1
|
Liu D, Liang J, Xu Y, Guo L, Shi Q, Li F. Direct Synthesis of α-Methylated Arylacetamides from Arylacetonitriles via Ir-Catalyzed Cascade α-Methylation and Selective Hydration. Org Lett 2025. [PMID: 40489700 DOI: 10.1021/acs.orglett.5c01338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
Abstract
A strategy for the direct synthesis of α-methylated arylacetamides from arylacetonitriles via a cascade α-methylation with methanol and the selective hydration with an aldoxime as a water source was proposed and accomplished. In the presence of [Cp*Ir(6,6'-(OH)2dpa)Cl][Cl], desirable products were obtained in high yields. Furthermore, mechanistic experiments, DFT calculations, the practical application of this strategy, and the expansion of this catalytic system to other alcohols are also presented.
Collapse
Affiliation(s)
- Deyun Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
| | - Jinci Liang
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
| | - Yong Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
| | - Liangshun Guo
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Qixun Shi
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Feng Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
| |
Collapse
|
2
|
Smith JD, Stillerová VT, Dračinský M, Popr M, Angermeier Gaustad HL, Lorenzi Q, Smrčková H, Reinhardt JK, Liénard MA, Bednárová L, Šácha P, Pluskal T. Discovery and isolation of novel capsaicinoids and their TRPV1-related activity. Eur J Pharmacol 2025; 999:177700. [PMID: 40320114 DOI: 10.1016/j.ejphar.2025.177700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/30/2025] [Accepted: 04/30/2025] [Indexed: 05/14/2025]
Abstract
Chilis contain capsaicin and other structurally related molecules known as capsaicinoids. Capsaicin's target protein, the transient receptor potential cation channel subfamily V member 1 (TRPV1), has been linked to many post-activation effects, including changes in metabolism and pain sensation. Capsaicinoids also bind to TRPV1, but current studies often disregard non-capsaicin interactions. To fill in these gaps, we screened 40 different chili varieties derived from four Capsicum species by means of untargeted metabolomics and a rat TRPV1 (rTRPV1) calcium influx activation assay. The resulting capsaicinoid profiles were specific to each variety but only partially corresponded with species delimitations. Based on rTRPV1 activation elicited by crude chili extracts, capsaicinoids act in an additive manner and a capsaicinoid profile can serve as a gauge of this activation. In addition, we isolated eighteen capsaicinoids, including five previously unreported ones, and confirmed their structure by NMR and MS/MS. We then tested rTRPV1 activation by 23 capsaicinoids and three related compounds. This testing revealed that even slight deviations from the structure of capsaicin reduce the ability to activate the target, with a mere single hydroxylation on the acyl tail reducing potency towards rTRPV1 by more than 100-fold. In addition, we tested how rTRPV1 activity changes in the presence of capsaicin together with non-activating capsaicin analogs and weakly activating capsaicinoids and found both classes of molecules to positively modulate the effects of capsaicin. This demonstrates that even such compounds have measurable pharmacological effects, making a case for the use and study of natural chili extracts.
Collapse
Affiliation(s)
- Joshua David Smith
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia; First Faculty of Medicine Charles University, Prague, Czechia
| | | | - Martin Dračinský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Martin Popr
- CZ-OPENSCREEN, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | | | - Quentin Lorenzi
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Helena Smrčková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Jakob K Reinhardt
- Department of Pharmaceutical Sciences, University of Basel, Switzerland; Chemistry & Chemical Biology of Northeastern University, Boston, USA
| | | | - Lucie Bednárová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Pavel Šácha
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Tomáš Pluskal
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia.
| |
Collapse
|
3
|
Dewaker V, Sharma AR, Debnath U, Park ST, Kim HS. Insights from molecular dynamics simulations of TRPV1 channel modulators in pain. Drug Discov Today 2023; 28:103798. [PMID: 37838068 DOI: 10.1016/j.drudis.2023.103798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
TRPV1 is a nonselective cation channel vital for detecting noxious stimuli (heat, acid, capsaicin). Its role in pain makes it a potential drug target for chronic pain management, migraines, and related disorders. This review updates molecular dynamics (MD) simulation studies on the TRPV1 channel, focusing on its gating mechanism, ligand-binding sites, and implications for drug design. The article also explores challenges in developing modulators, SAR optimization, and clinical trial studies. Efforts have been undertaken to concisely present MD simulation findings, with a focus on their relevance to drug discovery.
Collapse
Affiliation(s)
- Varun Dewaker
- Institute of New Frontier Research Team, Hallym University, Chuncheon-si 24252, Gangwon-do, Republic of Korea
| | - Ashish R Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si 24252, Gangwon-do, Republic of Korea
| | - Utsab Debnath
- School of Health Sciences & Technology, UPES, Dehradun, Uttarakhand 248007, India
| | - Sung Taek Park
- Institute of New Frontier Research Team, Hallym University, Chuncheon-si 24252, Gangwon-do, Republic of Korea; Department of Obstetrics and Gynecology, Kangnam Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Republic of Korea; EIONCELL Inc., Chuncheon 24252, Republic of Korea
| | - Hyeong Su Kim
- Institute of New Frontier Research Team, Hallym University, Chuncheon-si 24252, Gangwon-do, Republic of Korea; Division of Hemato-Oncology, Department of Internal Medicine, Kangnam Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Republic of Korea; EIONCELL Inc., Chuncheon 24252, Republic of Korea.
| |
Collapse
|
4
|
Tobita N, Makino M, Fujita R, Jyotaki M, Shinohara Y, Yamamoto T. Sweet scent lactones activate hot capsaicin receptor, TRPV1. Biochem Biophys Res Commun 2020; 534:547-552. [PMID: 33239169 DOI: 10.1016/j.bbrc.2020.11.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/12/2020] [Indexed: 12/18/2022]
Abstract
In this study, we investigated the activation of Transient receptor potential vanilloid subtype 1, TRPV1, by lactones, a representative flavor ingredient currently used for foods and beverages. As a result, we found that some lactones having C4 acyl chain length, γ-octalactone, δ-nonalactone and β-methyl-γ-octalactone, γ-undecalactone with C7 acyl chain length and δ-undecalactone with C6 acyl chain length activated TRPV1. TRPV1 is known as a non-selective cation channels that respond to a wide range of physical and chemical stimuli such as high temperature, protons, capsaicin and so on. Furthermore, it has been also demonstrated that activation of TRPV1 induced energy expenditure enhancement and thermogenesis, suppressed accumulation of visceral fat in mice and prevented non-alcoholic fatty acid liver. Thus, lactones that function as TRPV1 agonists are thought to be important candidates for decreasing the risks of developing a metabolic syndrome.
Collapse
Affiliation(s)
- Naoya Tobita
- Tobacco Science Research Center, Japan Tobacco Inc, 6-2 Umegaoka, Aoba, Yokohama, Kanagawa, 227-8512, Japan
| | - Masanari Makino
- Tobacco Science Research Center, Japan Tobacco Inc, 6-2 Umegaoka, Aoba, Yokohama, Kanagawa, 227-8512, Japan
| | - Ryujiro Fujita
- Tobacco Science Research Center, Japan Tobacco Inc, 6-2 Umegaoka, Aoba, Yokohama, Kanagawa, 227-8512, Japan
| | - Masafumi Jyotaki
- Tobacco Science Research Center, Japan Tobacco Inc, 6-2 Umegaoka, Aoba, Yokohama, Kanagawa, 227-8512, Japan
| | - Yuhei Shinohara
- Tobacco Science Research Center, Japan Tobacco Inc, 6-2 Umegaoka, Aoba, Yokohama, Kanagawa, 227-8512, Japan
| | - Takeshi Yamamoto
- Tobacco Science Research Center, Japan Tobacco Inc, 6-2 Umegaoka, Aoba, Yokohama, Kanagawa, 227-8512, Japan.
| |
Collapse
|
5
|
Aghazadeh Tabrizi M, Baraldi PG, Baraldi S, Gessi S, Merighi S, Borea PA. Medicinal Chemistry, Pharmacology, and Clinical Implications of TRPV1 Receptor Antagonists. Med Res Rev 2016; 37:936-983. [PMID: 27976413 DOI: 10.1002/med.21427] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/24/2016] [Accepted: 11/01/2016] [Indexed: 12/28/2022]
Abstract
Transient receptor potential vanilloid 1 (TRPV1) is an ion channel expressed on sensory neurons triggering an influx of cations. TRPV1 receptors function as homotetramers responsive to heat, proinflammatory substances, lipoxygenase products, resiniferatoxin, endocannabinoids, protons, and peptide toxins. Its phosphorylation increases sensitivity to both chemical and thermal stimuli, while desensitization involves a calcium-dependent mechanism resulting in receptor dephosphorylation. TRPV1 functions as a sensor of noxious stimuli and may represent a target to avoid pain and injury. TRPV1 activation has been associated to chronic inflammatory pain and peripheral neuropathy. Its expression is also detected in nonneuronal areas such as bladder, lungs, and cochlea where TRPV1 activation is responsible for pathology development of cystitis, asthma, and hearing loss. This review offers a comprehensive overview about TRPV1 receptor in the pathophysiology of chronic pain, epilepsy, cough, bladder disorders, diabetes, obesity, and hearing loss, highlighting how drug development targeting this channel could have a clinical therapeutic potential. Furthermore, it summarizes the advances of medicinal chemistry research leading to the identification of highly selective TRPV1 antagonists and their analysis of structure-activity relationships (SARs) focusing on new strategies to target this channel.
Collapse
Affiliation(s)
- Mojgan Aghazadeh Tabrizi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Pier Giovanni Baraldi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Stefania Baraldi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Stefania Gessi
- Section of Pharmacology, Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Stefania Merighi
- Section of Pharmacology, Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Pier Andrea Borea
- Section of Pharmacology, Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy
| |
Collapse
|
6
|
Zwitterionic structures: from physicochemical properties toward computer-aided drug designs. Future Med Chem 2016; 8:2245-2262. [DOI: 10.4155/fmc-2016-0176] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Zwitterions, used widely in chemical, biological and medicinal fields, show distinct physicochemical properties relative to ordinary ampholytes, which largely decide their bioavailability and biological activities. In the present manuscript, these properties are discussed in order to facilitate our understanding of zwitterionic structures, followed by various examples of zwitterionic drugs and the critical role these properties play. We specifically focus our discussions on neuraminidase inhibitors (NAIs), which are used in the treatment and prevention of influenza, covering their computer-assisted design, transformation to zwitterionic isomers and interaction mechanisms of NAIs with proteins. The discovery and development of NAIs provide useful insights that may assist in the exploration of new zwitterionic drugs.
Collapse
|
7
|
Novel scaffolds for modulation of TRPV1 identified with pharmacophore modeling and virtual screening. Future Med Chem 2015; 7:243-56. [PMID: 25826358 PMCID: PMC6422283 DOI: 10.4155/fmc.14.168] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Aim The transient receptor potential vanilloid type 1 (TRPV1) is responsible for pain perception in the peripheral nervous system (PNS). TRPV1 is thus considered a versatile target for development of non-opioid analgesics. Results Pharmacophore-based clustering of a publicly available data set of TRPV1 antagonists revealed a set of models, which were validated with data sets of inactive compounds, decoys and known drug candidates. The top ranked pharmacophore models were subsequently used for virtual screening. Based on a unique in-house protocol, a set of compounds was selected and biologically tested for modulation of TRPV1 in a voltage-clamp model. Conclusion Pharmacophore models extracted from large public data sets are a valuable source for identification of novel scaffolds for TRPV1 receptor modulation.
Collapse
|
8
|
Tran PT, Kim HS, Ann J, Kim SE, Kim C, Hong M, Hoang VH, Ngo VTH, Hong S, Cui M, Choi S, Blumberg PM, Frank-Foltyn R, Bahrenberg G, Stockhausen H, Christoph T, Lee J. α-Substituted 2-(3-fluoro-4-methylsulfonamidophenyl)acetamides as potent TRPV1 antagonists. Bioorg Med Chem Lett 2015; 25:2326-30. [PMID: 25937016 DOI: 10.1016/j.bmcl.2015.04.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/03/2015] [Accepted: 04/08/2015] [Indexed: 02/01/2023]
Abstract
A series of α-substituted acetamide derivatives of previously reported 2-(3-fluoro-4-methylsulfonamidophenyl)propanamide leads (1, 2) were investigated for antagonism of hTRPV1 activation by capsaicin. Compound 34, which possesses an α-m-tolyl substituent, showed highly potent and selective antagonism of capsaicin with Ki(CAP)=0.1 nM. It thus reflected a 3-fold improvement in potency over parent 1. Docking analysis using our homology model indicated that the high potency of 34 might be attributed to a specific hydrophobic interaction of the m-tolyl group with the receptor.
Collapse
Affiliation(s)
- Phuong-Thao Tran
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Ho Shin Kim
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jihyae Ann
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sung-Eun Kim
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Changhoon Kim
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Mannkyu Hong
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Van-Hai Hoang
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Van T H Ngo
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sunhye Hong
- National Leading Research Laboratory of Molecular Modeling & Drug Design, College of Pharmacy, Graduate School of Pharmaceutical Sciences, and Global Top 5 Research Program, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Minghua Cui
- National Leading Research Laboratory of Molecular Modeling & Drug Design, College of Pharmacy, Graduate School of Pharmaceutical Sciences, and Global Top 5 Research Program, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Sun Choi
- National Leading Research Laboratory of Molecular Modeling & Drug Design, College of Pharmacy, Graduate School of Pharmaceutical Sciences, and Global Top 5 Research Program, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Peter M Blumberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | - Jeewoo Lee
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
9
|
Feng Z, Pearce LV, Xu X, Yang X, Yang P, Blumberg PM, Xie XQ. Structural insight into tetrameric hTRPV1 from homology modeling, molecular docking, molecular dynamics simulation, virtual screening, and bioassay validations. J Chem Inf Model 2015; 55:572-88. [PMID: 25642729 PMCID: PMC4508124 DOI: 10.1021/ci5007189] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The transient receptor potential vanilloid type 1 (TRPV1) is a heat-activated cation channel protein, which contributes to inflammation, acute and persistent pain. Antagonists of human TRPV1 (hTRPV1) represent a novel therapeutic approach for the treatment of pain. Developing various antagonists of hTRPV1, however, has been hindered by the unavailability of a 3D structure of hTRPV1. Recently, the 3D structures of rat TRPV1 (rTRPV1) in the presence and absence of ligand have been reported as determined by cryo-EM. rTRPV1 shares 85.7% sequence identity with hTRPV1. In the present work, we constructed and reported the 3D homology tetramer model of hTRPV1 based on the cryo-EM structures of rTRPV1. Molecular dynamics (MD) simulations, energy minimizations, and prescreen were applied to select and validate the best model of hTRPV1. The predicted binding pocket of hTRPV1 consists of two adjacent monomers subunits, which were congruent with the experimental rTRPV1 data and the cyro-EM structures of rTRPV1. The detailed interactions between hTRPV1 and its antagonists or agonists were characterized by molecular docking, which helped us to identify the important residues. Conformational changes of hTRPV1 upon antagonist/agonist binding were also explored by MD simulation. The different movements of compounds led to the different conformational changes of monomers in hTRPV1, indicating that TRPV1 works in a concerted way, resembling some other channel proteins such as aquaporins. We observed that the selective filter was open when hTRPV1 bound with an agonist during MD simulation. For the lower gate of hTRPV1, we observed large similarities between hTRPV1 bound with antagonist and with agonist. A five-point pharmacophore model based on several antagonists was established, and the structural model was used to screen in silico for new antagonists for hTRPV1. By using the 3D TRPV1 structural model above, the pilot in silico screening has begun to yield promising hits with activity as hTRPV1 antagonists, several of which showed substantial potency.
Collapse
Affiliation(s)
- Zhiwei Feng
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Larry V. Pearce
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Xiaomeng Xu
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Xiaole Yang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Peng Yang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Peter M. Blumberg
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Departments of Computational Biology and of Structural Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
10
|
Wang J, Li Y, Yang Y, Du J, Zhang S, Yang L. In silico research to assist the investigation of carboxamide derivatives as potent TRPV1 antagonists. MOLECULAR BIOSYSTEMS 2015; 11:2885-99. [DOI: 10.1039/c5mb00356c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The transient receptor potential vanilloid type 1 (TRPV1), a non-selective cation channel, is known for its essential role in the pathogenesis of various pain conditions such as nerve damage induced hyperalgesia, diabetic neuropathy and cancer pain.
Collapse
Affiliation(s)
- Jinghui Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE)
- Faculty of Chemical
- Environmental and Biological Science and Technology
- Dalian University of Technology
- Dalian
| | - Yan Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE)
- Faculty of Chemical
- Environmental and Biological Science and Technology
- Dalian University of Technology
- Dalian
| | - Yinfeng Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE)
- Faculty of Chemical
- Environmental and Biological Science and Technology
- Dalian University of Technology
- Dalian
| | - Jian Du
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE)
- Faculty of Chemical
- Environmental and Biological Science and Technology
- Dalian University of Technology
- Dalian
| | - Shuwei Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE)
- Faculty of Chemical
- Environmental and Biological Science and Technology
- Dalian University of Technology
- Dalian
| | - Ling Yang
- Laboratory of Pharmaceutical Resource Discovery
- Dalian Institute of Chemical Physics
- Graduate School of the Chinese Academy of Sciences
- Dalian
- China
| |
Collapse
|
11
|
Ryu H, Seo S, Kim MS, Kim MY, Kim HS, Ann J, Tran PT, Hoang VH, Byun J, Cui M, Son K, Sharma PK, Choi S, Blumberg PM, Frank-Foltyn R, Bahrenberg G, Koegel BY, Christoph T, Frormann S, Lee J. 2-Aryl substituted pyridine C-region analogues of 2-(3-fluoro-4-methylsulfonylaminophenyl)propanamides as highly potent TRPV1 antagonists. Bioorg Med Chem Lett 2014; 24:4044-7. [PMID: 25011915 PMCID: PMC6980356 DOI: 10.1016/j.bmcl.2014.05.072] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 05/16/2014] [Accepted: 05/21/2014] [Indexed: 12/30/2022]
Abstract
A series of 2-aryl pyridine C-region derivatives of 2-(3-fluoro-4-methylsulfonylaminophenyl)propanamides were investigated as hTRPV1 antagonists. Multiple compounds showed highly potent TRPV1 antagonism toward capsaicin comparable to previous lead 7. Among them, compound 9 demonstrated anti-allodynia in a mouse neuropathic pain model and blocked capsaicin-induced hypothermia in a dose-dependent manner. Docking analysis of 9 with our hTRPV1 homology model provided insight into its specific binding mode.
Collapse
Affiliation(s)
- HyungChul Ryu
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sejin Seo
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Myeong Seop Kim
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Mi-Yeon Kim
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Ho Shin Kim
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jihyae Ann
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Phuong-Thao Tran
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Van-Hai Hoang
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jieun Byun
- National Leading Research Lab of Molecular Modeling & Drug Design, College of Pharmacy, Graduate School of Pharmaceutical Sciences, and Global Top 5 Research Program, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Minghua Cui
- National Leading Research Lab of Molecular Modeling & Drug Design, College of Pharmacy, Graduate School of Pharmaceutical Sciences, and Global Top 5 Research Program, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Karam Son
- National Leading Research Lab of Molecular Modeling & Drug Design, College of Pharmacy, Graduate School of Pharmaceutical Sciences, and Global Top 5 Research Program, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Pankaz Kumar Sharma
- National Leading Research Lab of Molecular Modeling & Drug Design, College of Pharmacy, Graduate School of Pharmaceutical Sciences, and Global Top 5 Research Program, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Sun Choi
- National Leading Research Lab of Molecular Modeling & Drug Design, College of Pharmacy, Graduate School of Pharmaceutical Sciences, and Global Top 5 Research Program, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Peter M Blumberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | - Sven Frormann
- Grunenthal Innovation, Grunenthal GmbH, D-52078 Aachen, Germany
| | - Jeewoo Lee
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
12
|
Ryu H, Seo S, Cho SH, Kim HS, Jung A, Kang DW, Son K, Cui M, Hong SH, Sharma PK, Choi S, Blumberg PM, Frank-Foltyn R, Bahrenberg G, Stockhausen H, Schiene K, Christoph T, Frormann S, Lee J. 2-Alkyl/alkenyl substituted pyridine C-region analogues of 2-(3-fluoro-4-methylsulfonylaminophenyl)propanamides as highly potent TRPV1 antagonists. Bioorg Med Chem Lett 2014; 24:4039-43. [PMID: 24948568 DOI: 10.1016/j.bmcl.2014.05.074] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 05/16/2014] [Accepted: 05/21/2014] [Indexed: 12/16/2022]
Abstract
A series of 2-alkyl/alkenyl pyridine C-region derivatives of 2-(3-fluoro-4-methylsulfonylaminophenyl)propanamides were investigated as hTRPV1 antagonists. Multiple compounds showed excellent and stereospecific TRPV1 antagonism with better potency than previous lead 2. Among them, compound 15f demonstrated a strong analgesic profile in a rat neuropathic pain model and blocked capsaicin-induced hypothermia in a dose-dependent manner. Docking analysis of (S)-15f with our hTRPV1 homology model provided insight into its specific binding mode.
Collapse
Affiliation(s)
- HyungChul Ryu
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sejin Seo
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Seong-Hee Cho
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Ho Shin Kim
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Aeran Jung
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Dong Wook Kang
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea; Department of Pharmaceutical Science and Technology, College of Health and Medical Science, Catholic University of Deagu, Gyeongsan-si, Gyeongsangbuk-do 712-702, Republic of Korea
| | - Karam Son
- National Leading Research Lab of Molecular Modeling & Drug Design, College of Pharmacy, Graduate School of Pharmaceutical Sciences, and Global Top 5 Research Program, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Minghua Cui
- National Leading Research Lab of Molecular Modeling & Drug Design, College of Pharmacy, Graduate School of Pharmaceutical Sciences, and Global Top 5 Research Program, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Sun-hye Hong
- National Leading Research Lab of Molecular Modeling & Drug Design, College of Pharmacy, Graduate School of Pharmaceutical Sciences, and Global Top 5 Research Program, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Pankaz Kumar Sharma
- National Leading Research Lab of Molecular Modeling & Drug Design, College of Pharmacy, Graduate School of Pharmaceutical Sciences, and Global Top 5 Research Program, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Sun Choi
- National Leading Research Lab of Molecular Modeling & Drug Design, College of Pharmacy, Graduate School of Pharmaceutical Sciences, and Global Top 5 Research Program, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Peter M Blumberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | | | | | - Klaus Schiene
- Grunenthal Innovation, Grunenthal GmbH, D-52078 Aachen, Germany
| | | | - Sven Frormann
- Grunenthal Innovation, Grunenthal GmbH, D-52078 Aachen, Germany
| | - Jeewoo Lee
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
13
|
Kim HS, Jin MK, Kang SU, Lim JO, Tran PT, Hoang VH, Ann J, Ha TH, Pearce LV, Pavlyukovets VA, Blumberg PM, Lee J. α-Methylated simplified resiniferatoxin (sRTX) thiourea analogues as potent and stereospecific TRPV1 antagonists. Bioorg Med Chem Lett 2014; 24:2685-8. [PMID: 24794110 DOI: 10.1016/j.bmcl.2014.04.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 04/10/2014] [Accepted: 04/12/2014] [Indexed: 11/15/2022]
Abstract
A series of α-methylated analogues of the potent sRTX thiourea antagonists were investigated as rTRPV1 ligands in order to examine the effect of α-methylation on receptor activity. The SAR analysis indicated that activity was stereospecific with the (R)-configuration of the newly formed chiral center providing high binding affinity and potent antagonism while the configuration of the C-region was not significant.
Collapse
Affiliation(s)
- Ho Shin Kim
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Mi-Kyoung Jin
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sang-Uk Kang
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Ju-Ok Lim
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Phuong-Thao Tran
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Van-Hai Hoang
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jihyae Ann
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Tae-Hwan Ha
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Larry V Pearce
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Vladimir A Pavlyukovets
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Peter M Blumberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jeewoo Lee
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
14
|
Kim MS, Ki Y, Ahn SY, Yoon S, Kim SE, Park HG, Sun W, Son K, Cui M, Choi S, Pearce LV, Esch TE, Deandrea-Lazarus IA, Blumberg PM, Lee J. Asymmetric synthesis and receptor activity of chiral simplified resiniferatoxin (sRTX) analogues as transient receptor potential vanilloid 1 (TRPV1) ligands. Bioorg Med Chem Lett 2013; 24:382-5. [PMID: 24321344 DOI: 10.1016/j.bmcl.2013.10.064] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 10/20/2013] [Accepted: 10/29/2013] [Indexed: 11/27/2022]
Abstract
The chiral isomers of the two potent simplified RTX-based vanilloids, compounds 2 and 3, were synthesized employing highly enantioselective PTC alkylation and evaluated as hTRPV1 ligands. The analysis indicated that the R-isomer was the eutomer in binding affinity and functional activity. The agonism of compound 2R was comparable to that of RTX. Docking analysis of the chiral isomers of 3 suggested the basis for its stereospecific activity and the binding mode of 3R.
Collapse
Affiliation(s)
- Myeong Seop Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Yooran Ki
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Song Yeon Ahn
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Suyoung Yoon
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sung-Eun Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hyeung-Geun Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Wei Sun
- Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Karam Son
- National Leading Research Lab of Molecular Modeling & Drug Design, College of Pharmacy, Graduate School of Pharmaceutical Sciences and Global Top 5 Research Program, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Minghua Cui
- National Leading Research Lab of Molecular Modeling & Drug Design, College of Pharmacy, Graduate School of Pharmaceutical Sciences and Global Top 5 Research Program, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Sun Choi
- National Leading Research Lab of Molecular Modeling & Drug Design, College of Pharmacy, Graduate School of Pharmaceutical Sciences and Global Top 5 Research Program, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Larry V Pearce
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Timothy E Esch
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Ian A Deandrea-Lazarus
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Peter M Blumberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jeewoo Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
15
|
Kristam R, Parmar V, Viswanadhan VN. 3D-QSAR analysis of TRPV1 inhibitors reveals a pharmacophore applicable to diverse scaffolds and clinical candidates. J Mol Graph Model 2013; 45:157-72. [DOI: 10.1016/j.jmgm.2013.08.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 05/27/2013] [Accepted: 08/15/2013] [Indexed: 12/25/2022]
|
16
|
TRPV1 antagonist with high analgesic efficacy: 2-Thio pyridine C-region analogues of 2-(3-fluoro-4-methylsulfonylaminophenyl)propanamides. Bioorg Med Chem 2013; 21:6657-64. [PMID: 24035514 DOI: 10.1016/j.bmc.2013.08.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 08/05/2013] [Accepted: 08/05/2013] [Indexed: 11/20/2022]
Abstract
A series of 2-thio pyridine C-region analogues of 2-(3-fluoro-4-methylsulfonylaminophenyl)propanamides were investigated as hTRPV1 antagonists. Among them, compound 24S showed stereospecific and excellent TRPV1 antagonism of capsaicin-induced activation. Further, it demonstrated strong anti-allodynic in a rat neuropathic pain model. Consistent with its action in vitro being through TRPV1, compound 24S blocked capsaicin-induced hypothermia in mice. Docking analysis of 24S with our hTRPV1 homology model was performed to identify its binding mode.
Collapse
|
17
|
2-(3-Fluoro-4-methylsulfonylaminophenyl)propanamides as potent TRPV1 antagonists: structure activity relationships of the 2-oxy pyridine C-region. Eur J Med Chem 2013; 64:589-602. [PMID: 23685943 DOI: 10.1016/j.ejmech.2013.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 04/01/2013] [Accepted: 04/02/2013] [Indexed: 01/02/2023]
Abstract
The structure activity relationships of 2-oxy pyridine derivatives in the C-region of N-(6-trifluoromethyl-pyridin-3-ylmethyl) 2-(3-fluoro-4-methylsulfonylaminophenyl)propanamides as hTRPV1 antagonists were investigated. The analysis indicated that the lipophilicity of the 2-oxy substituents was critical for potent antagonism and 4 or 5 carbons appeared to be optimal for activity. Multiple compounds proved to have comparable activity to 1, which had been reported as the most potent antagonist for capsaicin activity among the previous series of compounds. Further analysis of compounds 22 (2-isobutyloxy) and 53 (2-benzyloxy) in the formalin test in mice demonstrated strong analgesic activity with full efficacy. Docking analysis of 53S using our hTRPV1 homology model indicated that the A- and B-region 2-(3-fluoro-4-methylsulfonylaminophenyl)propanamide made important hydrophobic and hydrogen bonding interactions with Tyr511 and that the C-region 6-trifluoromethyl and 2-benzyloxy groups of pyridine occupied the two hydrophobic binding pockets, respectively.
Collapse
|
18
|
Kim NJ, Li FN, Lee JH, Park SG, Kim K, Lim C, Han YT, Yun H, Jung JW, Park HG, Kim HD, Woo BY, Shin SS, Kim SY, Choi JK, Jeong YS, Park Y, Park YH, Kim DD, Choi S, Suh YG. Heterocycle-linked Phenylbenzyl Amides as Novel TRPV1 Antagonists and Their TRPV1 Binding Modes: Constraint-Induced Enhancement of In Vitro and In Vivo Activities. Chem Asian J 2012. [DOI: 10.1002/asia.201200730] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nam-Jung Kim
- College of Pharmacy, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Bhondwe RS, Kang DW, Kim MS, Kim HS, Park SG, Son K, Choi S, Lang-Kuhs KA, Pavlyukovets VA, Pearce LV, Blumberg PM, Lee J. Structure-activity relationships and molecular modeling of the N-(3-pivaloyloxy-2-benzylpropyl)-N'-[4-(methylsulfonylamino)benzyl] thiourea template for TRPV1 antagonism. Bioorg Med Chem Lett 2012; 22:3656-60. [PMID: 22546668 PMCID: PMC3799871 DOI: 10.1016/j.bmcl.2012.04.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 04/05/2012] [Accepted: 04/07/2012] [Indexed: 01/09/2023]
Abstract
The structure-activity relationships of N-(3-acyloxy-2-benzylpropyl)-N'-4-[(methylsulfonylamino)benzyl] thioureas, which represent simplified RTX-based vanilloids, were investigated by varying the distances between the four principal pharmacophores and assessing binding and antagonistic activity on rTRPV1. The analysis indicated that a 3-pivaloyloxy-2-benzylpropyl C-region conferred the best potency in binding affinity and antagonism. The molecular modeling of this best template with the tetrameric homology model of rTRPV1 was performed to identify its binding interactions with the receptor.
Collapse
Affiliation(s)
- Rahul S. Bhondwe
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul 151-742, Korea
| | | | - Myeong Seop Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul 151-742, Korea
| | - Ho Shin Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul 151-742, Korea
| | - Seul-gi Park
- National Leading Research Lab (NLRL) of Molecular Modeling & Drug Design, College of Pharmacy, Division of Life & Pharmaceutical Sciences, and National Core Research Center for Cell Signaling & Drug Discovery Research, Ewha Womans University, Seoul 120-750, Korea
| | - Karam Son
- National Leading Research Lab (NLRL) of Molecular Modeling & Drug Design, College of Pharmacy, Division of Life & Pharmaceutical Sciences, and National Core Research Center for Cell Signaling & Drug Discovery Research, Ewha Womans University, Seoul 120-750, Korea
| | - Sun Choi
- National Leading Research Lab (NLRL) of Molecular Modeling & Drug Design, College of Pharmacy, Division of Life & Pharmaceutical Sciences, and National Core Research Center for Cell Signaling & Drug Discovery Research, Ewha Womans University, Seoul 120-750, Korea
| | - Krystle A. Lang-Kuhs
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Vladimir A. Pavlyukovets
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Larry V. Pearce
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Peter M. Blumberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jeewoo Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul 151-742, Korea
| |
Collapse
|
20
|
Sun W, Liu K, Ryu H, Kang DW, Kim YS, Kim MS, Cho Y, Bhondwe RS, Thorat SA, Kim HS, Pearce LV, Pavlyukovets VA, Tran R, Morgan MA, Lazar J, Ryder CB, Toth A, Blumberg PM, Lee J. 2-(4-Methylsulfonylaminophenyl) propanamide TRPV1 antagonists: Structure-activity relationships in the B and C-regions. Bioorg Med Chem 2012; 20:1310-8. [PMID: 22227463 PMCID: PMC6988731 DOI: 10.1016/j.bmc.2011.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/08/2011] [Accepted: 12/08/2011] [Indexed: 01/05/2023]
Abstract
On the basis of the previous lead N-4-t-butylbenzyl 2-(3-fluoro-4-methylsulfonylaminophenyl) propanamide (3) as a potent TRPV1 antagonist, structure-activity relationships for the B (propanamide part) and C-region (4-t-butylbenzyl part) have been investigated for rTRPV1 in CHO cells. The B-region was modified with dimethyl, cyclopropyl and reverse amides and then the C-region was replaced with 4-substituted phenyl, aryl alkyl and diaryl alkyl derivatives. Among them, compound 50 showed high binding affinity with K(i)=21.5nM, which was twofold more potent than 3 and compound 54 exhibited potent antagonism with K(i(ant))=8.0nM comparable to 3.
Collapse
Affiliation(s)
- Wei Sun
- Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Keliang Liu
- Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - HyungChul Ryu
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Dong Wook Kang
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Yong Soo Kim
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Myeong Seop Kim
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Yongsung Cho
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Rahul S. Bhondwe
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Shivaji A. Thorat
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Ho Shin Kim
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Larry V. Pearce
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Vladimir A. Pavlyukovets
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Richard Tran
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Matthew A. Morgan
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jozsef Lazar
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Christopher B. Ryder
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Attila Toth
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Peter M. Blumberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jeewoo Lee
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| |
Collapse
|
21
|
Kim Y, Kil MJ, Kang SU, Choi HK, Ryu H, Choi YS, Cho SH, Cho Y, Bhondwe RS, Lee JH, Choi S, Pearce LV, Pavlyukovets VA, Morgan MA, Tran R, Lazar J, Blumberg PM, Lee J. N-4-t-Butylbenzyl 2-(4-methylsulfonylaminophenyl) propanamide TRPV1 antagonists: Structure-activity relationships in the A-region. Bioorg Med Chem 2012; 20:215-24. [PMID: 22169633 PMCID: PMC3729215 DOI: 10.1016/j.bmc.2011.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 11/04/2011] [Accepted: 11/06/2011] [Indexed: 02/03/2023]
Abstract
Structure-activity relationships for the A-region in a series of N-4-t-butylbenzyl 2-(4-methylsulfonylaminophenyl) propanamides as TRPV1 antagonists have been investigated. Among them, the 3-fluoro analogue 54 showed high binding affinity and potent antagonism for both rTRPV1 and hTRPV1 in CHO cells. Its stereospecific activity was demonstrated with marked selectivity for the (S)-configuration (54S versus 54R). A docking study of 54S with our hTRPV1 homology model highlighted crucial hydrogen bonds between the ligand and the receptor contributing to its potency.
Collapse
Affiliation(s)
- Yongsoo Kim
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151–742, Korea
| | - Min-Jung Kil
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151–742, Korea
| | - Sang-Uk Kang
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151–742, Korea
| | - Hyun-Kyung Choi
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151–742, Korea
| | - HyungChul Ryu
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151–742, Korea
| | - Yeon-Sil Choi
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151–742, Korea
| | - Sook-Hyun Cho
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151–742, Korea
| | - Yongsung Cho
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151–742, Korea
| | - Rahul S. Bhondwe
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151–742, Korea
| | - Jin Hee Lee
- College of Pharmacy, Division of Life & Pharmaceutical Sciences, and National Core Research Center for Cell Signaling & Drug Discovery Research, Ewha Womans University, Seoul 120-750, Korea
| | - Sun Choi
- College of Pharmacy, Division of Life & Pharmaceutical Sciences, and National Core Research Center for Cell Signaling & Drug Discovery Research, Ewha Womans University, Seoul 120-750, Korea
| | - Larry V. Pearce
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Vladimir A. Pavlyukovets
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Matthew A. Morgan
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Richard Tran
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jozsef Lazar
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Peter M. Blumberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jeewoo Lee
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151–742, Korea
| |
Collapse
|
22
|
Thomas KC, Ethirajan M, Shahrokh K, Sun H, Lee J, Cheatham TE, Yost GS, Reilly CA. Structure-activity relationship of capsaicin analogs and transient receptor potential vanilloid 1-mediated human lung epithelial cell toxicity. J Pharmacol Exp Ther 2011; 337:400-10. [PMID: 21343315 PMCID: PMC3083109 DOI: 10.1124/jpet.110.178491] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 02/18/2011] [Indexed: 12/26/2022] Open
Abstract
Activation of intracellular transient receptor potential vanilloid-1 (TRPV1) in human lung cells causes endoplasmic reticulum (ER) stress, increased expression of proapoptotic GADD153 (growth arrest- and DNA damage-inducible transcript 3), and cytotoxicity. However, in cells with low TRPV1 expression, cell death is not inhibited by TRPV1 antagonists, despite preventing GADD153 induction. In this study, chemical variants of the capsaicin analog nonivamide were synthesized and used to probe the relationship between TRPV1 receptor binding, ER calcium release, GADD153 expression, and cell death in TRPV1-overexpressing BEAS-2B, normal BEAS-2B, and primary normal human bronchial epithelial lung cells. Modification of the 3-methoxy-4-hydroxybenzylamide vanilloid ring pharmacophore of nonivamide reduced the potency of the analogs and rendered several analogs mildly inhibitory. Correlation analysis of analog-induced calcium flux, GADD153 induction, and cytotoxicity revealed a direct relationship for all three endpoints in all three lung cell types for nonivamide and N-(3,4-dihydroxybenzyl)nonanamide. However, the N-(3,4-dihydroxybenzyl)nonanamide analog also produced cytotoxicity through redox cycling/reactive oxygen species formation, shown by inhibition of cell death by N-acetylcysteine. Molecular modeling of binding interactions between the analogs and TRPV1 agreed with data for reduced potency of the analogs, and only nonivamide was predicted to form a "productive" ligand-receptor complex. This study provides vital information on the molecular interactions of capsaicinoids with TRPV1 and substantiates TRPV1-mediated ER stress as a conserved mechanism of lung cell death by prototypical TRPV1 agonists.
Collapse
Affiliation(s)
- Karen C Thomas
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Lee JH, Lee Y, Ryu H, Kang DW, Lee J, Lazar J, Pearce LV, Pavlyukovets VA, Blumberg PM, Choi S. Structural insights into transient receptor potential vanilloid type 1 (TRPV1) from homology modeling, flexible docking, and mutational studies. J Comput Aided Mol Des 2011; 25:317-27. [PMID: 21448716 PMCID: PMC3420359 DOI: 10.1007/s10822-011-9421-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 03/16/2011] [Indexed: 11/29/2022]
Abstract
The transient receptor potential vanilloid subtype 1 (TRPV1) is a non-selective cation channel composed of four monomers with six transmembrane helices (TM1-TM6). TRPV1 is found in the central and peripheral nervous system, and it is an important therapeutic target for pain relief. We describe here the construction of a tetrameric homology model of rat TRPV1 (rTRPV1). We experimentally evaluated by mutational analysis the contribution of residues of rTRPV1 contributing to ligand binding by the prototypical TRPV1 agonists, capsaicin and resiniferatoxin (RTX). We then performed docking analysis using our homology model. The docking results with capsaicin and RTX showed that our homology model was reliable, affording good agreement with our mutation data. Additionally, the binding mode of a simplified RTX (sRTX) ligand as predicted by the modeling agreed well with those of capsaicin and RTX, accounting for the high binding affinity of the sRTX ligand for TRPV1. Through the homology modeling, docking and mutational studies, we obtained important insights into the ligand-receptor interactions at the molecular level which should prove of value in the design of novel TRPV1 ligands.
Collapse
Affiliation(s)
- Jin Hee Lee
- College of Pharmacy, Division of Life & Pharmaceutical Sciences, and National Core Research Center for Cell Signaling & Drug Discovery Research, Ewha Womans University, Seoul 120-750, Korea
| | - Yoonji Lee
- College of Pharmacy, Division of Life & Pharmaceutical Sciences, and National Core Research Center for Cell Signaling & Drug Discovery Research, Ewha Womans University, Seoul 120-750, Korea
| | - HyungChul Ryu
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Shinlim-Dong, Kwanak-Ku, Seoul 151-742, Korea
| | - Dong Wook Kang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Shinlim-Dong, Kwanak-Ku, Seoul 151-742, Korea
| | - Jeewoo Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Shinlim-Dong, Kwanak-Ku, Seoul 151-742, Korea
| | - Jozsef Lazar
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MA 20892, USA
| | - Larry V. Pearce
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MA 20892, USA
| | - Vladimir A. Pavlyukovets
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MA 20892, USA
| | - Peter M. Blumberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MA 20892, USA
| | - Sun Choi
- College of Pharmacy, Division of Life & Pharmaceutical Sciences, and National Core Research Center for Cell Signaling & Drug Discovery Research, Ewha Womans University, Seoul 120-750, Korea
| |
Collapse
|
24
|
|
25
|
Xiao D, Palani A, Aslanian R, McKittrick BA, McPhail AT, Correll CC, Phelps PT, Anthes JC, Rindgen D. Spiro-piperidine azetidinones as potent TRPV1 antagonists. Bioorg Med Chem Lett 2008; 19:783-7. [PMID: 19114307 DOI: 10.1016/j.bmcl.2008.12.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 12/03/2008] [Accepted: 12/04/2008] [Indexed: 11/19/2022]
Abstract
A series of spiro-piperidine azetidinone were synthesized and evaluated as potential TRPV1 antagonists. An important issue of plasma stability was investigated and resolved. Further focused SAR study lead to the discovery of a potent antagonist with good oral pharmacokinetic profile in rat.
Collapse
Affiliation(s)
- Dong Xiao
- Chemical Research Department, Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Childers WE, Gilbert AM, Kennedy JD, Whiteside GT. Advances in the development of novel analgesics. Expert Opin Ther Pat 2008. [DOI: 10.1517/13543776.18.9.1027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|