1
|
Chen L, Shen Q, Liu Y, Zhang Y, Sun L, Ma X, Song N, Xie J. Homeostasis and metabolism of iron and other metal ions in neurodegenerative diseases. Signal Transduct Target Ther 2025; 10:31. [PMID: 39894843 PMCID: PMC11788444 DOI: 10.1038/s41392-024-02071-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/24/2024] [Accepted: 11/12/2024] [Indexed: 02/04/2025] Open
Abstract
As essential micronutrients, metal ions such as iron, manganese, copper, and zinc, are required for a wide range of physiological processes in the brain. However, an imbalance in metal ions, whether excessive or insufficient, is detrimental and can contribute to neuronal death through oxidative stress, ferroptosis, cuproptosis, cell senescence, or neuroinflammation. These processes have been found to be involved in the pathological mechanisms of neurodegenerative diseases. In this review, the research history and milestone events of studying metal ions, including iron, manganese, copper, and zinc in neurodegenerative diseases such as Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD), will be introduced. Then, the upstream regulators, downstream effector, and crosstalk of mental ions under both physiologic and pathologic conditions will be summarized. Finally, the therapeutic effects of metal ion chelators, such as clioquinol, quercetin, curcumin, coumarin, and their derivatives for the treatment of neurodegenerative diseases will be discussed. Additionally, the promising results and limitations observed in clinical trials of these metal ion chelators will also be addressed. This review will not only provide a comprehensive understanding of the role of metal ions in disease development but also offer perspectives on their modulation for the prevention or treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Leilei Chen
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Qingqing Shen
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yingjuan Liu
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yunqi Zhang
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Liping Sun
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Xizhen Ma
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Ning Song
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Junxia Xie
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China.
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China.
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China.
| |
Collapse
|
2
|
Yepes AF, Cardona-Galeano W, Herrera-Ramírez A, Rada MS, Osorio E, Gonzalez-Molina LA, Miranda-Brand Y, Posada-Duque R. Novel multipotent conjugate bearing tacrine and donepezil motifs with dual cholinergic inhibition and neuroprotective properties targeting Alzheimer's disease. RSC Med Chem 2025:d4md00804a. [PMID: 39867586 PMCID: PMC11756598 DOI: 10.1039/d4md00804a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/30/2024] [Indexed: 01/28/2025] Open
Abstract
In this work, we developed potential multifunctional agents to combat Alzheimer's disease. According to our strategy, fragments of tacrine and donepezil were merged in a unique hybrid structure. After successfully synthesizing the compounds, they were evaluated for their dual AChE/BuChE inhibitor potential and neuroprotector response using a glutamate-induced excitotoxicity model. Most of the compounds showed promising activity. Among them, the hybrid with 2,5-dimetoxysubstitution (3b) was the most potent analogue, triggering dual potent AChE/BuChE inhibition with low nanomolar affinity (IC50 ∼ 300 nM) and low toxicity to human liver cancer cells (HepG2). This analogue prevented the glutamate excitotoxic stimulus during pre/post treatment testing, maintained ATP levels, possessed an astrocytic protective response, and abolished the glutamate-induced excitotoxicity. Besides, the hit compound 3b exhibited suitable permeability in the blood-brain barrier (BBB) and low degradability in human blood-plasma. In addition, the docking studies suggested that the neuroprotectant response exhibited by 3b can be related to the direct blockage of the NMDA channel pore. Finally, an ideal neuropharmacokinetic profile was estimated for 3b. Overall, the designed conjugates provide a novel multifunctional molecular scaffold that can be used as a prototype drug in further investigations toward novel multipotent therapeutics for treating AD.
Collapse
Affiliation(s)
- Andrés F Yepes
- Chemistry of Colombian Plants, Institute of Chemistry, Faculty of Exact and Natural Sciences University of Antioquia Calle 70 No. 52-21 Medellín Colombia
| | - Wilson Cardona-Galeano
- Chemistry of Colombian Plants, Institute of Chemistry, Faculty of Exact and Natural Sciences University of Antioquia Calle 70 No. 52-21 Medellín Colombia
| | - Angie Herrera-Ramírez
- Chemistry of Colombian Plants, Institute of Chemistry, Faculty of Exact and Natural Sciences University of Antioquia Calle 70 No. 52-21 Medellín Colombia
| | - Marlyn S Rada
- Chemistry of Colombian Plants, Institute of Chemistry, Faculty of Exact and Natural Sciences University of Antioquia Calle 70 No. 52-21 Medellín Colombia
| | - Edison Osorio
- Grupo de Investigación en Sustancias Bioactivas, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia Calle 70 No. 52-21 Medellín Colombia
| | - Luis Alfonso Gonzalez-Molina
- Área de Neurofisiología celular, Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia Medellín Colombia
- Área de Neurobiología Celular y Molecular, Grupo de Neurociencias de Antioquia, Universidad de Antioquia A.A 1226 Medellin 050010 Colombia
| | - Yaneth Miranda-Brand
- Área de Neurofisiología celular, Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia Medellín Colombia
- Área de Neurobiología Celular y Molecular, Grupo de Neurociencias de Antioquia, Universidad de Antioquia A.A 1226 Medellin 050010 Colombia
| | - Rafael Posada-Duque
- Área de Neurofisiología celular, Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia Medellín Colombia
| |
Collapse
|
3
|
Bartolić M, Matošević A, Maraković N, Bušić V, Roca S, Vikić-Topić D, Sabljić A, Bosak A, Gašo-Sokač D. Evaluation of hydrazone and N-acylhydrazone derivatives of vitamin B6 and pyridine-4-carbaldehyde as potential drugs against Alzheimer's disease. J Enzyme Inhib Med Chem 2024; 39:2431832. [PMID: 39654394 PMCID: PMC11633425 DOI: 10.1080/14756366.2024.2431832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 12/13/2024] Open
Abstract
The growing prevalence of Alzheimer's disease calls for a drug that can simultaneously act towards several targets involved in the pathophysiology of the disease. In our study, we evaluated the potential of hydrazone and N-acylhydrazone derivatives of vitamin B6 and pyridine-4-carbaldehyde to be used as multi-target directed ligands targeting cholinergic system by inhibiting acetyl- and butyrylcholinesterase, lowering the accumulation of β-amyloid plaques by inhibiting both the β-secretase activity and amyloid self-aggregation, and maintaining the biometal balance by chelating certain biometals. Our results showed that all of the tested hydrazones were potent inhibitors of human cholinesterases with inhibition constants (Ki) in micromolar range able to lower the activity of β-secretase, inhibit amyloid aggregation, chelate biometals and act as antioxidants. Also, most of them were estimated to be able to cross the blood-brain barrier by passive transport and to be absorbed in human intestines as well as with moderate metabolic stability in liver microsomes.
Collapse
Affiliation(s)
- Marija Bartolić
- Division of Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Ana Matošević
- Division of Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Nikola Maraković
- Division of Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Valentina Bušić
- Faculty of Food and Technology Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Sunčica Roca
- NMR Centre, Rudjer Bošković Institute, Zagreb, Croatia
| | - Dražen Vikić-Topić
- NMR Centre, Rudjer Bošković Institute, Zagreb, Croatia
- Department of Natural and Health Sciences, Juraj Dobrila University of Pula, Pula, Croatia
| | - Antonio Sabljić
- Faculty of Food and Technology Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Anita Bosak
- Division of Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Dajana Gašo-Sokač
- Faculty of Food and Technology Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
4
|
de Freitas Silva M, Juliet Cristancho Ortiz C, Ferreira Coelho L, Pruccoli L, Pagliarani B, Pisani L, Catto M, Poli G, Tuccinardi T, Cardoso Vilela F, Giusti-Paiva A, Amaral Alves M, Ribeiro de Souza HM, Tarozzi A, Silva Gontijo V, Viegas C. Synthesis and pharmacological evaluation of novel N-aryl-cinnamoyl-hydrazone hybrids designed as neuroprotective agents for the treatment of Parkinson's disease. Bioorg Chem 2024; 150:107587. [PMID: 38941700 DOI: 10.1016/j.bioorg.2024.107587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
Molecular hybridization between structural fragments from the structures of curcumin (1) and resveratrol (2) was used as a designing tool to generate a new N-acyl-cinnamoyl-hydrazone hybrid molecular architecture. Twenty-eight new compounds were synthesized and evaluated for multifunctional activities related to Parkinson's disease (PD), including neuroprotection, antioxidant, metal chelating ability, and Keap1/Nrf2 pathway activation. Compounds 3b (PQM-161) and 3e (PQM-164) were highlighted for their significant antioxidant profile, acting directly as induced free radical stabilizers by DPPH and indirectly by modulating intracellular inhibition of t-BOOH-induced ROS formation in neuronal cells. The mechanism of action was determined as a result of Keap1/Nrf2 pathway activation by both compounds and confirmed by different experiments. Furthermore, compound 3e (PQM-164) exhibited a significant effect on the accumulation of α-synuclein and anti-inflammatory activity, leading to an expressive decrease in gene expression of iNOS, IL-1β, and TNF-α. Overall, these results highlighted compound 3e as a promising and innovative multifunctional drug prototype candidate for PD treatment.
Collapse
Affiliation(s)
- Matheus de Freitas Silva
- PeQuiM - Laboratory of Research in Medicinal Chemistry, Federal University of Alfenas, Jovino Fernandes Sales Avenue 2600, 37133-840 Alfenas, Brazil; Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| | - Cindy Juliet Cristancho Ortiz
- PeQuiM - Laboratory of Research in Medicinal Chemistry, Federal University of Alfenas, Jovino Fernandes Sales Avenue 2600, 37133-840 Alfenas, Brazil
| | - Letícia Ferreira Coelho
- PeQuiM - Laboratory of Research in Medicinal Chemistry, Federal University of Alfenas, Jovino Fernandes Sales Avenue 2600, 37133-840 Alfenas, Brazil
| | - Letizia Pruccoli
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| | - Barbara Pagliarani
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| | - Leonardo Pisani
- Department of Pharmacy-Pharmaceutical Sciences, University Aldo Moro of Bari, Via E. Orabona 4, 70125 Bari, Italy
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences, University Aldo Moro of Bari, Via E. Orabona 4, 70125 Bari, Italy
| | - Giulio Poli
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | | | - Alexandre Giusti-Paiva
- Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianopolis, Brazil
| | - Marina Amaral Alves
- LabMeta, Metabolomics Laboratory, Institute of Chemistry, Federal University of Rio de Janeiro, 21941-598 Rio de Janeiro, Brazil
| | - Hygor M Ribeiro de Souza
- LabMeta, Metabolomics Laboratory, Institute of Chemistry, Federal University of Rio de Janeiro, 21941-598 Rio de Janeiro, Brazil
| | - Andrea Tarozzi
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| | - Vanessa Silva Gontijo
- PeQuiM - Laboratory of Research in Medicinal Chemistry, Federal University of Alfenas, Jovino Fernandes Sales Avenue 2600, 37133-840 Alfenas, Brazil
| | - Claudio Viegas
- PeQuiM - Laboratory of Research in Medicinal Chemistry, Federal University of Alfenas, Jovino Fernandes Sales Avenue 2600, 37133-840 Alfenas, Brazil.
| |
Collapse
|
5
|
Singh G, Kumar S, Panda SR, Kumar P, Rai S, Verma H, Singh YP, Kumar S, Srikrishna S, Naidu VGM, Modi G. Design, Synthesis, and Biological Evaluation of Ferulic Acid-Piperazine Derivatives Targeting Pathological Hallmarks of Alzheimer's Disease. ACS Chem Neurosci 2024; 15:2756-2778. [PMID: 39076038 DOI: 10.1021/acschemneuro.4c00130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
Alzheimer's disease (AD) is the most prevalent cause of dementia and is characterized by low levels of acetyl and butyrylcholine, increased oxidative stress, inflammation, accumulation of metals, and aggregations of Aβ and tau proteins. Current treatments for AD provide only symptomatic relief without impacting the pathological hallmarks of the disease. In our ongoing efforts to develop naturally inspired novel multitarget molecules for AD, through extensive medicinal chemistry efforts, we have developed 13a, harboring the key functional groups to provide not only symptomatic relief but also targeting oxidative stress, able to chelate iron, inhibiting NLRP3, and Aβ1-42 aggregation in various AD models. 13a exhibited promising anticholinesterase activity against AChE (IC50 = 0.59 ± 0.19 μM) and BChE (IC50 = 5.02 ± 0.14 μM) with excellent antioxidant properties in DPPH assay (IC50 = 5.88 ± 0.21 μM) over ferulic acid (56.49 ± 0.62 μM). The molecular docking and dynamic simulations further corroborated the enzyme inhibition studies and confirmed the stability of these complexes. Importantly, in the PAMPA-BBB assay, 13a turned out to be a promising molecule that can efficiently cross the blood-brain barrier. Notably, 13a also exhibited iron-chelating properties. Furthermore, 13a effectively inhibited self- and metal-induced Aβ1-42 aggregation. It is worth mentioning that 13a demonstrated no symptom of cytotoxicity up to 30 μM concentration in PC-12 cells. Additionally, 13a inhibited the NLRP3 inflammasome and mitigated mitochondrial-induced reactive oxygen species and mitochondrial membrane potential damage triggered by LPS and ATP in HMC-3 cells. 13a could effectively reduce mitochondrial and cellular reactive oxygen species (ROS) in the Drosophila model of AD. Finally, 13a was found to be efficacious in reversing memory impairment in a scopolamine-induced AD mouse model in the in vivo studies. In ex vivo assessments, 13a notably modulates the levels of superoxide, catalase, and malondialdehyde along with AChE and BChE. These findings revealed that 13a holds promise as a potential candidate for further development in AD management.
Collapse
Affiliation(s)
- Gourav Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Rm # 123, Varanasi 221005, India
| | - Sunil Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Rm # 123, Varanasi 221005, India
| | - Samir Ranjan Panda
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781032, India
| | - Prabhat Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sanskriti Rai
- Department of Biochemistry, Institute of Sciences, Banaras Hindu University, Varanasi 201005, India
| | - Himanshu Verma
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Rm # 123, Varanasi 221005, India
| | - Yash Pal Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Rm # 123, Varanasi 221005, India
| | - Saroj Kumar
- Department of Biochemistry, Institute of Sciences, Banaras Hindu University, Varanasi 201005, India
| | - Saripella Srikrishna
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - V G M Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781032, India
| | - Gyan Modi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Rm # 123, Varanasi 221005, India
| |
Collapse
|
6
|
Verma A, Waiker DK, Singh N, Singh A, Saraf P, Bhardwaj B, Kumar P, Krishnamurthy S, Srikrishna S, Shrivastava SK. Lead optimization based design, synthesis, and pharmacological evaluation of quinazoline derivatives as multi-targeting agents for Alzheimer's disease treatment. Eur J Med Chem 2024; 271:116450. [PMID: 38701714 DOI: 10.1016/j.ejmech.2024.116450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/13/2024] [Accepted: 04/23/2024] [Indexed: 05/05/2024]
Abstract
The complexity and multifaceted nature of Alzheimer's disease (AD) have driven us to further explore quinazoline scaffolds as multi-targeting agents for AD treatment. The lead optimization strategy was utilized in designing of new series of derivatives (AK-1 to AK-14) followed by synthesis, characterization, and pharmacological evaluation against human cholinesterase's (hChE) and β-secretase (hBACE-1) enzymes. Amongst them, compounds AK-1, AK-2, and AK-3 showed good and significant inhibitory activity against both hAChE and hBACE-1 enzymes with favorable permeation across the blood-brain barrier. The most active compound AK-2 revealed significant propidium iodide (PI) displacement from the AChE-PAS region and was non-neurotoxic against SH-SY5Y cell lines. The lead molecule (AK-2) also showed Aβ aggregation inhibition in a self- and AChE-induced Aβ aggregation, Thioflavin-T assay. Further, compound AK-2 significantly ameliorated Aβ-induced cognitive deficits in the Aβ-induced Morris water maze rat model and demonstrated a significant rescue in eye phenotype in the Aꞵ-phenotypic drosophila model of AD. Ex-vivo immunohistochemistry (IHC) analysis on hippocampal rat brains showed reduced Aβ and BACE-1 protein levels. Compound AK-2 suggested good oral absorption via pharmacokinetic studies and displayed a good and stable ligand-protein interaction in in-silico molecular modeling analysis. Thus, the compound AK-2 can be regarded as a lead molecule and should be investigated further for the treatment of AD.
Collapse
Affiliation(s)
- Akash Verma
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi-221005, India
| | - Digambar Kumar Waiker
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi-221005, India
| | - Neha Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi-221005, India
| | - Abhinav Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi-221005, India
| | - Poorvi Saraf
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi-221005, India
| | - Bhagwati Bhardwaj
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi-221005, India
| | - Pradeep Kumar
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Sairam Krishnamurthy
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi-221005, India
| | - Saripella Srikrishna
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Sushant Kumar Shrivastava
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi-221005, India.
| |
Collapse
|
7
|
Singh A, Verma A, Bhardwaj B, Saraf P, Kumar H, Jain N, Waiker DK, Gajendra TA, Krishnamurthy S, Shrivastava SK. Structure-Guided Design, Synthesis, and Biological Evaluation of Peripheral Anionic Site Selective and Brain Permeable Novel Oxadiazole-Piperazine Conjugates against Alzheimer's Disease with Antioxidant Potential. ACS OMEGA 2024; 9:18169-18182. [PMID: 38680351 PMCID: PMC11044217 DOI: 10.1021/acsomega.3c10276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 05/01/2024]
Abstract
Alzheimer's disease (AD) is a multifactorial and emerging neurological disorder, which has invoked researchers to develop multitargeted ligands. Herein, hybrid conjugates of 5-phenyl-1,3,4-oxadiazole and piperazines were rationally designed, synthesized, and pharmacologically evaluated against hAChE, hBChE, and hBACE-1 enzymes for the management of AD. Among the series, compound 5AD comprising pyridyl substitution at terminal nitrogen of piperazine contemplated as a paramount lead compound (hAChE, IC50 = 0.103 ± 0.0172 μM, hBChE, IC50 ≥ 10 μM, and hBACE-1, IC50 = 1.342 ± 0.078 μM). Compound 5AD showed mixed-type enzyme inhibition in enzyme kinetic studies against the hAChE enzyme. In addition, compound 5AD revealed a significant displacement of propidium iodide from the peripheral anionic site (PAS) of hAChE and excellent blood-brain barrier (BBB) permeability in a parallel artificial membrane permeation assay (PAMPA). Besides, 5AD also exhibited anti-Aβ aggregation activity in self- and AChE-induced thioflavin T assay. Further, compound 5AD has shown significant improvement in learning and memory (p < 0.001) against the in vivo scopolamine-induced cognitive dysfunction mice model. The ex vivo study implied that after treatment with compound 5AD, there was a decrease in AChE and malonaldehyde (MDA) levels with an increase in catalase (CAT, oxidative biomarkers) in the hippocampal brain homogenate. Hence, compound 5AD could be regarded as a lead compound and further be explored in the treatment of AD.
Collapse
Affiliation(s)
- Abhinav Singh
- Pharmaceutical
Chemistry Research Laboratory, Department of Pharmaceutical Engineering
& Technology, Indian Institute of Technology,
(Banaras Hindu University), Varanasi 221005, India
| | - Akash Verma
- Pharmaceutical
Chemistry Research Laboratory, Department of Pharmaceutical Engineering
& Technology, Indian Institute of Technology,
(Banaras Hindu University), Varanasi 221005, India
| | - Bhagwati Bhardwaj
- Pharmaceutical
Chemistry Research Laboratory, Department of Pharmaceutical Engineering
& Technology, Indian Institute of Technology,
(Banaras Hindu University), Varanasi 221005, India
| | - Poorvi Saraf
- Pharmaceutical
Chemistry Research Laboratory, Department of Pharmaceutical Engineering
& Technology, Indian Institute of Technology,
(Banaras Hindu University), Varanasi 221005, India
| | - Hansal Kumar
- Pharmaceutical
Chemistry Research Laboratory, Department of Pharmaceutical Engineering
& Technology, Indian Institute of Technology,
(Banaras Hindu University), Varanasi 221005, India
| | - Nishi Jain
- Pharmaceutical
Chemistry Research Laboratory, Department of Pharmaceutical Engineering
& Technology, Indian Institute of Technology,
(Banaras Hindu University), Varanasi 221005, India
| | - Digambar Kumar Waiker
- Pharmaceutical
Chemistry Research Laboratory, Department of Pharmaceutical Engineering
& Technology, Indian Institute of Technology,
(Banaras Hindu University), Varanasi 221005, India
| | - T A Gajendra
- Neurotherapeutics
Research Laboratory, Department of Pharmaceutical Engineering &
Technology, Indian Institute of Technology,
(Banaras Hindu University), Varanasi 221005, India
| | - Sairam Krishnamurthy
- Neurotherapeutics
Research Laboratory, Department of Pharmaceutical Engineering &
Technology, Indian Institute of Technology,
(Banaras Hindu University), Varanasi 221005, India
| | - Sushant K. Shrivastava
- Pharmaceutical
Chemistry Research Laboratory, Department of Pharmaceutical Engineering
& Technology, Indian Institute of Technology,
(Banaras Hindu University), Varanasi 221005, India
| |
Collapse
|
8
|
Soliman AM, El-Sagheir AMK, Thabet MM, Abdel Hakiem AF, Aboraia AS. Synthesis, characterization, molecular modeling studies, and biological evaluation of metal piroxicam complexes (M = Ni(II), Pt(IV), Pd(II), Ag(I)) as antibacterial and anticancer agents. Drug Dev Res 2024; 85:e22156. [PMID: 38355931 DOI: 10.1002/ddr.22156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/01/2024] [Accepted: 01/22/2024] [Indexed: 02/16/2024]
Abstract
Four piroxicam metal complexes; NiL2 , PtL2 , PdL2 , and AgL were synthesized and characterized by different techniques with enhanced antibacterial and anticancer activity. Regarding in vitro antimicrobial activity, complex NiL2 displayed potent antibacterial effect against Escherichia coli and Pseudomonas aeruginosa that was 1.9-folds higher than piroxicam (minimum inhibitory concentration [MIC] = 31.85, 65.32 µM), respectively. In case of G+ve bacteria, complex PtL2 had potent activity on Staphylococcus aureus which was 2.1-folds higher than piroxicam (MIC = 43.12 µM), while activity of complex AgL against Enterococcus faecalis was threefolds higher than piroxicam (MIC = 74.57 µM. Complexes PtL2 and PdL2 exhibited higher inhibition of DNA gyrase than piroxicam (IC50 = 6.21 µM) in the range of 1.9-1.7-folds. The in vitro antiproliferative activity depicted that all investigated complexes showed better cytotoxic effect than piroxicam, specifically Pt and Pd complexes which had lower IC50 values than piroxicam on human liver cancer cell line HepG2 by 1.8 and 1.7-folds, respectively. While Pd and Ag complexes showed 2 and 1.6-folds better effect on human colon cancer cell line HT-29 compared with piroxicam. Molecular modeling studies including docking on Stranded DNA Duplex (1juu) and DNA gyrase enzyme (1kzn) that gave good insight about interaction of complexes with target molecules, calculation of electrostatic potential map and global reactivity descriptors were performed.
Collapse
Affiliation(s)
- Aya M Soliman
- Department of Medicinal Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Ahmed M K El-Sagheir
- Department of Medicinal Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
- Division of Pharmaceutical Chemistry and Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Momen M Thabet
- Department of Microbiology and Immunology, Faculty of Pharmacy, South Valley University, Qena, Egypt
| | | | - Ahmed S Aboraia
- Department of Medicinal Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
9
|
Verma A, Waiker DK, Singh N, Roy A, Singh N, Saraf P, Bhardwaj B, Krishnamurthy S, Trigun SK, Shrivastava SK. Design, Synthesis, and Biological Investigation of Quinazoline Derivatives as Multitargeting Therapeutics in Alzheimer's Disease Therapy. ACS Chem Neurosci 2024; 15:745-771. [PMID: 38327209 DOI: 10.1021/acschemneuro.3c00653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024] Open
Abstract
An efficient and promising method of treating complex neurodegenerative diseases like Alzheimer's disease (AD) is the multitarget-directed approach. Here in this work, a series of quinazoline derivatives (AV-1 to AV-21) were rationally designed, synthesized, and biologically evaluated as multitargeted directed ligands against human cholinesterase (hChE) and human β-secretase (hBACE-1) that exhibit moderate to good inhibitory effects. Compounds AV-1, AV-2, and AV-3 from the series demonstrated balanced and significant inhibition against these targets. These compounds also displayed excellent blood-brain barrier permeability via the PAMPA-BBB assay. Compound AV-2 significantly displaced propidium iodide (PI) from the acetylcholinesterase-peripheral anionic site (AChE-PAS) and was found to be non-neurotoxic at the maximum tested concentration (80 μM) against differentiated SH-SY5Y cell lines. Compound AV-2 also prevented AChE- and self-induced Aβ aggregation in the thioflavin T assay. Additionally, compound AV-2 significantly ameliorated scopolamine and Aβ-induced cognitive impairments in the in vivo behavioral Y-maze and Morris water maze studies, respectively. The ex vivo and biochemical analysis further revealed good hippocampal AChE inhibition and the antioxidant potential of the compound AV-2. Western blot and immunohistochemical (IHC) analysis of hippocampal brain revealed reduced Aβ, BACE-1, APP/Aβ, and Tau molecular protein expressions levels. The pharmacokinetic analysis of compound AV-2 demonstrated significant oral absorption with good bioavailability. The in silico molecular modeling studies of lead compound AV-2 moreover demonstrated a reasonable binding profile with AChE and BACE-1 enzymes and stable ligand-protein complexes throughout the 100 ns run. Compound AV-2 can be regarded as the lead candidate and could be explored more for AD therapy.
Collapse
Affiliation(s)
- Akash Verma
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Digambar Kumar Waiker
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Neha Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Anima Roy
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Namrata Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Poorvi Saraf
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Bhagwati Bhardwaj
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Sairam Krishnamurthy
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Surendra Kumar Trigun
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Sushant Kumar Shrivastava
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
10
|
Luque FJ, Muñoz-Torrero D. Acetylcholinesterase: A Versatile Template to Coin Potent Modulators of Multiple Therapeutic Targets. Acc Chem Res 2024. [PMID: 38333993 PMCID: PMC10882973 DOI: 10.1021/acs.accounts.3c00617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
ConspectusThe enzyme acetylcholinesterase (AChE) hydrolyzes the neurotransmitter acetylcholine (ACh) at cholinergic synapses of the peripheral and central nervous system. Thus, it is a prime therapeutic target for diseases that occur with a cholinergic deficit, prominently Alzheimer's disease (AD). Working at a rate near the diffusion limit, it is considered one of nature's most efficient enzymes. This is particularly meritorious considering that its catalytic site is buried at the bottom of a 20-Å-deep cavity, which is preceded by a bottleneck with a diameter shorter than that of the trimethylammonium group of ACh, which has to transit through it. Not only the particular architecture and amino acid composition of its active site gorge enable AChE to largely overcome this potential drawback, but it also offers plenty of possibilities for the design of novel inhibitor drug candidates.In this Account, we summarize our different approaches to colonize the vast territory of the AChE gorge in the pursuit of increased occupancy and hence of inhibitors with increased affinity. We pioneered the use of molecular hybridization to design inhibitors with extended binding at the CAS, reaching affinities among the highest reported so far. Further application of molecular hybridization to grow CAS extended binders by attaching a PAS-binding moiety through suitable linkers led to multisite inhibitors that span the whole length of the gorge, reaching the PAS and even interacting with midgorge residues. We show that multisite AChE inhibitors can also be successfully designed the other way around, by starting with an optimized PAS binder and then colonizing the gorge and CAS. Molecular hybridization from a multicomponent reaction-derived PAS binder afforded a single-digit picomolar multisite AChE inhibitor with more than 1.5 million-fold increased potency relative to the initial hit. This illustrates the powerful alliance between molecular hybridization and gorge occupancy for designing potent AChE inhibitors.Beyond AChE, we show that the stereoelectronic requirements imposed by the AChE gorge for multisite binding have a templating effect that leads to compounds that are active in other key biological targets in AD and other neurological and non-neurological diseases, such as BACE-1 and the aggregation of amyloidogenic proteins (β-amyloid, tau, α-synuclein, prion protein, transthyretin, and human islet amyloid polypeptide). The use of known pharmacophores for other targets as the PAS-binding motif enables the rational design of multitarget agents with multisite binding within AChE and activity against a variety of targets or pathological events, such as oxidative stress and the neuroinflammation-modulating enzyme soluble epoxide hydrolase, among others.We hope that our results can contribute to the development of drug candidates that can modify the course of neurodegeneration and may inspire future works that exploit the power of molecular hybridization in other proteins featuring large cavities.
Collapse
Affiliation(s)
- F Javier Luque
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, E-08921 Santa Coloma de Gramenet, Spain
- Institute of Biomedicine (IBUB), University of Barcelona, E-08028 Barcelona, Spain
- Institute of Theoretical and Computational Chemistry (IQTC), University of Barcelona, E-08028 Barcelona, Spain
| | - Diego Muñoz-Torrero
- Institute of Biomedicine (IBUB), University of Barcelona, E-08028 Barcelona, Spain
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, University of Barcelona, E-08028 Barcelona, Spain
| |
Collapse
|
11
|
Saha D, Nath Jha A. Computational multi-target approach to target essential enzymes of Leishmania donovani using comparative molecular dynamic simulations and MMPBSA analysis. PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:842-854. [PMID: 36760044 DOI: 10.1002/pca.3213] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/13/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Visceral leishmaniasis (VL) is caused by Leishmania donovani. The purine and pyrimidine pathways are essential for L. donovani. Simultaneously inhibiting multiple targets could be an effective strategy to eliminate the pathogen and treat VL. OBJECTIVE We aimed to target the essential enzymes of L. donovani and inhibit them using a multi-target approach. MATERIALS AND METHODS A systematic analytical method was followed, in which first reported inhibitors of two essential enzymes (adenine phosphoribosyl-transferase [APRT] and dihydroorotate dehydrogenase [DHODH]) were collected and then ADMET and PASS analyses were conducted using the Lipinski rule and Veber's rule. Additionally, molecular docking between screened ligands and proteins were performed. The stability of complexes was analyzed using molecular dynamics (MD) simulations and MMPBSA analysis. RESULTS Initially, 6,220 unique molecules were collected from the PubChem database, and then the Lipinski rule and Veber's rule were used for screening. In total, 203 compounds passed the ADMET test; their antileishmanial properties were tested by PASS analysis. As a result, 15 ligands were identified. Molecular docking simulations between APRT or DHODH and these 15 ligands were performed. Four molecules were found to be plant-derived compounds. Lig_2 and Lig_3 had good docking scores with both proteins. MD simulations were performed to determine the dynamic behavior and binding patterns of complexes. Both MD simulations and MMPBSA analysis showed Lig_3 is a promising antileishmanial inhibitor of both targets. CONCLUSION Promising plant-derived compounds that might be used to combat VL were obtained through a multi-target approach.
Collapse
Affiliation(s)
- Debanjan Saha
- Computational Biophysics Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Anupam Nath Jha
- Computational Biophysics Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| |
Collapse
|
12
|
Matošević A, Opsenica DM, Spasić M, Maraković N, Zandona A, Žunec S, Bartolić M, Kovarik Z, Bosak A. Evaluation of 4-aminoquinoline derivatives with an n-octylamino spacer as potential multi-targeting ligands for the treatment of Alzheimer's disease. Chem Biol Interact 2023; 382:110620. [PMID: 37406982 DOI: 10.1016/j.cbi.2023.110620] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/16/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
The most successful therapeutic strategy in the treatment of Alzheimer's disease (AD) is directed toward increasing levels of the neurotransmitter acetylcholine (ACh) by inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), the enzymes responsible for its hydrolysis. In this paper, we extended our study on 4-aminoquinolines as human cholinesterase inhibitors on twenty-six new 4-aminoquinolines containing an n-octylamino spacer on C(4) and different substituents on the terminal amino group. We evaluated the potency of new derivatives to act as multi-targeted ligands by determining their inhibition potency towards human AChE and BChE, ability to chelate biometals Fe, Cu and Zn, ability to inhibit the action of β-secretase 1 (BACE1) and their antioxidant capacity. All of the tested derivatives were very potent inhibitors of human AChE and BChE with inhibition constants (Ki) ranging from 0.0023 to 1.6 μM. Most of the compounds were estimated to be able to cross the blood-brain barrier (BBB) by passive transport and were nontoxic to human neuronal, kidney and liver cells in concentrations in which they inhibit cholinesterases. Generally, newly synthesised compounds were weak reductants compared to standard antioxidants, but all possessed a certain amount of antioxidant activity compared to tacrine. Of the eleven most potent cholinesterase inhibitors, eight compounds also inhibited BACE1 activity at 10-18%. Based on our overall results, compounds 8 with 3-fluorobenzyl, 11 with 3-chlorobenzyl and 17 with 3-metoxy benzyl substituents on the terminal amino group stood out as the most promising for the treatment of AD; they strongly inhibited AChE and BChE, were non-toxic on HepG2, HEK293 and SH-SY5Y cells, had the potential to cross the BBB and possessed the ability to chelate biometals and/or inhibit the activity of BACE1 within a range close to the therapeutically desired degree of inhibition.
Collapse
Affiliation(s)
- Ana Matošević
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Dejan M Opsenica
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Studentski trg 12-16, 11000, Beograd, Serbia; Centre of Excellence in Environmental Chemistry and Engineering, ICTM, 11000, Belgrade, Serbia
| | - Marta Spasić
- University of Belgrade, Faculty of Chemistry, Studentski trg 12-16, 11158, Belgrade, Serbia
| | - Nikola Maraković
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Antonio Zandona
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Suzana Žunec
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Marija Bartolić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Zrinka Kovarik
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Anita Bosak
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia.
| |
Collapse
|
13
|
Waiker DK, Verma A, A GT, Singh N, Roy A, Dilnashin H, Tiwari V, Trigun SK, Singh SP, Krishnamurthy S, Lama P, Davisson VJ, Shrivastava SK. Design, Synthesis, and Biological Evaluation of Piperazine and N-Benzylpiperidine Hybrids of 5-Phenyl-1,3,4-oxadiazol-2-thiol as Potential Multitargeted Ligands for Alzheimer's Disease Therapy. ACS Chem Neurosci 2023. [PMID: 37216500 DOI: 10.1021/acschemneuro.3c00245] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
Our present work demonstrates the successful design and synthesis of a new class of compounds based upon a multitargeted directed ligand design approach to discover new agents for use in Alzheimer's disease (AD). All the compounds were tested for their in vitro inhibitory potential against human acetylcholinesterase (hAChE), human butylcholinesterase (hBChE), β-secretase-1 (hBACE-1), and amyloid β (Aβ) aggregation. Compounds 5d and 5f have shown hAChE and hBACE-1 inhibition comparable to donepezil, while hBChE inhibition was comparable to rivastigmine. Compounds 5d and 5f also demonstrated a significant reduction in the formation of Aβ aggregates through the thioflavin T assay and confocal, atomic force, and scanning electron microscopy studies and significantly displaced the total propidium iodide, that is, 54 and 51% at 50 μM concentrations, respectively. Compounds 5d and 5f were devoid of neurotoxic liabilities against RA/BDNF (RA = retinoic acid; BDNF = brain-derived neurotrophic factor)-differentiated SH-SY5Y neuroblastoma cell lines at 10-80 μM concentrations. In both the scopolamine- and Aβ-induced mouse models for AD, compounds 5d and 5f demonstrated significant restoration of learning and memory behaviors. A series of ex vivo studies of hippocampal and cortex brain homogenates showed that 5d and 5f elicit decreases in AChE, malondialdehyde, and nitric oxide levels, an increase in glutathione level, and reduced levels of pro-inflammatory cytokines, tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) mRNA. The histopathological examination of mice revealed normal neuronal appearance in the hippocampal and cortex regions of the brain. Western blot analysis of the same tissue indicated a reduction in Aβ, amyloid precursor protein (APP)/Aβ, BACE-1, and tau protein levels, which were non-significant compared to the sham group. The immunohistochemical analysis also showed significantly lower expression of BACE-1 and Aβ levels, which was comparable to donepezil-treated group. Compounds 5d and 5f represent new lead candidates for developing AD therapeutics.
Collapse
Affiliation(s)
- Digambar Kumar Waiker
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Akash Verma
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Gajendra T A
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Namrata Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Anima Roy
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Hagera Dilnashin
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Vinod Tiwari
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Surendra Kumar Trigun
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Surya P Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Sairam Krishnamurthy
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Prem Lama
- CSIR - Indian Institute of Petroleum, Tech. Block, Mohkampur, Dehradun 248005, Uttarakhand, India
| | - Vincent Jo Davisson
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 479047, United States
| | - Sushant Kumar Shrivastava
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
14
|
Bao LQ, Baecker D, Mai Dung DT, Phuong Nhung N, Thi Thuan N, Nguyen PL, Phuong Dung PT, Huong TTL, Rasulev B, Casanola-Martin GM, Nam NH, Pham-The H. Development of Activity Rules and Chemical Fragment Design for In Silico Discovery of AChE and BACE1 Dual Inhibitors against Alzheimer's Disease. Molecules 2023; 28:molecules28083588. [PMID: 37110831 PMCID: PMC10142303 DOI: 10.3390/molecules28083588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Multi-target drug development has become an attractive strategy in the discovery of drugs to treat of Alzheimer's disease (AzD). In this study, for the first time, a rule-based machine learning (ML) approach with classification trees (CT) was applied for the rational design of novel dual-target acetylcholinesterase (AChE) and β-site amyloid-protein precursor cleaving enzyme 1 (BACE1) inhibitors. Updated data from 3524 compounds with AChE and BACE1 measurements were curated from the ChEMBL database. The best global accuracies of training/external validation for AChE and BACE1 were 0.85/0.80 and 0.83/0.81, respectively. The rules were then applied to screen dual inhibitors from the original databases. Based on the best rules obtained from each classification tree, a set of potential AChE and BACE1 inhibitors were identified, and active fragments were extracted using Murcko-type decomposition analysis. More than 250 novel inhibitors were designed in silico based on active fragments and predicted AChE and BACE1 inhibitory activity using consensus QSAR models and docking validations. The rule-based and ML approach applied in this study may be useful for the in silico design and screening of new AChE and BACE1 dual inhibitors against AzD.
Collapse
Affiliation(s)
- Le-Quang Bao
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam
| | - Daniel Baecker
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Straße 17, 17489 Greifswald, Germany
| | - Do Thi Mai Dung
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam
| | - Nguyen Phuong Nhung
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam
| | - Nguyen Thi Thuan
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam
| | - Phuong Linh Nguyen
- College of Computing & Informatics, Drexel University, 3141 Chestnut St., Philadelphia, PA 19104, USA
| | - Phan Thi Phuong Dung
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam
| | - Tran Thi Lan Huong
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam
| | - Bakhtiyor Rasulev
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND 58102, USA
| | | | - Nguyen-Hai Nam
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam
| | - Hai Pham-The
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam
| |
Collapse
|
15
|
Waiker D, Verma A, Saraf P, T.A. G, Krishnamurthy S, Chaurasia RN, Shrivastava SK. Development and Evaluation of Some Molecular Hybrids of N-(1-Benzylpiperidin-4-yl)-2-((5-phenyl-1,3,4-oxadiazol-2-yl)thio) as Multifunctional Agents to Combat Alzheimer's Disease. ACS OMEGA 2023; 8:9394-9414. [PMID: 36936338 PMCID: PMC10018501 DOI: 10.1021/acsomega.2c08061] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
A series of some novel compounds (SD-1-17) were designed following a molecular hybridization approach, synthesized, and biologically tested for hAChE, hBChE, hBACE-1, and Aβ aggregation inhibition potential to improve cognition and memory functions associated with Alzheimer's disease. Compounds SD-4 and SD-6 have shown multifunctional inhibitory profiles against hAChE, hBChE, and hBACE-1 enzymes in vitro. Compounds SD-4 and SD-6 have also shown anti-Aβ aggregation potential in self- and acetylcholinesterase (AChE)-induced thioflavin T assay. Both compounds have shown a significant propidium iodide (PI) displacement from the cholinesterase-peripheral active site (ChE-PAS) region with excellent blood-brain barrier (BBB) permeability and devoid of neurotoxic liabilities. Compound SD-6 ameliorates cognition and memory functions in scopolamine- and Aβ-induced behavioral rat models of Alzheimer's disease (AD). Ex vivo biochemical estimation revealed a significant decrease in malonaldehyde (MDA) and AChE levels, while a substantial increase of superoxide dismutase (SOD), catalase, glutathione (GSH), and ACh levels is seen in the hippocampal brain homogenates. The histopathological examination of brain slices also revealed no sign of neuronal or any tissue damage in the SD-6-treated experimental animals. The in silico molecular docking results of compounds SD-4 and SD-6 showed their binding with hChE-catalytic anionic site (CAS), PAS, and the catalytic dyad residues of the hBACE-1 enzymes. A 100 ns molecular dynamic simulation study of both compounds with ChE and hBACE-1 enzymes also confirmed the ligand-protein complex's stability, while quikprop analysis suggested drug-like properties of the compounds.
Collapse
Affiliation(s)
- Digambar
Kumar Waiker
- Pharmaceutical
Chemistry Research Laboratory, Department of Pharmaceutical Engineering
and Technology, Indian Institute of Technology-Banaras
Hindu University, Varanasi 221005, India
| | - Akash Verma
- Pharmaceutical
Chemistry Research Laboratory, Department of Pharmaceutical Engineering
and Technology, Indian Institute of Technology-Banaras
Hindu University, Varanasi 221005, India
| | - Poorvi Saraf
- Pharmaceutical
Chemistry Research Laboratory, Department of Pharmaceutical Engineering
and Technology, Indian Institute of Technology-Banaras
Hindu University, Varanasi 221005, India
| | - Gajendra T.A.
- Neurotherapeutics
Research Laboratory, Department of Pharmaceutical Engineering and
Technology, Indian Institute of Technology-Banaras
Hindu University, Varanasi 221005, India
| | - Sairam Krishnamurthy
- Neurotherapeutics
Research Laboratory, Department of Pharmaceutical Engineering and
Technology, Indian Institute of Technology-Banaras
Hindu University, Varanasi 221005, India
| | - Rameshwar Nath Chaurasia
- Institute
of Medical Sciences, Faculty of Medicine, Department of Neurology, Banaras Hindu University, Varanasi 221005, India
| | - Sushant Kumar Shrivastava
- Pharmaceutical
Chemistry Research Laboratory, Department of Pharmaceutical Engineering
and Technology, Indian Institute of Technology-Banaras
Hindu University, Varanasi 221005, India
| |
Collapse
|
16
|
Munir R, Zaib S, Zia-ur-Rehman M, Hussain N, Chaudhry F, Younas MT, Zahra FT, Tajammul Z, Javid N, Dera AA, Ogaly HA, Khan I. Ultrasound-Assisted Synthesis of Piperidinyl-Quinoline Acylhydrazones as New Anti-Alzheimer's Agents: Assessment of Cholinesterase Inhibitory Profile, Molecular Docking Analysis, and Drug-like Properties. Molecules 2023; 28:molecules28052131. [PMID: 36903376 PMCID: PMC10004187 DOI: 10.3390/molecules28052131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Alzheimer's disease (AD) is one of the progressive neurological disorders and the main cause of dementia all over the world. The multifactorial nature of Alzheimer's disease is a reason for the lack of effective drugs as well as a basis for the development of new structural leads. In addition, the appalling side effects such as nausea, vomiting, loss of appetite, muscle cramps, and headaches associated with the marketed treatment modalities and many failed clinical trials significantly limit the use of drugs and alarm for a detailed understanding of disease heterogeneity and the development of preventive and multifaceted remedial approach desperately. With this motivation, we herein report a diverse series of piperidinyl-quinoline acylhydrazone therapeutics as selective as well as potent inhibitors of cholinesterase enzymes. Ultrasound-assisted conjugation of 6/8-methyl-2-(piperidin-1-yl)quinoline-3-carbaldehydes (4a,b) and (un)substituted aromatic acid hydrazides (7a-m) provided facile access to target compounds (8a-m and 9a-j) in 4-6 min in excellent yields. The structures were fully established using spectroscopic techniques such as FTIR, 1H- and 13C NMR, and purity was estimated using elemental analysis. The synthesized compounds were investigated for their cholinesterase inhibitory potential. In vitro enzymatic studies revealed potent and selective inhibitors of AChE and BuChE. Compound 8c showed remarkable results and emerged as a lead candidate for the inhibition of AChE with an IC50 value of 5.3 ± 0.51 µM. The inhibitory strength of the optimal compound was 3-fold higher compared to neostigmine (IC50 = 16.3 ± 1.12 µM). Compound 8g exhibited the highest potency and inhibited the BuChE selectively with an IC50 value of 1.31 ± 0.05 µM. Several compounds, such as 8a-c, also displayed dual inhibitory strength, and acquired data were superior to the standard drugs. In vitro results were further supported by molecular docking analysis, where potent compounds revealed various important interactions with the key amino acid residues in the active site of both enzymes. Molecular dynamics simulation data, as well as physicochemical properties of the lead compounds, supported the identified class of hybrid compounds as a promising avenue for the discovery and development of new molecules for multifactorial diseases, such as Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Rubina Munir
- School of Chemistry, University of the Punjab, Lahore 54590, Pakistan
- Department of Chemistry, Kinnaird College for Women, Lahore 54000, Pakistan
- Correspondence: (R.M.); (S.Z.); (I.K.)
| | - Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan
- Correspondence: (R.M.); (S.Z.); (I.K.)
| | | | - Nadia Hussain
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain P.O. Box 64141, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 144534, United Arab Emirates
| | - Faryal Chaudhry
- Department of Chemistry, Kinnaird College for Women, Lahore 54000, Pakistan
| | - Muhammad Tayyab Younas
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan
| | - Fatima Tuz Zahra
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Zainab Tajammul
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan
| | - Noman Javid
- Chemistry Department (C-Block), Forman Christian College, Ferozepur Road, Lahore 54600, Pakistan
| | - Ayed A. Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62529, Saudi Arabia
| | - Hanan A. Ogaly
- Chemistry Department, College of Science, King Khalid University, Abha 61421, Saudi Arabia
- Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Imtiaz Khan
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
- Correspondence: (R.M.); (S.Z.); (I.K.)
| |
Collapse
|
17
|
Hasan AH, Shakya S, Hussain FHS, Murugesan S, Chander S, Pratama MRF, Jamil S, Das B, Biswas S, Jamalis J. Design, synthesis, anti-acetylcholinesterase evaluation and molecular modelling studies of novel coumarin-chalcone hybrids. J Biomol Struct Dyn 2023; 41:11450-11462. [PMID: 36591704 DOI: 10.1080/07391102.2022.2162583] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/19/2022] [Indexed: 01/03/2023]
Abstract
The major enzyme responsible for the hydrolytic breakdown of the neurotransmitter acetylcholine (ACh) is acetylcholinesterase (AChE). Acetylcholinesterase inhibitors (AChEIs) are the most prescribed class of medications for the treatment of Alzheimer's disease (AD) and dementia. The limitations of available therapy, like side effects, drug tolerance, and inefficacy in halting disease progression, drive the need for better, more efficacious, and safer drugs. In this study, a series of fourteen novel chalcone-coumarin derivatives (8a-n) were designed, synthesized and characterized by spectral techniques like FT-IR, NMR, and HR-MS. Subsequently, the synthesized compounds were tested for their ability to inhibit acetylcholinesterase (AChE) activity by Ellman's method. All tested compounds showed AChE inhibition with IC50 value ranging from 0.201 ± 0.008 to 1.047 ± 0.043 μM. Hybrid 8d having chloro substitution on ring-B of the chalcone scaffold showed relatively better potency, with IC50 value of 0.201 ± 0.008 μM compared to other members of the series. The reference drug, galantamine, exhibited an IC50 at 1.142 ± 0.027 μM. Computational studies revealed that designed compounds bind to the peripheral anionic site (PAS), the catalytic active site (CAS), and the mid-gorge site of AChE. Putative binding modes, ligand-enzyme interactions, and stability of the best active compound are studied using molecular docking, followed by molecular dynamics (MD) simulations. The cytotoxicity of the synthesised derivatives was determined using the MTT test at three concentrations (100 g/mL, 500 g/mL, and 1 mg/mL). None of the chemicals had a significant effect on the body at the highest dose of 1 mg/mL.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aso Hameed Hasan
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
- Department of Chemistry, College of Science, University of Garmian, Kalar, Kurdistan Region-Iraq, Iraq
| | - Sonam Shakya
- Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Faiq H S Hussain
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Kurdistan Region-Iraq, Iraq
| | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Birla Institute of Technology & Science Pilani (BITS Pilani), Pilani, Rajasthan, India
| | - Subhash Chander
- Amity Institute of Phytochemistry and Phytomedicine, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Mohammad Rizki Fadhil Pratama
- Doctoral Program of Pharmaceutical Sciences, Universitas Airlangga, Surabaya, East Java, Indonesia
- Department of Pharmacy, Universitas Muhammadiyah Palangkaraya, Palangka Raya, Central Kalimantan, Indonesia
| | - Shajarahtunnur Jamil
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | - Basundhara Das
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Translational Cancer & Stem Cell Research Laboratory, Noida, Uttar Pradesh, India
| | - Subhrajit Biswas
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Translational Cancer & Stem Cell Research Laboratory, Noida, Uttar Pradesh, India
| | - Joazaizulfazli Jamalis
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| |
Collapse
|
18
|
Patil VM, Masand N, Gautam V, Kaushik S, Wu D. Multi-Target-Directed Ligand Approach in Anti-Alzheimer’s Drug Discovery. DECIPHERING DRUG TARGETS FOR ALZHEIMER’S DISEASE 2023:285-319. [DOI: 10.1007/978-981-99-2657-2_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
19
|
Shrivastava SK, Nivrutti AA, Bhardwaj B, Waiker DK, Verma A, Tripathi PN, Tripathi M, Saraf P. Drug reposition-based design, synthesis, and biological evaluation of dual inhibitors of acetylcholinesterase and β-Secretase for treatment of Alzheimer's disease. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Komatović K, Matošević A, Terzić-Jovanović N, Žunec S, Šegan S, Zlatović M, Maraković N, Bosak A, Opsenica DM. 4-Aminoquinoline-Based Adamantanes as Potential Anticholinesterase Agents in Symptomatic Treatment of Alzheimer's Disease. Pharmaceutics 2022; 14:1305. [PMID: 35745878 PMCID: PMC9229919 DOI: 10.3390/pharmaceutics14061305] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 12/03/2022] Open
Abstract
Considering that acetylcholinesterase (AChE) inhibition is the most important mode of action expected of a potential drug used for the treatment of symptoms of Alzheimer's disease (AD), our previous pilot study of 4-aminoquinolines as potential human cholinesterase inhibitors was extended to twenty-two new structurally distinct 4-aminoquinolines bearing an adamantane moiety. Inhibition studies revealed that all of the compounds were very potent inhibitors of AChE and butyrylcholinesterase (BChE), with inhibition constants (Ki) ranging between 0.075 and 25 µM. The tested compounds exhibited a modest selectivity between the two cholinesterases; the most selective for BChE was compound 14, which displayed a 10 times higher preference, while compound 19 was a 5.8 times more potent inhibitor of AChE. Most of the compounds were estimated to be able to cross the blood-brain barrier (BBB) by passive transport. Evaluation of druglikeness singled out fourteen compounds with possible oral route of administration. The tested compounds displayed modest but generally higher antioxidant activity than the structurally similar AD drug tacrine. Compound 19 showed the highest reducing power, comparable to those of standard antioxidants. Considering their simple structure, high inhibition of AChE and BChE, and ability to cross the BBB, 4-aminoquinoline-based adamantanes show promise as structural scaffolds for further design of novel central nervous system drugs. Among them, two compounds stand out: compound 5 as the most potent inhibitor of both cholinesterases with a Ki constant in low nano molar range and the potential to cross the BBB, and compound 8, which met all our requirements, including high cholinesterase inhibition, good oral bioavailability, and antioxidative effect. The QSAR model revealed that AChE and BChE inhibition was mainly influenced by the ring and topological descriptors MCD, Nnum, RP, and RSIpw3, which defined the shape, conformational flexibility, and surface properties of the molecules.
Collapse
Affiliation(s)
- Katarina Komatović
- Faculty of Chemistry, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (K.K.); (M.Z.)
| | - Ana Matošević
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10 000 Zagreb, Croatia; (A.M.); (S.Ž.); (N.M.)
| | - Nataša Terzić-Jovanović
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (N.T.-J.); (S.Š.)
| | - Suzana Žunec
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10 000 Zagreb, Croatia; (A.M.); (S.Ž.); (N.M.)
| | - Sandra Šegan
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (N.T.-J.); (S.Š.)
| | - Mario Zlatović
- Faculty of Chemistry, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (K.K.); (M.Z.)
| | - Nikola Maraković
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10 000 Zagreb, Croatia; (A.M.); (S.Ž.); (N.M.)
| | - Anita Bosak
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10 000 Zagreb, Croatia; (A.M.); (S.Ž.); (N.M.)
| | - Dejan M. Opsenica
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (N.T.-J.); (S.Š.)
- Centre of Excellence in Environmental Chemistry and Engineering, ICTM, 11000 Belgrade, Serbia
| |
Collapse
|
21
|
Chen T, Sun T, Bian Y, Pei Y, Feng F, Chi H, Li Y, Tang X, Sang S, Du C, Chen Y, Chen Y, Sun H. The Design and Optimization of Monomeric Multitarget Peptides for the Treatment of Multifactorial Diseases. J Med Chem 2022; 65:3685-3705. [DOI: 10.1021/acs.jmedchem.1c01456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tingkai Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Tianyu Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Yaoyao Bian
- College of Acupuncture and Massage, College of Regimen and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| | - Yuqiong Pei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| | - Feng Feng
- Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceuticals Science College, Huaian 223003, People’s Republic of China
| | - Heng Chi
- Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceuticals Science College, Huaian 223003, People’s Republic of China
| | - Yuan Li
- Department of Pharmaceutical Engineering, Jiangsu Food and Pharmaceuticals Science College, Huaian 223005, People’s Republic of China
| | - Xu Tang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| | - Shenghu Sang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| | - Chenxi Du
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Ying Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| |
Collapse
|
22
|
Identification of a Quinone Derivative as a YAP/TEAD Activity Modulator from a Repurposing Library. Pharmaceutics 2022; 14:pharmaceutics14020391. [PMID: 35214125 PMCID: PMC8878929 DOI: 10.3390/pharmaceutics14020391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 01/25/2023] Open
Abstract
The transcriptional regulators YAP (Yes-associated protein) and TAZ (transcriptional co-activator with PDZ-binding motif) are the major downstream effectors in the Hippo pathway and are involved in cancer progression through modulation of the activity of TEAD (transcriptional enhanced associate domain) transcription factors. To exploit the advantages of drug repurposing in the search of new drugs, we developed a similar approach for the identification of new hits interfering with TEAD target gene expression. In our study, a 27-member in-house library was assembled, characterized, and screened for its cancer cell growth inhibition effect. In a secondary luciferase-based assay, only seven compounds confirmed their specific involvement in TEAD activity. IA5 bearing a p-quinoid structure reduced the cytoplasmic level of phosphorylated YAP and the YAP–TEAD complex transcriptional activity and reduced cancer cell growth. IA5 is a promising hit compound for TEAD activity modulator development.
Collapse
|
23
|
Kaushik AC, Sahi S, Wei DQ. Computational Methods for Structure-Based Drug Design Through System Biology. Methods Mol Biol 2022; 2385:161-174. [PMID: 34888721 DOI: 10.1007/978-1-0716-1767-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The advances in computational chemistry and biology, computer science, structural biology, and molecular biology go in parallel with the rapid progress in target-based systems. This technique has become a powerful tool in medicinal chemistry for the identification of hit molecules. The recent developments in target-based systems have played a major role in the creation of libraries of compounds, and it has also been widely applied for the design of molecular docking methods. The main advantage of this method is that it hits the fragment that has the strongest binding, has relatively small size, and leads to better compounds in terms of pharmacokinetic properties when compared with virtual screening (VS) and high-throughput screening (HTS) hits. De novo design is an essential aspect of target-based systems and requires the synthesis of chemical to allow the design of promising compound.
Collapse
Affiliation(s)
| | - Shakti Sahi
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
- Peng Cheng Laboratory, Shenzhen, Guangdong, People's Republic of China.
| |
Collapse
|
24
|
Liu Z, Liu Q, Zhang B, Liu Q, Fang L, Gou S. Blood-Brain Barrier Permeable and NO-Releasing Multifunctional Nanoparticles for Alzheimer's Disease Treatment: Targeting NO/cGMP/CREB Signaling Pathways. J Med Chem 2021; 64:13853-13872. [PMID: 34517696 DOI: 10.1021/acs.jmedchem.1c01240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The development of novel therapeutic strategies for combating Alzheimer's disease (AD) is challenging but imperative. Multifunctional nanoparticles are promising tools for regulating complex pathological dysfunctions for AD treatment. Herein, we constructed multifunctional nanoparticles consisting of regadenoson (Reg), nitric oxide (NO) donor, and YC-1 in a single molecular entity that can spontaneously self-assemble into nanoparticles and load donepezil to yield Reg-nanoparticles (Reg-NPs). The Reg moiety enabled the Reg-NPs to effectively regulate tight junction-associated proteins in the blood-brain barrier, thus facilitating the permeation of donepezil through the barrier and its accumulation in the brain. Moreover, the released NO and YC-1 activated the NO/cGMP/CREB signaling pathway by stimulating soluble guanylyl cyclase and inhibiting phosphodiesterase activity, which finally reduced cytotoxicity induced by aggregated Aβ in the neurons and was beneficial for synaptic plasticity and memory formation.
Collapse
Affiliation(s)
- Zhikun Liu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Qingqing Liu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Bin Zhang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Qiao Liu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Lei Fang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
25
|
Adeowo FY, Oyetunji TP, Ejalonibu MA, Ndagi U, Kumalo HM, Lawal MM. Tailored Modeling of Rivastigmine Derivatives as Dual Acetylcholinesterase and Butyrylcholinesterase Inhibitors for Alzheimer's Disease Treatment. Chem Biodivers 2021; 18:e2100361. [PMID: 34547176 DOI: 10.1002/cbdv.202100361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/21/2021] [Indexed: 12/13/2022]
Abstract
Rational modification of known drug candidates to design more potent ones using computational methods has found application in drug design, development, and discovery. Herein, we integrate computational and theoretical methodologies to unveil rivastigmine derivatives as dual inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) for Alzheimer's disease (AD) management. The investigation entails pharmacokinetics screening, density functional theory (DFT) mechanistic study, molecular docking, and molecular dynamics (MD) simulation. We designed over 20 rivastigmine substituents, subject them to some analyses, and identified RL2 with an appreciable blood-brain barrier score and no permeability glycoprotein binding. The compound shows higher acylation energy and a favored binding affinity to the cholinesterase enzymes. RL2 interacts with the AChE and BuChE active sites showing values of -41.1/-39.5 kcal mol-1 while rivastigmine binds with -32.7/-30.7 kcal mol-1 for these enzymes. The study revealed RL2 (4-fluorophenyl rivastigmine) as a potential dual inhibitor for AChE and BuChE towards Alzheimer's disorder management.
Collapse
Affiliation(s)
- Fatima Y Adeowo
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, 4001, South Africa
| | | | - Murtala A Ejalonibu
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Umar Ndagi
- Center for Trans-Sahara Disease, Vaccine and Drug Research, IBB University Lapai, Niger State, Minna, Nigeria
| | - Hezekiel M Kumalo
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Monsurat M Lawal
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, 4001, South Africa
| |
Collapse
|
26
|
Nudelman A. Dimeric Drugs. Curr Med Chem 2021; 29:2751-2845. [PMID: 34375175 DOI: 10.2174/0929867328666210810124159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022]
Abstract
This review intends to summarize the structures of an extensive number of symmetrical-dimeric drugs, having two monomers linked via a bridging entity while emphasizing the large versatility of biologically active substances reported to possess dimeric structures. The largest number of classes of these compounds consist of anticancer agents, antibiotics/antimicrobials, and anti-AIDS drugs. Other symmetrical-dimeric drugs include antidiabetics, antidepressants, analgesics, anti-inflammatories, drugs for the treatment of Alzheimer's disease, anticholesterolemics, estrogenics, antioxidants, enzyme inhibitors, anti-Parkisonians, laxatives, antiallergy compounds, cannabinoids, etc. Most of the articles reviewed do not compare the activity/potency of the dimers to that of their corresponding monomers. Only in limited cases, various suggestions have been made to justify unexpected higher activity of the dimers vs. the corresponding monomers. These suggestions include statistical effects, the presence of dimeric receptors, binding of a dimer to two receptors simultaneously, and others. It is virtually impossible to predict which dimers will be preferable to their respective monomers, or which linking bridges will lead to the most active compounds. It is expected that the extensive number of articles summarized, and the large variety of substances mentioned, which display various biological activities, should be of interest to many academic and industrial medicinal chemists.
Collapse
Affiliation(s)
- Abraham Nudelman
- Chemistry Department, Bar Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
27
|
Design, synthesis and in-vitro evaluation of fluorinated triazoles as multi-target directed ligands for Alzheimer disease. Bioorg Med Chem Lett 2021; 42:127999. [PMID: 33839248 DOI: 10.1016/j.bmcl.2021.127999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 12/31/2022]
Abstract
Alzheimer disease is multi-factorial and inflammation plays a major role in the disease progression and severity. Metals and reactive oxygen species (ROS) are the key mediators for inflammatory conditions associated with Alzheimer's. Along multi-factorial nature, major challenge for developing new drug is the ability of the molecule to cross blood brain barrier (BBB). We have designed and synthesized multi-target directed hexafluorocarbinol containing triazoles to inhibit Amyloid β aggregation and simultaneously chelate the excess metals present in the extracellular space and scavenge the ROS thus reduce the inflammatory condition. From the screened compound library, compound 1c found to be potent and safe. It has demonstrated inhibition of Amyloid β aggregation (IC50 of 4.6 μM) through selective binding with Amyloid β at the nucleation site (evidenced from the molecular docking). It also chelate metals (Cu+2, Zn+2 and Fe+3) and scavenges ROS significantly. Due to the presence of hexafluorocarbinol moiety in the molecule it may assist to permeate BBB and improve the pharmacokinetic properties. The in-vitro results of compound 1c indicate the promiscuity for the development of hexafluorocarbinol containing triazoles amide scaffold as multi-target directed therapy against Alzheimer disease.
Collapse
|
28
|
Yang GX, Sun JM, Zheng LL, Zhang L, Li J, Gan HX, Huang Y, Huang J, Diao XX, Tang Y, Wang R, Ma L. Twin drug design, synthesis and evaluation of diosgenin derivatives as multitargeted agents for the treatment of vascular dementia. Bioorg Med Chem 2021; 37:116109. [PMID: 33780813 DOI: 10.1016/j.bmc.2021.116109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/01/2021] [Accepted: 03/06/2021] [Indexed: 12/21/2022]
Abstract
A novel series of multitargeted molecules were designed and synthesized by combining the pharmacological role of cholinesterase inhibitor and antioxidant of steroid as potential ligands for the treatment of Vascular Dementia (VD). The oxygen-glucose deprivation (OGD) model was used to evaluate these molecules, among which the most potent compound ML5 showed the highest activity. Firstly, ML5 showed appropriate inhibition of cholinesterases (ChEs) at orally 15 mg/kg in vivo. The further test revealed that ML5 promoted the nuclear translocation of Nrf2. Furthermore, ML5 has significant neuroprotective effect in vivo model of bilateral common carotid artery occlusion (BCCAO), significantly increasing the expression of Nrf2 protein in the cerebral cortex. In the molecular docking research, we predicted the ML5 combined with hAChE and Keap1. Finally, compound ML5 displayed normal oral absorption and it was nontoxic at 500 mg/kg, po, dose. We can draw the conclusion that ML5 could be considered as a new potential compound for VD treatment.
Collapse
Affiliation(s)
- Gui-Xiang Yang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jia-Min Sun
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Lu-Lu Zheng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Li Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jie Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Hai-Xian Gan
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yan Huang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jin Huang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xing-Xing Diao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Rui Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Lei Ma
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
29
|
Matošević A, Radman Kastelic A, Mikelić A, Zandona A, Katalinić M, Primožič I, Bosak A, Hrenar T. Quinuclidine-Based Carbamates as Potential CNS Active Compounds. Pharmaceutics 2021; 13:420. [PMID: 33804719 PMCID: PMC8003920 DOI: 10.3390/pharmaceutics13030420] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022] Open
Abstract
The treatment of central nervous system (CNS) diseases related to the decrease of neurotransmitter acetylcholine in neurons is based on compounds that prevent or disrupt the action of acetylcholinesterase and butyrylcholinesterase. A series of thirteen quinuclidine carbamates were designed using quinuclidine as the structural base and a carbamate group to ensure the covalent binding to the cholinesterase, which were synthesized and tested as potential human acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors. The synthesized compounds differed in the substituents on the amino and carbamoyl parts of the molecule. All of the prepared carbamates displayed a time-dependent inhibition with overall inhibition rate constants in the 103 M-1 min-1 range. None of the compounds showed pronounced selectivity for any of the cholinesterases. The in silico determined ability of compounds to cross the blood-brain barrier (BBB) revealed that six compounds should be able to pass the BBB by passive transport. In addition, the compounds did not show toxicity toward cells that represented the main models of individual organs. By machine learning, the most optimal regression models for the prediction of bioactivity were established and validated. Models for AChE and BChE described 89 and 90% of the total variations among the data, respectively. These models facilitated the prediction and design of new and more potent inhibitors. Altogether, our study confirmed that quinuclidinium carbamates are promising candidates for further development as CNS-active drugs, particularly for Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Ana Matošević
- Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, HR-10 000 Zagreb, Croatia; (A.M.); (A.Z.); (M.K.)
| | - Andreja Radman Kastelic
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102A, HR-10 000 Zagreb, Croatia; (A.R.K.); (A.M.); (I.P.)
| | - Ana Mikelić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102A, HR-10 000 Zagreb, Croatia; (A.R.K.); (A.M.); (I.P.)
| | - Antonio Zandona
- Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, HR-10 000 Zagreb, Croatia; (A.M.); (A.Z.); (M.K.)
| | - Maja Katalinić
- Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, HR-10 000 Zagreb, Croatia; (A.M.); (A.Z.); (M.K.)
| | - Ines Primožič
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102A, HR-10 000 Zagreb, Croatia; (A.R.K.); (A.M.); (I.P.)
| | - Anita Bosak
- Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, HR-10 000 Zagreb, Croatia; (A.M.); (A.Z.); (M.K.)
| | - Tomica Hrenar
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102A, HR-10 000 Zagreb, Croatia; (A.R.K.); (A.M.); (I.P.)
| |
Collapse
|
30
|
Manzoor S, Prajapati SK, Majumdar S, Raza MK, Gabr MT, Kumar S, Pal K, Rashid H, Kumar S, Krishnamurthy S, Hoda N. Discovery of new phenyl sulfonyl-pyrimidine carboxylate derivatives as the potential multi-target drugs with effective anti-Alzheimer's action: Design, synthesis, crystal structure and in-vitro biological evaluation. Eur J Med Chem 2021; 215:113224. [PMID: 33582578 DOI: 10.1016/j.ejmech.2021.113224] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is multifactorial, progressive neurodegeneration with impaired behavioural and cognitive functions. The multitarget-directed ligand (MTDL) strategies are promising paradigm in drug development, potentially leading to new possible therapy options for complex AD. Herein, a series of novel MTDLs phenylsulfonyl-pyrimidine carboxylate (BS-1 to BS-24) derivatives were designed and synthesized for AD treatment. All the synthesized compounds were validated by 1HNMR, 13CNMR, HRMS, and BS-19 were structurally validated by X-Ray single diffraction analysis. To evaluate the plausible binding affinity of designed compounds, molecular docking study was performed, and the result revealed their significant interaction with active sites of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The synthesized compounds displayed moderate to excellent in vitro enzyme inhibitory activity against AChE and BuChE at nanomolar (nM) concentration. Among 24 compounds (BS-1 to BS-24), the optimal compounds (BS-10 and BS-22) displayed potential inhibition against AChE; IC50 = 47.33 ± 0.02 nM and 51.36 ± 0.04 nM and moderate inhibition against BuChE; IC50 = 159.43 ± 0.72 nM and 153.3 ± 0.74 nM respectively. In the enzyme kinetics study, the compound BS-10 displayed non-competitive inhibition of AChE with Ki = 8 nM. Respective compounds BS-10 and BS-22 inhibited AChE-induced Aβ1-42 aggregation in thioflavin T-assay at 10 μM and 20 μM, but BS-10 at 10 μM and 20 μM concentrations are found more potent than BS-22. In addition, the aggregation properties were determined by the dynamic light scattering (DLS) and was found that BS-10 and BS-22 could significantly inhibit self-induced as well as AChE-induced Aβ1-42 aggregation. The effect of compounds (BS-10 and BS-22) on the viability of MC65 neuroblastoma cells and their capability to cross the blood-brain barrier (BBB) in PAMPA-BBB were further studied. Further, in silico approach was applied to analyze physicochemical and pharmacokinetics properties of the designed compounds via the SwissADME and PreADMET server. Hence, the novel phenylsulfonyl-pyrimidine carboxylate derivatives can act as promising leads in the development of AChE inhibitors and Aβ disaggregator for the treatment of AD.
Collapse
Affiliation(s)
- Shoaib Manzoor
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Santosh Kumar Prajapati
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, U.P, 221005, India
| | - Shreyasi Majumdar
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, U.P, 221005, India
| | - Md Kausar Raza
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Moustafa T Gabr
- Department of Radiology, Stanford University, Stanford, CA, 94305, United States
| | - Shivani Kumar
- University School of Biotechnology Guru Gobind Singh Indraprastha University Dwarka, Sector 16C, New Delhi, 110078, India
| | - Kavita Pal
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Haroon Rashid
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Suresh Kumar
- University School of Biotechnology Guru Gobind Singh Indraprastha University Dwarka, Sector 16C, New Delhi, 110078, India
| | - Sairam Krishnamurthy
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, U.P, 221005, India.
| | - Nasimul Hoda
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
31
|
Pérez-Sánchez H, den Haan H, Pérez-Garrido A, Peña-García J, Chakraborty S, Erdogan Orhan I, Senol Deniz FS, Villalgordo JM. Combined Structure and Ligand-Based Design of Selective Acetylcholinesterase Inhibitors. J Chem Inf Model 2020; 61:467-480. [PMID: 33320652 DOI: 10.1021/acs.jcim.0c00463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Acetylcholinesterase is a prime target for therapeutic intervention in Alzheimer's disease. Acetylcholinesterase inhibitors (AChEIs) are used to improve cognitive abilities, playing therefore an important role in disease management. Drug repurposing screening has been performed on a corporate chemical library containing 11 353 compounds using a target fishing approach comprising three-dimensional (3D) shape similarity and pharmacophore modeling against an approved drug database, Drugbank. This initial screening identified 108 hits. Among them, eight molecules showed structural similarity to the known AChEI drug, pyridostigmine. Further structure-based screening using a pharmacophore-guided rescoring method identifies one more potential hit. Experimental evaluations of the identified hits sieve out a highly selective AChEI scaffold. Further lead optimization using a substructure search approach identifies 24 new potential hits. Three of the 24 compounds (compounds 10b, 10h, and 10i) based on a 6-(2-(pyrrolidin-1-yl)pyrimidin-4-yl)-thiazolo[3,2-a]pyrimidine scaffold showed highly promising AChE inhibition ability with IC50 values of 13.10 ± 0.53, 16.02 ± 0.46, and 6.22 ± 0.54 μM, respectively. Moreover, these compounds are highly selective toward AChE. Compound 10i shows AChE inhibitory activity similar to a known Food and Drug Administration (FDA)-approved drug, galantamine, but with even better selectivity. Interaction analysis reveals that hydrophobic and hydrogen-bonding interactions are the primary driving forces responsible for the observed high affinity of the compound with AChE.
Collapse
Affiliation(s)
- Horacio Pérez-Sánchez
- Structural Bioinformatics and High Performance Computing Group (BIO-HPC), Universidad Católica San Antonio de Murcia (UCAM), Campus de los Jerónimos, Guadalupe 30107, Spain
| | - Helena den Haan
- Structural Bioinformatics and High Performance Computing Group (BIO-HPC), Universidad Católica San Antonio de Murcia (UCAM), Campus de los Jerónimos, Guadalupe 30107, Spain.,Parque Tecnológico de Fuente Álamo, Villapharma Research, Ctra. El Estrecho-Lobosillo, Km. 2,5- Av. Azul, 30320 Fuente Álamo de Murcia, Murcia, Spain
| | - Alfonso Pérez-Garrido
- Structural Bioinformatics and High Performance Computing Group (BIO-HPC), Universidad Católica San Antonio de Murcia (UCAM), Campus de los Jerónimos, Guadalupe 30107, Spain
| | - Jorge Peña-García
- Structural Bioinformatics and High Performance Computing Group (BIO-HPC), Universidad Católica San Antonio de Murcia (UCAM), Campus de los Jerónimos, Guadalupe 30107, Spain
| | | | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
| | | | - José Manuel Villalgordo
- Parque Tecnológico de Fuente Álamo, Villapharma Research, Ctra. El Estrecho-Lobosillo, Km. 2,5- Av. Azul, 30320 Fuente Álamo de Murcia, Murcia, Spain
| |
Collapse
|
32
|
Adeowo FY, Lawal MM, Kumalo HM. Design and Development of Cholinesterase Dual Inhibitors towards Alzheimer's Disease Treatment: A Focus on Recent Contributions from Computational and Theoretical Perspective. ChemistrySelect 2020. [DOI: 10.1002/slct.202003573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Fatima Y. Adeowo
- Discipline of Medical Biochemistry School of Laboratory Medicine and Medical Science University of KwaZulu-Natal Durban 4001 South Africa
| | - Monsurat M. Lawal
- Discipline of Medical Biochemistry School of Laboratory Medicine and Medical Science University of KwaZulu-Natal Durban 4001 South Africa
| | - Hezekiel M. Kumalo
- Discipline of Medical Biochemistry School of Laboratory Medicine and Medical Science University of KwaZulu-Natal Durban 4001 South Africa
| |
Collapse
|
33
|
Bautista‐Aguilera ÓM, Ismaili L, Iriepa I, Diez‐Iriepa D, Chabchoub F, Marco‐Contelles J, Pérez M. Tacrines as Therapeutic Agents for Alzheimer's Disease. V. Recent Developments. CHEM REC 2020; 21:162-174. [DOI: 10.1002/tcr.202000107] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Óscar M. Bautista‐Aguilera
- Departamento de Química Orgánica and Química Inorgánica. Ctra. Madrid-Barcelona Universidad de Alcalá Km. 33, 6 28871 Madrid Spain
| | - Lhassane Ismaili
- Laboratoire de Chimie Organique et Thérapeutique Neurosciences intégratives et cliniques EA 481 Univ. Bourgogne Franche-Comté, UFR Santé 19, rue Ambroise Paré F-25000 Besançon France
| | - Isabel Iriepa
- Departamento de Química Orgánica and Química Inorgánica. Ctra. Madrid-Barcelona Universidad de Alcalá Km. 33, 6 28871 Madrid Spain
- Institute of Chemical Research Andrés M. del Río Alcalá University, 28805-Alcalá de Henares Madrid Spain
| | - Daniel Diez‐Iriepa
- Departamento de Química Orgánica and Química Inorgánica. Ctra. Madrid-Barcelona Universidad de Alcalá Km. 33, 6 28871 Madrid Spain
| | - Fakher Chabchoub
- Laboratoire de Chimie Appliquée: Hétérocycles Corps Gras et Polymères Faculté des Sciences de Sfax Université de Sfax. B. P 802. 3000 Sfax Tunisie
| | - José Marco‐Contelles
- Laboratory of Medicinal Chemistry (IQOG, CSIC) Juan de la Cierva 3 28006- Madrid Spain
| | - Marta Pérez
- Public Health Department Faculty of Medicine and Nursing University of the Basque Country. Leioa Spain
| |
Collapse
|
34
|
Liu Z, Zhang B, Xia S, Fang L, Gou S. ROS-responsive and multifunctional anti-Alzheimer prodrugs: Tacrine-ibuprofen hybrids via a phenyl boronate linker. Eur J Med Chem 2020; 212:112997. [PMID: 33189440 DOI: 10.1016/j.ejmech.2020.112997] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023]
Abstract
Current drugs available in clinic for Alzheimer's disease (AD) treatment can only alleviate disease symptoms without clearly curing or delaying the process of AD. And some AD drugs failed in Phase III clinical trials are only focused on targeting amyloid-β (Aβ). Therefore, an alternative strategy in AD drug design is meaningful to be involved in the multiple pathogenic factors which can affect each other at multiple levels. Herein, we report a series of ROS-responsive prodrugs based on multi-target-directed ligands (MTDLs) approach, which can specifically release tacrine derivatives and ibuprofen under oxidation of ROS and show acetylcholinesterase (AChE)-inhibiting, neuron-protective and anti-inflammatory effects in extracellular or intracellular assays. Related biological study illustrated that compound 22 was able to permeate blood-brain-barrier (BBB) showing little hepatotoxicity in comparison to tacrine. Besides, 22 hinted a therapeutic clue in AD-treatment by regulating proinflammatory factors (IL-1β and TNF-α) and apoptosis related proteins (Bax, Bcl-2 and cleaved caspase-3). Further spatial memory assays in Aβ-induced AD model showed that 22 enhanced the ability of learning and memory. Our study proves that the strategy of ROS-responsive prodrugs has promise for AD treatments in future and offers a way for AD drug development.
Collapse
Affiliation(s)
- Zhikun Liu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China; Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Bin Zhang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China; Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Shengjin Xia
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China; Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Lei Fang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China; Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China; Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
35
|
Adeowo FY, Ejalonibu MA, Elrashedy AA, Lawal MM, Kumalo HM. Multi-target approach for Alzheimer's disease treatment: computational biomolecular modeling of cholinesterase enzymes with a novel 4- N-phenylaminoquinoline derivative reveal promising potentials. J Biomol Struct Dyn 2020; 39:3825-3841. [PMID: 33030113 DOI: 10.1080/07391102.2020.1826129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The identification of dual inhibitors targeting the active sites of the cholinesterase enzymes, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), have lately surfaced as a multi-approach towards Alzheimer treatment. More recently, a novel series of 4-N-phenylaminoquinolines was synthesized and evaluated against AChE and BuChE in which one of the compounds displayed appreciable inhibition compared to the standard compound, galantamine. To provide a clearer picture of the inhibition mechanism of this potent compound at the molecular level, computational biomolecular modeling was carried out. The investigation was initiated with the exploration of the chemical properties of the identified compound 11 b and reference drug, galantamine. Density functional theory (DFT) calculations reveal some conceptual parameters that provide information on the stability and reactivity of the compounds as potential inhibitors. To unveil the binding mechanism, energetics and enzyme-ligand interactions, molecular dynamics (MD) simulations of six different systems were executed over a period. Calculated binding free energy values are in the same order with experimental IC50 data. Identification of the main residues driving optimum binding of the active compound 11 b to the binding region of both AChE and BuChE showed Trp81 and Trp110 as the most important, respectively. It was proposed that the studied compound could serve as a dual inhibitor for AChE and BuChE, therefore, would potentially be a promising moiety in a multi-target approach for the treatment of Alzheimer's disorder.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fatima Y Adeowo
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Murtala A Ejalonibu
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Ahmed A Elrashedy
- Molecular Bio-computational and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Monsurat M Lawal
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Hezekiel M Kumalo
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
36
|
An activity prediction model for steroidal and triterpenoidal inhibitors of Acetylcholinesterase enzyme. J Comput Aided Mol Des 2020; 34:1079-1090. [PMID: 32632601 DOI: 10.1007/s10822-020-00324-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/14/2020] [Indexed: 12/31/2022]
Abstract
Nowadays, the importance of computational methods in the design of therapeutic agents in a more efficient way is indisputable. Particularly, these methods have been important in the design of novel acetylcholinesterase enzyme inhibitors related to Alzheimer's disease. In this sense, in this report a computational model of linear prediction of acetylcholinesterase inhibitory activity of steroids and triterpenes is presented. The model is based in a correlation between binding energies obtained from molecular dynamic simulations (after docking studies) and [Formula: see text] values of a training set. This set includes a family of natural and semi-synthetic structurally related alkaloids reported in bibliography. These types of compounds, with some structural complexity, could be used as building blocks for the synthesis of many important biologically active compounds Therefore, the present study proposes an alternative based on the use of conventional and easily accessible tools to make progress on the rational design of molecules with biological activity.
Collapse
|
37
|
Bouzian Y, Karrouchi K, Sert Y, Lai CH, Mahi L, Ahabchane NH, Talbaoui A, Mague JT, Essassi EM. Synthesis, spectroscopic characterization, crystal structure, DFT, molecular docking and in vitro antibacterial potential of novel quinoline derivatives. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127940] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
38
|
Novel Class of Chalcone Oxime Ethers as Potent Monoamine Oxidase-B and Acetylcholinesterase Inhibitors. Molecules 2020; 25:molecules25102356. [PMID: 32443652 PMCID: PMC7288026 DOI: 10.3390/molecules25102356] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 11/16/2022] Open
Abstract
Previously synthesized novel chalcone oxime ethers (COEs) were evaluated for inhibitory activities against monoamine oxidases (MAOs) and acetylcholinesterase (AChE). Twenty-two of the 24 COEs synthesized, except COE-17 and COE-24, had potent and/or significant selective inhibitory effects on MAO-B. COE-6 potently inhibited MAO-B with an IC50 value of 0.018 µM, which was 105, 2.3, and 1.1 times more potent than clorgyline, lazabemide, and pargyline (reference drugs), respectively. COE-7, and COE-22 were also active against MAO-B, both had an IC50 value of 0.028 µM, which was 67 and 1.5 times lower than those of clorgyline and lazabemide, respectively. Most of the COEs exhibited weak inhibitory effects on MAO-A and AChE. COE-13 most potently inhibited MAO-A (IC50 = 0.88 µM) and also significantly inhibited MAO-B (IC50 = 0.13 µM), and it could be considered as a potential nonselective MAO inhibitor. COE-19 and COE-22 inhibited AChE with IC50 values of 5.35 and 4.39 µM, respectively. The selectivity index (SI) of COE-22 for MAO-B was higher than that of COE-6 (SI = 778.6 vs. 222.2), but the IC50 value (0.028 µM) was slightly lower than that of COE-6 (0.018 µM). In reversibility experiments, inhibitions of MAO-B by COE-6 and COE-22 were recovered to the levels of reference reversible inhibitors and both competitively inhibited MAO-B, with Ki values of 0.0075 and 0.010 µM, respectively. Our results show that COE-6 and COE-22 are potent, selective MAO-B inhibitors, and COE-22 is a candidate of dual-targeting molecule for MAO-B and AChE.
Collapse
|
39
|
Bouzian Y, Kansiz S, Mahi L, Ahabchane NH, Mague JT, Dege N, Karrouchi K, Essassi EM. Crystal structure and Hirshfeld surface analysis of hexyl 1-hexyl-2-oxo-1,2-di-hydro-quinoline-4-carboxyl-ate. Acta Crystallogr E Crystallogr Commun 2020; 76:642-645. [PMID: 32431924 PMCID: PMC7199246 DOI: 10.1107/s2056989020004521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/01/2020] [Indexed: 11/11/2022]
Abstract
The asymmetric unit of the title compound, C22H31NO3, comprises of one mol-ecule. The mol-ecule is not planar, with the carboxyl-ate ester group inclined by 33.47 (4)° to the heterocyclic ring. Individual mol-ecules are linked by aromaticC-H⋯Ocarbon-yl hydrogen bonds into chains running parallel to [001]. Slipped π-π stacking inter-actions between quinoline moieties link these chains into layers extending parallel to (100). Hirshfeld surface analysis, two-dimensional fingerprint plots and mol-ecular electrostatic potential surfaces were used to qu-antify the inter-molecular inter-actions present in the crystal, indicating that the most important contributions for the crystal packing are from H⋯H (72%), O⋯H/H⋯O (14.5%) and C⋯H/H⋯C (5.6%) inter-actions.
Collapse
Affiliation(s)
- Younos Bouzian
- Laboratory of Heterocyclic Organic Chemistry URAC 21, Pole of Competence Pharmacochemistry, Av Ibn Battouta, BP 1014, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Sevgi Kansiz
- Department of Fundamental Sciences, Faculty of Engineering, Samsun University, Samsun 55420, Turkey
| | - Lhassane Mahi
- Moroccan Foundation for Advanced Science Innovation and Research (Mascir), Department of Nanotechnology, Rabat Design Center, Rue Mohamed Al Jazouli-Madinat Al Irfane, Rabat 10 100, Morocco
| | - Noureddine Hamou Ahabchane
- Laboratory of Heterocyclic Organic Chemistry URAC 21, Pole of Competence Pharmacochemistry, Av Ibn Battouta, BP 1014, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Joel T. Mague
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA
| | - Necmi Dege
- Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, 55200, Turkey
| | - Khalid Karrouchi
- Laboratory of Analytical Chemistry and Bromatology, Faculty of Medicine and Pharmacy, Mohamed V University, Rabat, Morocco
| | - El Mokhtar Essassi
- Laboratory of Heterocyclic Organic Chemistry URAC 21, Pole of Competence Pharmacochemistry, Av Ibn Battouta, BP 1014, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| |
Collapse
|
40
|
Design, synthesis and evaluation of phthalide alkyl tertiary amine derivatives as promising acetylcholinesterase inhibitors with high potency and selectivity against Alzheimer's disease. Bioorg Med Chem 2020; 28:115400. [DOI: 10.1016/j.bmc.2020.115400] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/17/2020] [Accepted: 02/21/2020] [Indexed: 11/18/2022]
|
41
|
Shaikh S, Dhavan P, Pavale G, Ramana M, Jadhav B. Design, synthesis and evaluation of pyrazole bearing α-aminophosphonate derivatives as potential acetylcholinesterase inhibitors against Alzheimer’s disease. Bioorg Chem 2020; 96:103589. [DOI: 10.1016/j.bioorg.2020.103589] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/26/2019] [Accepted: 01/13/2020] [Indexed: 11/26/2022]
|
42
|
Rana M, Pareek A, Bhardwaj S, Arya G, Nimesh S, Arya H, Bhatt TK, Yaragorla S, Sharma AK. Aryldiazoquinoline based multifunctional small molecules for modulating Aβ42aggregation and cholinesterase activity related to Alzheimer's disease. RSC Adv 2020; 10:28827-28837. [PMID: 35520091 PMCID: PMC9055851 DOI: 10.1039/d0ra05172a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
Novel series of aryldiazoquinoline multifunctional molecules controls amyloid formation and neuro-protective role by inhibiting esterase enzymes.
Collapse
Affiliation(s)
- Monika Rana
- Department of Chemistry
- Central University of Rajasthan
- Ajmer
- India
| | - Abhishek Pareek
- School of Chemistry
- University of Hyderabad
- P.O. Central University
- Hyderabad
- India
| | - Shivani Bhardwaj
- Department of Chemistry
- Central University of Rajasthan
- Ajmer
- India
| | - Geeta Arya
- Department of Biotechnology
- Central University of Rajasthan
- Ajmer
- India
| | - Surendra Nimesh
- Department of Biotechnology
- Central University of Rajasthan
- Ajmer
- India
| | - Hemant Arya
- Department of Biotechnology
- Central University of Rajasthan
- Ajmer
- India
| | - Tarun K. Bhatt
- Department of Biotechnology
- Central University of Rajasthan
- Ajmer
- India
| | | | - Anuj K. Sharma
- Department of Chemistry
- Central University of Rajasthan
- Ajmer
- India
| |
Collapse
|
43
|
Hasan AH, Amran SI, Saeed Hussain FH, Jaff BA, Jamalis J. Molecular Docking and Recent Advances in the Design and Development of Cholinesterase Inhibitor Scaffolds: Coumarin Hybrids. ChemistrySelect 2019. [DOI: 10.1002/slct.201903607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Aso Hameed Hasan
- Department of ChemistryFaculty of ScienceUniversiti Teknologi Malaysia 81310 Johor Bahru, Johor Malaysia
- Department of ChemistryCollege of ScienceUniversity of Garmian- Kalar, Kurdistan Region-Iraq Iraq
| | - Syazwani Itri Amran
- Department of BiosciencesFaculty of ScienceUniversiti Teknologi Malaysia 81310 Johor Bahru, Johor Malaysia
| | | | - Baram Ahmed Jaff
- Charmo Research CenterChemistry DepartmentCharmo University 46023 Chamchamal, Kurdistan Region-Iraq Iraq
| | - Joazaizulfazli Jamalis
- Department of ChemistryFaculty of ScienceUniversiti Teknologi Malaysia 81310 Johor Bahru, Johor Malaysia
| |
Collapse
|
44
|
Wang Z, Cao M, Xiang H, Wang W, Feng X, Yang X. WBQ5187, a Multitarget Directed Agent, Ameliorates Cognitive Impairment in a Transgenic Mouse Model of Alzheimer's Disease and Modulates Cerebral β-Amyloid, Gliosis, cAMP Levels, and Neurodegeneration. ACS Chem Neurosci 2019; 10:4787-4799. [PMID: 31697472 DOI: 10.1021/acschemneuro.9b00409] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Previously, we designed, synthesized, and evaluated a series of quinolone-benzofuran derivatives as multitargeted anti-Alzheimer's disease (anti-AD) compounds, and we discovered that WBQ5187 possesses superior anti-AD bioactivity. In this work, we investigated the pharmacokinetics of this new molecule, as well as its therapeutic efficacy in restoring cognition and neuropathology, in the APP/PS1 mouse model of AD. Pharmacokinetic analyses demonstrated that WBQ5187 possessed rational oral bioavailability, metabolic stability, and excellent blood-brain barrier (BBB) permeability. Pharmacodynamics studies indicated that a 12-week treatment with the lead compound at doses of 40 mg/kg or higher significantly enhanced the learning and memory performance of the APP/PS1 transgenic mice, and the effect was more potent than that of clioquinol (CQ). Furthermore, WBQ5187 notably reduced cerebral β-amyloid pathology, gliosis, and neuronal cell loss and increased the levels of cAMP in the hippocampus of these mice. The surrogate measures of emesis indicated that WBQ5187 had no effect at its cognitive effective doses. Overall, our results demonstrated that this compound markedly improves cognitive and spatial memory functions in AD mice and represents a promising pharmaceutical agent with potential for the treatment of AD.
Collapse
Affiliation(s)
- Zhiren Wang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, P. R. China
| | - Mengru Cao
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, P. R. China
| | - Hongling Xiang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, P. R. China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, P. R. China
| | - Xing Feng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, P. R. China
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, P. R. China
| |
Collapse
|
45
|
Mi Z, Gan B, Yu S, Guo J, Zhang C, Jiang X, Zhou T, Su J, Bai R, Xie Y. Dual-target anti-Alzheimer's disease agents with both iron ion chelating and monoamine oxidase-B inhibitory activity. J Enzyme Inhib Med Chem 2019; 34:1489-1497. [PMID: 31416364 PMCID: PMC6713216 DOI: 10.1080/14756366.2019.1634703] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/20/2019] [Accepted: 06/17/2019] [Indexed: 12/25/2022] Open
Abstract
MAO-B leads to an increase in the levels of hydrogen peroxide and oxidative free radicals, which contribute to the aetiology of the AD. Thus, both iron ion chelators and MAO-B inhibitors can be used to treat AD. Taking the coumarin derivatives and hydroxypyridinones as the lead compounds, a series of dual-target hybrids were designed and synthesised by Click Chemistry. The compounds were biologically evaluated for their iron ion chelating and MAO-B inhibitory activity. Most of the compounds displayed excellent iron ion chelating activity and moderate to good anti-MAO-B activity. Compounds 27b and 27j exhibited the most potent MAO-B inhibitory activity, with IC50 values of 0.68 and 0.86 μM, respectively. In summary, these dual-target compounds have the potential anti-AD activity.
Collapse
Affiliation(s)
- Zhisheng Mi
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Bing Gan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
- Guiyang Institute for Food and Drug Control, Guiyang, China
| | - Sihang Yu
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jianan Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Changjun Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Xiaoying Jiang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Tao Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jing Su
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Renren Bai
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yuanyuan Xie
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
46
|
Tripathi A, Choubey PK, Sharma P, Seth A, Tripathi PN, Tripathi MK, Prajapati SK, Krishnamurthy S, Shrivastava SK. Design and development of molecular hybrids of 2-pyridylpiperazine and 5-phenyl-1,3,4-oxadiazoles as potential multifunctional agents to treat Alzheimer's disease. Eur J Med Chem 2019; 183:111707. [DOI: 10.1016/j.ejmech.2019.111707] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/14/2019] [Accepted: 09/15/2019] [Indexed: 01/04/2023]
|
47
|
Bai P, Wang K, Zhang P, Shi J, Cheng X, Zhang Q, Zheng C, Cheng Y, Yang J, Lu X, Sang Z. Development of chalcone-O-alkylamine derivatives as multifunctional agents against Alzheimer's disease. Eur J Med Chem 2019; 183:111737. [DOI: 10.1016/j.ejmech.2019.111737] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 01/23/2023]
|
48
|
Peng Q, Yan X, Shi X, Ou S, Gu H, Yin X, Shi G, Yu Y. In vivo monitoring of superoxide anion from Alzheimer's rat brains with functionalized ionic liquid polymer decorated microsensor. Biosens Bioelectron 2019; 144:111665. [DOI: 10.1016/j.bios.2019.111665] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 02/06/2023]
|
49
|
Sharma P, Tripathi A, Tripathi PN, Singh SS, Singh SP, Shrivastava SK. Novel Molecular Hybrids of N-Benzylpiperidine and 1,3,4-Oxadiazole as Multitargeted Therapeutics to Treat Alzheimer's Disease. ACS Chem Neurosci 2019; 10:4361-4384. [PMID: 31491074 DOI: 10.1021/acschemneuro.9b00430] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Multitargeted hybrids of N-benzylpiperidine and substituted 5-phenyl-1,3,4-oxadiazoles were designed, synthesized, and evaluated against Alzheimer's disease (AD). Tested compounds exhibited moderate to excellent inhibition against human acetylcholinesterase (hAChE), butyrylcholinesterase (hBChE), and beta-secretase-1 (hBACE-1). The potential leads 6g and 10f exhibited balanced inhibitory profiles against all the targets, with a substantial displacement of propidium iodide from the peripheral anionic site of hAChE. Hybrids 6g and 10f also elicited favorable permeation across the blood-brain barrier and were devoid of neurotoxic liability toward SH-SY5Y neuroblastoma cells. Both leads remarkably disassembled Aβ aggregation in thioflavin T-based self- and AChE-induced experiments. Compounds 6g and 10f ameliorated scopolamine-induced cognitive dysfunctions in the Y-maze test. The ex vivo studies of rat brain homogenates established the reduced AChE levels and antioxidant activity of both compounds. Compound 6g also elicited noteworthy improvement in Aβ-induced cognitive dysfunctions in the Morris water maze test with downregulation in the expression of Aβ and BACE-1 proteins corroborated by Western blot and immunohistochemical analysis. The pharmacokinetic study showed excellent oral absorption characteristics of compound 6g. The in silico molecular docking and dynamics simulation studies of lead compounds affirmed their consensual binding interactions with PAS-AChE and aspartate dyad of BACE-1.
Collapse
Affiliation(s)
- Piyoosh Sharma
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221 005, India
| | - Avanish Tripathi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221 005, India
| | - Prabhash Nath Tripathi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221 005, India
| | - Saumitra Sen Singh
- Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Surya Pratap Singh
- Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Sushant Kumar Shrivastava
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221 005, India
| |
Collapse
|
50
|
Exploring Structure-Activity Relationship in Tacrine-Squaramide Derivatives as Potent Cholinesterase Inhibitors. Biomolecules 2019; 9:biom9080379. [PMID: 31430943 PMCID: PMC6723352 DOI: 10.3390/biom9080379] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/16/2019] [Accepted: 08/17/2019] [Indexed: 01/23/2023] Open
Abstract
Tacrine was the first drug to be approved for Alzheimer’s disease (AD) treatment, acting as a cholinesterase inhibitor. The neuropathological hallmarks of AD are amyloid-rich senile plaques, neurofibrillary tangles, and neuronal degeneration. The portfolio of currently approved drugs for AD includes acetylcholinesterase inhibitors (AChEIs) and N-methyl-d-aspartate (NMDA) receptor antagonist. Squaric acid is a versatile structural scaffold capable to be easily transformed into amide-bearing compounds that feature both hydrogen bond donor and acceptor groups with the possibility to create multiple interactions with complementary sites. Considering the relatively simple synthesis approach and other interesting properties (rigidity, aromatic character, H-bond formation) of squaramide motif, we combined this scaffold with different tacrine-based derivatives. In this study, we developed 21 novel dimers amalgamating squaric acid with either tacrine, 6-chlorotacrine or 7-methoxytacrine representing various AChEIs. All new derivatives were evaluated for their anti-cholinesterase activities, cytotoxicity using HepG2 cell line and screened to predict their ability to cross the blood-brain barrier. In this contribution, we also report in silico studies of the most potent AChE and BChE inhibitors in the active site of these enzymes.
Collapse
|