1
|
Hu J, Zhang D, Tian K, Ren C, Li H, Lin C, Huang X, Liu J, Mao W, Zhang J. Small-molecule LRRK2 inhibitors for PD therapy: Current achievements and future perspectives. Eur J Med Chem 2023; 256:115475. [PMID: 37201428 DOI: 10.1016/j.ejmech.2023.115475] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/27/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a multifunctional protein that orchestrates a diverse array of cellular processes, including vesicle transport, autophagy, lysosome degradation, neurotransmission, and mitochondrial activity. Hyperactivation of LRRK2 triggers vesicle transport dysfunction, neuroinflammation, accumulation of α-synuclein, mitochondrial dysfunction, and the loss of cilia, ultimately leading to Parkinson's disease (PD). Therefore, targeting LRRK2 protein is a promising therapeutic strategy for PD. The clinical translation of LRRK2 inhibitors was historically impeded by issues surrounding tissue specificity. Recent studies have identified LRRK2 inhibitors that have no effect on peripheral tissues. Currently, there are four small-molecule LRRK2 inhibitors undergoing clinical trials. This review provides a summary of the structure and biological functions of LRRK2, along with an overview of the binding modes and structure-activity relationships (SARs) of small-molecule inhibitors targeting LRRK2. It offers valuable references for developing novel drugs targeting LRRK2.
Collapse
Affiliation(s)
- Jiarui Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dan Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Keyue Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Changyu Ren
- Chengdu Fifth People's Hospital, Chengdu, 611130, Sichuan, China
| | - Heng Li
- Chengdu Fifth People's Hospital, Chengdu, 611130, Sichuan, China
| | - Congcong Lin
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xiaoli Huang
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Wuyu Mao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China; Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Jifa Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Cusack KP, Argiriadi MA, Gordon TD, Harris CM, Herold JM, Hoemann MZ, Yestrepsky BD. Identification of potent and selective inhibitors of PKR via virtual screening and traditional design. Bioorg Med Chem Lett 2023; 79:129047. [PMID: 36400288 DOI: 10.1016/j.bmcl.2022.129047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/08/2022] [Revised: 10/05/2022] [Accepted: 11/03/2022] [Indexed: 11/17/2022]
Abstract
Protein Kinase RNA-activated (PKR) inhibition is thought to be relevant for immunology due to the potential to reduce macrophage and dendritic cell responses to bacteria and its signaling downstream of TNFα. PKR is also associated with neuroscience indications such as Alzheimer's disease due to its activation by the double stranded DNA (dsDNA) virus HSV1, a virus suggested to be important in the development of AD. Studies exploring the mechanistic role of PKR with existing tool molecules such as the tricyclic oxindole C16 are clouded by the poor selectivity profile of this ATP-competitive, Type I kinase inhibitor. Type II kinase leads such as the benzothiophene or pyrazolopyrimidine scaffolds from literature are equally poor in their selectivity profiles. As such, it became necessary to identify more potent and selective chemical matter to better understand PKR biology. A dual approach was taken. The first step of the strategy included virtual screening of the AbbVie compound collection. A combination of pharmacophore-based and GPU shape-based screening was pursued to identify selective chemical matter from promiscuous leads. The second step of the strategy followed traditional compound design. This step initiated from a literature lead with PKR cross reactivity. Combined, the two parallel efforts led to identification of more selective leads for investigation of PKR biology.
Collapse
Affiliation(s)
- K P Cusack
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, MA 01605, United States.
| | - M A Argiriadi
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, MA 01605, United States
| | | | - C M Harris
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, United States
| | - J M Herold
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, United States
| | - M Z Hoemann
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, MA 01605, United States
| | | |
Collapse
|
3
|
Miller D, Reuillon T, Molyneux L, Blackburn T, Cook SJ, Edwards N, Endicott JA, Golding BT, Griffin RJ, Hardcastle I, Harnor SJ, Heptinstall A, Lochhead P, Martin MP, Martin NC, Myers S, Newell DR, Noble RA, Phillips N, Rigoreau L, Thomas H, Tucker JA, Wang LZ, Waring MJ, Wong AC, Wedge SR, Noble MEM, Cano C. Parallel Optimization of Potency and Pharmacokinetics Leading to the Discovery of a Pyrrole Carboxamide ERK5 Kinase Domain Inhibitor. J Med Chem 2022; 65:6513-6540. [PMID: 35468293 PMCID: PMC9109144 DOI: 10.1021/acs.jmedchem.1c01756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/11/2021] [Indexed: 11/29/2022]
Abstract
The nonclassical extracellular signal-related kinase 5 (ERK5) mitogen-activated protein kinase pathway has been implicated in increased cellular proliferation, migration, survival, and angiogenesis; hence, ERK5 inhibition may be an attractive approach for cancer treatment. However, the development of selective ERK5 inhibitors has been challenging. Previously, we described the development of a pyrrole carboxamide high-throughput screening hit into a selective, submicromolar inhibitor of ERK5 kinase activity. Improvement in the ERK5 potency was necessary for the identification of a tool ERK5 inhibitor for target validation studies. Herein, we describe the optimization of this series to identify nanomolar pyrrole carboxamide inhibitors of ERK5 incorporating a basic center, which suffered from poor oral bioavailability. Parallel optimization of potency and in vitro pharmacokinetic parameters led to the identification of a nonbasic pyrazole analogue with an optimal balance of ERK5 inhibition and oral exposure.
Collapse
Affiliation(s)
- Duncan
C. Miller
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre
for Cancer, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K.
| | - Tristan Reuillon
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre
for Cancer, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K.
| | - Lauren Molyneux
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre
for Cancer, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K.
| | - Timothy Blackburn
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre
for Cancer, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K.
| | - Simon J. Cook
- Signalling
Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K.
| | - Noel Edwards
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Paul O’Gorman Building, Medical School,
Framlington Place, Newcastle upon Tyne NE2 4HH, U.K.
| | - Jane A. Endicott
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Paul O’Gorman Building, Medical School,
Framlington Place, Newcastle upon Tyne NE2 4HH, U.K.
| | - Bernard T. Golding
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre
for Cancer, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K.
| | - Roger J. Griffin
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre
for Cancer, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K.
| | - Ian Hardcastle
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre
for Cancer, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K.
| | - Suzannah J. Harnor
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre
for Cancer, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K.
| | - Amy Heptinstall
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre
for Cancer, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K.
| | - Pamela Lochhead
- Signalling
Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K.
| | - Mathew P. Martin
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Paul O’Gorman Building, Medical School,
Framlington Place, Newcastle upon Tyne NE2 4HH, U.K.
| | - Nick C. Martin
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre
for Cancer, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K.
| | - Stephanie Myers
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre
for Cancer, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K.
| | - David R. Newell
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Paul O’Gorman Building, Medical School,
Framlington Place, Newcastle upon Tyne NE2 4HH, U.K.
| | - Richard A. Noble
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Paul O’Gorman Building, Medical School,
Framlington Place, Newcastle upon Tyne NE2 4HH, U.K.
| | - Nicole Phillips
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Paul O’Gorman Building, Medical School,
Framlington Place, Newcastle upon Tyne NE2 4HH, U.K.
| | - Laurent Rigoreau
- Cancer
Research UK Therapeutic Discovery Laboratories, Jonas Webb Building, Babraham Campus, Babraham, Cambridgeshire CB22 3AT, U.K.
| | - Huw Thomas
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Paul O’Gorman Building, Medical School,
Framlington Place, Newcastle upon Tyne NE2 4HH, U.K.
| | - Julie A. Tucker
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Paul O’Gorman Building, Medical School,
Framlington Place, Newcastle upon Tyne NE2 4HH, U.K.
| | - Lan-Zhen Wang
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Paul O’Gorman Building, Medical School,
Framlington Place, Newcastle upon Tyne NE2 4HH, U.K.
| | - Michael J. Waring
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre
for Cancer, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K.
| | - Ai-Ching Wong
- Cancer
Research UK Therapeutic Discovery Laboratories, London Bioscience Innovation Centre, 2 Royal College Street, London NW1 0NH, U.K.
| | - Stephen R. Wedge
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Paul O’Gorman Building, Medical School,
Framlington Place, Newcastle upon Tyne NE2 4HH, U.K.
| | - Martin E. M. Noble
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Paul O’Gorman Building, Medical School,
Framlington Place, Newcastle upon Tyne NE2 4HH, U.K.
| | - Celine Cano
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre
for Cancer, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K.
| |
Collapse
|
4
|
Malki Y, Martinez J, Masurier N. 1,3-Diazepine: A privileged scaffold in medicinal chemistry. Med Res Rev 2021; 41:2247-2315. [PMID: 33645848 DOI: 10.1002/med.21795] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/29/2020] [Revised: 01/20/2021] [Accepted: 02/17/2021] [Indexed: 12/19/2022]
Abstract
Privileged structures have been widely used as effective templates for drug discovery. While benzo-1,4-diazepine constitutes the first historical example of such a structure, the 1,3 analogue is just as rich in terms of applications in medicinal chemistry. The 1,3-diazepine moiety is present in numerous biological active compounds including natural products, and is used to design compounds displaying a large range of biological activities. It is present in the clinically used anticancer compound pentostatin, in several recent FDA approved β-lactamase inhibitors (e.g., avibactam) and also in coformycin, a natural product known as a ring-expanded purine analogue displaying antiviral and anticancer activities. Several other 1,3-diazepine containing compounds have entered into clinical trials. This heterocyclic structure has been and is still widely used in medicinal chemistry to design enzyme inhibitors, GPCR ligands, and so forth. This review endeavours to highlight the main use of the 1,3-diazepine scaffold and its derivatives, and their applications in medicinal chemistry, drug design, and therapy. We will focus more particularly on the development of enzyme inhibitors incorporating this scaffold, with a strong emphasis on the molecular interactions involved in the inhibition mechanism.
Collapse
Affiliation(s)
- Yohan Malki
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Jean Martinez
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Nicolas Masurier
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| |
Collapse
|
5
|
The synthesis of symmetrical 3,3-Disubstituted oxindoles by phosphine-catalyzed γ/γ-addition of oxindoles with allenoates. CATAL COMMUN 2020. [DOI: 10.1016/j.catcom.2019.105838] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/06/2023] Open
|
6
|
Tröster A, Heinzlmeir S, Berger BT, Gande SL, Saxena K, Sreeramulu S, Linhard V, Nasiri AH, Bolte M, Müller S, Kuster B, Médard G, Kudlinzki D, Schwalbe H. NVP-BHG712: Effects of Regioisomers on the Affinity and Selectivity toward the EPHrin Family. ChemMedChem 2018; 13:1629-1633. [PMID: 29928781 DOI: 10.1002/cmdc.201800398] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/13/2018] [Indexed: 01/14/2023]
Abstract
Erythropoietin-producing hepatocellular (EPH) receptors are transmembrane receptor tyrosine kinases. Their extracellular domains bind specifically to ephrin A/B ligands, and this binding modulates intracellular kinase activity. EPHs are key players in bidirectional intercellular signaling, controlling cell morphology, adhesion, and migration. They are increasingly recognized as cancer drug targets. We analyzed the binding of NVP-BHG712 (NVP) to EPHA2 and EPHB4. Unexpectedly, all tested commercially available NVP samples turned out to be a regioisomer (NVPiso) of the inhibitor, initially described in a Novartis patent application. They only differ by the localization of a single methyl group on either one of two adjacent nitrogen atoms. The two compounds of identical mass revealed different binding modes. Furthermore, both in vitro and in vivo experiments showed that the isomers differ in their kinase affinity and selectivity.
Collapse
Affiliation(s)
- Alix Tröster
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe University, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Stephanie Heinzlmeir
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Emil-Erlenmeyer-Forum 5, 85354, Freising, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Benedict-Tilman Berger
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany.,Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
| | - Santosh L Gande
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe University, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Krishna Saxena
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe University, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Sridhar Sreeramulu
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe University, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Verena Linhard
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe University, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Amir H Nasiri
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe University, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Michael Bolte
- Institute for Inorganic Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Susanne Müller
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Emil-Erlenmeyer-Forum 5, 85354, Freising, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Guillaume Médard
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Emil-Erlenmeyer-Forum 5, 85354, Freising, Germany
| | - Denis Kudlinzki
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe University, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Harald Schwalbe
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe University, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| |
Collapse
|
7
|
Zhang Z, Zhang D, Liu Y, Yang D, Ran F, Wang ML, Zhao G. Targeting Bruton's tyrosine kinase for the treatment of B cell associated malignancies and autoimmune diseases: Preclinical and clinical developments of small molecule inhibitors. Arch Pharm (Weinheim) 2018; 351:e1700369. [DOI: 10.1002/ardp.201700369] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/22/2017] [Revised: 04/14/2018] [Accepted: 04/17/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Zhen Zhang
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences; Shandong University; Jinan Shandong P.R. China
| | - Daoguang Zhang
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences; Shandong University; Jinan Shandong P.R. China
| | - Yang Liu
- The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Dezhi Yang
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences; Shandong University; Jinan Shandong P.R. China
| | - Fansheng Ran
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences; Shandong University; Jinan Shandong P.R. China
| | - Michael L. Wang
- The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Guisen Zhao
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences; Shandong University; Jinan Shandong P.R. China
| |
Collapse
|
8
|
Farag AK, Elkamhawy A, Londhe AM, Lee KT, Pae AN, Roh EJ. Novel LCK/FMS inhibitors based on phenoxypyrimidine scaffold as potential treatment for inflammatory disorders. Eur J Med Chem 2017; 141:657-675. [PMID: 29107425 DOI: 10.1016/j.ejmech.2017.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/20/2017] [Revised: 05/19/2017] [Accepted: 10/02/2017] [Indexed: 01/24/2023]
Abstract
Tyrosine kinases including LCK and FMS are involved in inflammatory disorders as well as many types of cancer. Our team has designed and synthesized thirty novel pyrimidine based inhibitors targeting LCK, classified into four different series (amides, ureas, imines (Schiff base) and benzylamines). Twelve of them showed nanomolar IC50 values. Compound 7g showed excellent selectivity profile and was selectively potent over FMS kinase (IC50 value of 4.6 nM). Molecular docking study was performed to help us rationalize the obtained results and predict the possible binding mode for our compounds in both LCK and FMS. Based on the obtained biological assay data and modelling results, a detailed SAR study was discussed. As a further testing regarding the anti-inflammatory effect of the new compounds, in vitro cellular assay over RAW 264.7 macrophages was performed. Compound 7g exhibited excellent anti-inflammatory effect. Therefore, we report the design of novel phenoxypyrimidine derivatives as potent and selective LCK inhibitors and the discovery of 7g as potent and selective FMS/LCK dual inhibitor for the potential application in inflammatory disorders including rheumatoid arthritis (RA).
Collapse
Affiliation(s)
- Ahmed Karam Farag
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science &Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Ahmed Elkamhawy
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Ashwini M Londhe
- Division of Bio-Medical Science &Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea; Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Kyung-Tae Lee
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Ae Nim Pae
- Division of Bio-Medical Science &Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea; Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Eun Joo Roh
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science &Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
9
|
Patent highlights August-September 2016. Pharm Pat Anal 2017; 6:17-24. [PMID: 28155581 DOI: 10.4155/ppa-2016-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|
10
|
Chen H, Xing SK, Gao F, Li N, Li XL, Meng M. Design, synthesis and immunomodulating activity of C - pseudo nucleosides containing thiazolidin-4-one and phenyl connected by acetamide bond. CHINESE CHEM LETT 2016. [DOI: 10.1016/j.cclet.2016.01.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/02/2023]
|
11
|
Koroleva EV, Ignatovich ZI, Sinyutich YV, Gusak KN. Aminopyrimidine derivatives as protein kinases inhibitors. Molecular design, synthesis, and biologic activity. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2016. [DOI: 10.1134/s1070428016020019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/23/2022]
|
12
|
Koroleva EV, Ignatovich ZV, Gusak KN, Ermolinskaya AL, Sinyutich YV. Synthesis of N-aryl benzamides containing pharmacophoric tyrosine kinase inhibitor fragments. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2015. [DOI: 10.1134/s1070428015010182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/23/2022]
|
13
|
Li X, Zuo Y, Tang G, Wang Y, Zhou Y, Wang X, Guo T, Xia M, Ding N, Pan Z. Discovery of a Series of 2,5-Diaminopyrimidine Covalent Irreversible Inhibitors of Bruton’s Tyrosine Kinase with in Vivo Antitumor Activity. J Med Chem 2014; 57:5112-28. [DOI: 10.1021/jm4017762] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xitao Li
- Key Laboratory of
Chemical Genomics, Key Laboratory of Structural Biology, School of
Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Yingying Zuo
- Key Laboratory of
Chemical Genomics, Key Laboratory of Structural Biology, School of
Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Guanghui Tang
- Key Laboratory of
Chemical Genomics, Key Laboratory of Structural Biology, School of
Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Yan Wang
- Key Laboratory of
Chemical Genomics, Key Laboratory of Structural Biology, School of
Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Yiqing Zhou
- Key Laboratory of
Chemical Genomics, Key Laboratory of Structural Biology, School of
Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Xueying Wang
- Key Laboratory of
Chemical Genomics, Key Laboratory of Structural Biology, School of
Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Tianlin Guo
- Key Laboratory of
Chemical Genomics, Key Laboratory of Structural Biology, School of
Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Mengying Xia
- Key Laboratory of
Chemical Genomics, Key Laboratory of Structural Biology, School of
Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Ning Ding
- Key Laboratory of Carcinogenesis and Translational Research (Ministry
of Education), Department of Lymphoma, Peking University Cancer Hospital and Institute, No. 52 Fucheng Road, Haidian
District, Beijing, 100142, China
| | - Zhengying Pan
- Key Laboratory of
Chemical Genomics, Key Laboratory of Structural Biology, School of
Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| |
Collapse
|
14
|
Abstract
VEGF is an important signaling protein involved in both vasculogenesis and angiogenesis. As an essential receptor protein tyrosine kinase propagating cellular signal transduction processes, VEGFR-2 is a central target for drug discovery against tumor-associated angiogenesis. Since the autophosphorylation of VEGFR-2 represents a key step in this signal pathway that contributes to angiogenesis, the discovery of small molecule inhibitors that block this reaction has attracted great interest for novel drugs research and development. Advances in the understanding of catalytic cleft and the conformational changes of DFG motif have resulted in the development of small molecule inhibitors known as type I and type II. High-resolution crystal structures of various inhibitors in complex with the receptor offer an insight into the relationship among binding modes, inhibition mechanisms, activity, selectivity and resistance. To control selectivity, improve activity and introduce intellectual property novelty, the strategies for the further development are discussed through structural and conformational analysis in this review.
Collapse
|
15
|
Abstract
IMPORTANCE OF THE FIELD Lck (p56(lck) or lymphocyte specific kinase) is a cytoplasmic tyrosine kinase of the Src family expressed in T cells and natural killer (NK) cells. Genetic evidence from knockout mice and human mutations demonstrates that Lck kinase activity is critical for T cell receptor (TCR)-mediated signaling, leading to normal T-cell development and activation. Selective inhibition of Lck is expected to offer a new therapy for the treatment of T-cell-mediated autoimmune and inflammatory disorders and/or organ transplant rejection. AREAS COVERED IN THIS REVIEW This review covers the patents, patent applications and associated publications for small molecule kinase inhibitors of Lck since 2005 and attempts to place them in context from a structural point of view. WHAT THE READER WILL GAIN Readers will gain an overview of the structural classes and binding modes of Lck inhibitors, the major players in this area and an insight into the current state of the field. TAKE HOME MESSAGE The search for a potent and orally active inhibitor of Lck has been an intense area of research for a number of years. Despite tremendous efforts, the identification of a highly selective and potent Lck inhibitor suitable for use as an immunosuppressive agent remains elusive.
Collapse
Affiliation(s)
- Matthew W Martin
- Amgen, Inc., Department of Medicinal Chemistry, Cambridge, Massachusetts 02142, USA.
| | | |
Collapse
|
16
|
|
17
|
Takayama T, Umemiya H, Amada H, Yabuuchi T, Shiozawa F, Katakai H, Takaoka A, Yamaguchi A, Endo M, Sato M. Pyrrole derivatives as potent inhibitors of lymphocyte-specific kinase: Structure, synthesis, and SAR. Bioorg Med Chem Lett 2009; 20:108-11. [PMID: 19945869 DOI: 10.1016/j.bmcl.2009.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/09/2009] [Revised: 11/05/2009] [Accepted: 11/07/2009] [Indexed: 01/08/2023]
Abstract
We have described the synthesis, enzyme inhibitory activity, structure-activity relationships, and proposed binding mode of a novel series of pyrrole derivatives as lymphocyte-specific kinase (Lck) inhibitors. The most potent analogs exhibited good enzyme inhibitory activity (IC(50)s <10nM) for Lck kinase inhibition.
Collapse
Affiliation(s)
- Tetsuo Takayama
- Medicinal Research Laboratories, Taisho Pharmaceutical Co., Ltd, 403, Yoshino-Cho 1-Chome, Kita-Ku, Saitama-Shi, Saitama 331-9530, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Takayama T, Umemiya H, Amada H, Yabuuchi T, Koami T, Shiozawa F, Oka Y, Takaoka A, Yamaguchi A, Endo M, Sato M. Ring-fused pyrazole derivatives as potent inhibitors of lymphocyte-specific kinase (Lck): Structure, synthesis, and SAR. Bioorg Med Chem Lett 2009; 20:112-6. [PMID: 19945867 DOI: 10.1016/j.bmcl.2009.11.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/09/2009] [Revised: 11/05/2009] [Accepted: 11/07/2009] [Indexed: 11/30/2022]
Abstract
We have identified a novel series of ring-fused pyrazole derivatives as lymphocyte-specific kinase (Lck) inhibitors. The most potent analogs exhibited good enzyme inhibitory activity (IC(50)s <1nM) as well as excellent cellular activity against mixed lymphocyte reaction (MLR) (IC(50)s <1nM).
Collapse
Affiliation(s)
- Tetsuo Takayama
- Medicinal Research Laboratories, Taisho Pharmaceutical Co., Ltd, 403, Yoshino-Cho 1-Chome, Kita-Ku, Saitama-Shi, Saitama 331-9530, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|