1
|
Bibi Z, Asghar I, Ashraf NM, Zeb I, Rashid U, Hamid A, Ali MK, Hatamleh AA, Al-Dosary MA, Ahmad R, Ali M. Prediction of Phytochemicals for Their Potential to Inhibit New Delhi Metallo β-Lactamase (NDM-1). Pharmaceuticals (Basel) 2023; 16:1404. [PMID: 37895875 PMCID: PMC10610165 DOI: 10.3390/ph16101404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
The effectiveness of all antibiotics in the β-lactam group to cure bacterial infections has been impaired by the introduction of the New Delhi Metallo-β-lactamase (NDM-1) enzyme. Attempts have been made to discover a potent chemical as an inhibitor to this enzyme in order to restore the efficacy of antibiotics. However, it has been a challenging task to develop broad-spectrum inhibitors of metallo-β-lactamases. Lack of sequence homology across metallo-β-lactamases (MBLs), the rapidly evolving active site of the enzyme, and structural similarities between human enzymes and metallo-β-lactamases, are the primary causes for the difficulty in the development of these inhibitors. Therefore, it is imperative to concentrate on the discovery of an effective NDM-1 inhibitor. This study used various in silico approaches, including molecular docking and molecular dynamics simulations, to investigate the potential of phytochemicals to inhibit the NDM-1 enzyme. For this purpose, a library of about 59,000 phytochemicals was created from the literature and other databases, including FoodB, IMPPAT, and Phenol-Explorer. A physiochemical and pharmacokinetics analysis was performed to determine possible toxicity and mutagenicity of the ligands. Following the virtual screening, phytochemicals were assessed for their binding with NDM-1using docking scores, RMSD values, and other critical parameters. The docking score was determined by selecting the best conformation of the protein-ligand complex. Three phytochemicals, i.e., butein (polyphenol), monodemethylcurcumin (polyphenol), and rosmarinic acid (polyphenol) were identified as result of pharmacokinetics and molecular docking studies. Furthermore, molecular dynamics simulations were performed to determine structural stabilities of the protein-ligand complexes. Monodemethylcurcumin, butein, and rosmarinic acid were identified as potential inhibitors of NDM-1 based on their low RMSD, RMSF, hydrogen bond count, average Coulomb-Schrödinger interaction energy, and Lennard-Jones-Schrödinger interaction energy. The present investigation suggested that these phytochemicals might be promising candidates for future NDM-1 medication development to respond to antibiotic resistance.
Collapse
Affiliation(s)
- Zainab Bibi
- Department of Biotechnology, Abbottabad Campus, COMSATS University Islamabad, Abbottabad 22060, Pakistan (R.A.)
| | - Irfa Asghar
- Department of Biotechnology, Abbottabad Campus, COMSATS University Islamabad, Abbottabad 22060, Pakistan (R.A.)
| | - Naeem Mahmood Ashraf
- School of Biochemistry and Biotechnology, University of Punjab, Lahore P.O. Box 54590, Pakistan;
| | - Iftikhar Zeb
- Department of Biotechnology, Abbottabad Campus, COMSATS University Islamabad, Abbottabad 22060, Pakistan (R.A.)
| | - Umer Rashid
- Department of Chemistry, Abbottabad Campus, COMSATS University Islamabad, Abbottabad 22060, Pakistan;
| | - Arslan Hamid
- LIMES Institute, University of Bonn, D-53113 Bonn, Germany;
| | - Maria Kanwal Ali
- Institute of Nuclear Medicine, Oncology and Radiotherapy (INOR), Abbottabad 22060, Pakistan;
| | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.H.); (M.A.A.-D.)
| | - Munirah Abdullah Al-Dosary
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.H.); (M.A.A.-D.)
| | - Raza Ahmad
- Department of Biotechnology, Abbottabad Campus, COMSATS University Islamabad, Abbottabad 22060, Pakistan (R.A.)
| | - Muhammad Ali
- Department of Biotechnology, Abbottabad Campus, COMSATS University Islamabad, Abbottabad 22060, Pakistan (R.A.)
| |
Collapse
|
2
|
Seo H, Kohlbrand AJ, Stokes RW, Chung J, Cohen SM. Masking thiol reactivity with thioamide, thiourea, and thiocarbamate-based MBPs. Chem Commun (Camb) 2023; 59:2283-2286. [PMID: 36735025 PMCID: PMC10008514 DOI: 10.1039/d2cc06596g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Thioamides, thioureas, and thiocarbamates are introduced as stable, sulfur-based metal-binding pharmacophores (MBPs) for use in metalloenzyme fragment-based drug discovery (mFBDD). MBP reactivity, bioactivity, and structural studies show that these molecules can act as ligands for Zn(II)-dependent metalloenzymes including human carbonic anhydrase II (hCAII) and matrix metalloproteinase-2 (MMP-2).
Collapse
Affiliation(s)
- Hyeonglim Seo
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Alysia J Kohlbrand
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Ryjul W Stokes
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Jeewon Chung
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Seth M Cohen
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
3
|
Legru A, Verdirosa F, Vo-Hoang Y, Tassone G, Vascon F, Thomas CA, Sannio F, Corsica G, Benvenuti M, Feller G, Coulon R, Marcoccia F, Devente SR, Bouajila E, Piveteau C, Leroux F, Deprez-Poulain R, Deprez B, Licznar-Fajardo P, Crowder MW, Cendron L, Pozzi C, Mangani S, Docquier JD, Hernandez JF, Gavara L. Optimization of 1,2,4-Triazole-3-thiones toward Broad-Spectrum Metallo-β-lactamase Inhibitors Showing Potent Synergistic Activity on VIM- and NDM-1-Producing Clinical Isolates. J Med Chem 2022; 65:16392-16419. [PMID: 36450011 DOI: 10.1021/acs.jmedchem.2c01257] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Metallo-β-lactamases (MBLs) contribute to the resistance of Gram-negative bacteria to carbapenems, last-resort antibiotics at hospital, and MBL inhibitors are urgently needed to preserve these important antibacterial drugs. Here, we describe a series of 1,2,4-triazole-3-thione-based inhibitors displaying an α-amino acid substituent, which amine was mono- or disubstituted by (hetero)aryl groups. Compounds disubstituted by certain nitrogen-containing heterocycles showed submicromolar activities against VIM-type enzymes and strong NDM-1 inhibition (Ki = 10-30 nM). Equilibrium dialysis, native mass spectrometry, isothermal calorimetry (ITC), and X-ray crystallography showed that the compounds inhibited both VIM-2 and NDM-1 at least partially by stripping the catalytic zinc ions. These inhibitors also displayed a very potent synergistic activity with meropenem (16- to 1000-fold minimum inhibitory concentration (MIC) reduction) against VIM-type- and NDM-1-producing ultraresistant clinical isolates, including Enterobacterales and Pseudomonas aeruginosa. Furthermore, selected compounds exhibited no or moderate toxicity toward HeLa cells, favorable absorption, distribution, metabolism, excretion (ADME) properties, and no or modest inhibition of several mammalian metalloenzymes.
Collapse
Affiliation(s)
- Alice Legru
- IBMM, CNRS, Univ Montpellier, ENSCM, 34000 Montpellier, France
| | - Federica Verdirosa
- Dipartimento di Biotecnologie Mediche, Università di Siena, 53100 Siena, Italy
| | - Yen Vo-Hoang
- IBMM, CNRS, Univ Montpellier, ENSCM, 34000 Montpellier, France
| | - Giusy Tassone
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, 53100 Siena, Italy
| | - Filippo Vascon
- Laboratory of Structural Biology, Department of Biology, University of Padua, 35121 Padova, Italy
| | - Caitlyn A Thomas
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Filomena Sannio
- Dipartimento di Biotecnologie Mediche, Università di Siena, 53100 Siena, Italy
| | - Giuseppina Corsica
- Dipartimento di Biotecnologie Mediche, Università di Siena, 53100 Siena, Italy
| | - Manuela Benvenuti
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, 53100 Siena, Italy
| | - Georges Feller
- Laboratoire de Biochimie, Centre d'Ingénierie des Protéines-InBioS, Université de Liège, Allée du 6 août B6, Sart-Tilman, B-4000 Liège, Belgium
| | - Rémi Coulon
- IBMM, CNRS, Univ Montpellier, ENSCM, 34000 Montpellier, France
| | - Francesca Marcoccia
- Dipartimento di Biotecnologie Mediche, Università di Siena, 53100 Siena, Italy
| | | | | | - Catherine Piveteau
- Drugs and Molecules for Living System, U1177, Inserm, Université de Lille, Faculté de Pharmacie, 59006 Lille, France
| | - Florence Leroux
- Drugs and Molecules for Living System, U1177, Inserm, Université de Lille, Faculté de Pharmacie, 59006 Lille, France
| | - Rebecca Deprez-Poulain
- Drugs and Molecules for Living System, U1177, Inserm, Université de Lille, Faculté de Pharmacie, 59006 Lille, France
| | - Benoît Deprez
- Drugs and Molecules for Living System, U1177, Inserm, Université de Lille, Faculté de Pharmacie, 59006 Lille, France
| | - Patricia Licznar-Fajardo
- HydroSciences Montpellier, UMR5151, Univ Montpellier, CNRS, IRD, CHU Montpellier, 34000 Montpellier, France
| | - Michael W Crowder
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Laura Cendron
- Laboratory of Structural Biology, Department of Biology, University of Padua, 35121 Padova, Italy
| | - Cecilia Pozzi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, 53100 Siena, Italy
| | - Stefano Mangani
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, 53100 Siena, Italy
| | - Jean-Denis Docquier
- Dipartimento di Biotecnologie Mediche, Università di Siena, 53100 Siena, Italy.,Centre d'Ingénierie des Protéines-InBioS, Université de Liège, B-4000 Liège, Belgium
| | | | - Laurent Gavara
- IBMM, CNRS, Univ Montpellier, ENSCM, 34000 Montpellier, France
| |
Collapse
|
4
|
IWATA SHU, TADA TATSUYA, OSHIRO SATOSHI, HISHINUMA TOMOMI, TOHYA MARI, KIRIKAE TERUO. Emergence of Carbapenem-resistant Clinical Isolates of Providencia Species. JUNTENDO IJI ZASSHI = JUNTENDO MEDICAL JOURNAL 2022; 68:200-207. [PMID: 39021729 PMCID: PMC11250026 DOI: 10.14789/jmj.jmj21-0057-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 01/28/2022] [Indexed: 07/20/2024]
Abstract
Providencia is a genus of Gram-negative and non-spore forming bacteria belonging to the family Morganellaceae, which causes opportunistic infections in humans. Of the 10 Providencia species identified to date, three, P. alcalifaciens, P. rettgeri and P. stuartii, are clinically important. P. alcalifaciens causes diarrhea, including outbreaks arising from food-borne infections, and P. stuartii and P. rettgeri have been found to cause hospital acquired urinary tract infections. Four isolates of P. rettgeri and one isolate of P. stuartii were obtained from urine samples of five patients in Japan in 2018. All five isolates were highly resistant to carbapenems. Three isolates harbored bla IMP-70, encoding a variant of IMP-1 metallo-β-lactamase, with two amino acid substitutions (Val67Phe and Phe87Val), one isolate harbored two copies of bla IMP-1 and one isolate harbored bla IMP-11. Expression of bla IMP-70 conferred carbapenem resistance in Escherichia coli. Recombinant IMP-10, an IMP-1 variant with Val67Phe but without Phe87Val, had significant higher hydrolytic activities against meropenem than recombinant IMP-1, indicating that the Val67Phe amino acid substitution alters activities against meropenem in IMP-70. These results suggest that Providencia species. become more highly resistant to carbapenems by acquisition of two copies of bla IMP-1 or by mutations in bla IMP that result in amino acid substitutions, such as bla IMP-70.
Collapse
Affiliation(s)
| | | | | | | | | | - TERUO KIRIKAE
- Corresponding author: Teruo Kirikae, Department of Microbiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan, TEL: +81-3-5802-1041 FAX: +81-3-5684-7830 E-mail: , Research of the 5th Alumni Scientific Award for Medical Student, Juntendo University School of Medicine
| |
Collapse
|
5
|
Lucic A, Malla TR, Calvopiña K, Tooke CL, Brem J, McDonough MA, Spencer J, Schofield CJ. Studies on the Reactions of Biapenem with VIM Metallo β-Lactamases and the Serine β-Lactamase KPC-2. Antibiotics (Basel) 2022; 11:396. [PMID: 35326858 PMCID: PMC8944426 DOI: 10.3390/antibiotics11030396] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
Carbapenems are important antibacterials and are both substrates and inhibitors of some β-lactamases. We report studies on the reaction of the unusual carbapenem biapenem, with the subclass B1 metallo-β-lactamases VIM-1 and VIM-2 and the class A serine-β-lactamase KPC-2. X-ray diffraction studies with VIM-2 crystals treated with biapenem reveal the opening of the β-lactam ring to form a mixture of the (2S)-imine and enamine complexed at the active site. NMR studies on the reactions of biapenem with VIM-1, VIM-2, and KPC-2 reveal the formation of hydrolysed enamine and (2R)- and (2S)-imine products. The combined results support the proposal that SBL/MBL-mediated carbapenem hydrolysis results in a mixture of tautomerizing enamine and (2R)- and (2S)-imine products, with the thermodynamically favoured (2S)-imine being the major observed species over a relatively long-time scale. The results suggest that prolonging the lifetimes of β-lactamase carbapenem complexes by optimising tautomerisation of the nascently formed enamine to the (2R)-imine and likely more stable (2S)-imine tautomer is of interest in developing improved carbapenems.
Collapse
Affiliation(s)
- Anka Lucic
- Chemistry Research Laboratory, The Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford OX1 3TA, UK; (A.L.); (T.R.M.); (K.C.); (J.B.); (M.A.M.)
| | - Tika R. Malla
- Chemistry Research Laboratory, The Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford OX1 3TA, UK; (A.L.); (T.R.M.); (K.C.); (J.B.); (M.A.M.)
| | - Karina Calvopiña
- Chemistry Research Laboratory, The Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford OX1 3TA, UK; (A.L.); (T.R.M.); (K.C.); (J.B.); (M.A.M.)
| | - Catherine L. Tooke
- Biomedical Sciences Building, School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK; (C.L.T.); (J.S.)
| | - Jürgen Brem
- Chemistry Research Laboratory, The Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford OX1 3TA, UK; (A.L.); (T.R.M.); (K.C.); (J.B.); (M.A.M.)
| | - Michael A. McDonough
- Chemistry Research Laboratory, The Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford OX1 3TA, UK; (A.L.); (T.R.M.); (K.C.); (J.B.); (M.A.M.)
| | - James Spencer
- Biomedical Sciences Building, School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK; (C.L.T.); (J.S.)
| | - Christopher J. Schofield
- Chemistry Research Laboratory, The Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford OX1 3TA, UK; (A.L.); (T.R.M.); (K.C.); (J.B.); (M.A.M.)
| |
Collapse
|
6
|
Detection and characterization of VIM-52, a new variant of VIM-1 from Klebsiella pneumoniae clinical isolate. Antimicrob Agents Chemother 2021; 65:e0266020. [PMID: 34370584 DOI: 10.1128/aac.02660-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Over the last two decades, antimicrobial resistance has become a global health problem. In Gram-negative bacteria, metallo-β-lactamases (MBLs), which inactivate virtually all β-lactams, increasingly contribute to this phenomenon. The aim of this study is to characterize VIM-52, a His224Arg variant of VIM-1, identified in a Klebsiella pneumoniae clinical isolate. VIM-52 conferred lower MICs to cefepime and ceftazidime as compared to VIM-1. These results were confirmed by steady state kinetic measurements, where VIM-52 yielded a lower activity towards ceftazidime and cefepime but not against carbapenems. Residue 224 is part of the L10 loop (residues 221-241), which borders the active site. As Arg 224 and Ser 228 are both playing an important and interrelated role in enzymatic activity, stability and substrate specificity for the MBLs, targeted mutagenesis at both positions were performed and further confirmed their crucial role for substrate specificity.
Collapse
|
7
|
Yamaguchi Y, Kato K, Ichimaru Y, Jin W, Sakai M, Abe M, Wachino JI, Arakawa Y, Miyagi Y, Imai M, Fukuishi N, Yamagata Y, Otsuka M, Fujita M, Kurosaki H. Crystal Structures of Metallo-β-Lactamase (IMP-1) and Its D120E Mutant in Complexes with Citrate and the Inhibitory Effect of the Benzyl Group in Citrate Monobenzyl Ester. J Med Chem 2021; 64:10019-10026. [PMID: 34242022 DOI: 10.1021/acs.jmedchem.1c00308] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The emergence and rapid spread of carbapenem-resistant pathogens producing metallo-β-lactamases such as IMP-1 and NDM-1 have been of great concern in the global clinical setting. The X-ray crystal structures of IMP-1 from Serratia marcescens and its single mutant, D120E, in complexes with citrate were determined at resolutions of 2.00 and 1.85 Å, respectively. Two crystal structures indicate that a single mutation at position 120 caused a structural change around Zn1, where the geometry changes from a tetrahedron in the native IMP-1 to a square pyramid in D120E. Based on these two complex structures, the authors synthesized citrate monobenzyl ester 1 to evaluate the structural requirement for the inhibitory activity against IMP-1 and compared the inhibitory activities with nonsubstituted citrate. The introduction of a benzyl group into citrate enhanced the inhibitory activity in comparison to citrate (IC50 > 5 mM).
Collapse
Affiliation(s)
- Yoshihiro Yamaguchi
- Environmental Safety Center, Kumamoto University, 39-1 Kurokami 2-Chome, Chuo-ku, Kumamoto 860-8555, Japan
| | - Koichi Kato
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya, Aichi 463-8521, Japan.,Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi 468-8503, Japan
| | - Yoshimi Ichimaru
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya, Aichi 463-8521, Japan
| | - Wanchun Jin
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya, Aichi 463-8521, Japan
| | - Misa Sakai
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya, Aichi 463-8521, Japan
| | - Miki Abe
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Jun-Ichi Wachino
- Department of Bacteriology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Yoshichika Arakawa
- Department of Bacteriology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Yukina Miyagi
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya, Aichi 463-8521, Japan
| | - Masanori Imai
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya, Aichi 463-8521, Japan
| | - Nobuyuki Fukuishi
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya, Aichi 463-8521, Japan
| | - Yuriko Yamagata
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.,Department of Drug Discovery, Science Farm Ltd., 1-7-30 Kuhonji, Chuo-ku, Kumamoto 862-0976, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hiromasa Kurosaki
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya, Aichi 463-8521, Japan
| |
Collapse
|
8
|
Emergence of Carbapenem-Resistant Providencia rettgeri and Providencia stuartii Producing IMP-Type Metallo-β-Lactamase in Japan. Antimicrob Agents Chemother 2020; 64:AAC.00382-20. [PMID: 32816727 PMCID: PMC7577129 DOI: 10.1128/aac.00382-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 08/08/2020] [Indexed: 12/31/2022] Open
Abstract
Four Providencia rettgeri isolates and one Providencia stuartii isolate were obtained from urine samples of five patients in 2018 in Japan. All of the isolates were resistant to imipenem and meropenem, and three were highly resistant to both carbapenems, with MICs of 512 μg/ml. The three highly carbapenem-resistant isolates harbored blaIMP-70, encoding a variant of IMP-1 metallo-β-lactamase with two amino acid substitutions (Val67Phe and Phe87Val), and the other two harbored blaIMP-1 and blaIMP-11, respectively. Whole-genome sequencing revealed that an isolate harbored two copies of blaIMP-1 on the chromosome and that the other four harbored a copy of blaIMP-11 or blaIMP-70 in a plasmid. Expression of blaIMP-70 conferred carbapenem resistance in Escherichia coli Recombinant IMP-70 and an IMP-1 variant with Val67Phe but without Phe87Val had significant higher hydrolytic activities against meropenem than recombinant IMP-1, indicating that an amino acid substitution of Val67Phe affects increased activities against meropenem in IMP-70. These results suggest that Providencia spp. become more highly resistant to carbapenems by acquisition of two copies of blaIMP-1 or by mutation of blaIMP genes with amino acid substitutions, such as blaIMP-70.
Collapse
|
9
|
Structural studies of triazole inhibitors with promising inhibitor effects against antibiotic resistance metallo-β-lactamases. Bioorg Med Chem 2020; 28:115598. [PMID: 32631568 DOI: 10.1016/j.bmc.2020.115598] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/26/2020] [Accepted: 06/09/2020] [Indexed: 11/23/2022]
Abstract
Metallo-β-lactamases (MBLs) are an emerging cause of bacterial antibiotic resistance by hydrolysing all classes of β-lactams except monobactams, and the MBLs are not inhibited by clinically available serine-β-lactamase inhibitors. Two of the most commonly encountered MBLs in clinical isolates worldwide - the New Delhi metallo-β-lactamase (NDM-1) and the Verona integron-encoded metallo-β-lactamase (VIM-2) - are included in this study. A series of several NH-1,2,3-triazoles was prepared by a three-step protocol utilizing Banert cascade reaction as the key step. The inhibitor properties were evaluated in biochemical assays against the MBLs VIM-2, NDM-1 and GIM-1, and VIM-2 showed IC50 values down to nanomolar range. High-resolution crystal structures of four inhibitors in complex with VIM-2 revealed hydrogen bonds from the triazole inhibitors to Arg228 and to the backbone of Ala231 or Asn233, along with hydrophobic interactions to Trp87, Phe61 and Tyr67. The inhibitors show reduced MIC in synergy assays with Pseudomonas aeruginosa and Escherichia coli strains harbouring VIM enzymes. The obtained results will be useful for further structural guided design of MBL inhibitors.
Collapse
|
10
|
Yan Y, Li G, Li G. Principles and current strategies targeting metallo‐β‐lactamase mediated antibacterial resistance. Med Res Rev 2020; 40:1558-1592. [PMID: 32100311 DOI: 10.1002/med.21665] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/18/2019] [Accepted: 02/11/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Yu‐Hang Yan
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of PharmacySichuan UniversityChengdu Sichuan China
| | - Gen Li
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of PharmacySichuan UniversityChengdu Sichuan China
| | - Guo‐Bo Li
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of PharmacySichuan UniversityChengdu Sichuan China
| |
Collapse
|
11
|
Hishinuma T, Tada T, Uchida H, Shimojima M, Kirikae T. A Novel VIM-Type Metallo-β-Lactamase Variant, VIM-60, with Increased Hydrolyzing Activity against Fourth-Generation Cephalosporins in Pseudomonas aeruginosa Clinical Isolates in Japan. Antimicrob Agents Chemother 2019; 63:e00124-19. [PMID: 30962328 PMCID: PMC6535569 DOI: 10.1128/aac.00124-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 03/23/2019] [Indexed: 11/20/2022] Open
Abstract
A novel VIM-type metallo-β-lactamase variant, VIM-60, was identified in multidrug-resistant Pseudomonas aeruginosa clinical isolates in Japan. Compared with VIM-2, VIM-60 had two amino acid substitutions (Arg228Leu and His252Arg) and higher catalytic activities against fourth-generation cephalosporins. The genetic context for blaVIM-60 was intI1-blaVIM-60-aadA1-aacA31-qacEdeltaI-sulI on the chromosome.
Collapse
Affiliation(s)
- Tomomi Hishinuma
- Department of Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tatsuya Tada
- Department of Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiroki Uchida
- Department of Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | | | - Teruo Kirikae
- Department of Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Kaushik A, Kaushik M, Lather V, Dua J. Recent Review on Subclass B1 Metallo-β-lactamases Inhibitors: Sword for Antimicrobial Resistance. Curr Drug Targets 2019; 20:756-762. [DOI: 10.2174/1389450120666181217101812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/03/2018] [Accepted: 12/11/2018] [Indexed: 01/17/2023]
Abstract
An emerging crisis of antibiotic resistance for microbial pathogens is alarming all the nations,
posing a global threat to human health. The production of the metallo-β-lactamase enzyme is the
most powerful strategy of bacteria to produce resistance. An efficient way to combat this global health
threat is the development of broad/non-specific type of metallo-β-lactamase inhibitors, which can inhibit
the different isoforms of the enzyme. Till date, there are no clinically active drugs against metallo-
β-lactamase. The lack of efficient drug molecules against MBLs carrying bacteria requires continuous
research efforts to overcome the problem of multidrug-resistance bacteria. The present review will
discuss the clinically potent molecules against different variants of B1 metallo-β-lactamase.
Collapse
Affiliation(s)
| | | | - Viney Lather
- Amity institute of Pharmacy, Amity University, Noida, India
| | - J.S. Dua
- School of Pharmacy, MMU, Sadopur, Ambala, India
| |
Collapse
|
13
|
Chen AY, Adamek RN, Dick BL, Credille CV, Morrison CN, Cohen SM. Targeting Metalloenzymes for Therapeutic Intervention. Chem Rev 2019; 119:1323-1455. [PMID: 30192523 PMCID: PMC6405328 DOI: 10.1021/acs.chemrev.8b00201] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metalloenzymes are central to a wide range of essential biological activities, including nucleic acid modification, protein degradation, and many others. The role of metalloenzymes in these processes also makes them central for the progression of many diseases and, as such, makes metalloenzymes attractive targets for therapeutic intervention. Increasing awareness of the role metalloenzymes play in disease and their importance as a class of targets has amplified interest in the development of new strategies to develop inhibitors and ultimately useful drugs. In this Review, we provide a broad overview of several drug discovery efforts focused on metalloenzymes and attempt to map out the current landscape of high-value metalloenzyme targets.
Collapse
Affiliation(s)
- Allie Y Chen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Rebecca N Adamek
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Benjamin L Dick
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Cy V Credille
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Christine N Morrison
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Seth M Cohen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| |
Collapse
|
14
|
Salimraj R, Hinchliffe P, Kosmopoulou M, Tyrrell JM, Brem J, van Berkel SS, Verma A, Owens RJ, McDonough MA, Walsh TR, Schofield CJ, Spencer J. Crystal structures of VIM-1 complexes explain active site heterogeneity in VIM-class metallo-β-lactamases. FEBS J 2019; 286:169-183. [PMID: 30430727 PMCID: PMC6326847 DOI: 10.1111/febs.14695] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/06/2018] [Accepted: 11/02/2018] [Indexed: 12/12/2022]
Abstract
Metallo-β-Lactamases (MBLs) protect bacteria from almost all β-lactam antibiotics. Verona integron-encoded MBL (VIM) enzymes are among the most clinically important MBLs, with VIM-1 increasing in carbapenem-resistant Enterobacteriaceae (Escherichia coli, Klebsiella pneumoniae) that are among the hardest bacterial pathogens to treat. VIM enzymes display sequence variation at residues (224 and 228) that in related MBLs are conserved and participate in substrate binding. How they accommodate this variability, while retaining catalytic efficiency against a broad substrate range, has remained unclear. Here, we present crystal structures of VIM-1 and its complexes with a substrate-mimicking thioenolate inhibitor, ML302F, that restores meropenem activity against a range of VIM-1 producing clinical strains, and the hydrolysed product of the carbapenem meropenem. Comparison of these two structures identifies a water-mediated hydrogen bond, between the carboxylate group of substrate/inhibitor and the backbone carbonyl of the active site zinc ligand Cys221, that is common to both complexes. Structural comparisons show that the responsible Cys221-bound water is observed in all known VIM structures, participates in carboxylate binding with other inhibitor classes, and thus effectively replicates the role of the conserved Lys224 in analogous complexes with other MBLs. These results provide a mechanism for substrate binding that permits the variation at positions 224 and 228 that is a hallmark of VIM MBLs. ENZYMES: EC 3.5.2.6 DATABASES: Co-ordinates and structure factors for protein structures described in this manuscript have been deposited in the Protein Data Bank (www.rcsb.org/pdb) with accession codes 5N5G (VIM-1), 5N5H (VIM-1:ML302F complex) and 5N5I (VIM-1-hydrolysed meropenem complex).
Collapse
Affiliation(s)
- Ramya Salimraj
- School of Cellular and Molecular MedicineUniversity of BristolUK
| | | | | | | | - Jürgen Brem
- Department of ChemistryUniversity of OxfordUK
| | | | - Anil Verma
- Oxford Protein Production Facility UKRutherford Appleton LaboratoryOxfordshireUK
| | - Raymond J. Owens
- Oxford Protein Production Facility UKRutherford Appleton LaboratoryOxfordshireUK
| | | | | | | | - James Spencer
- School of Cellular and Molecular MedicineUniversity of BristolUK
| |
Collapse
|
15
|
Kang JS, Zhang AL, Faheem M, Zhang CJ, Ai N, Buynak JD, Welsh WJ, Oelschlaeger P. Virtual Screening and Experimental Testing of B1 Metallo-β-lactamase Inhibitors. J Chem Inf Model 2018; 58:1902-1914. [PMID: 30107123 DOI: 10.1021/acs.jcim.8b00133] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The global rise of metallo-β-lactamases (MBLs) is problematic due to their ability to inactivate most β-lactam antibiotics. MBL inhibitors that could be coadministered with and restore the efficacy of β-lactams are highly sought after. In this study, we employ virtual screening of candidate MBL inhibitors without thiols or carboxylates to avoid off-target effects using the Avalanche software package, followed by experimental validation of the selected compounds. As target enzymes, we chose the clinically relevant B1 MBLs NDM-1, IMP-1, and VIM-2. Among 32 compounds selected from an approximately 1.5 million compound library, 6 exhibited IC50 values less than 40 μM against NDM-1 and/or IMP-1. The most potent inhibitors of NDM-1, IMP-1, and VIM-2 had IC50 values of 19 ± 2, 14 ± 1, and 50 ± 20 μM, respectively. While chemically diverse, the most potent inhibitors all contain combinations of hydroxyl, ketone, ester, amide, or sulfonyl groups. Docking studies suggest that these electron-dense moieties are involved in Zn(II) coordination and interaction with protein residues. These novel scaffolds could serve as the basis for further development of MBL inhibitors. A procedure for renaming NDM-1 residues to conform to the class B β-lactamase (BBL) numbering scheme is also included.
Collapse
Affiliation(s)
- Joon S Kang
- Department of Pharmaceutical Sciences, College of Pharmacy , Western University of Health Sciences , Pomona , California 91766-1854 , United States.,Department of Biological Sciences , California State Polytechnic University , Pomona , California 91768-2557 , United States
| | - Antonia L Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy , Western University of Health Sciences , Pomona , California 91766-1854 , United States
| | - Mohammad Faheem
- Department of Pharmaceutical Sciences, College of Pharmacy , Western University of Health Sciences , Pomona , California 91766-1854 , United States
| | - Charles J Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy , Western University of Health Sciences , Pomona , California 91766-1854 , United States
| | - Ni Ai
- Pharmaceutical Informatics Institute, School of Pharmaceutical Sciences , Zhejiang University , Zhejiang 31005 , People's Republic of China
| | - John D Buynak
- Department of Chemistry , Southern Methodist University , Dallas , Texas 75275-0314 , United States
| | - William J Welsh
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, and Division of Chem Informatics, Biomedical Informatics Shared Resource, Rutgers-Cancer Institute of New Jersey , The State University of New Jersey , Piscataway , New Jersey 08854-8021 , United States
| | - Peter Oelschlaeger
- Department of Pharmaceutical Sciences, College of Pharmacy , Western University of Health Sciences , Pomona , California 91766-1854 , United States
| |
Collapse
|
16
|
Functional Profiling and Crystal Structures of Isothiocyanate Hydrolases Found in Gut-Associated and Plant-Pathogenic Bacteria. Appl Environ Microbiol 2018; 84:AEM.00478-18. [PMID: 29752272 DOI: 10.1128/aem.00478-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/05/2018] [Indexed: 02/06/2023] Open
Abstract
Isothiocyanates (ITCs) are produced by cruciferous plants to protect them against herbivores and infection by microbes. These compounds are of particular interest due to their antimicrobial and anticarcinogenic properties. The breakdown of ITCs in nature is catalyzed by isothiocyanate hydrolases (ITCases), a novel family within the metallo-β-lactamase (MBL)-fold superfamily of proteins. saxA genes that code for ITCases are particularly widespread in insect- and plant-associated bacteria. Enzymatic characterization of seven phylogenetically related but distinct ITCases revealed similar activities on six selected ITCs, suggesting that phylogenetic diversity does not determine the substrate specificity of ITCases. X-ray crystallography studies of two ITCases sharing 42% amino acid sequence identity revealed a highly conserved tertiary structure. Notable features of ITCases include a hydrophobic active site with two Zn2+ ions coordinating water/hydroxide and a flexible cap that is implicated in substrate recognition and covers the active site. This report reveals the function and structure of the previously uncharacterized family of isothiocyanate hydrolases within the otherwise relatively well-studied superfamily of metallo-β-lactamases.IMPORTANCE This study explores a newly discovered protein in the β-lactamase superfamily, namely, SaxA, or isothiocyanate hydrolase. Isothiocyanates are defensive compounds found in many cabbage-related crop plants and are currently being investigated for their antimicrobial and anticarcinogenic properties. We show that isothiocyanate hydrolases are responsible for the breakdown of several of these plant defensive chemicals in vitro and suggest their potential for mitigating the beneficial effects of isothiocyanates in crop protection and cancer prevention.
Collapse
|
17
|
Hinchliffe P, Tanner CA, Krismanich AP, Labbé G, Goodfellow VJ, Marrone L, Desoky AY, Calvopiña K, Whittle EE, Zeng F, Avison MB, Bols NC, Siemann S, Spencer J, Dmitrienko GI. Structural and Kinetic Studies of the Potent Inhibition of Metallo-β-lactamases by 6-Phosphonomethylpyridine-2-carboxylates. Biochemistry 2018; 57:1880-1892. [PMID: 29485857 PMCID: PMC6007964 DOI: 10.1021/acs.biochem.7b01299] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/15/2018] [Indexed: 01/05/2023]
Abstract
There are currently no clinically available inhibitors of metallo-β-lactamases (MBLs), enzymes that hydrolyze β-lactam antibiotics and confer resistance to Gram-negative bacteria. Here we present 6-phosphonomethylpyridine-2-carboxylates (PMPCs) as potent inhibitors of subclass B1 (IMP-1, VIM-2, and NDM-1) and B3 (L1) MBLs. Inhibition followed a competitive, slow-binding model without an isomerization step (IC50 values of 0.3-7.2 μM; Ki values of 0.03-1.5 μM). Minimum inhibitory concentration assays demonstrated potentiation of β-lactam (Meropenem) activity against MBL-producing bacteria, including clinical isolates, at concentrations at which eukaryotic cells remain viable. Crystal structures revealed unprecedented modes of binding of inhibitor to B1 (IMP-1) and B3 (L1) MBLs. In IMP-1, binding does not replace the nucleophilic hydroxide, and the PMPC carboxylate and pyridine nitrogen interact closely (2.3 and 2.7 Å, respectively) with the Zn2 ion of the binuclear metal site. The phosphonate group makes limited interactions but is 2.6 Å from the nucleophilic hydroxide. Furthermore, the presence of a water molecule interacting with the PMPC phosphonate and pyridine N-C2 π-bond, as well as the nucleophilic hydroxide, suggests that the PMPC binds to the MBL active site as its hydrate. Binding is markedly different in L1, with the phosphonate displacing both Zn2, forming a monozinc enzyme, and the nucleophilic hydroxide, while also making multiple interactions with the protein main chain and Zn1. The carboxylate and pyridine nitrogen interact with Ser221 and -223, respectively (3 Å distance). The potency, low toxicity, cellular activity, and amenability to further modification of PMPCs indicate these and similar phosphonate compounds can be further considered for future MBL inhibitor development.
Collapse
Affiliation(s)
- Philip Hinchliffe
- School
of Cellular & Molecular Medicine, University
of Bristol, Bristol BS8 1TD, U.K.
| | - Carol A. Tanner
- Department
of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | - Geneviève Labbé
- Department
of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | - Laura Marrone
- Department
of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Ahmed Y. Desoky
- Department
of Chemistry, College of Science, University
of Hail, Saudi Arabia
| | - Karina Calvopiña
- School
of Cellular & Molecular Medicine, University
of Bristol, Bristol BS8 1TD, U.K.
| | - Emily E. Whittle
- School
of Cellular & Molecular Medicine, University
of Bristol, Bristol BS8 1TD, U.K.
| | - Fanxing Zeng
- Department
of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Matthew B. Avison
- School
of Cellular & Molecular Medicine, University
of Bristol, Bristol BS8 1TD, U.K.
| | - Niels C. Bols
- Department
of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Stefan Siemann
- Department
of Chemistry and Biochemistry, Laurentian
University, Sudbury, Ontario, Canada P3E 2C6
| | - James Spencer
- School
of Cellular & Molecular Medicine, University
of Bristol, Bristol BS8 1TD, U.K.
| | - Gary I. Dmitrienko
- Department
of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- School
of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| |
Collapse
|
18
|
Büttner D, Kramer JS, Klingler FM, Wittmann SK, Hartmann MR, Kurz CG, Kohnhäuser D, Weizel L, Brüggerhoff A, Frank D, Steinhilber D, Wichelhaus TA, Pogoryelov D, Proschak E. Challenges in the Development of a Thiol-Based Broad-Spectrum Inhibitor for Metallo-β-Lactamases. ACS Infect Dis 2018; 4:360-372. [PMID: 29172434 DOI: 10.1021/acsinfecdis.7b00129] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Pathogens, expressing metallo-β-lactamases (MBLs), become resistant against most β-lactam antibiotics. Besides the dragging search for new antibiotics, development of MBL inhibitors would be an alternative weapon against resistant bacterial pathogens. Inhibition of resistance enzymes could restore the antibacterial activity of β-lactams. Various approaches to MBL inhibitors are described; among others, the promising motif of a zinc coordinating thiol moiety is very popular. Nevertheless, since the first report of a thiol-based MBL inhibitor (thiomandelic acid) in 2001, no steps in development of thiol based MBL inhibitors were reported that go beyond clinical isolate testing. In this study, we report on the synthesis and biochemical characterization of thiol-based MBL inhibitors and highlight the challenges behind the development of thiol-based compounds, which exhibit good in vitro activity toward a broad spectrum of MBLs, selectivity against human off-targets, and reasonable activity against clinical isolates.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Denia Frank
- Institute of Medical Microbiology and Infection Control, Goethe University Hospital, Paul-Ehrlich-Straße 40, 60596 Frankfurt, Germany
| | | | - Thomas A. Wichelhaus
- Institute of Medical Microbiology and Infection Control, Goethe University Hospital, Paul-Ehrlich-Straße 40, 60596 Frankfurt, Germany
| | | | | |
Collapse
|
19
|
Tehrani KHME, Martin NI. Thiol-Containing Metallo-β-Lactamase Inhibitors Resensitize Resistant Gram-Negative Bacteria to Meropenem. ACS Infect Dis 2017; 3:711-717. [PMID: 28820574 PMCID: PMC5644712 DOI: 10.1021/acsinfecdis.7b00094] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The prevalence of infections caused by metallo-β-lactamase (MBL) expressing Gram-negative bacteria has grown at an alarming rate in recent years. Despite the fact that MBLs can deactivate virtually all β-lactam antibiotics, there are as of yet no approved drugs available that inhibit their activity. We here examine the ability of previously reported thiol-based MBL inhibitors to synergize with meropenem and cefoperazone against a panel of Gram-negative carbapenem-resistant isolates expressing different β-lactamases. Among the compounds tested, thiomandelic acid 3 and 2-mercapto-3-phenylpropionic acid 4 were found to efficiently potentiate the activity of meropenem, especially against an imipenemase (IMP) producing strain of K. pneumoniae. In light of the zinc-dependent hydrolytic mechanism employed by MBLs, biophysical studies using isothermal titration calorimetry were also performed, revealing a correlation between the synergistic activity of thiols 3 and 4 and their zinc-binding ability with measured Kd values of 9.8 and 20.0 μM, respectively.
Collapse
Affiliation(s)
- Kamaleddin Haj Mohammad Ebrahim Tehrani
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Nathaniel I. Martin
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
20
|
Structural Insights into TMB-1 and the Role of Residues 119 and 228 in Substrate and Inhibitor Binding. Antimicrob Agents Chemother 2017; 61:AAC.02602-16. [PMID: 28559248 DOI: 10.1128/aac.02602-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 05/18/2017] [Indexed: 12/13/2022] Open
Abstract
Metallo-β-lactamases (MBLs) threaten the effectiveness of β-lactam antibiotics, including carbapenems, and are a concern for global public health. β-Lactam/β-lactamase inhibitor combinations active against class A and class D carbapenemases are used, but no clinically useful MBL inhibitor is currently available. Tripoli metallo-β-lactamase-1 (TMB-1) and TMB-2 are members of MBL subclass B1a, where TMB-2 is an S228P variant of TMB-1. The role of S228P was studied by comparisons of TMB-1 and TMB-2, and E119 was investigated through the construction of site-directed mutants of TMB-1, E119Q, E119S, and E119A (E119Q/S/A). All TMB variants were characterized through enzyme kinetic studies. Thermostability and crystallization analyses of TMB-1 were performed. Thiol-based inhibitors were investigated by determining the 50% inhibitory concentrations (IC50) and binding using surface plasmon resonance (SPR) for analysis of TMB-1. Thermostability measurements found TMB-1 to be stabilized by high NaCl concentrations. Steady-state enzyme kinetics analyses found substitutions of E119, in particular, substitutions associated with the penicillins, to affect hydrolysis to some extent. TMB-2 with S228P showed slightly reduced catalytic efficiency compared to TMB-1. The IC50 levels of the new thiol-based inhibitors were 0.66 μM (inhibitor 2a) and 0.62 μM (inhibitor 2b), and the equilibrium dissociation constant (KD ) of inhibitor 2a was 1.6 μM; thus, both were more potent inhibitors than l-captopril (IC50 = 47 μM; KD = 25 μM). The crystal structure of TMB-1 was resolved to 1.75 Å. Modeling of inhibitor 2b in the TMB-1 active site suggested that the presence of the W64 residue results in T-shaped π-π stacking and R224 cation-π interactions with the phenyl ring of the inhibitor. In sum, the results suggest that residues 119 and 228 affect the catalytic efficiency of TMB-1 and that inhibitors 2a and 2b are more potent inhibitors for TMB-1 than l-captopril.
Collapse
|
21
|
Li GB, Yu ZJ, Liu S, Huang LY, Yang LL, Lohans CT, Yang SY. IFPTarget: A Customized Virtual Target Identification Method Based on Protein–Ligand Interaction Fingerprinting Analyses. J Chem Inf Model 2017; 57:1640-1651. [PMID: 28661143 DOI: 10.1021/acs.jcim.7b00225] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Guo-Bo Li
- Key
Laboratory of Drug Targeting and Drug Delivery System of Ministry
of Education, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Zhu-Jun Yu
- Key
Laboratory of Drug Targeting and Drug Delivery System of Ministry
of Education, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Sha Liu
- Key
Laboratory of Drug Targeting and Drug Delivery System of Ministry
of Education, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Lu-Yi Huang
- Laboratory
of Biotherapy and Cancer Center, West China Hospital, West China Medical
School, Sichuan University, Sichuan 610041, China
| | - Ling-Ling Yang
- College
of Food and Bioengineering, Xihua University, Sichuan 610039, China
| | - Christopher T. Lohans
- Department
of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Sheng-Yong Yang
- Laboratory
of Biotherapy and Cancer Center, West China Hospital, West China Medical
School, Sichuan University, Sichuan 610041, China
| |
Collapse
|
22
|
Metallo-β-lactamase inhibitors by bioisosteric replacement: Preparation, activity and binding. Eur J Med Chem 2017; 135:159-173. [DOI: 10.1016/j.ejmech.2017.04.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/24/2017] [Accepted: 04/11/2017] [Indexed: 01/28/2023]
|
23
|
Gao K, Zhao Y. A Network of Conformational Transitions in the Apo Form of NDM-1 Enzyme Revealed by MD Simulation and a Markov State Model. J Phys Chem B 2017; 121:2952-2960. [PMID: 28319394 DOI: 10.1021/acs.jpcb.7b00062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
New Delhi metallo-β-lactamase-1 (NDM-1) is a novel β-lactamase enzyme that confers enteric bacteria with nearly complete resistance to all β-lactam antibiotics, so it raises a formidable and global threat to human health. However, the binding mechanism between apo-NDM-1 and antibiotics as well as related conformational changes remains poorly understood, which largely hinders the overcoming of its antibiotic resistance. In our study, long-time conventional molecular dynamics simulation and Markov state models were applied to reveal both the dynamical and conformational landscape of apo-NDM-1: the MD simulation demonstrates that loop L3, which is responsible for antibiotic binding, is the most flexible and undergoes dramatic conformational changes; moreover, the Markov state model built from the simulation maps four metastable states including open, semiopen, and closed conformations of loop L3 as well as frequent transitions between the states. Our findings propose a possible conformational selection model for the binding mechanism between apo-NDM-1 and antibiotics, which facilitates the design of novel inhibitors and antibiotics.
Collapse
Affiliation(s)
- Kaifu Gao
- Institute of Biophysics and Department of Physics, Central China Normal University , Wuhan 430079, P. R. China
| | - Yunjie Zhao
- Institute of Biophysics and Department of Physics, Central China Normal University , Wuhan 430079, P. R. China
| |
Collapse
|
24
|
Christopeit T, Yang KW, Yang SK, Leiros HKS. The structure of the metallo-β-lactamase VIM-2 in complex with a triazolylthioacetamide inhibitor. Acta Crystallogr F Struct Biol Commun 2016; 72:813-819. [PMID: 27834790 PMCID: PMC5101582 DOI: 10.1107/s2053230x16016113] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/11/2016] [Indexed: 11/10/2022] Open
Abstract
The increasing number of pathogens expressing metallo-β-lactamases (MBLs), and in this way achieving resistance to β-lactam antibiotics, is a significant threat to global public health. A promising strategy to treat such resistant pathogens is the co-administration of MBL inhibitors together with β-lactam antibiotics. However, an MBL inhibitor suitable for clinical use has not yet been identified. Verona integron-encoded metallo-β-lactamase 2 (VIM-2) is a widespread MBL with a broad substrate spectrum and hence is an interesting drug target for the treatment of β-lactam-resistant infections. In this study, three triazolylthioacetamides were tested as inhibitors of VIM-2. One of the tested compounds showed clear inhibition of VIM-2, with an IC50 of 20 µM. The crystal structure of the inhibitor in complex with VIM-2 was obtained by DMSO-free co-crystallization and was solved at a resolution of 1.50 Å. To our knowledge, this is the first structure of a triazolylthioacetamide inhibitor in complex with an MBL. Analysis of the structure shows that the inhibitor binds to the two zinc ions in the active site of VIM-2 and revealed detailed information on the interactions involved. Furthermore, the crystal structure showed that binding of the inhibitor induced a conformational change of the conserved residue Trp87.
Collapse
Affiliation(s)
- Tony Christopeit
- The Norwegian Structural Biology Centre (Norstruct), Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Ke-Wu Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, People’s Republic of China
| | - Shao-Kang Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, People’s Republic of China
| | - Hanna-Kirsti S. Leiros
- The Norwegian Structural Biology Centre (Norstruct), Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
25
|
Liu XL, Yang KW, Zhang YJ, Ge Y, Xiang Y, Chang YN, Oelschlaeger P. Optimization of amino acid thioesters as inhibitors of metallo-β-lactamase L1. Bioorg Med Chem Lett 2016; 26:4698-4701. [PMID: 27595424 DOI: 10.1016/j.bmcl.2016.08.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 08/11/2016] [Accepted: 08/18/2016] [Indexed: 10/21/2022]
Abstract
The emergence of antibiotic resistance caused by metallo-β-lactamases (MβLs) is a global public health problem. Recently, we found amino acid thioesters to be a highly promising scaffold for inhibitors of the MβL L1. In order to optimize this series of inhibitors, nine new amino acid thioesters were developed by modifying the substituents on the N-terminus of the thioesters and the groups representing the amino acid side chain. Biological activity assays indicate that all of them are very potent inhibitors of L1 with an IC50 value range of 20-600nM, lower than those of most of the previously reported inhibitors of this scaffold. Analysis of structure-activity relationship reveals that big hydrophobic substituents on the N-terminus and a methionine amino acid side chain improves inhibitory activity of the thioesters. All these inhibitors are able to restore antibacterial activity of a β-lactam antibiotic against Escherichia coli BL21(DE3) cells producing L1 to that against E. coli cells lacking a β-lactamase. Docking studies reveal that a large N-terminal hydrophobic group results in a slightly different binding mode than smaller hydrophobic groups at the same position.
Collapse
Affiliation(s)
- Xiao-Long Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Chemical Biology Innovation Lab, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Ke-Wu Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Chemical Biology Innovation Lab, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Yue-Juan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Chemical Biology Innovation Lab, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Ying Ge
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Chemical Biology Innovation Lab, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Yang Xiang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Chemical Biology Innovation Lab, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Ya-Nan Chang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Chemical Biology Innovation Lab, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Peter Oelschlaeger
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766, USA
| |
Collapse
|
26
|
Structural Insights into Recognition of Hydrolyzed Carbapenems and Inhibitors by Subclass B3 Metallo-β-Lactamase SMB-1. Antimicrob Agents Chemother 2016; 60:4274-82. [PMID: 27161644 DOI: 10.1128/aac.03108-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 04/27/2016] [Indexed: 11/20/2022] Open
Abstract
Metallo-β-lactamases (MBLs) confer resistance to carbapenems, and their increasing global prevalence is a growing clinical concern. To elucidate the mechanisms by which these enzymes recognize and hydrolyze carbapenems, we solved 1.4 to 1.6 Å crystal structures of SMB-1 (Serratia metallo-β-lactamase 1), a subclass B3 MBL, bound to hydrolyzed carbapenems (doripenem, meropenem, and imipenem). In these structures, SMB-1 interacts mainly with the carbapenem core structure via elements in the active site, including a zinc ion (Zn-2), Q157[113] (where the position in the SMB-1 sequence is in brackets after the BBL number), S221[175], and T223[177]. There is less contact with the carbapenem R2 side chains, strongly indicating that SMB-1 primarily recognizes the carbapenem core structure. This is the first report describing how a subclass B3 MBL recognizes carbapenems. We also solved the crystal structure of SMB-1 in complex with the approved drugs captopril, an inhibitor of the angiotensin-converting enzyme, and 2-mercaptoethanesulfonate, a chemoprotectant. These drugs are inhibitors of SMB-1 with Ki values of 8.9 and 184 μM, respectively. Like carbapenems, these inhibitors interact with Q157[113] and T223[177] and their thiol groups coordinate the zinc ions in the active site. Taken together, the data indicate that Q157[113], S221[175], T223[177], and the two zinc ions in the active site are key targets in the design of SMB-1 inhibitors with enhanced affinity. The structural data provide a solid foundation for the development of effective inhibitors that would overcome the carbapenem resistance of MBL-producing multidrug-resistant microbes.
Collapse
|
27
|
Yamaguchi Y. [Structure-Function Analysis and Development of Inhibitors of Metallo-β-lactamases Conferring Drug Resistance in Bacteria]. YAKUGAKU ZASSHI 2016; 135:1299-305. [PMID: 26521879 DOI: 10.1248/yakushi.15-00211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Metallo-β-lactamases (MBLs) are di-Zn(II) metalloenzymes that efficiently hydrolyze most β-lactam antibiotics used in clinical settings. Bacteria producing MBLs have been isolated from clinical settings and from natural environments such as rivers and soils, and are now recognized as a new potential threat to human health. No effective inhibitors are available for clinical use, making the treatment of infectious diseases caused by bacteria producing MBLs more difficult. IMP-1 is encoded on a plasmid which can be horizontally transferred between bacterial strains. Our studies on MBLs, and especially on IMP-1, focus on understanding the role of Zn(II) ion(s) in the hydrolysis of β-lactam antibiotics and on the detailed structure of the IMP-1 active site in order to develop efficient inhibitors. We investigated the role of the two Zn(II) ions in IMP-1 by kinetic, spectroscopic and thermodynamic analyses. The results revealed that the first Zn(II) ion is necessary for the hydrolysis of β-lactam antibiotics while the second Zn(II) ion enhances enzyme activity and structural stability, thus helping the enzyme achieve maximum activity. The detailed structures of the IMP-1 active site were examined by X-ray crystallography. Thiol compounds for irreversibly inhibiting IMP-1 were developed and the binding mode of these inhibitors was investigated in detail. These findings will aid the design of inhibitors that target MBLs.
Collapse
|
28
|
Brindisi M, Brogi S, Giovani S, Gemma S, Lamponi S, De Luca F, Novellino E, Campiani G, Docquier JD, Butini S. Targeting clinically-relevant metallo-β-lactamases: from high-throughput docking to broad-spectrum inhibitors. J Enzyme Inhib Med Chem 2016; 31:98-109. [DOI: 10.3109/14756366.2016.1172575] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Margherita Brindisi
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Siena, Italy,
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy,
| | - Simone Brogi
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Siena, Italy,
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy,
| | - Simone Giovani
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Siena, Italy,
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy,
| | - Sandra Gemma
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Siena, Italy,
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy,
| | - Stefania Lamponi
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Siena, Italy,
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy,
| | - Filomena De Luca
- Department of Medical Biotechnology, University of Siena, Siena, Italy, and
| | - Ettore Novellino
- Department of Pharmacy, University of Napoli Federico II, Napoli, Italy
| | - Giuseppe Campiani
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Siena, Italy,
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy,
| | | | - Stefania Butini
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Siena, Italy,
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy,
| |
Collapse
|
29
|
Meini MR, Llarrull LI, Vila AJ. Evolution of Metallo-β-lactamases: Trends Revealed by Natural Diversity and in vitro Evolution. Antibiotics (Basel) 2016; 3:285-316. [PMID: 25364574 PMCID: PMC4212336 DOI: 10.3390/antibiotics3030285] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The production of β-lactamase enzymes is one of the most distributed resistance mechanisms towards β-lactam antibiotics. Metallo-β-lactamases constitute a worrisome group of these kinds of enzymes, since they present a broad spectrum profile, being able to hydrolyze not only penicillins, but also the latest generation of cephalosporins and carbapenems, which constitute at present the last resource antibiotics. The VIM, IMP, and NDM enzymes comprise the main groups of clinically relevant metallo-β-lactamases. Here we present an update of the features of the natural variants that have emerged and of the ones that have been engineered in the laboratory, in an effort to find sequence and structural determinants of substrate preferences. This knowledge is of upmost importance in novel drug design efforts. We also discuss the advances in knowledge achieved by means of in vitro directed evolution experiments, and the potential of this approach to predict natural evolution of metallo-β-lactamases.
Collapse
Affiliation(s)
- María-Rocío Meini
- Authors to whom correspondence should be addressed; E-Mails: (M.-R.M.); (L.I.L.); (A.J.V.); Tel.: +54-341-423-7070 (ext. 611 M.-R.M.; 637 L.I.L.; 632 A.J.V.); Fax: 54-341-423-7070 (ext. 607)
| | - Leticia I. Llarrull
- Authors to whom correspondence should be addressed; E-Mails: (M.-R.M.); (L.I.L.); (A.J.V.); Tel.: +54-341-423-7070 (ext. 611 M.-R.M.; 637 L.I.L.; 632 A.J.V.); Fax: 54-341-423-7070 (ext. 607)
| | - Alejandro J. Vila
- Authors to whom correspondence should be addressed; E-Mails: (M.-R.M.); (L.I.L.); (A.J.V.); Tel.: +54-341-423-7070 (ext. 611 M.-R.M.; 637 L.I.L.; 632 A.J.V.); Fax: 54-341-423-7070 (ext. 607)
| |
Collapse
|
30
|
Yamaguchi Y, Matsueda S, Matsunaga K, Takashio N, Toma-Fukai S, Yamagata Y, Shibata N, Wachino JI, Shibayama K, Arakawa Y, Kurosaki H. Crystal structure of IMP-2 metallo-β-lactamase from Acinetobacter spp.: comparison of active-site loop structures between IMP-1 and IMP-2. Biol Pharm Bull 2015; 38:96-101. [PMID: 25744464 DOI: 10.1248/bpb.b14-00594] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
IMP-2, a subclass B1 metallo-β-lactamase (MBL), is a Zn(II)-containing hydrolase. This hydrolase, involved in antibiotic resistance, catalyzes the hydrolysis of the C-N bond of the β-lactam ring in β-lactam antibiotics such as benzylpenicillin and imipenem. The crystal structure of IMP-2 MBL from Acinetobacter spp. was determined at 2.3 Å resolution. This structure is analogous to that of subclass B1 MBLs such as IMP-1 and VIM-2. Comparison of the structures of IMP-1 and IMP-2, which have an 85% amino acid identity, suggests that the amino acid substitution at position 68 on a β-strand (β3) (Pro in IMP-1 versus Ser in IMP-2) may be a staple factor affecting the flexibility of loop 1 (comprising residues at positions 60-66; EVNGWGV). In the IMP-1 structure, loop 1 adopts an open, disordered conformation. On the other hand, loop 1 of IMP-2 forms a closed conformation in which the side chain of Trp64, involved in substrate binding, is oriented so as to cover the active site, even though there is an acetate ion in the active site of both IMP-1 and IMP-2. Loop 1 of IMP-2 has a more flexible structure in comparison to IMP-1 due to having a Ser residue instead of the Pro residue at position 68, indicating that this difference in sequence may be a trigger to induce a more flexible conformation in loop 1.
Collapse
|
31
|
Role of Residues W228 and Y233 in the Structure and Activity of Metallo-β-Lactamase GIM-1. Antimicrob Agents Chemother 2015; 60:990-1002. [PMID: 26643332 DOI: 10.1128/aac.02017-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/21/2015] [Indexed: 11/20/2022] Open
Abstract
Metallo-β-lactamases (MBLs) hydrolyze virtually all β-lactam antibiotics, including penicillins, cephalosporins, and carbapenems. The worldwide emergence of antibiotic-resistant bacteria harboring MBLs poses an increasing clinical threat. The MBL German imipenemase-1 (GIM-1) possesses an active site that is narrower and more hydrophobic than the active sites of other MBLs. The GIM-1 active-site groove is shaped by the presence of the aromatic side chains of tryptophan at residue 228 and tyrosine at residue 233, positions where other MBLs harbor hydrophilic residues. To investigate the importance of these two residues, eight site-directed mutants of GIM-1, W228R/A/Y/S and Y233N/A/I/S, were generated and characterized using enzyme kinetics, thermostability assays, and determination of the MICs of representative β-lactams. The structures of selected mutants were obtained by X-ray crystallography, and their interactions with β-lactam substrates were modeled in silico. Steady-state kinetics revealed that both positions are important to GIM-1 activity but that the effects of individual mutations vary depending on the β-lactam substrate. Activity against type 1 substrates bearing electron-donating C-3/C-4 substituents (cefoxitin, meropenem) could be enhanced by mutations at position 228, whereas hydrolysis of type 2 substrates (benzylpenicillin, ampicillin, ceftazidime, imipenem) with methyl or positively charged substituents was favored by mutations at position 233. The crystal structures showed that mutations at position 228 or the Y233A variant alters the conformation of GIM-1 loop L1 rather than that of loop L3, on which the mutations are located. Taken together, these data show that point mutations at both positions 228 and 233 can influence the catalytic properties and the structure of GIM-1.
Collapse
|
32
|
Probing metallo-β-lactamases with molecular fragments identified by consensus docking. Bioorg Med Chem Lett 2015; 25:5243-6. [DOI: 10.1016/j.bmcl.2015.09.056] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 09/18/2015] [Accepted: 09/23/2015] [Indexed: 11/23/2022]
|
33
|
Booth MPS, Kosmopoulou M, Poirel L, Nordmann P, Spencer J. Crystal Structure of DIM-1, an Acquired Subclass B1 Metallo-β-Lactamase from Pseudomonas stutzeri. PLoS One 2015; 10:e0140059. [PMID: 26451836 PMCID: PMC4599830 DOI: 10.1371/journal.pone.0140059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 09/20/2015] [Indexed: 11/18/2022] Open
Abstract
Metallo-β-lactamases (MBLs) hydrolyze almost all classes of β-lactam antibiotic, including carbapenems—currently first choice drugs for opportunistic infections by Gram-negative bacterial pathogens. MBL inhibitor development is complicated by the diversity within this group of enzymes, and by the appearance of new enzymes that continue to be identified both as chromosomal genes and on mobile genetic elements. One such newly discovered MBL is DIM-1, a mobile enzyme originally discovered in the opportunist pathogen Pseudomonas stutzeri but subsequently identified in other species and locations. DIM-1 is a subclass B1 MBL more closely related to the TMB-1, GIM-1 and IMP enzymes than to other clinically encountered MBLs such as VIM and NDM; and possesses Arg, rather than the more usual Lys, at position 224 in the putative substrate binding site. Here we report the crystallization and structure determination of DIM-1. DIM-1 possesses a binuclear metal center with a 5 (rather than the more usual 4) co-ordinate tri-histidine (Zn1) site and both 4- and 5-co-ordinate Cys-His-Asp- (Zn2) sites observed in the two molecules of the crystallographic asymmetric unit. These data indicate a degree of variability in metal co-ordination geometry in the DIM-1 active site, as well as facilitating inclusion of DIM-1 in structure-based MBL inhibitor discovery programmes.
Collapse
Affiliation(s)
- Michael P. S. Booth
- School of Cellular and Molecular Medicine, University of Bristol Medical Sciences Building, University Walk, Bristol, BS8 1TD, United Kingdom
| | - Magda Kosmopoulou
- School of Cellular and Molecular Medicine, University of Bristol Medical Sciences Building, University Walk, Bristol, BS8 1TD, United Kingdom
| | - Laurent Poirel
- Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science, University of Fribourg, Rue Albert Gockel 3, CH-1700, Fribourg, Switzerland
| | - Patrice Nordmann
- Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science, University of Fribourg, Rue Albert Gockel 3, CH-1700, Fribourg, Switzerland
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol Medical Sciences Building, University Walk, Bristol, BS8 1TD, United Kingdom
- * E-mail:
| |
Collapse
|
34
|
Elucidating the Role of Residue 67 in IMP-Type Metallo-β-Lactamase Evolution. Antimicrob Agents Chemother 2015; 59:7299-307. [PMID: 26369960 DOI: 10.1128/aac.01651-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/06/2015] [Indexed: 02/07/2023] Open
Abstract
Antibiotic resistance in bacteria is ever changing and adapting, as once-novel β-lactam antibiotics are losing their efficacy, primarily due to the production of β-lactamases. Metallo-β-lactamases (MBLs) efficiently inactivate a broad range of β-lactam antibiotics, including carbapenems, and are often coexpressed with other antibacterial resistance factors. The rapid dissemination of MBLs and lack of novel antibacterials pose an imminent threat to global health. In an effort to better counter these resistance-conferring β-lactamases, an investigation of their natural evolution and resulting substrate specificity was employed. In this study, we elucidated the effects of different amino acid substitutions at position 67 in IMP-type MBLs on the ability to hydrolyze and confer resistance to a range of β-lactam antibiotics. Wild-type β-lactamases IMP-1 and IMP-10 and mutants IMP-1-V67A and IMP-1-V67I were characterized biophysically and biochemically, and MICs for Escherichia coli cells expressing these enzymes were determined. We found that all variants exhibited catalytic efficiencies (kcat/Km) equal to or higher than that of IMP-1 against all tested β-lactams except penicillins, against which IMP-1 and IMP-1-V67I showed the highest kcat/Km values. The substrate-specific effects of the different amino acid substitutions at position 67 are discussed in light of their side chain structures and possible interactions with the substrates. Docking calculations were employed to investigate interactions between different side chains and an inhibitor used as a β-lactam surrogate. The differences in binding affinities determined experimentally and computationally seem to be governed by hydrophobic interactions between residue 67 and the inhibitor and, by inference, the β-lactam substrates.
Collapse
|
35
|
Xiao J, Fang M, Shi Y, Chen H, Shen B, Chen J, Lao X, Xu H, Zheng H. Identification and Validation Novel of VIM-2 Metallo-β-lactamase Tripeptide Inhibitors. Mol Inform 2015; 34:559-67. [DOI: 10.1002/minf.201400178] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 03/16/2015] [Indexed: 11/07/2022]
|
36
|
Mojica MF, Mahler SG, Bethel CR, Taracila MA, Kosmopoulou M, Papp-Wallace KM, Llarrull LI, Wilson BM, Marshall SH, Wallace CJ, Villegas MV, Harris ME, Vila AJ, Spencer J, Bonomo RA. Exploring the Role of Residue 228 in Substrate and Inhibitor Recognition by VIM Metallo-β-lactamases. Biochemistry 2015; 54:3183-96. [PMID: 25915520 DOI: 10.1021/acs.biochem.5b00106] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
β-Lactamase inhibitors (BLIs) restore the efficacy of otherwise obsolete β-lactams. However, commercially available BLIs are not effective against metallo-β-lactamases (MBLs), which continue to be disseminated globally. One group of the most clinically important MBLs is the VIM family. The discovery of VIM-24, a natural variant of VIM-2, possessing an R228L substitution and a novel phenotype, compelled us to explore the role of this position and its effects on substrate specificity. We employed mutagenesis, biochemical and biophysical assays, and crystallography. VIM-24 (R228L) confers enhanced resistance to cephems and increases the rate of turnover compared to that of VIM-2 (kcat/KM increased by 6- and 10-fold for ceftazidime and cefepime, respectively). Likely the R → L substitution relieves steric clashes and accommodates the C3N-methyl pyrrolidine group of cephems. Four novel bisthiazolidine (BTZ) inhibitors were next synthesized and tested against these MBLs. These inhibitors inactivated VIM-2 and VIM-24 equally well (Ki* values of 40-640 nM) through a two-step process in which an initial enzyme (E)-inhibitor (I) complex (EI) undergoes a conformational transition to a more stable species, E*I. As both VIM-2 and VIM-24 were inhibited in a similar manner, the crystal structure of a VIM-2-BTZ complex was determined at 1.25 Å and revealed interactions of the inhibitor thiol with the VIM Zn center. Most importantly, BTZs also restored the activity of imipenem against Klebsiella pneumoniae and Pseudomonas aeruginosa in whole cell assays producing VIM-24 and VIM-2, respectively. Our results suggest a role for position 228 in defining the substrate specificity of VIM MBLs and show that BTZ inhibitors are not affected by the R228L substitution.
Collapse
Affiliation(s)
- Maria F Mojica
- ∥Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| | - S Graciela Mahler
- ⊥Laboratorio de Química Farmacéutica, Universidad de la República, Montevideo, Uruguay
| | - Christopher R Bethel
- ∥Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| | - Magdalena A Taracila
- ∥Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| | - Magda Kosmopoulou
- @School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Krisztina M Papp-Wallace
- ∥Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| | - Leticia I Llarrull
- #Instituto de Biología Molecular y Celular de Rosario (IBR), Departamento de Química Biológica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Rosario, Argentina
| | - Brigid M Wilson
- ∥Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| | - Steven H Marshall
- ∥Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| | - Christopher J Wallace
- ∥Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| | - Maria V Villegas
- ∇Centro Internacional de Entrenamiento e Investigaciones Médicas, CIDEIM, Cali, Colombia
| | | | - Alejandro J Vila
- #Instituto de Biología Molecular y Celular de Rosario (IBR), Departamento de Química Biológica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Rosario, Argentina
| | - James Spencer
- @School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Robert A Bonomo
- ∥Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| |
Collapse
|
37
|
Nishio M, Umezawa Y, Fantini J, Weiss MS, Chakrabarti P. CH-π hydrogen bonds in biological macromolecules. Phys Chem Chem Phys 2015; 16:12648-83. [PMID: 24836323 DOI: 10.1039/c4cp00099d] [Citation(s) in RCA: 335] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This is a sequel to the previous Perspective "The CH-π hydrogen bond in chemistry. Conformation, supramolecules, optical resolution and interactions involving carbohydrates", which featured in a PCCP themed issue on "Weak Hydrogen Bonds - Strong Effects?": Phys. Chem. Chem. Phys., 2011, 13, 13873-13900. Evidence that weak hydrogen bonds play an enormously important role in chemistry and biochemistry has now accumulated to an extent that the rigid classical concept of hydrogen bonds formulated by Pauling needs to be seriously revised and extended. The concept of a more generalized hydrogen bond definition is indispensable for understanding the folding mechanisms of proteins. The CH-π hydrogen bond, a weak molecular force occurring between a soft acid CH and a soft base π-electron system, among all is one of the most important and plays a functional role in defining the conformation and stability of 3D structures as well as in many molecular recognition events. This concept is also valuable in structure-based drug design efforts. Despite their frequent occurrence in organic molecules and bio-molecules, the importance of CH-π hydrogen bonds is still largely unknown to many chemists and biochemists. Here we present a review that deals with the evidence, nature, characteristics and consequences of the CH-π hydrogen bond in biological macromolecules (proteins, nucleic acids, lipids and polysaccharides). It is hoped that the present Perspective will show the importance of CH-π hydrogen bonds and stimulate interest in the interactions of biological macromolecules, one of the most fascinating fields in bioorganic chemistry. Implication of this concept is enormous and valuable in the scientific community.
Collapse
Affiliation(s)
- Motohiro Nishio
- The CHPI Institute, 705-6-338, Minamioya, Machida-shi, Tokyo 194-0031, Japan.
| | | | | | | | | |
Collapse
|
38
|
Kupper MB, Herzog K, Bennink S, Schlömer P, Bogaerts P, Glupczynski Y, Fischer R, Bebrone C, Hoffmann KM. The three-dimensional structure of VIM-31 - a metallo-β-lactamase fromEnterobacter cloacaein its native and oxidized form. FEBS J 2015; 282:2352-60. [DOI: 10.1111/febs.13283] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Michaël B. Kupper
- Institute of Molecular Biotechnology; RWTH-Aachen University; Germany
| | - Konrad Herzog
- Institute of Molecular Biotechnology; RWTH-Aachen University; Germany
| | - Sandra Bennink
- Institute of Molecular Biotechnology; RWTH-Aachen University; Germany
| | - Philipp Schlömer
- Institute of Molecular Biotechnology; RWTH-Aachen University; Germany
| | - Pierre Bogaerts
- Laboratory of Bacteriology; CHU Mont-Godinne-Dinant; Université Catholique de Louvain; Yvoir Belgium
| | - Youri Glupczynski
- Laboratory of Bacteriology; CHU Mont-Godinne-Dinant; Université Catholique de Louvain; Yvoir Belgium
| | - Rainer Fischer
- Institute of Molecular Biotechnology; RWTH-Aachen University; Germany
| | - Carine Bebrone
- Institute of Molecular Biotechnology; RWTH-Aachen University; Germany
| | - Kurt M. Hoffmann
- Institute of Molecular Biotechnology; RWTH-Aachen University; Germany
| |
Collapse
|
39
|
Solution structures of the Bacillus cereus metallo-β-lactamase BcII and its complex with the broad spectrum inhibitor R-thiomandelic acid. Biochem J 2015; 456:397-407. [PMID: 24059435 PMCID: PMC3898119 DOI: 10.1042/bj20131003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metallo-β-lactamases, enzymes which inactivate β-lactam antibiotics, are of increasing biological and clinical significance as a source of antibiotic resistance in pathogenic bacteria. In the present study we describe the high-resolution solution NMR structures of the Bacillus cereus metallo-β-lactamase BcII and of its complex with R-thiomandelic acid, a broad-spectrum inhibitor of metallo-β-lactamases. This is the first reported solution structure of any metallo-β-lactamase. There are differences between the solution structure of the free enzyme and previously reported crystal structures in the loops flanking the active site, which are important for substrate and inhibitor binding and catalysis. The binding of R-thiomandelic acid and the roles of active-site residues are defined in detail. Changes in the enzyme structure upon inhibitor binding clarify the role of the mobile β3–β4 loop. Comparisons with other metallo-β-lactamases highlight the roles of individual amino-acid residues in the active site and the β3–β4 loop in inhibitor binding and provide information on the basis of structure–activity relationships among metallo-β-lactamase inhibitors. Metallo-β-lactamases are important in antibiotic resistance in micro-organisms. We report the first solution structure of a metallo-β-lactamase and its complex with an inhibitor, allowing the key flexible loops flanking the active site and their role in inhibitor binding to be properly defined.
Collapse
|
40
|
Leiros HKS, Edvardsen KSW, Bjerga GEK, Samuelsen Ø. Structural and biochemical characterization of VIM-26 shows that Leu224 has implications for the substrate specificity of VIM metallo-β-lactamases. FEBS J 2015; 282:1031-42. [DOI: 10.1111/febs.13200] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Hanna-Kirsti S. Leiros
- Norwegian Structural Biology Centre; Department of Chemistry; UiT The Arctic University of Norway; Tromsø Norway
| | - Kine Susann Waade Edvardsen
- Norwegian Structural Biology Centre; Department of Chemistry; UiT The Arctic University of Norway; Tromsø Norway
| | - Gro Elin Kjaereng Bjerga
- Norwegian Structural Biology Centre; Department of Chemistry; UiT The Arctic University of Norway; Tromsø Norway
| | - Ørjan Samuelsen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance; Department of Microbiology and Infection Control; University Hospital of North Norway; Tromsø Norway
| |
Collapse
|
41
|
Aitha M, Marts AR, Bergstrom A, Møller A, Moritz L, Turner L, Nix JC, Bonomo RA, Page RC, Tierney DL, Crowder MW. Biochemical, mechanistic, and spectroscopic characterization of metallo-β-lactamase VIM-2. Biochemistry 2014; 53:7321-31. [PMID: 25356958 PMCID: PMC4245990 DOI: 10.1021/bi500916y] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/10/2014] [Indexed: 11/29/2022]
Abstract
This study examines metal binding to metallo-β-lactamase VIM-2, demonstrating the first successful preparation of a Co(II)-substituted VIM-2 analogue. Spectroscopic studies of the half- and fully metal loaded enzymes show that both Zn(II) and Co(II) bind cooperatively, where the major species present, regardless of stoichiometry, are apo- and di-Zn (or di-Co) enzymes. We determined the di-Zn VIM-2 structure to a resolution of 1.55 Å, and this structure supports results from spectroscopic studies. Kinetics, both steady-state and pre-steady-state, show that VIM-2 utilizes a mechanism that proceeds through a very short-lived anionic intermediate when chromacef is used as the substrate. Comparison with other B1 enzymes shows that those that bind Zn(II) cooperatively are better poised to protonate the intermediate on its formation, compared to those that bind Zn(II) non-cooperatively, which uniformly build up substantial amounts of the intermediate.
Collapse
Affiliation(s)
- Mahesh Aitha
- Department
of Chemistry and Biochemistry, Miami University, 650 East High Street, Oxford, Ohio 45056, United States
| | - Amy R. Marts
- Department
of Chemistry and Biochemistry, Miami University, 650 East High Street, Oxford, Ohio 45056, United States
| | - Alex Bergstrom
- Department
of Chemistry and Biochemistry, Miami University, 650 East High Street, Oxford, Ohio 45056, United States
| | - Abraham
Jon Møller
- Department
of Chemistry and Biochemistry, Miami University, 650 East High Street, Oxford, Ohio 45056, United States
| | - Lindsay Moritz
- Department
of Chemistry and Biochemistry, Miami University, 650 East High Street, Oxford, Ohio 45056, United States
| | - Lucien Turner
- Department
of Chemistry and Biochemistry, Miami University, 650 East High Street, Oxford, Ohio 45056, United States
| | - Jay C. Nix
- Molecular
Biology Consortium, Beamline 4.2.2, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Robert A. Bonomo
- Research
Service, Louis Stokes Cleveland Department
of Veterans Affairs Medical Center, 10701 East Boulevard, Cleveland, Ohio 44106, United
States
- Department
of Medicine, Pharmacology, and Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Richard C. Page
- Department
of Chemistry and Biochemistry, Miami University, 650 East High Street, Oxford, Ohio 45056, United States
| | - David L. Tierney
- Department
of Chemistry and Biochemistry, Miami University, 650 East High Street, Oxford, Ohio 45056, United States
| | - Michael W. Crowder
- Department
of Chemistry and Biochemistry, Miami University, 650 East High Street, Oxford, Ohio 45056, United States
| |
Collapse
|
42
|
Lavanya P, Ramaiah S, Anbarasu A. Binding site residues in β-lactamases: role in non-classical interactions and metal binding. J COORD CHEM 2014. [DOI: 10.1080/00958972.2014.956661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- P. Lavanya
- Medical & Biological Computing Laboratory, School of Biosciences and Technology, VIT University, Vellore, India
| | - Sudha Ramaiah
- Medical & Biological Computing Laboratory, School of Biosciences and Technology, VIT University, Vellore, India
| | - Anand Anbarasu
- Medical & Biological Computing Laboratory, School of Biosciences and Technology, VIT University, Vellore, India
| |
Collapse
|
43
|
Molecular mechanisms of substrate recognition and specificity of New Delhi metallo-β-lactamase. Antimicrob Agents Chemother 2014; 58:5372-8. [PMID: 24982075 DOI: 10.1128/aac.01977-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Carbapenems are one of the last lines of defense for Gram-negative pathogens, such as members of the Enterobacteriaceae. Despite the fact that most carbapenems are resistant to extended-spectrum β-lactamase (ESBL), emerging metallo-β-lactamases (MBLs), including New Delhi metallo-β-lactamase 1 (NDM-1), that can hydrolyze carbapenems have become prevalent and are frequently associated with the so-called "superbugs," for which treatments are extremely limited. Crystallographic study sheds light on the modes of antibiotic binding to NDM-1, yet the mechanisms governing substrate recognition and specificity are largely unclear. This study provides a connection between crystallographic study and the functional significance of NDM-1, with an emphasis on the substrate specificity and catalysis of various β-lactams. L1 loop residues L59, V67, and W87 were important for the activity of NDM-1, most likely through maintaining the partial folding of the L1 loop or active site conformation through hydrophobic interaction with the R groups of β-lactams or the β-lactam ring. Substitution of alanine for L59 showed greater reduction of MICs to ampicillin and selected cephalosporins, whereas substitutions of alanine for V67 had more impact on the MICs of carbapenems. K224 and N233 on the L3 loop played important roles in the recognition of substrate and contributed to substrate hydrolysis. These data together with the structure comparison of the B1 and B2 subclasses of MBLs revealed that the broad substrate specificity of NDM-1 could be due to the ability of its wide active site cavity to accommodate a wide range of β-lactams. This study provides insights into the development of efficient inhibitors for NDM-1 and offers an efficient tactic with which to study the substrate specificities of other β-lactamases.
Collapse
|
44
|
Abstract
The β-lactam antibiotics are essential for the treatment of a wide range of human bacterial diseases. However, a class of zinc-dependent hydrolases known as the metallo-β-lactamase (MBL) can confer bacteria with extended spectrum β-lactam resistance. To date, there are no clinically approved MBL inhibitors, making these enzymes a serious threat to human health. In this review, a structural approach is taken to outline some of the more promising MBL inhibitors and shed light on how the resistance conferred by this emerging class of enzymes may be circumvented in the future.
Collapse
|
45
|
Ma J, Eisenhaber F, Maurer-Stroh S. Automatic phylogenetic classification of bacterial beta-lactamase sequences including structural and antibiotic substrate preference information. J Bioinform Comput Biol 2014; 11:1343011. [PMID: 24372040 DOI: 10.1142/s0219720013430117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Beta lactams comprise the largest and still most effective group of antibiotics, but bacteria can gain resistance through different beta lactamases that can degrade these antibiotics. We developed a user friendly tree building web server that allows users to assign beta lactamase sequences to their respective molecular classes and subclasses. Further clinically relevant information includes if the gene is typically chromosomal or transferable through plasmids as well as listing the antibiotics which the most closely related reference sequences are known to target and cause resistance against. This web server can automatically build three phylogenetic trees: the first tree with closely related sequences from a Tachyon search against the NCBI nr database, the second tree with curated reference beta lactamase sequences, and the third tree built specifically from substrate binding pocket residues of the curated reference beta lactamase sequences. We show that the latter is better suited to recover antibiotic substrate assignments through nearest neighbor annotation transfer. The users can also choose to build a structural model for the query sequence and view the binding pocket residues of their query relative to other beta lactamases in the sequence alignment as well as in the 3D structure relative to bound antibiotics. This web server is freely available at http://blac.bii.a-star.edu.sg/.
Collapse
Affiliation(s)
- Jianmin Ma
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore
| | | | | |
Collapse
|
46
|
Metallo-β-lactamase: Inhibitors and reporter substrates. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1648-59. [DOI: 10.1016/j.bbapap.2013.04.024] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 04/18/2013] [Accepted: 04/21/2013] [Indexed: 11/22/2022]
|
47
|
Faridoon, Ul Islam N. An Update on the Status of Potent Inhibitors of Metallo-β-Lactamases. Sci Pharm 2013; 81:309-27. [PMID: 23833706 PMCID: PMC3700068 DOI: 10.3797/scipharm.1302-08] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 03/28/2013] [Indexed: 11/22/2022] Open
Abstract
The production of metallo-β-lactamases is the most important strategy by which pathogenic bacteria become resistant to currently known β-lactam antibiotics. The emergence of these enzymes is particularly concerning for the future treatment of bacterial infections. There are no clinically available drugs capable of inhibiting any of the metallo-β-lactamases, so there is an urgent need to find such inhibitors. In this review, an up-to-date status of the inhibitors investigated for the inhibition of metallo-β-lactamases has been given so that this rich source of structural information of presently known metallo-β-lactamases could be helpful in generating a broad-spectrum potent inhibitor of metallo-β-lactamases.
Collapse
Affiliation(s)
- Faridoon
- Chemistry Department, Islamia College University, Peshawar-25120, Pakistan
| | | |
Collapse
|
48
|
Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin Microbiol Rev 2013; 25:682-707. [PMID: 23034326 DOI: 10.1128/cmr.05035-11] [Citation(s) in RCA: 859] [Impact Index Per Article: 78.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
SUMMARY The spread of Enterobacteriaceae, primarily Klebsiella pneumoniae, producing KPC, VIM, IMP, and NDM carbapenemases, is causing an unprecedented public health crisis. Carbapenemase-producing enterobacteria (CPE) infect mainly hospitalized patients but also have been spreading in long-term care facilities. Given their multidrug resistance, therapeutic options are limited and, as discussed here, should be reevaluated and optimized. Based on susceptibility data, colistin and tigecycline are commonly used to treat CPE infections. Nevertheless, a review of the literature revealed high failure rates in cases of monotherapy with these drugs, whilst monotherapy with either a carbapenem or an aminoglycoside appeared to be more effective. Combination therapies not including carbapenems were comparable to aminoglycoside and carbapenem monotherapies. Higher success rates have been achieved with carbapenem-containing combinations. Pharmacodynamic simulations and experimental infections indicate that modification of the current patterns of carbapenem use against CPE warrants further attention. Epidemiological data, though fragmentary in many countries, indicate CPE foci and transmission routes, to some extent, whilst also underlining the lack of international collaborative systems that could react promptly and effectively. Fortunately, there are sound studies showing successful containment of CPE by bundles of measures, among which the most important are active surveillance cultures, separation of carriers, and assignment of dedicated nursing staff.
Collapse
|
49
|
Abstract
β-Lactam antibiotics are the most commonly used antibacterial agents and growing resistance to these drugs is a concern. Metallo-β-lactamases are a diverse set of enzymes that catalyze the hydrolysis of a broad range of β-lactam drugs including carbapenems. This diversity is reflected in the observation that the enzyme mechanisms differ based on whether one or two zincs are bound in the active site that, in turn, is dependent on the subclass of β-lactamase. The dissemination of the genes encoding these enzymes among Gram-negative bacteria has made them an important cause of resistance. In addition, there are currently no clinically available inhibitors to block metallo-β-lactamase action. This review summarizes the numerous studies that have yielded insights into the structure, function, and mechanism of action of these enzymes.
Collapse
Affiliation(s)
- Timothy Palzkill
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas 77030, USA.
| |
Collapse
|
50
|
Structural insights into the subclass B3 metallo-β-lactamase SMB-1 and the mode of inhibition by the common metallo-β-lactamase inhibitor mercaptoacetate. Antimicrob Agents Chemother 2012; 57:101-9. [PMID: 23070156 DOI: 10.1128/aac.01264-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel subclass B3 metallo-β-lactamase (MBL), SMB-1, recently identified from a Serratia marcescens clinical isolate, showed a higher hydrolytic activity against a wide range of β-lactams than did the other subclass B3 MBLs, i.e., BJP-1 and FEZ-1, from environmental bacteria. To identify the mechanism underlying the differences in substrate specificity among the subclass B3 MBLs, we determined the structure of SMB-1, using 1.6-Å diffraction data. Consequently, we found that SMB-1 reserves a space in the active site to accommodate β-lactam, even with a bulky R1 side chain, due to a loss of amino acid residues corresponding to F31 and L226 of BJP-1, which protrude into the active site to prevent β-lactam from binding. The protein also possesses a unique amino acid residue, Q157, which probably plays a role in recognition of β-lactams via the hydrogen bond interaction, which is missing in BJP-1 and FEZ-1, whose K(m) values for β-lactams are particularly high. In addition, we determined the mercaptoacetate (MCR)-complexed SMB-1 structure and revealed the mode of its inhibition by MCR: the thiolate group bridges to two zinc ions (Zn1 and Zn2). One of the carboxylate oxygen atoms of MCR makes contact with Zn2 and Ser221, and the other makes contact with T223 and a water molecule. Our results demonstrate the possibility that MCR could be a potent inhibitor for subclass B3 MBLs and that the screening technique using MCR as an inhibitor would be effective for detecting subclass B3 MBL producers.
Collapse
|