: 26166629 PMCID: PMC4607639 DOI: 10.1016/j.bmcl.2015.06.074] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 06/22/2015] [Indexed: 10/23/2022]
Abstract
Non-nucleoside inhibitors of HIV-1 reverse transcriptase (HIV-RT) are reported that incorporate a 7-indolizinylamino or 2-naphthylamino substituent on a pyrimidine or 1,3,5-triazine core. The most potent compounds show below 10 nanomolar activity towards wild-type HIV-1 and variants bearing Tyr181Cys and Lys103Asn/Tyr181Cys resistance mutations. The compounds also feature good aqueous solubility. Crystal structures for two complexes enhance the analysis of the structure-activity data.
Collapse
Affiliation(s)
- Won-Gil Lee
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| | - Kathleen M Frey
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520-8066, USA
| | | | - Krasimir A Spasov
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520-8066, USA
| | - Albert H Chan
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520-8066, USA
| | - Karen S Anderson
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520-8066, USA.
| | | |
Collapse
|
42
|
Frey KM. Structure-enhanced methods in the development of non-nucleoside inhibitors targeting HIV reverse transcriptase variants. Future Microbiol 2015; 10:1767-72. [PMID: 26517310 DOI: 10.2217/fmb.15.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Resistance continues to emerge as a leading cause for antiretroviral treatment failure. Several mutations in HIV reverse transcriptase (RT) confer resistance to non-nucleoside inhibitors (NNRTIs), vital components of antiretroviral combination therapies. Since the majority of mutations are located in the NNRTI binding pocket, crystal structures of RT variants in complex with NNRTIs have provided ideas for new drug design strategies. This article reviews the impact of RT crystal structures on the multidisciplinary design and development of new inhibitors with improved resistance profiles.
Collapse
Affiliation(s)
- Kathleen M Frey
- Division of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy & Health Sciences, Long Island University, 75 Dekalb Avenue, Brooklyn, NY 11201, USA
| |
Collapse
|
43
|
Gray WT, Frey KM, Laskey SB, Mislak AC, Spasov KA, Lee WG, Bollini M, Siliciano RF, Jorgensen WL, Anderson KS. Potent Inhibitors Active against HIV Reverse Transcriptase with K101P, a Mutation Conferring Rilpivirine Resistance. ACS Med Chem Lett 2015; 6:1075-9. [PMID: 26487915 DOI: 10.1021/acsmedchemlett.5b00254] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/31/2015] [Indexed: 11/29/2022] Open
Abstract
Catechol diether compounds have nanomolar antiviral and enzymatic activity against HIV with reverse transcriptase (RT) variants containing K101P, a mutation that confers high-level resistance to FDA-approved non-nucleoside inhibitors efavirenz and rilpivirine. Kinetic data suggests that RT (K101P) variants are as catalytically fit as wild-type and thus can potentially increase in the viral population as more antiviral regimens include efavirenz or rilpivirine. Comparison of wild-type structures and a new crystal structure of RT (K101P) in complex with a leading compound confirms that the K101P mutation is not a liability for the catechol diethers while suggesting that key interactions are lost with efavirenz and rilpivirine.
Collapse
Affiliation(s)
- William T. Gray
- Department
of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8066, United States
| | - Kathleen M. Frey
- Department
of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8066, United States
| | - Sarah B. Laskey
- Department
of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Andrea C. Mislak
- Department
of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8066, United States
| | - Krasimir A. Spasov
- Department
of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8066, United States
| | - Won-Gil Lee
- Department
of Chemistry, Yale University, New Haven, Connecticut 06530-8107, United States
| | - Mariela Bollini
- Department
of Chemistry, Yale University, New Haven, Connecticut 06530-8107, United States
| | - Robert F. Siliciano
- Department
of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Howard Hughes Medical Institute, Baltimore, Maryland 21205, United States
| | - William L. Jorgensen
- Department
of Chemistry, Yale University, New Haven, Connecticut 06530-8107, United States
| | - Karen S. Anderson
- Department
of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8066, United States
| |
Collapse
|
44
|
Double Variational Binding--(SMILES) Conformational Analysis by Docking Mechanisms for Anti-HIV Pyrimidine Ligands. Int J Mol Sci 2015; 16:19553-601. [PMID: 26295229 PMCID: PMC4581313 DOI: 10.3390/ijms160819553] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 07/30/2015] [Accepted: 08/11/2015] [Indexed: 12/11/2022] Open
Abstract
Variational quantitative binding–conformational analysis for a series of anti-HIV pyrimidine-based ligands is advanced at the individual molecular level. This was achieved by employing ligand-receptor docking algorithms for each molecule in the 1,3-disubstituted uracil derivative series that was studied. Such computational algorithms were employed for analyzing both genuine molecular cases and their simplified molecular input line entry system (SMILES) transformations, which were created via the controlled breaking of chemical bonds, so as to generate the longest SMILES molecular chain (LoSMoC) and Branching SMILES (BraS) conformations. The study identified the most active anti-HIV molecules, and analyzed their special and relevant bonding fragments (chemical alerts), and the recorded energetic and geometric docking results (i.e., binding and affinity energies, and the surface area and volume of bonding, respectively). Clear computational evidence was also produced concerning the ligand-receptor pocket binding efficacies of the LoSMoc and BraS conformation types, thus confirming their earlier presence (as suggested by variational quantitative structure-activity relationship, variational-QSAR) as active intermediates for the molecule-to-cell transduction process.
Collapse
|