1
|
Sterligov GK, Rasskazova MA, Drokin EA, Isaeva DK, Ageshina AA, Rzhevskiy SA, Shurupova OV, Topchiy MA, Minaeva LI, Asachenko AF. Metal-Free Synthesis of 2-(per)Fluoroalkyl-3-nitro Indoles via Intramolecular Cyclization of Amides. J Org Chem 2024; 89:14028-14037. [PMID: 39264970 DOI: 10.1021/acs.joc.4c01430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
A metal-free intramolecular cyclization of N-acyl amides for the synthesis of 3-nitro-2-(per)fluoroalkyl indoles is reported. Good functional group tolerance and a broad range of substrates are the features of this approach. The developed method is easy to operate and is suitable for the preparation of 2-difluoromethyl/trifluoromethyl/perfluoroethyl/perfluoropropyl indoles in yields of 84 to 99%. Also, the application of this protocol in the gram scale is shown.
Collapse
Affiliation(s)
- Grigorii K Sterligov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskiy prospect 29, 119991 Moscow, Russia
| | - Maria A Rasskazova
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskiy prospect 29, 119991 Moscow, Russia
| | - Egor A Drokin
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskiy prospect 29, 119991 Moscow, Russia
| | - Dilshodakhon K Isaeva
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskiy prospect 29, 119991 Moscow, Russia
| | - Alexandra A Ageshina
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskiy prospect 29, 119991 Moscow, Russia
| | - Sergey A Rzhevskiy
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskiy prospect 29, 119991 Moscow, Russia
| | - Olga V Shurupova
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskiy prospect 29, 119991 Moscow, Russia
| | - Maxim A Topchiy
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskiy prospect 29, 119991 Moscow, Russia
| | - Lidiya I Minaeva
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskiy prospect 29, 119991 Moscow, Russia
| | - Andrey F Asachenko
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskiy prospect 29, 119991 Moscow, Russia
| |
Collapse
|
2
|
Rajasekharan SK, Ravichandran V, Boya BR, Jayachandran A, Lee J. Repurposing methuosis-inducing anticancer drugs for anthelmintic therapy. PLoS Pathog 2024; 20:e1012475. [PMID: 39235992 PMCID: PMC11376546 DOI: 10.1371/journal.ppat.1012475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
Drug-resistant parasitic nematodes pose a grave threat to plants, animals, and humans. An innovative paradigm for treating parasitic nematodes is emphasized in this opinion. This approach relies on repurposing methuosis (a death characterized by accumulation of large vacuoles) inducing anticancer drugs as anthelmintics. We review drugs/chemicals that have shown to kill nematodes or cancerous cells by inducing multiple vacuoles that eventually coalesce and rupture. This perspective additionally offers a succinct summary on Structure-Activity Relationship (SAR) of methuosis-inducing small molecules. This strategy holds promise for the development of broad-spectrum anthelmintics, shedding light on shared molecular mechanisms between cancer and nematodes in response to these inducers, thereby potentially transforming both therapeutic domains.
Collapse
Affiliation(s)
- Satish Kumar Rajasekharan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, Tamil Nadu, India
| | - Vinothkannan Ravichandran
- Centre for Drug Discovery and Development (CD3), Amity Institute of Biotechnology, Amity University Maharashtra, Bhatan, Panvel, Mumbai, Maharashtra, India
| | - Bharath Reddy Boya
- School of Chemical Engineering, Yeungnum University, Gyeongsan, Republic of Korea
| | - Anirudh Jayachandran
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, Tamil Nadu, India
| | - Jintae Lee
- School of Chemical Engineering, Yeungnum University, Gyeongsan, Republic of Korea
| |
Collapse
|
3
|
Yang H, Zhang D, Yuan Z, Qiao H, Xia Z, Cao F, Lu Y, Jiang F. Novel 4-Aryl-4H-chromene derivative displayed excellent in vivo anti-glioblastoma efficacy as the microtubule-targeting agent. Eur J Med Chem 2024; 267:116205. [PMID: 38350361 DOI: 10.1016/j.ejmech.2024.116205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 02/15/2024]
Abstract
In this study, a series of novel 4-Aryl-4H-chromene derivatives (D1-D31) were designed and synthesized by integrating quinoline heterocycle to crolibulin template molecule based on the strategy of molecular hybridization. One of these compounds D19 displayed positive antiproliferative activity against U87 cancer cell line (IC50 = 0.90 ± 0.03 μM). Compound D19 was verified as the microtubule-targeting agent through downregulating tubulin related genes of U87 cells, destroying the cytoskeleton of tubulins and interacting with the colchicine-binding site to inhibit the polymerization of tubulins by transcriptome analysis, immune-fluorescence staining, microtubule dynamics and EBI competition assays as well as molecular docking simulations. Moreover, compound D19 induced G2/M phase arrest, resulted in cell apoptosis and inhibited the migration of U87 cells by flow cytometry analysis and wound healing assays. Significantly, compound D19 dose-dependently inhibited the tumor growth of orthotopic glioma xenografts model (GL261-Luc) and effectively prolonged the survival time of mice, which were extremely better than those of positive drug temozolomide (TMZ). Compound D19 exhibited potent in vivo antivascular activity as well as no observable toxicity. Furthermore, the results of in silico simulation studies and P-gp transwell assays verified the positive correlation between compound D19's Blood-Brain Barrier (BBB) permeability and its in vivo anti-GBM activity. Overall, compound D19 can be used as a promising anti-GBM lead compound for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Haoyi Yang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Dongyu Zhang
- School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Ziyang Yuan
- School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Haishi Qiao
- School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhuolu Xia
- School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Feng Cao
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Yuanyuan Lu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Feng Jiang
- School of Engineering, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
4
|
Wu A, Shi K, Wang J, Zhang R, Wang Y. Targeting SARS-CoV-2 entry processes: The promising potential and future of host-targeted small-molecule inhibitors. Eur J Med Chem 2024; 263:115923. [PMID: 37981443 DOI: 10.1016/j.ejmech.2023.115923] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/16/2023] [Accepted: 10/28/2023] [Indexed: 11/21/2023]
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, has had a huge impact on global health. To respond to rapidly mutating viruses and to prepare for the next pandemic, there is an urgent need to develop small molecule therapies that target critical stages of the SARS-CoV-2 life cycle. Inhibiting the entry process of the virus can effectively control viral infection and play a role in prevention and treatment. Host factors involved in this process, such as ACE2, TMPRSS2, ADAM17, furin, PIKfyve, TPC2, CTSL, AAK1, V-ATPase, HSPG, and NRP1, have been found to be potentially good targets with stability. Through further exploration of the cell entry process of SARS-CoV-2, small-molecule drugs targeting these host factors have been developed. This review focuses on the structural functions of potential host cell targets during the entry of SARS-CoV-2 into host cells. The research progress, chemical structure, structure-activity relationship, and clinical value of small-molecule inhibitors against COVID-19 are reviewed to provide a reference for the development of small-molecule drugs against COVID-19.
Collapse
Affiliation(s)
- Aijia Wu
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, National Clinical Research Center for Geriatrics, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Kunyu Shi
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, National Clinical Research Center for Geriatrics, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Ruofei Zhang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, National Clinical Research Center for Geriatrics, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yuxi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, National Clinical Research Center for Geriatrics, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China.
| |
Collapse
|
5
|
Burke JE, Triscott J, Emerling BM, Hammond GRV. Beyond PI3Ks: targeting phosphoinositide kinases in disease. Nat Rev Drug Discov 2023; 22:357-386. [PMID: 36376561 PMCID: PMC9663198 DOI: 10.1038/s41573-022-00582-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2022] [Indexed: 11/16/2022]
Abstract
Lipid phosphoinositides are master regulators of almost all aspects of a cell's life and death and are generated by the tightly regulated activity of phosphoinositide kinases. Although extensive efforts have focused on drugging class I phosphoinositide 3-kinases (PI3Ks), recent years have revealed opportunities for targeting almost all phosphoinositide kinases in human diseases, including cancer, immunodeficiencies, viral infection and neurodegenerative disease. This has led to widespread efforts in the clinical development of potent and selective inhibitors of phosphoinositide kinases. This Review summarizes our current understanding of the molecular basis for the involvement of phosphoinositide kinases in disease and assesses the preclinical and clinical development of phosphoinositide kinase inhibitors.
Collapse
Affiliation(s)
- John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada.
| | - Joanna Triscott
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Gerald R V Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Synthesis and Reactions of 3-Halogenated 2-CF 3-Indoles. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248822. [PMID: 36557954 PMCID: PMC9785211 DOI: 10.3390/molecules27248822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/03/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Halogenation of 2-trifluoromethylindole afforded 3-chloro-, 3-bromo- and 3-iodo derivatives in up to 98% yield. Methyl-, benzyl- and tosyl-groups can be installed at the nitrogen atom of prepared indoles in high yields by base catalyzed reaction with the corresponding alkylating (sulfonylating) reagents. A high synthetic utility of the prepared haloindoles in the reaction with various nucleophilies was shown. The reaction with 4-methylthiophenol and copper cyanide afforded the corresponding sulfides and nitriles in high yield. Palladium catalyzed cross-coupling with phenyl boronic acid and phenylacetylene gave the corresponding 3-phenyl-2-CF3-indoles and acetylenic derivatives in 72-98% yield.
Collapse
|
7
|
Sterligov G, Ageshina AA, Rzhevskiy SA, Shurupova OV, Topchiy MA, Minaeva LI, Asachenko AF. One-Pot Modified Madelung Synthesis of 3-Tosyl- and 3-Cyano-1,2-disubstituted Indoles. ACS OMEGA 2022; 7:38505-38511. [PMID: 36340104 PMCID: PMC9631411 DOI: 10.1021/acsomega.2c03754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
A One-pot, two-step procedure for the synthesis of 1,2-disubstituted-3-tosyl and 1,2-disubstituted-3-cyanoindoles from the corresponding N-(o-tolyl)benzamides is reported. The developed procedure is operationally simple, does not utilize any transition metals, and provides variably substituted indoles in good yields from readily available starting materials.
Collapse
|
8
|
Thakur A, Faujdar C, Sharma R, Sharma S, Malik B, Nepali K, Liou JP. Glioblastoma: Current Status, Emerging Targets, and Recent Advances. J Med Chem 2022; 65:8596-8685. [PMID: 35786935 PMCID: PMC9297300 DOI: 10.1021/acs.jmedchem.1c01946] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Glioblastoma (GBM) is a highly malignant
brain tumor characterized
by a heterogeneous population of genetically unstable and highly infiltrative
cells that are resistant to chemotherapy. Although substantial efforts
have been invested in the field of anti-GBM drug discovery in the
past decade, success has primarily been confined to the preclinical
level, and clinical studies have often been hampered due to efficacy-,
selectivity-, or physicochemical property-related issues. Thus, expansion
of the list of molecular targets coupled with a pragmatic design of
new small-molecule inhibitors with central nervous system (CNS)-penetrating
ability is required to steer the wheels of anti-GBM drug discovery
endeavors. This Perspective presents various aspects of drug discovery
(challenges in GBM drug discovery and delivery, therapeutic targets,
and agents under clinical investigation). The comprehensively covered
sections include the recent medicinal chemistry campaigns embarked
upon to validate the potential of numerous enzymes/proteins/receptors
as therapeutic targets in GBM.
Collapse
Affiliation(s)
- Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Chetna Faujdar
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida 201307, India
| | - Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Sachin Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Basant Malik
- Department of Sterile Product Development, Research and Development-Unit 2, Jubiliant Generics Ltd., Noida 201301, India
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Jing Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| |
Collapse
|
9
|
Muzalevskiy VM, Sizova ZA, Abaev VT, Nenajdenko VG. An Efficient Approach to 2-CF 3-Indoles Based on ortho-Nitrobenzaldehydes. Molecules 2021; 26:7365. [PMID: 34885948 PMCID: PMC8658784 DOI: 10.3390/molecules26237365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 11/28/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
The catalytic olefination reaction of 2-nitrobenzaldehydes with CF3CCl3 afforded stereoselectively trifluoromethylated ortho-nitrostyrenes in up to 88% yield. The reaction of these alkenes with pyrrolidine permits preparation of α-CF3-β-(2-nitroaryl) enamines. Subsequent one pot reduction of nitro-group by Fe-AcOH-H2O system initiated intramolecular cyclization to afford 2-CF3-indoles. Target products can be prepared in up to 85% yields. Broad synthetic scope of the reaction was shown as well as some followed up transformations of 2- CF3-indole.
Collapse
Affiliation(s)
- Vasiliy M. Muzalevskiy
- Department of Chemistry, Lomonosov Moscow State University, 119899 Moscow, Russia; (V.M.M.); (Z.A.S.)
| | - Zoia A. Sizova
- Department of Chemistry, Lomonosov Moscow State University, 119899 Moscow, Russia; (V.M.M.); (Z.A.S.)
| | - Vladimir T. Abaev
- North Ossetian State University, 44-46 Vatutina St., 362025 Vladikavkaz, Russia;
- North Caucasus Federal University, 1a Pushkin St., 355009 Stavropol, Russia
| | - Valentine G. Nenajdenko
- Department of Chemistry, Lomonosov Moscow State University, 119899 Moscow, Russia; (V.M.M.); (Z.A.S.)
| |
Collapse
|
10
|
Ritter M, Bresgen N, Kerschbaum HH. From Pinocytosis to Methuosis-Fluid Consumption as a Risk Factor for Cell Death. Front Cell Dev Biol 2021; 9:651982. [PMID: 34249909 PMCID: PMC8261248 DOI: 10.3389/fcell.2021.651982] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
The volumes of a cell [cell volume (CV)] and its organelles are adjusted by osmoregulatory processes. During pinocytosis, extracellular fluid volume equivalent to its CV is incorporated within an hour and membrane area equivalent to the cell's surface within 30 min. Since neither fluid uptake nor membrane consumption leads to swelling or shrinkage, cells must be equipped with potent volume regulatory mechanisms. Normally, cells respond to outwardly or inwardly directed osmotic gradients by a volume decrease and increase, respectively, i.e., they shrink or swell but then try to recover their CV. However, when a cell death (CD) pathway is triggered, CV persistently decreases in isotonic conditions in apoptosis and it increases in necrosis. One type of CD associated with cell swelling is due to a dysfunctional pinocytosis. Methuosis, a non-apoptotic CD phenotype, occurs when cells accumulate too much fluid by macropinocytosis. In contrast to functional pinocytosis, in methuosis, macropinosomes neither recycle nor fuse with lysosomes but with each other to form giant vacuoles, which finally cause rupture of the plasma membrane (PM). Understanding methuosis longs for the understanding of the ionic mechanisms of cell volume regulation (CVR) and vesicular volume regulation (VVR). In nascent macropinosomes, ion channels and transporters are derived from the PM. Along trafficking from the PM to the perinuclear area, the equipment of channels and transporters of the vesicle membrane changes by retrieval, addition, and recycling from and back to the PM, causing profound changes in vesicular ion concentrations, acidification, and-most importantly-shrinkage of the macropinosome, which is indispensable for its proper targeting and cargo processing. In this review, we discuss ion and water transport mechanisms with respect to CVR and VVR and with special emphasis on pinocytosis and methuosis. We describe various aspects of the complex mutual interplay between extracellular and intracellular ions and ion gradients, the PM and vesicular membrane, phosphoinositides, monomeric G proteins and their targets, as well as the submembranous cytoskeleton. Our aim is to highlight important cellular mechanisms, components, and processes that may lead to methuotic CD upon their derangement.
Collapse
Affiliation(s)
- Markus Ritter
- Center for Physiology, Pathophysiology and Biophysics, Institute for Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria
- Institute for Physiology and Pathophysiology, Paracelsus Medical University, Nuremberg, Germany
- Gastein Research Institute, Paracelsus Medical University, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis und Rehabilitation, Salzburg, Austria
- Kathmandu University School of Medical Sciences, Dhulikhel, Nepal
| | - Nikolaus Bresgen
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | | |
Collapse
|
11
|
Michalkova R, Mirossay L, Gazdova M, Kello M, Mojzis J. Molecular Mechanisms of Antiproliferative Effects of Natural Chalcones. Cancers (Basel) 2021; 13:cancers13112730. [PMID: 34073042 PMCID: PMC8198114 DOI: 10.3390/cancers13112730] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/20/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Despite the important progress in cancer treatment in the past decades, the mortality rates in some types of cancer have not significantly decreased. Therefore, the search for novel anticancer drugs has become a topic of great interest. Chalcones, precursors of flavonoid synthesis in plants, have been documented as natural compounds with pleiotropic biological effects including antiproliferative/anticancer activity. This article focuses on the knowledge on molecular mechanisms of antiproliferative action of chalcones and draws attention to this group of natural compounds that may be of importance in the treatment of cancer disease. Abstract Although great progress has been made in the treatment of cancer, the search for new promising molecules with antitumor activity is still one of the greatest challenges in the fight against cancer due to the increasing number of new cases each year. Chalcones (1,3-diphenyl-2-propen-1-one), the precursors of flavonoid synthesis in higher plants, possess a wide spectrum of biological activities including antimicrobial, anti-inflammatory, antioxidant, and anticancer. A plethora of molecular mechanisms of action have been documented, including induction of apoptosis, autophagy, or other types of cell death, cell cycle changes, and modulation of several signaling pathways associated with cell survival or death. In addition, blockade of several steps of angiogenesis and proteasome inhibition has also been documented. This review summarizes the basic molecular mechanisms related to the antiproliferative effects of chalcones, focusing on research articles from the years January 2015–February 2021.
Collapse
|
12
|
Schwickert K, Andrzejewski M, Grabowsky S, Schirmeister T. Synthesis, X-ray Structure Determination, and Comprehensive Photochemical Characterization of (Trifluoromethyl)diazirine-Containing TRPML1 Ligands. J Org Chem 2021; 86:6169-6183. [PMID: 33835801 DOI: 10.1021/acs.joc.0c02993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Potential (trifluoromethyl)diazirine-based TRPML1 ion channel ligands were designed and synthesized, and their structures were determined by single-crystal X-ray diffraction analysis. Photoactivation studies via 19F NMR spectroscopy and HPLC-MS analysis revealed distinct kinetical characteristics in selected solvents and favorable photochemical properties in an aqueous buffer. These photoactivatable TRPML activators represent useful and valuable tools for TRPML photoaffinity labeling combined with mass spectrometry.
Collapse
Affiliation(s)
- Kevin Schwickert
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| | - Michał Andrzejewski
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Simon Grabowsky
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| |
Collapse
|
13
|
Soley J, Taylor SD. Synthesis of β-Hydroxy-α,α-difluorosulfonamides from Carbanions of Difluoromethanesulfonamides. J Org Chem 2021; 86:6577-6591. [PMID: 33847499 DOI: 10.1021/acs.joc.1c00378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis of β-hydroxy-α,α-difluorosulfonamides was achieved by reacting difluoromethanesulfonamides with KHMDS in the presence of an aldehyde or ketone. The reaction exhibited a dramatic counterion effect with KHMDS or NaHMDS usually giving excellent yields in minutes, while lithium bases gave little or no product. Excellent yields and high diastereomeric ratios were achieved with Nα-benzyl-Nα-phenylfluorenyl (PhF)-protected chiral amino aldehydes derived from amino acids. Following deprotection, a β-hydroxy-α,α-sulfonamide reacted under peptide coupling and Mitsunobu conditions to furnish a peptidomimetic in an excellent overall yield.
Collapse
Affiliation(s)
- Jacob Soley
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Scott D Taylor
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
14
|
Dandawate P, Ahmed K, Padhye S, Ahmad A, Biersack B. Anticancer Active Heterocyclic Chalcones: Recent Developments. Anticancer Agents Med Chem 2021; 21:558-566. [PMID: 32628595 DOI: 10.2174/1871520620666200705215722] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/27/2020] [Accepted: 04/07/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Chalcones are structurally simple compounds that are easily accessible by synthetic methods. Heterocyclic chalcones have gained the interest of scientists due to their diverse biological activities. The anti-tumor activities of heterocyclic chalcones are especially remarkable and the growing number of publications dealing with this topic warrants an up-to-date compilation. METHODS Search for antitumor active heterocyclic chalcones was carried out using Pubmed and Scifinder as common web-based literature searching tools. Pertinent and current literature was covered from 2015/2016 to 2019. Chemical structures, biological activities and modes of action of anti-tumor active heterocyclic chalcones are summarized. RESULTS Simply prepared chalcones have emerged over the last years with promising antitumor activities. Among them, there are a considerable number of tubulin polymerization inhibitors. But there are also new chalcones targeting special enzymes such as histone deacetylases or with DNA-binding properties. CONCLUSION This review provides a summary of recent heterocyclic chalcone derivatives with distinct antitumor activities.
Collapse
Affiliation(s)
- Prasad Dandawate
- Interdisciplinary Science and Technology Research Academy, Abeda Inamdar Senior College, University of Pune, 2390-B, K.B. Hidayatullah Road, Pune 411001, India
| | - Khursheed Ahmed
- Department of Chemistry, Abeda Inamdar Senior College, University of Pune, 2390-B, K.B. Hidayatullah Road, Pune 411001, India
| | - Subhash Padhye
- Interdisciplinary Science and Technology Research Academy, Abeda Inamdar Senior College, University of Pune, 2390-B, K.B. Hidayatullah Road, Pune 411001, India
| | - Aamir Ahmad
- University of Alabama at Birmingham, 9th Ave South, Birmingham AL 33294, United States
| | - Bernhard Biersack
- Organic Chemistry Laboratory, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| |
Collapse
|
15
|
Song S, Zhang Y, Ding T, Ji N, Zhao H. The Dual Role of Macropinocytosis in Cancers: Promoting Growth and Inducing Methuosis to Participate in Anticancer Therapies as Targets. Front Oncol 2021; 10:570108. [PMID: 33542897 PMCID: PMC7851083 DOI: 10.3389/fonc.2020.570108] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 12/01/2020] [Indexed: 02/05/2023] Open
Abstract
Macropinocytosis is an important mechanism of internalizing extracellular materials and dissolved molecules in eukaryotic cells. Macropinocytosis has a dual effect on cancer cells. On the one hand, cells expressing RAS genes (such as K-RAS, H-RAS) under the stress of nutrient deficiency can spontaneously produce constitutive macropinocytosis to promote the growth of cancer cells by internalization of extracellular nutrients (like proteins), receptors, and extracellular vesicles(EVs). On the other hand, abnormal expression of RAS genes and drug treatment (such as MOMIPP) can induce a novel cell death associated with hyperactivated macropinocytosis: methuosis. Based on the dual effect, there is immense potential for designing anticancer therapies that target macropinocytosis in cancer cells. In view of the fact that there has been little review of the dual effect of macropinocytosis in cancer cells, herein, we systematically review the general process of macropinocytosis, its specific manifestation in cancer cells, and its application in cancer treatment, including anticancer drug delivery and destruction of macropinocytosis. This review aims to serve as a reference for studying macropinocytosis in cancers and designing macropinocytosis-targeting anticancer drugs in the future.
Collapse
Affiliation(s)
- Shaojuan Song
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tingting Ding
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ning Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hang Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Oppong F, Li Z, Fakhrabadi EA, Raorane T, Giri PM, Liberatore MW, Sarver JG, Trabbic CJ, Hosier CE, Erhardt PW, Maltese WA, Nesamony J. Investigating the Potential to Deliver and Maintain Plasma and Brain Levels of a Novel Practically Insoluble Methuosis Inducing Anticancer Agent 5-Methoxy MOMIPP Through an Injectable In Situ Forming Thermoresponsive Hydrogel Formulation. J Pharm Sci 2020; 109:2719-2728. [PMID: 32473210 DOI: 10.1016/j.xphs.2020.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/16/2020] [Accepted: 05/18/2020] [Indexed: 11/26/2022]
Abstract
A new indole based chalcone molecule MOMIPP induced methuosis mediated cell death in gliobastoma and other cancer cell lines. But the drug was insoluble in water and had a very short plasma half-life. The purpose of this work was to develop a formulation that can provide sustained levels of MOMIPP in vivo. Initial studies established drug solubility in various solvents. N-methyl pyrrolidone (NMP) was determined as an excellent solvent for the drug. Subsequently a poloxamer-407 based thermoreversible gel containing NMP was used to develop the formulation. Rheological studies were performed via oscillatory temperature mode, continuous shear analysis, and oscillatory frequency mode experiments. The mechanical properties of the formulations were tested using a texture profile analyzer. The gelation temperature and time of formulations increased with increasing amounts of NMP. However, the viscosity at 20 °C and storage modulus decreased as the amount of NMP increased. Characterization studies helped to identify the gel formulation that was used to administer the drug orally, sub-cutaneously, and intra-peritoneally. When the gel was given intraperitoneally the target plasma and brain levels of over 5 μM was maintained for about 8 h. Thus, a thermoreversible gel formulation that can deliver MOMIPP in animal studies was successfully developed.
Collapse
Affiliation(s)
- Frank Oppong
- Division of Industrial Pharmacy, Department of Pharmacy Practice, College of Pharmacy and Pharmaceutical Sciences, University of Toledo HSC, Toledo, Ohio 43614
| | - Zehui Li
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo HSC, Toledo, Ohio 43614
| | - Ehsan Akbari Fakhrabadi
- Department of Chemical Engineering, College of Engineering, University of Toledo, Toledo, Ohio 43614
| | - Tanvi Raorane
- Division of Industrial Pharmacy, Department of Pharmacy Practice, College of Pharmacy and Pharmaceutical Sciences, University of Toledo HSC, Toledo, Ohio 43614
| | - Paras M Giri
- Division of Industrial Pharmacy, Department of Pharmacy Practice, College of Pharmacy and Pharmaceutical Sciences, University of Toledo HSC, Toledo, Ohio 43614
| | - Matthew W Liberatore
- Department of Chemical Engineering, College of Engineering, University of Toledo, Toledo, Ohio 43614
| | - Jeffrey G Sarver
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo HSC, Toledo, Ohio 43614
| | - Christopher J Trabbic
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo HSC, Toledo, Ohio 43614
| | - Corey E Hosier
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo HSC, Toledo, Ohio 43614
| | - Paul W Erhardt
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo HSC, Toledo, Ohio 43614
| | - William A Maltese
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo HSC, Toledo, Ohio 43614
| | - Jerry Nesamony
- Division of Industrial Pharmacy, Department of Pharmacy Practice, College of Pharmacy and Pharmaceutical Sciences, University of Toledo HSC, Toledo, Ohio 43614.
| |
Collapse
|
17
|
Liu R, Deng X, Peng Y, Feng W, Xiong R, Zou Y, Lei X, Zheng X, Xie Z, Tang G. Synthesis and biological evaluation of novel 5,6,7-trimethoxy flavonoid salicylate derivatives as potential anti-tumor agents. Bioorg Chem 2020; 96:103652. [PMID: 32059154 DOI: 10.1016/j.bioorg.2020.103652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 12/27/2022]
Abstract
5,6,7-Trimethoxy flavonoid salicylate derivatives were designed by the joining of three important pharmacophores (TMP, flavonoid, and SA) according to the combination principle. A series of novel trimethoxy flavonoid salicylate derivatives were synthesized and their in vitro anti-tumor activities were evaluated. Among these derivatives, compound 7f exhibited excellent antiproliferative activity against HGC-27 cells and MGC-803 cells with IC50 values of 10.26 ± 6.94 μM and 17.17 ± 3.03 μM, respectively. Subsequently, the effects on cell colony formation (clonogenic survival assay), cell migration (wound healing assay), cell cycle distribution (PI staining assay), cell apoptosis (Hoechst 33258 staining assay and annexin V-FITC/PI dual staining assay), lactate level (lactate measurement), microtubules disarrangement (immunofluorescence staining analysis) and docking posture (molecular docking simulation) were determined. Further western blot analysis confirmed that compound 7f could effectively down-regulate the expression of glycolysis-related proteins HIF-1α, PFKM and PKM2 and tumor angiogenesis-related proteins VEGF. Overall, these studies suggested that compound 7f, as the representative compound of those, might be a promising candidate for the treatment of gastric cancer and deserved the further studies.
Collapse
Affiliation(s)
- Renbo Liu
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang City, Hunan Province, PR China
| | - Xiangping Deng
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang City, Hunan Province, PR China
| | - Yijiao Peng
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China
| | - Wanshi Feng
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China
| | - Runde Xiong
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China
| | - Yang Zou
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China
| | - Xiaoyong Lei
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China
| | - Xing Zheng
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China
| | - Zhizhong Xie
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China
| | - Guotao Tang
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang City, Hunan Province, PR China.
| |
Collapse
|
18
|
Sarkar Bhattacharya S, Thirusangu P, Jin L, Roy D, Jung D, Xiao Y, Staub J, Roy B, Molina JR, Shridhar V. PFKFB3 inhibition reprograms malignant pleural mesothelioma to nutrient stress-induced macropinocytosis and ER stress as independent binary adaptive responses. Cell Death Dis 2019; 10:725. [PMID: 31562297 PMCID: PMC6764980 DOI: 10.1038/s41419-019-1916-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/29/2019] [Accepted: 08/09/2019] [Indexed: 12/14/2022]
Abstract
The metabolic signatures of cancer cells are often associated with elevated glycolysis. Pharmacological (PFK158 treatment) and genetic inhibition of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), a critical control point in the glycolytic pathway, decreases glucose uptake, ATP production, and lactate dehydrogenase activity and arrests malignant pleural mesothelioma (MPM) cells in the G0/G1 phase to induce cell death. To overcome this nutrient stress, inhibition of PFKFB3 activity led to an escalation in endoplasmic reticulum (ER) activity and aggravated ER stress mostly by upregulating BiP and GADD153 expression and activation of the endocytic Rac1-Rab5-Rab7 pathway resulting in a unique form of cell death called “methuosis” in both the sarcomatoid (H28) and epithelioid (EMMeso) cells. Transmission electron microscopy (TEM) analysis showed the formation of nascent macropinocytotic vesicles, which rapidly coalesced to form large vacuoles with compromised lysosomal function. Both immunofluorescence microscopy and co-immunoprecipitation analyses revealed that upon PFKFB3 inhibition, two crucial biomolecules of each pathway, Rac1 and Calnexin interact with each other. Finally, PFK158 alone and in combination with carboplatin-inhibited tumorigenesis of EMMeso xenografts in vivo. Since most cancer cells exhibit an increased glycolytic rate, these results provide evidence for PFK158, in combination with standard chemotherapy, may have a potential in the treatment of MPM.
Collapse
Affiliation(s)
- Sayantani Sarkar Bhattacharya
- Department of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Prabhu Thirusangu
- Department of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ling Jin
- Department of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | - Debarshi Roy
- Department of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | - Deokbeom Jung
- Department of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | - Yinan Xiao
- Department of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | - Julie Staub
- Department of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | - Bhaskar Roy
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Julian R Molina
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA.
| | - Viji Shridhar
- Department of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
19
|
Li Z, Mbah NE, Overmeyer JH, Sarver JG, George S, Trabbic CJ, Erhardt PW, Maltese WA. The JNK signaling pathway plays a key role in methuosis (non-apoptotic cell death) induced by MOMIPP in glioblastoma. BMC Cancer 2019; 19:77. [PMID: 30651087 PMCID: PMC6335761 DOI: 10.1186/s12885-019-5288-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/07/2019] [Indexed: 12/12/2022] Open
Abstract
Background Synthetic indolyl- pyridinyl- propenones (IPPs) induce methuosis, a form of non-apoptotic cell death, in glioblastoma and other cancer cell lines. Methuosis is characterized by accumulation of cytoplasmic vacuoles derived from macropinosomes and late endosomes, followed by metabolic failure and rupture of the plasma membrane. However, not all IPPs that cause vacuolization are cytotoxic. The main goals of the present study were to identify key signaling pathways that contribute to methuosis induced by cytotoxic IPPs and to evaluate the anti-tumor potential of a prototype IPP in vivo. Methods We utilized metabolic flux analysis, glucose uptake, immunoblotting, and selective pharmacological inhibitors to compare the effects of closely related cytotoxic and non-cytotoxic IPPs in cultured glioblastoma cells. To determine whether the use of methuosis-inducing IPPs might be feasible in a therapeutic context, we quantified the distribution of our lead IPP compound, MOMIPP, in mouse plasma and brain, and tested its ability to inhibit tumor growth in an intracerebral glioblastoma xenograft model. Results The cytotoxic IPP compound, MOMIPP, causes early disruptions of glucose uptake and glycolytic metabolism. Coincident with these metabolic changes, MOMIPP selectively activates the JNK1/2 stress kinase pathway, resulting in phosphorylation of c-Jun, Bcl-2 and Bcl-xL. At the same concentration, the non-cytotoxic analog, MOPIPP, does not activate these pathways. Pharmacologic inhibition of JNK activity promotes survival, even when cells are extensively vacuolated, but suppression of c-Jun transcriptional activity offers no protection. MOMIPP readily penetrates the blood-brain barrier and is moderately effective in suppressing progression of intracerebral glioblastoma xenografts. Conclusions The results suggest that interference with glucose uptake and induction of JNK-mediated phosphorylation of pro-survival members of the Bcl-2 family represent key events in the methuosis death process. In addition to providing new insights into the underlying molecular mechanism of methuosis, the results indicate that compounds of the cytotoxic IPP class may have potential for further development as therapeutic agents for brain tumors. Electronic supplementary material The online version of this article (10.1186/s12885-019-5288-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zehui Li
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, 43614, United States
| | - Nneka E Mbah
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, 43614, United States
| | - Jean H Overmeyer
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, 43614, United States
| | - Jeffrey G Sarver
- Center for Drug Design and Development, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, 43606, USA
| | - Sage George
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, 43614, United States
| | - Christopher J Trabbic
- Center for Drug Design and Development, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, 43606, USA
| | - Paul W Erhardt
- Center for Drug Design and Development, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, 43606, USA
| | - William A Maltese
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, 43614, United States.
| |
Collapse
|
20
|
Romagnoli R, Prencipe F, Lopez-Cara LC, Oliva P, Baraldi S, Baraldi PG, Estévez-Sarmiento F, Quintana J, Estévez F. Synthesis and biological evaluation of alpha-bromoacryloylamido indolyl pyridinyl propenones as potent apoptotic inducers in human leukaemia cells. J Enzyme Inhib Med Chem 2018; 33:727-742. [PMID: 29620429 PMCID: PMC6009983 DOI: 10.1080/14756366.2018.1450749] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 03/07/2018] [Indexed: 02/06/2023] Open
Abstract
The combination of two pharmacophores into a single molecule represents one of the methods that can be adopted for the synthesis of new anticancer molecules. To investigate the influence of the position of the pyridine nitrogen on biological activity, two different series of α-bromoacryloylamido indolyl pyridinyl propenones 3a-h and 4a-d were designed and synthesized by a pharmacophore hybridization approach and evaluated for their antiproliferative activity against a panel of six human cancer cell lines. These hybrid molecules were prepared to combine the α-bromoacryloyl moiety with two series of indole-inspired chalcone analogues, possessing an indole derivative and a 3- or 4-pyridine ring, respectively, linked on either side of 2-propen-1-one system. The structure-activity relationship was also investigated by the insertion of alkyl or benzyl moieties at the N-1 position of the indole nucleus. We found that most of the newly synthesized displayed high antiproliferative activity against U-937, MOLT-3, K-562, and NALM-6 leukaemia cell lines, with one-digit to double-digit nanomolar IC50 values. The antiproliferative activities of 3-pyridinyl derivatives 3f-h revealed that N-benzyl indole analogues generally exhibited lower activity compared to N-H or N-alkyl derivatives 3a-b and 3c-e, respectively. Moreover, cellular mechanism studies elucidated that compound 4a induced apoptosis along with a decrease of mitochondrial membrane potential and activated caspase-3 in a concentration-dependent manner.
Collapse
Affiliation(s)
- Romeo Romagnoli
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, Ferrara, Italy
| | - Filippo Prencipe
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, Ferrara, Italy
| | - Luisa Carlota Lopez-Cara
- Departamento de Química Farmaceútica y Orgánica Facultad de Farmacia, Campus de Cartuja s/n, Granada, Spain
| | - Paola Oliva
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, Ferrara, Italy
| | - Stefania Baraldi
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, Ferrara, Italy
| | - Pier Giovanni Baraldi
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, Ferrara, Italy
| | - Francisco Estévez-Sarmiento
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de las Palmas de Gran Canaria, Spain
| | - José Quintana
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de las Palmas de Gran Canaria, Spain
| | - Francisco Estévez
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de las Palmas de Gran Canaria, Spain
| |
Collapse
|
21
|
Du S, Sarver JG, Trabbic CJ, Erhardt PW, Schroering A, Maltese WA. 6-MOMIPP, a novel brain-penetrant anti-mitotic indolyl-chalcone, inhibits glioblastoma growth and viability. Cancer Chemother Pharmacol 2018; 83:237-254. [PMID: 30426158 DOI: 10.1007/s00280-018-3726-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 11/03/2018] [Indexed: 12/16/2022]
Abstract
PURPOSE 3-(6-Methoxy-2-methyl-1H-indol-3-yl)-1-(4-pyridinyl)-2-propene-1-one (6-MOMIPP) is a novel indole-based chalcone that disrupts microtubules. The present study aims to define the mechanism through which 6-MOMIPP induces cell death and to evaluate the efficacy of the compound in penetrating the blood-brain barrier and inhibiting growth of glioblastoma xenografts. METHODS The effects of 6-MOMIPP were evaluated in cultured U251 glioblastoma cells, using viability, flow cytometry, and tubulin polymerization assays. Scintillation proximity and tubulin crosslinking methods were used to identify the binding site of 6-MOMIPP on tubulin, and western blots were performed to define the signaling pathways that contribute to cell death. LC/MS assays were used to study the pharmacokinetic behavior of 6-MOMIPP in mice. Subcutaneous and intracerebral xenograft models were utilized to assess the effects of 6-MOMIPP on growth of U251 glioblastoma in vivo. RESULTS The findings indicate that 6-MOMIPP targets the colchicine site on β-tubulin. At concentrations ≥ 250 nm, 6-MOMIPP induces mitotic arrest, caspase activation and loss of cell viability. Cells are protected by caspase inhibitors, pointing to an apoptotic mechanism of cell death. Loss of cell viability is preceded by activation of Cdk1(Cdc2) and phosphorylation of Bcl-2 and Bcl-xL. Inhibition of both events with a Cdk1 inhibitor prevents cell death. 6-MOMIPP has broad activity against the viability of multiple glioblastoma, melanoma and lung carcinoma cell lines. Viability of normal cells, including differentiated neurons, is not significantly affected at a drug concentration (1 µM) that reduces viability in most cancer lines. Pharmacokinetic studies in mice show that concentrations of 6-MOMIPP in the brain mirror those in the plasma, indicating that 6-MOMIPP readily penetrates the blood-brain barrier. Studies with mice bearing human U251 glioblastoma xenografts demonstrate that 6-MOMIPP is effective in suppressing growth of subcutaneous and intracerebral tumors without causing general toxicity. CONCLUSIONS The results indicate that 6-MOMIPP is a novel microtubule disruptor that targets the colchicine binding site on β-tubulin to induce mitotic arrest and cell death. The ability of 6-MOMIPP to penetrate the blood-brain barrier and inhibit growth of glioblastoma xenografts suggests that it warrants further preclinical evaluation as potential small-molecule therapeutic that may have advantages in treating primary and metastatic brain tumors.
Collapse
Affiliation(s)
- Shengnan Du
- Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3000 Transverse Drive, Toledo, OH, 43614, USA
| | - Jeffrey G Sarver
- Center for Drug Design and Development, University of Toledo College of Pharmacy and Pharmaceutical Sciences, 2810 W. Bancroft Street, Toledo, OH, 43606, USA
| | - Christopher J Trabbic
- Center for Drug Design and Development, University of Toledo College of Pharmacy and Pharmaceutical Sciences, 2810 W. Bancroft Street, Toledo, OH, 43606, USA
| | - Paul W Erhardt
- Center for Drug Design and Development, University of Toledo College of Pharmacy and Pharmaceutical Sciences, 2810 W. Bancroft Street, Toledo, OH, 43606, USA
| | - Allen Schroering
- Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3000 Transverse Drive, Toledo, OH, 43614, USA
| | - William A Maltese
- Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3000 Transverse Drive, Toledo, OH, 43614, USA.
| |
Collapse
|
22
|
Chaitanya MVSK, Reddy POV, Nikhil K, Kumar A, Shah K, Kumar D. Synthesis and anticancer activity studies of indolylisoxazoline analogues. Bioorg Med Chem Lett 2018; 28:2842-2845. [PMID: 30072225 PMCID: PMC8653574 DOI: 10.1016/j.bmcl.2018.07.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 11/21/2022]
Abstract
A new library of thirteen indolylisoxazolines 6a-m has been synthesized by the treatment of indolylchalcones with hydroxylamine hydrochloride. Evaluation of anticancer activity of indolylisoxazolines 6a-m led to the identification of potent compounds 6c-d, 6i and 6l, with IC50 ranging 2.5-5.0 µM against the tested cancer cell lines. Using a number of complementary techniques such as acridine orange/ethidium bromide staining, PARP1 cleavage and DNA strand breaks assay, we show that the compounds 6c and 6i induce apoptosis in highly aggressive C4-2 cells. Our data further revealed that 6c and 6i inhibited C4-2 cells proliferation without inducing reactive oxygen species (ROS). Finally, we show that compounds 6c and 6i also potently inhibit cell migration, indicating these compounds have the potential to serve as effective anti-cancer agents.
Collapse
Affiliation(s)
- M V S K Chaitanya
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - P O Venkataramana Reddy
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Kumar Nikhil
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
| | - Anil Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Kavita Shah
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States.
| | - Dalip Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India.
| |
Collapse
|
23
|
Preti D, Romagnoli R, Rondanin R, Cacciari B, Hamel E, Balzarini J, Liekens S, Schols D, Estévez-Sarmiento F, Quintana J, Estévez F. Design, synthesis, in vitro antiproliferative activity and apoptosis-inducing studies of 1-(3',4',5'-trimethoxyphenyl)-3-(2'-alkoxycarbonylindolyl)-2-propen-1-one derivatives obtained by a molecular hybridisation approach. J Enzyme Inhib Med Chem 2018; 33:1225-1238. [PMID: 30141353 PMCID: PMC6116705 DOI: 10.1080/14756366.2018.1493473] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Inhibition of microtubule function using tubulin targeting agents has received growing attention in the last several decades. The indole scaffold has been recognized as an important scaffold in the design of novel compounds acting as antimitotic agents. Indole-based chalcones, in which one of the aryl rings was replaced by an indole, have been explored in the last few years for their anticancer potential in different cancer cell lines. Eighteen novel (3′,4′,5′-trimethoxyphenyl)-indolyl-propenone derivatives with general structure 9 were synthesized and evaluated for their antiproliferative activity against a panel of four different human cancer cell lines. The highest IC50 values were obtained against the human promyelocytic leukemia HL-60 cell line. This series of chalcone derivatives was characterized by the presence of a 2-alkoxycarbonyl indole ring as the second aryl system attached at the carbonyl of the 3-position of the 1-(3′,4′,5′-trimethoxyphenyl)-2-propen-1-one framework. The structure–activity relationship (SAR) of the indole-based chalcone derivatives was investigated by varying the position of the methoxy group, by the introduction of different substituents (hydrogen, methyl, ethyl or benzyl) at the N-1 position and by the activity differences between methoxycarbonyl and ethoxycarbonyl moieties at the 2-position of the indole nucleus. The antiproliferative activity data of the novel synthesized compounds revealed that generally N-substituted indole analogues exhibited considerably reduced potency as compared with their parent N-unsubstituted counterparts, demonstrating that the presence of a hydrogen on the indole nitrogen plays a decisive role in increasing antiproliferative activity. The results also revealed that the position of the methoxy group on the indole ring is a critical determinant of biological activity. Among the synthesized derivatives, compound 9e, containing the 2-methoxycarbonyl-6-methoxy-N-1H-indole moiety exhibited the highest antiproliferative activity, with IC50 values of 0.37, 0.16 and 0.17 μM against HeLa, HT29 and MCF-7 cancer cell lines, respectively, and with considerably lower activity against HL-60 cells (IC50: 18 μM). This derivative also displayed cytotoxic properties (IC50 values ∼1 μM) in the human myeloid leukemia U-937 cell line overexpressing human Bcl-2 (U-937/Bcl-2) via cell cycle progression arrest at the G2-M phase and induction of apoptosis. The results obtained also demonstrated that the antiproliferative activity of this molecule is related to inhibition of tubulin polymerisation. The presence of a methoxy group at the C5- or C6-position of the indole nucleus, as well as the absence of substituents at the N-1-indole position, contributed to the optimal activity of the indole-propenone-3′,4′,5′-trimethoxyphenyl scaffold.
Collapse
Affiliation(s)
- Delia Preti
- a Department of Chemical and Pharmaceutical Sciences , University of Ferrara , Ferrara , Italy
| | - Romeo Romagnoli
- a Department of Chemical and Pharmaceutical Sciences , University of Ferrara , Ferrara , Italy
| | - Riccardo Rondanin
- a Department of Chemical and Pharmaceutical Sciences , University of Ferrara , Ferrara , Italy
| | - Barbara Cacciari
- a Department of Chemical and Pharmaceutical Sciences , University of Ferrara , Ferrara , Italy
| | - Ernest Hamel
- b Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research , National Cancer Institute, National Institutes of Health , Frederick , MD , USA
| | - Jan Balzarini
- c Rega Institute for Medical Research, KU Leuven , Laboratory of Virology and Chemotherapy , Leuven , Belgium
| | - Sandra Liekens
- c Rega Institute for Medical Research, KU Leuven , Laboratory of Virology and Chemotherapy , Leuven , Belgium
| | - Dominique Schols
- c Rega Institute for Medical Research, KU Leuven , Laboratory of Virology and Chemotherapy , Leuven , Belgium
| | - Francisco Estévez-Sarmiento
- d Department of Biochemistry and Molecular Biology, Research Institute in Biomedical and Health Sciences (IUIBS) , University of Las Palmas de Gran Canaria (ULPGC) , Spain
| | - José Quintana
- d Department of Biochemistry and Molecular Biology, Research Institute in Biomedical and Health Sciences (IUIBS) , University of Las Palmas de Gran Canaria (ULPGC) , Spain
| | - Francisco Estévez
- d Department of Biochemistry and Molecular Biology, Research Institute in Biomedical and Health Sciences (IUIBS) , University of Las Palmas de Gran Canaria (ULPGC) , Spain
| |
Collapse
|
24
|
Cho H, Geno E, Patoor M, Reid A, McDonald R, Hild M, Jenkins JL. Indolyl-Pyridinyl-Propenone-Induced Methuosis through the Inhibition of PIKFYVE. ACS OMEGA 2018; 3:6097-6103. [PMID: 30221232 PMCID: PMC6130785 DOI: 10.1021/acsomega.8b00202] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 02/23/2018] [Indexed: 06/08/2023]
Abstract
Methuosis is a form of nonapoptotic cell death characterized by the accumulation of macropinosome-derived vacuoles. Herein, we identify PIKFYVE, a class III phosphoinositide (PI) kinase, as the protein target responsible for the methuosis-inducing activity of indolyl-pyridinyl-propenones (3-(5-methoxy-2-methyl-1H-indol-3-yl)-1-(4-pyridinyl)-2-propen-1-one). We further characterize the effects of chemical substitutions at the 2- and 5-indolyl positions on cytoplasmic vacuolization and PIKFYVE binding and inhibitory activity. Our study provides a better understanding of the mechanism of methuosis-inducing indolyl-pyridinyl-propenones.
Collapse
Affiliation(s)
- Hyelim Cho
- Chemical
Biology and Therapeutics, Novartis Institutes
for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Erin Geno
- Chemical
Biology and Therapeutics, Novartis Institutes
for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Maude Patoor
- Chemical
Biology and Therapeutics, Novartis Institutes
for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Adam Reid
- Department
of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Rick McDonald
- Chemical
Biology and Therapeutics, Novartis Institutes
for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Marc Hild
- Chemical
Biology and Therapeutics, Novartis Institutes
for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeremy L. Jenkins
- Chemical
Biology and Therapeutics, Novartis Institutes
for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
25
|
Huang W, Sun X, Li Y, He Z, Li L, Deng Z, Huang X, Han S, Zhang T, Zhong J, Wang Z, Xu Q, Zhang J, Deng X. Discovery and Identification of Small Molecules as Methuosis Inducers with in Vivo Antitumor Activities. J Med Chem 2018; 61:5424-5434. [PMID: 29878764 DOI: 10.1021/acs.jmedchem.8b00753] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Methuosis is a novel nonapoptotic mode of cell death characterized by vacuole accumulation in the cytoplasm. In this article, we describe a series of azaindole-based compounds that cause vacuolization in MDA-MB-231 cells. The most potent vacuole inducer, compound 13 (compound 13), displayed differential cytotoxicities against a broad panel of cancer cell lines, such as MDA-MB-231, A375, HCT116, and MCF-7, but it did not inhibit the growth of the nontumorigenic epithelial cell line MCF-10A. A mechanism study confirmed that the cell death was caused by inducing methuosis. Furthermore, compound 13 exhibited substantial pharmacological efficacy in the suppression of tumor growth in a xenograft mouse model of MDA-MB-231 cells without apparent side effects, which makes this compound the first example of a methuosis inducer with potent in vivo efficacy. These results demonstrate that methuosis inducers might serve as novel therapeutics for the treatment of cancer.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences , Xiamen University , Xiamen , Fujian 361102 , China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products , Xiamen University , Xiamen , Fujian 361102 , China
| | - Xihuan Sun
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences , Xiamen University , Xiamen , Fujian 361102 , China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products , Xiamen University , Xiamen , Fujian 361102 , China
| | - Yunzhan Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences , Xiamen University , Xiamen , Fujian 361102 , China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products , Xiamen University , Xiamen , Fujian 361102 , China
| | - Zhixiang He
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences , Xiamen University , Xiamen , Fujian 361102 , China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products , Xiamen University , Xiamen , Fujian 361102 , China
| | - Li Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences , Xiamen University , Xiamen , Fujian 361102 , China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products , Xiamen University , Xiamen , Fujian 361102 , China
| | - Zhou Deng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences , Xiamen University , Xiamen , Fujian 361102 , China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products , Xiamen University , Xiamen , Fujian 361102 , China
| | - Xiaoxing Huang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences , Xiamen University , Xiamen , Fujian 361102 , China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products , Xiamen University , Xiamen , Fujian 361102 , China
| | - Shang Han
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences , Xiamen University , Xiamen , Fujian 361102 , China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products , Xiamen University , Xiamen , Fujian 361102 , China
| | - Ting Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences , Xiamen University , Xiamen , Fujian 361102 , China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products , Xiamen University , Xiamen , Fujian 361102 , China
| | - Jiaji Zhong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences , Xiamen University , Xiamen , Fujian 361102 , China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products , Xiamen University , Xiamen , Fujian 361102 , China.,Medical College of Xiamen University , Xiamen , Fujian 361102 , China
| | - Zheng Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences , Xiamen University , Xiamen , Fujian 361102 , China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products , Xiamen University , Xiamen , Fujian 361102 , China
| | - Qingyan Xu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences , Xiamen University , Xiamen , Fujian 361102 , China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products , Xiamen University , Xiamen , Fujian 361102 , China
| | - Jianming Zhang
- Cutaneous Biology Research Center, Massachusetts General Hospital , Harvard Medical School , Boston , Massachusetts 02129 , United States
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences , Xiamen University , Xiamen , Fujian 361102 , China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products , Xiamen University , Xiamen , Fujian 361102 , China
| |
Collapse
|
26
|
Gao X, Peng L, Ruan X, Chen X, Ji H, Ma J, Ni H, Jiang S, Guo D. Transcriptome profile analysis reveals cardiotoxicity of maduramicin in primary chicken myocardial cells. Arch Toxicol 2017; 92:1267-1281. [DOI: 10.1007/s00204-017-2113-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/08/2017] [Indexed: 12/11/2022]
|
27
|
Vacuole-inducing compounds that disrupt endolysosomal trafficking stimulate production of exosomes by glioblastoma cells. Mol Cell Biochem 2017; 439:1-9. [PMID: 28770472 DOI: 10.1007/s11010-017-3130-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 07/26/2017] [Indexed: 12/13/2022]
Abstract
Exosomes are produced from mammalian cells when multivesicular endosomes fuse with the plasma membrane, releasing their intralumenal vesicles. In this study we assessed the effects of MOPIPP, a novel indole-based chalcone, and vacuolin-1, a distinct triazine-based compound, on exosome production in cultured glioblastoma and 293T cells. Both compounds promote vacuolization of late endosome compartments and interfere with trafficking of late endosomes to lysosomes, without significant cytotoxicity. The results show that vacuolated cells treated with these compounds release exosomes with morphologies similar to untreated controls. However, both compounds trigger multi-fold increases in release of exosome marker proteins (e.g., CD63, Alix) in exosome fractions collected from equivalent numbers of cells. Despite the marked increase in exosome production, the profiles of selected miRNA cargoes carried by the exosomes were generally similar in cells treated with the compounds. Insofar as MOPIPP and vacuolin-1 seem able to increase the overall yield of exosomes from cultured cells, they might be useful for efforts to develop exosome-based therapeutics.
Collapse
|
28
|
Mbah NE, Overmeyer JH, Maltese WA. Disruption of endolysosomal trafficking pathways in glioma cells by methuosis-inducing indole-based chalcones. Cell Biol Toxicol 2016; 33:263-282. [PMID: 27822587 DOI: 10.1007/s10565-016-9369-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/26/2016] [Indexed: 12/21/2022]
Abstract
Methuosis is a form of non-apoptotic cell death involving massive vacuolization of macropinosome-derived endocytic compartments, followed by a decline in metabolic activity and loss of membrane integrity. To explore the induction of methuosis as a potential therapeutic strategy for killing cancer cells, we have developed small molecules (indole-based chalcones) that trigger this form of cell death in glioblastoma and other cancer cell lines. Here, we report that in addition to causing fusion and expansion of macropinosome compartments, the lead compound, 3-(5-methoxy-2-methyl-1H-indol-3-yl)-1-(4-pyridinyl)-2-propen-1-one (MOMIPP), disrupts vesicular trafficking at the lysosomal nexus, manifested by impaired degradation of EGF and LDL receptors, defective processing of procathepsins, and accumulation of autophagosomes. In contrast, secretion of the ectodomain derived from a prototypical type-I membrane glycoprotein, β-amyloid precursor protein, is increased rather than diminished. A closely related MOMIPP analog, which causes substantial vacuolization without reducing cell viability, also impedes cathepsin processing and autophagic flux, but has more modest effects on receptor degradation. A third analog, which causes neither vacuolization nor loss of viability, has no effect on endolysosomal trafficking. The results suggest that differential cytotoxicity of structurally similar indole-based chalcones is related, at least in part, to the severity of their effects on endolysosomal trafficking pathways.
Collapse
Affiliation(s)
- Nneka E Mbah
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3000 Transverse Drive, Toledo, OH, 43614, USA
| | - Jean H Overmeyer
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3000 Transverse Drive, Toledo, OH, 43614, USA
| | - William A Maltese
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3000 Transverse Drive, Toledo, OH, 43614, USA.
| |
Collapse
|
29
|
Morzyk-Ociepa B, Szmigiel K, Dysz K, Turowska-Tyrk I, Michalska D. Metal-organic frameworks in cadmium(II) complexes with 5-methoxyindole-2-carboxylic acid: structure, vibrational spectra and DFT calculations. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
Trabbic CJ, George SM, Alexander EM, Du S, Offenbacher JM, Crissman EJ, Overmeyer JH, Maltese WA, Erhardt PW. Synthesis and biological evaluation of isomeric methoxy substitutions on anti-cancer indolyl-pyridinyl-propenones: Effects on potency and mode of activity. Eur J Med Chem 2016; 122:79-91. [PMID: 27343855 DOI: 10.1016/j.ejmech.2016.06.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/07/2016] [Accepted: 06/10/2016] [Indexed: 12/20/2022]
Abstract
Certain indolyl-pyridinyl-propenone analogues kill glioblastoma cells that have become resistant to conventional therapeutic drugs. Some of these analogues induce a novel form of non-apoptotic cell death called methuosis, while others primarily cause microtubule disruption. Ready access to 5-indole substitution has allowed characterization of this position to be important for both types of mechanisms when a simple methoxy group is present. We now report the syntheses and biological effects of isomeric methoxy substitutions on the indole ring. Additionally, analogues containing a trimethoxyphenyl group in place of the pyridinyl moiety were evaluated for anticancer activity. The results demonstrate that the location of the methoxy group can alter both the potency and the mechanism of cell death. Remarkably, changing the methoxy from the 5-position to the 6-position switched the biological activity from induction of methuosis to disruption of microtubules. The latter may represent a prototype for a new class of mitotic inhibitors with potential therapeutic utility.
Collapse
Affiliation(s)
- Christopher J Trabbic
- Center for Drug Design and Development, Department of Medicinal and Biological Chemistry, University of Toledo College of Pharmacy and Pharmaceutical Sciences, 2801 W. Bancroft Ave., Toledo, OH 4360, USA
| | - Sage M George
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3000 Arlington Ave., Toledo, OH 43614, USA
| | - Evan M Alexander
- Center for Drug Design and Development, Department of Medicinal and Biological Chemistry, University of Toledo College of Pharmacy and Pharmaceutical Sciences, 2801 W. Bancroft Ave., Toledo, OH 4360, USA
| | - Shengnan Du
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3000 Arlington Ave., Toledo, OH 43614, USA
| | - Jennifer M Offenbacher
- Center for Drug Design and Development, Department of Medicinal and Biological Chemistry, University of Toledo College of Pharmacy and Pharmaceutical Sciences, 2801 W. Bancroft Ave., Toledo, OH 4360, USA
| | - Emily J Crissman
- Center for Drug Design and Development, Department of Medicinal and Biological Chemistry, University of Toledo College of Pharmacy and Pharmaceutical Sciences, 2801 W. Bancroft Ave., Toledo, OH 4360, USA
| | - Jean H Overmeyer
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3000 Arlington Ave., Toledo, OH 43614, USA
| | - William A Maltese
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3000 Arlington Ave., Toledo, OH 43614, USA.
| | - Paul W Erhardt
- Center for Drug Design and Development, Department of Medicinal and Biological Chemistry, University of Toledo College of Pharmacy and Pharmaceutical Sciences, 2801 W. Bancroft Ave., Toledo, OH 4360, USA.
| |
Collapse
|
31
|
Pedroni J, Cramer N. 2-(Trifluoromethyl)indoles via Pd(0)-Catalyzed C(sp(3))-H Functionalization of Trifluoroacetimidoyl Chlorides. Org Lett 2016; 18:1932-5. [PMID: 27054603 DOI: 10.1021/acs.orglett.6b00795] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Perfluoroalkylated indoles are valuable compounds in drug discovery. A Pd(0)-catalyzed C(sp(3))-H functionalization enables access to 2-(trifluoromethyl)indoles from trifluoroacetimidoyl chlorides. These are stable compounds, easily obtained from anilines. The cyclization operates with catalyst loadings as low as 1 mol % and accommodates a variety of substituents.
Collapse
Affiliation(s)
- Julia Pedroni
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne , EPFL SB ISIC LCSA, BCH 4305, CH-1015 Lausanne, Switzerland
| | - Nicolai Cramer
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne , EPFL SB ISIC LCSA, BCH 4305, CH-1015 Lausanne, Switzerland
| |
Collapse
|
32
|
Mesaik MA, Khan KM, Rahim F, Taha M, Haider SM, Perveen S, Khalid AS, Abdalla OM, Soomro S, Voelter W. Synthetic indole Mannich bases: Their ability to modulate in vitro cellular immunity. Bioorg Chem 2015; 60:118-22. [DOI: 10.1016/j.bioorg.2015.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/01/2015] [Accepted: 05/03/2015] [Indexed: 01/03/2023]
|
33
|
Chen J, Yan J, Hu J, Pang Y, Huang L, Li X. Synthesis, biological evaluation and mechanism study of chalcone analogues as novel anti-cancer agents. RSC Adv 2015. [DOI: 10.1039/c5ra14888j] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of novel chalcone analogues were designed, synthesized and evaluated as anticancer agents.
Collapse
Affiliation(s)
- Jie Chen
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- China
| | - Jun Yan
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- China
| | - Jinhui Hu
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- China
| | - Yanqing Pang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- China
| | - Ling Huang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- China
| | - Xingshu Li
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- China
| |
Collapse
|