1
|
Picón DF, Skouta R. Unveiling the Therapeutic Potential of Squalene Synthase: Deciphering Its Biochemical Mechanism, Disease Implications, and Intriguing Ties to Ferroptosis. Cancers (Basel) 2023; 15:3731. [PMID: 37509391 PMCID: PMC10378455 DOI: 10.3390/cancers15143731] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/12/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Squalene synthase (SQS) has emerged as a promising therapeutic target for various diseases, including cancers, owing to its pivotal role in the mevalonate pathway and the antioxidant properties of squalene. Primarily, SQS orchestrates the head-to-head condensation reaction, catalyzing the fusion of two farnesyl pyrophosphate molecules, leading to the formation of squalene, which has been depicted as a highly effective oxygen-scavenging agent in in vitro studies. Recent studies have depicted this isoprenoid as a protective layer against ferroptosis due to its potential regulation of lipid peroxidation, as well as its protection against oxidative damage. Therefore, beyond its fundamental function, recent investigations have unveiled additional roles for SQS as a regulator of lipid peroxidation and programmed cell death pathways, such as ferroptosis-a type of cell death characterized by elevated levels of lipid peroxide, one of the forms of reactive oxygen species (ROS), and intracellular iron concentration. Notably, thorough explorations have shed light on the distinctive features that set SQS apart from other members within the isoprenoid synthase superfamily. Its unique biochemical structure, intricately intertwined with its reaction mechanism, has garnered significant attention. Moreover, considerable evidence substantiates the significance of SQS in various disease contexts, and its intriguing association with ferroptosis and lipid peroxidation. The objective of this report is to analyze the existing literature comprehensively, corroborating these findings, and provide an up-to-date perspective on the current understanding of SQS as a prospective therapeutic target, as well as its intricate relationship with ferroptosis. This review aims to consolidate the knowledge surrounding SQS, thereby contributing to the broader comprehension of its potential implications in disease management and therapeutic interventions.
Collapse
Affiliation(s)
| | - Rachid Skouta
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
2
|
Elmesseri RA, Saleh SE, Elsherif HM, Yahia IS, Aboshanab KM. Staphyloxanthin as a Potential Novel Target for Deciphering Promising Anti- Staphylococcus aureus Agents. Antibiotics (Basel) 2022; 11:298. [PMID: 35326762 PMCID: PMC8944557 DOI: 10.3390/antibiotics11030298] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 01/16/2023] Open
Abstract
Staphylococcus aureus is a fatal Gram-positive pathogen threatening numerous cases of hospital-admitted patients worldwide. The emerging resistance of the pathogen to several antimicrobial agents has pressurized research to propose new strategies for combating antimicrobial resistance. Novel strategies include targeting the virulence factors of S. aureus. One of the most prominent virulence factors of S. aureus is its eponymous antioxidant pigment staphyloxanthin (STX), which is an auspicious target for anti-virulence therapy. This review provides an updated outline on STX and multiple strategies to attenuate this virulence factor. The approaches discussed in this article focus on bioprospective and chemically synthesized inhibitors of STX, inter-species communication and genetic manipulation. Various inhibitor molecules were found to exhibit appreciable inhibitory effect against STX and hence would be able to serve as potential anti-virulence agents for clinical use.
Collapse
Affiliation(s)
- Rana A. Elmesseri
- Department of Microbiology, Faculty of Pharmacy, Misr International University (MIU), Cairo 19648, Egypt; (R.A.E.); (H.M.E.)
| | - Sarra E. Saleh
- Department of Microbiology & Immunology, Faculty of Pharmacy, Ain Shams University (ASU), Cairo 11566, Egypt;
| | - Heba M. Elsherif
- Department of Microbiology, Faculty of Pharmacy, Misr International University (MIU), Cairo 19648, Egypt; (R.A.E.); (H.M.E.)
| | - Ibrahim S. Yahia
- Laboratory of Nano-Smart Materials for Science and Technology (LNSMST), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61441, Saudi Arabia;
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Nanoscience Laboratory for Environmental and Biomedical Applications (NLEBA), Semiconductor Laboratory, Department of Physics, Faculty of Education, Ain Shams University, Roxy, Cairo 11757, Egypt
| | - Khaled M. Aboshanab
- Department of Microbiology & Immunology, Faculty of Pharmacy, Ain Shams University (ASU), Cairo 11566, Egypt;
| |
Collapse
|
3
|
Barber CC, Zhang W. Small molecule natural products in human nasal/oral microbiota. J Ind Microbiol Biotechnol 2021; 48:6129854. [PMID: 33945611 PMCID: PMC8210680 DOI: 10.1093/jimb/kuab010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/07/2020] [Indexed: 12/26/2022]
Abstract
Small molecule natural products are a chemically diverse class of biomolecules that fulfill myriad biological functions, including autoregulation, communication with microbial neighbors and the host, interference competition, nutrient acquisition, and resistance to oxidative stress. Human commensal bacteria are increasingly recognized as a potential source of new natural products, which may provide insight into the molecular ecology of many different human body sites as well as novel scaffolds for therapeutic development. Here, we review the scientific literature on natural products derived from residents of the human nasal/oral cavity, discuss their discovery, biosynthesis, and ecological roles, and identify key questions in the study of these compounds.
Collapse
Affiliation(s)
- Colin Charles Barber
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley 94720, USA
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley 94720, USA.,Chan-Zuckerberg Biohub, San Francisco 94158, USA
| |
Collapse
|
4
|
Yu J, Rao L, Zhan L, Wang B, Zhan Q, Xu Y, Zhao H, Wang X, Zhou Y, Guo Y, Wu X, Song Z, Yu F. The small molecule ZY-214-4 may reduce the virulence of Staphylococcus aureus by inhibiting pigment production. BMC Microbiol 2021; 21:67. [PMID: 33639851 PMCID: PMC7916275 DOI: 10.1186/s12866-021-02113-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/02/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND In recent years, clinical Staphylococcus aureus isolates have become highly resistant to antibiotics, which has raised concerns about the ability to control infections by these organisms. The aim of this study was to clarify the effect of a new small molecule, ZY-214-4 (C19H11BrNO4), on S. aureus pigment production. RESULTS At the concentration of 4 μg/mL, ZY-214-4 exerted a significant inhibitory effect on S. aureus pigment synthesis, without affecting its growth or inducing a toxic effect on the silkworm. An oxidant sensitivity test and a whole-blood killing test indicated that the S. aureus survival rate decreased significantly with ZY-214-4 treatment. Additionally, ZY-214-4 administration significantly reduced the expression of a pigment synthesis-related gene (crtM) and the superoxide dismutase genes (sodA) as determined by real-time quantitative polymerase chain reaction (RT-qPCR) analysis. ZY-214-4 treatment also improved the survival rate of S. aureus-infected silkworm larvae. CONCLUSIONS The small molecule ZY-214-4 has potential for the prevention of S. aureus infections by reducing the virulence associated with this bacterium.
Collapse
Affiliation(s)
- Jingyi Yu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Lulin Rao
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Lingling Zhan
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Bingjie Wang
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200082, China
| | - Qing Zhan
- Nanchang University, Nanchang, 330027, China
| | - Yanlei Xu
- Nanchang University, Nanchang, 330027, China
| | - Huilin Zhao
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200082, China
| | - Xinyi Wang
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200082, China
| | - Yan Zhou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Yinjuan Guo
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200082, China
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200082, China
| | - Xiaocui Wu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200082, China
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200082, China
| | - Zengqiang Song
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, China.
| | - Fangyou Yu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200082, China.
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200082, China.
| |
Collapse
|
5
|
Ford CA, Hurford IM, Cassat JE. Antivirulence Strategies for the Treatment of Staphylococcus aureus Infections: A Mini Review. Front Microbiol 2021; 11:632706. [PMID: 33519793 PMCID: PMC7840885 DOI: 10.3389/fmicb.2020.632706] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
Staphylococcus aureus is a Gram-positive bacterium capable of infecting nearly all host tissues, causing severe morbidity and mortality. Widespread antimicrobial resistance has emerged among S. aureus clinical isolates, which are now the most frequent causes of nosocomial infection among drug-resistant pathogens. S. aureus produces an array of virulence factors that enhance in vivo fitness by liberating nutrients from the host or evading host immune responses. Staphylococcal virulence factors have been identified as viable therapeutic targets for treatment, as they contribute to disease pathogenesis, tissue injury, and treatment failure. Antivirulence strategies, or treatments targeting virulence without direct toxicity to the inciting pathogen, show promise as an adjunctive therapy to traditional antimicrobials. This Mini Review examines recent research on S. aureus antivirulence strategies, with an emphasis on translational studies. While many different virulence factors have been investigated as therapeutic targets, this review focuses on strategies targeting three virulence categories: pore-forming toxins, immune evasion mechanisms, and the S. aureus quorum sensing system. These major areas of S. aureus antivirulence research demonstrate broad principles that may apply to other human pathogens. Finally, challenges of antivirulence research are outlined including the potential for resistance, the need to investigate multiple infection models, and the importance of studying antivirulence in conjunction with traditional antimicrobial treatments.
Collapse
Affiliation(s)
- Caleb A. Ford
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Ian M. Hurford
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - James E. Cassat
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
6
|
Ribeiro LMBC, Fumagalli F, Mello RB, Froes TQ, da Silva MVS, Villamizar Gómez SM, Barros TF, Emery FS, Castilho MS. Structure-activity relationships and mechanism of action of tetragomycin derivatives as inhibitors of Staphylococcus aureus staphyloxanthin biosynthesis. Microb Pathog 2020; 144:104127. [PMID: 32169485 DOI: 10.1016/j.micpath.2020.104127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/13/2020] [Accepted: 03/06/2020] [Indexed: 12/31/2022]
Abstract
Despite the main strategy to overcome bacterial resistance has focused on the development of more potent antimicrobial agents, the evolutionary pressure caused by such drugs makes this strategy limited. Molecules that interfere with virulence factors appear as a promising alternative though, as they cause reduced selective pressure. As a matter of fact, staphyloxanthin biosynthesis inhibition (STXBI) has been pursued as promising strategy to reduce S. aureus virulence. Herein, we report the inhibitory profile of 27 tetrangomycin derivatives over staphyloxanthin production. The experimental result showed that naphthoquinone dehydro-α-lapachone (25 - EC50 = 57.29 ± 1.15 μM) and 2-Isopropylnaphtho[2,3-b]furan-4,9-dione (26 EC50 = 82.10 ± 1.09 μM) are the most potent compounds and suggest that hydrogen acceptor groups and lipophilic moieties decorating the naphthoquinone ring are crucial for STXBI. In addition, we present an in situ analysis, through RAMAN spectroscopy, that is inexpensive and might be employed to probe the mechanism of action of staphyloxanthin biosynthesis inhibitors. Therefore, our molecular simplification strategies afforded promising lead compounds for the development of drugs that modulate S. aureus staphyloxanthin biosynthesis.
Collapse
Affiliation(s)
- L M B C Ribeiro
- Programa de Pós-graduação Em Biotecnologia, Universidade Estadual de Feira de Santana, Brazil
| | - F Fumagalli
- Centro de Ciências da Saúde da Universidade Federal de Santa Maria, Brazil
| | - R B Mello
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Brazil
| | - T Q Froes
- Programa de Pós-graduação Em Biotecnologia, Universidade Estadual de Feira de Santana, Brazil
| | - M V S da Silva
- Instituto de Física da Universidade Federal da Bahia, Brazil
| | | | - T F Barros
- Faculdade de Farmácia da Universidade Federal da Bahia, Brazil
| | - F S Emery
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Brazil
| | - M S Castilho
- Programa de Pós-graduação Em Biotecnologia, Universidade Estadual de Feira de Santana, Brazil; Faculdade de Farmácia da Universidade Federal da Bahia, Brazil.
| |
Collapse
|
7
|
Ye L, Han C, Shi P, Gao W, Mei W. Copper-catalyzed synthesis of phenol and diaryl ether derivatives via hydroxylation of diaryliodoniums. RSC Adv 2019; 9:21525-21529. [PMID: 35521308 PMCID: PMC9066359 DOI: 10.1039/c9ra04282b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/05/2019] [Indexed: 11/21/2022] Open
Abstract
A copper-catalysed hydroxylation of diaryliodoniums to generate phenols and diaryl ethers is reported. This method allows the synthesis of diversely functionalized phenols under mild reaction conditions without the need for a strong inorganic base or an expensive noble-metal catalyst. Significantly, convenient application of diaryliodoniums is demonstrated in the preparation of diaryl ethers in a one-pot operation.
Collapse
Affiliation(s)
- Lianbao Ye
- School of Pharmacy, Guangdong Pharmaceutical University Guangzhou 510006 Guangdong China +86-20-39352139
| | - Chao Han
- School of Pharmacy, Guangdong Pharmaceutical University Guangzhou 510006 Guangdong China +86-20-39352139
| | - Peiqi Shi
- School of Pharmacy, Guangdong Pharmaceutical University Guangzhou 510006 Guangdong China +86-20-39352139
| | - Wei Gao
- School of Pharmacy, Guangdong Pharmaceutical University Guangzhou 510006 Guangdong China +86-20-39352139
| | - Wenjie Mei
- Guangdong Province Engineering Technology Center for Molecular Probes & Biomedical Imaging, Guangdong Pharmaceutical University Guangzhou 510006 Guangdong China
| |
Collapse
|
8
|
Ni S, Li B, Xu Y, Mao F, Li X, Lan L, Zhu J, Li J. Targeting virulence factors as an antimicrobial approach: Pigment inhibitors. Med Res Rev 2019; 40:293-338. [PMID: 31267561 DOI: 10.1002/med.21621] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/30/2019] [Accepted: 06/13/2019] [Indexed: 12/19/2022]
Abstract
The fascinating and dangerous colored pathogens contain unique chemically pigmented molecules, which give varied and efficient assistance as virulence factors to the crucial reproduction and growth of microbes. Therefore, multiple novel strategies and inhibitors have been developed in recent years that target virulence factor pigments. However, despite the importance and significance of this topic, it has not yet been comprehensively reviewed. Moreover, research groups around the world have made successful progress against antibacterial infections by targeting pigment production, including our serial works on the discovery of CrtN inhibitors against staphyloxanthin production in Staphylococcus aureus. On the basis of the previous achievements and recent progress of our group in this field, this article will be the first comprehensive review of pigment inhibitors against colored pathogens, especially S. aureus infections, and this article includes design strategies, representative case studies, advantages, limitations, and perspectives to guide future research.
Collapse
Affiliation(s)
- Shuaishuai Ni
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Baoli Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yixiang Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Fei Mao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiaokang Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Lefu Lan
- State Key Laboratory of Drug Research, Shanghai Institute of Material Medical, Chinese Academy of Sciences, Shanghai, China
| | - Jin Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
9
|
Song J, Shang N, Baig N, Yao J, Shin C, Kim BK, Li Q, Malwal SR, Oldfield E, Feng X, Guo RT. Aspergillus flavus squalene synthase as an antifungal target: Expression, activity, and inhibition. Biochem Biophys Res Commun 2019; 512:517-523. [DOI: 10.1016/j.bbrc.2019.03.070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 03/12/2019] [Indexed: 12/18/2022]
|
10
|
Zhao Y, Wang X, Kodama K, Hirose T. Copper-Catalyzed Coupling Reactions of Aryl Halides and Phenols by 4,4’-Dimethoxy-2,2’-bipyridine and 4,7-Dimethoxy-1,10-phenanthroline. ChemistrySelect 2018. [DOI: 10.1002/slct.201802278] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yingying Zhao
- Department Graduate School of Science and Engineering; Institution Saitama University, Address 1255 Shimo-Okubo, Sakura-ku; Saitama 338-8570 Japan
| | - Xiangyong Wang
- Department Graduate School of Science and Engineering; Institution Saitama University, Address 1255 Shimo-Okubo, Sakura-ku; Saitama 338-8570 Japan
| | - Koichi Kodama
- Department Graduate School of Science and Engineering; Institution Saitama University, Address 1255 Shimo-Okubo, Sakura-ku; Saitama 338-8570 Japan
| | - Takuji Hirose
- Department Graduate School of Science and Engineering; Institution Saitama University, Address 1255 Shimo-Okubo, Sakura-ku; Saitama 338-8570 Japan
| |
Collapse
|
11
|
Xia Y, Xie Y, Yu Z, Xiao H, Jiang G, Zhou X, Yang Y, Li X, Zhao M, Li L, Zheng M, Han S, Zong Z, Meng X, Deng H, Ye H, Fa Y, Wu H, Oldfield E, Hu X, Liu W, Shi Y, Zhang Y. The Mevalonate Pathway Is a Druggable Target for Vaccine Adjuvant Discovery. Cell 2018; 175:1059-1073.e21. [PMID: 30270039 DOI: 10.1016/j.cell.2018.08.070] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 08/13/2018] [Accepted: 08/30/2018] [Indexed: 01/02/2023]
Abstract
Motivated by the clinical observation that interruption of the mevalonate pathway stimulates immune responses, we hypothesized that this pathway may function as a druggable target for vaccine adjuvant discovery. We found that lipophilic statin drugs and rationally designed bisphosphonates that target three distinct enzymes in the mevalonate pathway have potent adjuvant activities in mice and cynomolgus monkeys. These inhibitors function independently of conventional "danger sensing." Instead, they inhibit the geranylgeranylation of small GTPases, including Rab5 in antigen-presenting cells, resulting in arrested endosomal maturation, prolonged antigen retention, enhanced antigen presentation, and T cell activation. Additionally, inhibiting the mevalonate pathway enhances antigen-specific anti-tumor immunity, inducing both Th1 and cytolytic T cell responses. As demonstrated in multiple mouse cancer models, the mevalonate pathway inhibitors are robust for cancer vaccinations and synergize with anti-PD-1 antibodies. Our research thus defines the mevalonate pathway as a druggable target for vaccine adjuvants and cancer immunotherapies.
Collapse
Affiliation(s)
- Yun Xia
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, 100084 Beijing, China; Joint Graduate Program of Peking-Tsinghua-NIBS, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Yonghua Xie
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, 100084 Beijing, China
| | - Zhengsen Yu
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, 100084 Beijing, China
| | - Hongying Xiao
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, 100084 Beijing, China; Joint Graduate Program of Peking-Tsinghua-NIBS, School of Life Sciences, Tsinghua University, 100084 Beijing, China; Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Guimei Jiang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, 100084 Beijing, China; Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Xiaoying Zhou
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, 100084 Beijing, China
| | - Yunyun Yang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, 100084 Beijing, China
| | - Xin Li
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, 100084 Beijing, China; Joint Graduate Program of Peking-Tsinghua-NIBS, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Meng Zhao
- Joint Graduate Program of Peking-Tsinghua-NIBS, School of Life Sciences, Tsinghua University, 100084 Beijing, China; MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Liping Li
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, 100084 Beijing, China
| | - Mingke Zheng
- Institute for Immunology and School of Medicine, Tsinghua University, 100084 Beijing, China
| | - Shuai Han
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, 100084 Beijing, China
| | - Zhaoyun Zong
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Xianbin Meng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Huahu Ye
- Laboratory Animal Center, Academy of Military Medical Sciences, 100071 Beijing, China
| | - Yunzhi Fa
- Laboratory Animal Center, Academy of Military Medical Sciences, 100071 Beijing, China
| | - Haitao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, 100850 Beijing, China
| | - Eric Oldfield
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Xiaoyu Hu
- Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041 Sichuan, China; Institute for Immunology and School of Medicine, Tsinghua University, 100084 Beijing, China
| | - Wanli Liu
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, 100084 Beijing, China; Institute for Immunology and School of Medicine, Tsinghua University, 100084 Beijing, China.
| | - Yan Shi
- Institute for Immunology and School of Medicine, Tsinghua University, 100084 Beijing, China; Institute Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute, University of Calgary, Calgary, AB, Canada.
| | - Yonghui Zhang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, 100084 Beijing, China; Joint Graduate Program of Peking-Tsinghua-NIBS, School of Life Sciences, Tsinghua University, 100084 Beijing, China; Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041 Sichuan, China.
| |
Collapse
|
12
|
Abdelmagid WM, Adak T, Freeman JO, Tanner ME. Studies with Guanidinium- and Amidinium-Based Inhibitors Suggest Minimal Stabilization of Allylic Carbocation Intermediates by Dehydrosqualene and Squalene Synthases. Biochemistry 2018; 57:5591-5601. [PMID: 30179505 DOI: 10.1021/acs.biochem.8b00731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dehydrosqualene and squalene synthases catalyze the redox neutral and the reductive, head-to-head dimerization of farnesyl diphosphate, respectively. In each case, the reaction is thought to proceed via an initial dissociation of farnesyl diphosphate to form an allylic carbocation-pyrophosphate ion pair. This work describes the synthesis and testing of inhibitors in which a guanidinium or amidinium moiety is flanked by a phosphonylphosphinate group and a hydrocarbon tail. These functional groups bear a planar, delocalized, positive charge and therefore should act as excellent mimics of an allylic carbocation. An inhibitor bearing a neutral urea moiety was also prepared as a control. The positively charged inhibitors acted as competitive inhibitors against Staphylococcus aureus dehydrosqualene synthase with Ki values in the low micromolar range. Surprisingly, the neutral urea inhibitor was the most potent of the three. Similar trends were seen with the first half reaction of human squalene synthase. One interpretation of these results is that the active sites of these enzymes do not directly stabilize the allylic carbocation via electrostatic or π-cation interactions. Instead, it is likely that the enzymes use tight binding to the pyrophosphate and lipid moieties to promote catalysis and that electrostatic stabilization of the carbocation is provided by the bound pyrophosphate product. An alternate possibility is that these inhibitors cannot bind to the "ionization FPP-binding site" of the enzyme and only bind to the "nonionizing FPP-binding site". In either case, all reported attempts to generate potent inhibitors with cationic FPP analogues have been unsuccessful to date.
Collapse
Affiliation(s)
- Walid M Abdelmagid
- Department of Chemistry , University of British Columbia , Vancouver , British Columbia V6T 1Z1 , Canada
| | - Taniya Adak
- Department of Chemistry , University of British Columbia , Vancouver , British Columbia V6T 1Z1 , Canada
| | - Jon O Freeman
- Department of Chemistry , Pacific Lutheran University , Tacoma , Washington 98447 , United States
| | - Martin E Tanner
- Department of Chemistry , University of British Columbia , Vancouver , British Columbia V6T 1Z1 , Canada
| |
Collapse
|
13
|
Rubini D, Farisa Banu S, Veda Hari BN, Ramya Devi D, Gowrishankar S, Karutha Pandian S, Nithyanand P. Chitosan extracted from marine biowaste mitigates staphyloxanthin production and biofilms of Methicillin- resistant Staphylococcus aureus. Food Chem Toxicol 2018; 118:733-744. [PMID: 29908268 DOI: 10.1016/j.fct.2018.06.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/09/2018] [Accepted: 06/11/2018] [Indexed: 01/24/2023]
Abstract
Multidrug-resistant (MDR) Staphylococcus aureus is a major cause of biofilm-associated and indwelling device related infections. The present study explores the anti-virulent and antibiofilm potency of chitosan extracted from the shells of the marine crab Portunus sanguinolentus against Methicillin Resistant Staphylococcus aureus (MRSA). The chemical characterization results revealed that the extracted chitosan (EC) has structural analogy to that of a commercial chitosan (CC). The extracted chitosan was found to be effective in reducing the staphyloxanthin pigment, a characteristic virulence feature of MRSA that promotes resistance to reactive oxygen species. Furthermore, Confocal laser scanning microscope (CLSM) revealed that EC exhibited a phenomenal dose dependent antibiofilm efficacy against mature biofilms of the standard as well as clinical MRSA strains and Scanning Electron Microscopy (SEM) confirmed EC had a higher efficacy in disrupting the thick Exopolysaccharide (EPS) layer than CC. Additionally, EC and CC did not have any cytotoxic effects when tested on lung epithelial cell lines. Thus, the study exemplifies the anti-virulent properties of a marine bioresource which is till date discarded as a biowaste.
Collapse
Affiliation(s)
- Durairajan Rubini
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, Tamil Nadu, India
| | - Sanaulla Farisa Banu
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, Tamil Nadu, India
| | - B Narayanan Veda Hari
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613 401, Tamil Nadu, India.
| | - Durai Ramya Devi
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613 401, Tamil Nadu, India
| | - Shanmugaraj Gowrishankar
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, 630 004, Tamil Nadu, India
| | | | - Paramasivam Nithyanand
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, Tamil Nadu, India.
| |
Collapse
|
14
|
Ni S, Li B, Chen F, Wei H, Mao F, Liu Y, Xu Y, Qiu X, Li X, Liu W, Hu L, Ling D, Wang M, Zheng X, Zhu J, Lan L, Li J. Novel Staphyloxanthin Inhibitors with Improved Potency against Multidrug Resistant Staphylococcus aureus. ACS Med Chem Lett 2018. [PMID: 29541366 DOI: 10.1021/acsmedchemlett.7b00501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Diapophytoene desaturase (CrtN) is a potential novel target for intervening in the biosynthesis of the virulence factor staphyloxanthin. In this study, 38 1,4-benzodioxan-derived CrtN inhibitors were designed and synthesized to overwhelm the defects of leading compound 4a. Derivative 47 displayed superior pigment inhibitory activity, better hERG inhibitory properties and water solubility, and significantly sensitized MRSA strains to immune clearance in vitro. Notably, 47 displayed excellent efficacy against pigmented S. aureus Newman, Mu50 (vancomycin-intermediate MRSA, VISA), and NRS271 (linezolid-resistant MRSA, LRSA) comparable to that of linezolid and vancomycin in vivo.
Collapse
Affiliation(s)
- Shuaishuai Ni
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Baoli Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Feifei Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hanwen Wei
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Fei Mao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yifu Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yixiang Xu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoxi Qiu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaokang Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wenwen Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Linghao Hu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Dazheng Ling
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Manjiong Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xinyu Zheng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jin Zhu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Lefu Lan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jian Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
15
|
Kane TL, Carothers KE, Lee SW. Virulence Factor Targeting of the Bacterial Pathogen Staphylococcus aureus for Vaccine and Therapeutics. Curr Drug Targets 2018; 19:111-127. [PMID: 27894236 PMCID: PMC5957279 DOI: 10.2174/1389450117666161128123536] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/12/2016] [Accepted: 10/27/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Staphylococcus aureus is a major bacterial pathogen capable of causing a range of infections in humans from gastrointestinal disease, skin and soft tissue infections, to severe outcomes such as sepsis. Staphylococcal infections in humans can be frequent and recurring, with treatments becoming less effective due to the growing persistence of antibiotic resistant S. aureus strains. Due to the prevalence of antibiotic resistance, and the current limitations on antibiotic development, an active and highly promising avenue of research has been to develop strategies to specifically inhibit the activity of virulence factors produced S. aureus as an alternative means to treat disease. OBJECTIVE In this review we specifically highlight several major virulence factors produced by S. aureus for which recent advances in antivirulence approaches may hold promise as an alternative means to treating diseases caused by this pathogen. Strategies to inhibit virulence factors can range from small molecule inhibitors, to antibodies, to mutant and toxoid forms of the virulence proteins. CONCLUSION The major prevalence of antibiotic resistant strains of S. aureus combined with the lack of new antibiotic discoveries highlight the need for vigorous research into alternative strategies to combat diseases caused by this highly successful pathogen. Current efforts to develop specific antivirulence strategies, vaccine approaches, and alternative therapies for treating severe disease caused by S. aureus have the potential to stem the tide against the limitations that we face in the post-antibiotic era.
Collapse
Affiliation(s)
- Trevor L. Kane
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Katelyn E. Carothers
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Shaun W. Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
16
|
Li B, Ni S, Mao F, Chen F, Liu Y, Wei H, Chen W, Zhu J, Lan L, Li J. Novel Terminal Bipheny-Based Diapophytoene Desaturases (CrtN) Inhibitors as Anti-MRSA/VISR/LRSA Agents with Reduced hERG Activity. J Med Chem 2017; 61:224-250. [DOI: 10.1021/acs.jmedchem.7b01300] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Baoli Li
- Shanghai
Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Shuaishuai Ni
- Shanghai
Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Fei Mao
- Shanghai
Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Feifei Chen
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yifu Liu
- Shanghai
Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Hanwen Wei
- Shanghai
Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wenhua Chen
- Shanghai
Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jin Zhu
- Shanghai
Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Lefu Lan
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jian Li
- Shanghai
Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
17
|
Vermote A, Van Calenbergh S. Small-Molecule Potentiators for Conventional Antibiotics against Staphylococcus aureus. ACS Infect Dis 2017; 3:780-796. [PMID: 28889735 DOI: 10.1021/acsinfecdis.7b00084] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Antimicrobial resistance constitutes a global health problem, while the discovery and development of novel antibiotics is stagnating. Methicillin-resistant Staphylococcus aureus, responsible for the establishment of recalcitrant, biofilm-related infections, is a well-known and notorious example of a highly resistant micro-organism. Since resistance development is unavoidable with conventional antibiotics that target bacterial viability, it is vital to develop alternative treatment options on top. Strategies aimed at more subtle manipulation of bacterial behavior have recently attracted attention. Here, we provide a literature overview of several small-molecule potentiators for antibiotics, identified for the treatment of Staphylococcus aureus infection. Typically, these potentiators are not bactericidal by themselves and function by reversing resistance mechanisms, by attenuating Staphylococcus aureus virulence, and/or by interfering with quorum sensing.
Collapse
Affiliation(s)
- Arno Vermote
- Laboratory for Medicinal Chemistry, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| |
Collapse
|
18
|
Kaźmierczak A, Kusy D, Niinivehmas SP, Gmach J, Joachimiak Ł, Pentikäinen OT, Gendaszewska-Darmach E, Błażewska KM. Identification of the Privileged Position in the Imidazo[1,2-a]pyridine Ring of Phosphonocarboxylates for Development of Rab Geranylgeranyl Transferase (RGGT) Inhibitors. J Med Chem 2017; 60:8781-8800. [PMID: 28953373 DOI: 10.1021/acs.jmedchem.7b00811] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Members of the Rab GTPase family are master regulators of vesicle trafficking. When disregulated, they are associated with a number of pathological states. The inhibition of RGGT, an enzyme responsible for post-translational geranylgeranylation of Rab GTPases represents one way to control the activity of these proteins. Because the number of molecules modulating RGGT is limited, we combined molecular modeling with biological assays to ascertain how modifications of phosphonocarboxylates, the first reported RGGT inhibitors, rationally improve understanding of their structure-activity relationship. We have identified the privileged position in the core scaffold of the imidazo[1,2-a]pyridine ring, which can be modified without compromising compounds' potency. Thus modified compounds are micromolar inhibitors of Rab11A prenylation, simultaneously being inactive against Rap1A/Rap1B modification, with the ability to inhibit proliferation of the HeLa cancer cell line. These findings were rationalized by molecular docking, which recognized interaction of phosphonic and carboxylic groups as decisive in phosphonocarboxylate localization in the RGGT binding site.
Collapse
Affiliation(s)
- Aleksandra Kaźmierczak
- Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology , Stefanowskiego Street 4/10, 90-924 Łódź, Poland
| | - Damian Kusy
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology , Żeromskiego Street 116, 90-924 Łódź, Poland
| | - Sanna P Niinivehmas
- Department of Biological and Environmental Science & Nanoscience Center, University of Jyväskylä , P.O. Box 35, FI-40014 University of Jyväskylä, Finland
| | - Joanna Gmach
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology , Żeromskiego Street 116, 90-924 Łódź, Poland
| | - Łukasz Joachimiak
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology , Żeromskiego Street 116, 90-924 Łódź, Poland
| | - Olli T Pentikäinen
- Department of Biological and Environmental Science & Nanoscience Center, University of Jyväskylä , P.O. Box 35, FI-40014 University of Jyväskylä, Finland.,Institute of Biomedicine, University of Turku , FI-20520 Turku, Finland
| | - Edyta Gendaszewska-Darmach
- Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology , Stefanowskiego Street 4/10, 90-924 Łódź, Poland
| | - Katarzyna M Błażewska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology , Żeromskiego Street 116, 90-924 Łódź, Poland
| |
Collapse
|
19
|
Ni S, Wei H, Li B, Chen F, Liu Y, Chen W, Xu Y, Qiu X, Li X, Lu Y, Liu W, Hu L, Lin D, Wang M, Zheng X, Mao F, Zhu J, Lan L, Li J. Novel Inhibitors of Staphyloxanthin Virulence Factor in Comparison with Linezolid and Vancomycin versus Methicillin-Resistant, Linezolid-Resistant, and Vancomycin-Intermediate Staphylococcus aureus Infections in Vivo. J Med Chem 2017; 60:8145-8159. [PMID: 28880552 DOI: 10.1021/acs.jmedchem.7b00949] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Our previous work ( Wang et al. J. Med. Chem. 2016 , 59 , 4831 - 4848 ) revealed that effective benzocycloalkane-derived staphyloxanthin inhibitors against methicillin-resistant Staphylococcus aureus (S. aureus) infections were accompanied by poor water solubility and high hERG inhibition and dosages (preadministration). In this study, 92 chroman and coumaran derivatives as novel inhibitors have been addressed for overcoming deficiencies above. Derivatives 69 and 105 displayed excellent pigment inhibitory activities and low hERG inhibition, along with improvement of solubility by salt type selection. The broad and significantly potent antibacterial spectra of 69 and 105 were displayed first with normal administration in the livers and hearts in mice against pigmented S. aureus Newman, Mu50 (vancomycin-intermediate S. aureus), and NRS271 (linezolid-resistant S. aureus), compared with linezolid and vancomycin. In summary, both 69 and 105 have the potential to be developed as good antibacterial candidates targeting virulence factors.
Collapse
Affiliation(s)
- Shuaishuai Ni
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Hanwen Wei
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Baoli Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Feifei Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Material Medical, Chinese Academy of Sciences , Shanghai 201203, China
| | - Yifu Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Wenhua Chen
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Yixiang Xu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Xiaoxia Qiu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Xiaokang Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Yanli Lu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Wenwen Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Linhao Hu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Dazheng Lin
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Manjiong Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Xinyu Zheng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Fei Mao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Jin Zhu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Lefu Lan
- State Key Laboratory of Drug Research, Shanghai Institute of Material Medical, Chinese Academy of Sciences , Shanghai 201203, China
| | - Jian Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| |
Collapse
|
20
|
Dehydrosqualene Desaturase as a Novel Target for Anti-Virulence Therapy against Staphylococcus aureus. mBio 2017; 8:mBio.01224-17. [PMID: 28874472 PMCID: PMC5587911 DOI: 10.1128/mbio.01224-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Staphylococcus aureus, especially methicillin-resistant S. aureus (MRSA), is a life-threatening pathogen in hospital- and community-acquired infections. The golden-colored carotenoid pigment of S. aureus, staphyloxanthin, contributes to the resistance to reactive oxygen species (ROS) and host neutrophil-based killing. Here, we describe a novel inhibitor (NP16) of S. aureus pigment production that reduces the survival of S. aureus under oxidative stress conditions. Carotenoid components analysis, enzyme inhibition, and crtN mutational studies indicated that the molecular target of NP16 is dehydrosqualene desaturase (CrtN). S. aureus treated with NP16 showed increased susceptibility to human neutrophil killing and to innate immune clearance in a mouse infection model. Our study validates CrtN as a novel druggable target in S. aureus and presents a potent and effective lead compound for the development of virulence factor-based therapy against S. aureus. S. aureus staphyloxanthin contributes substantially to pathogenesis by interfering with host immune clearance mechanisms, but it has little impact on ex vivo survival of the bacterium. Agents blocking staphyloxanthin production may discourage the establishment and maintenance of bacterial infection without exerting selective pressure for antimicrobial resistance. Our newly discovered CrtN inhibitor, NP16, may offer an effective strategy for combating S. aureus infections.
Collapse
|
21
|
Abstract
![]()
The
year 2017 marks the twentieth anniversary of terpenoid cyclase
structural biology: a trio of terpenoid cyclase structures reported
together in 1997 were the first to set the foundation for understanding
the enzymes largely responsible for the exquisite chemodiversity of
more than 80000 terpenoid natural products. Terpenoid cyclases catalyze
the most complex chemical reactions in biology, in that more than
half of the substrate carbon atoms undergo changes in bonding and
hybridization during a single enzyme-catalyzed cyclization reaction.
The past two decades have witnessed structural, functional, and computational
studies illuminating the modes of substrate activation that initiate
the cyclization cascade, the management and manipulation of high-energy
carbocation intermediates that propagate the cyclization cascade,
and the chemical strategies that terminate the cyclization cascade.
The role of the terpenoid cyclase as a template for catalysis is paramount
to its function, and protein engineering can be used to reprogram
the cyclization cascade to generate alternative and commercially important
products. Here, I review key advances in terpenoid cyclase structural
and chemical biology, focusing mainly on terpenoid cyclases and related
prenyltransferases for which X-ray crystal structures have informed
and advanced our understanding of enzyme structure and function.
Collapse
Affiliation(s)
- David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
22
|
Boulmier A, Feng X, Oms O, Mialane P, Rivière E, Shin CJ, Yao J, Kubo T, Furuta T, Oldfield E, Dolbecq A. Anticancer Activity of Polyoxometalate-Bisphosphonate Complexes: Synthesis, Characterization, In Vitro and In Vivo Results. Inorg Chem 2017; 56:7558-7565. [PMID: 28631925 PMCID: PMC5535315 DOI: 10.1021/acs.inorgchem.7b01114] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We synthesized a series of polyoxometalate-bisphosphonate complexes containing MoVIO6 octahedra, zoledronate, or an N-alkyl (n-C6 or n-C8) zoledronate analogue, and in two cases, Mn as a heterometal. Mo6L2 (L = Zol, ZolC6, ZolC8) and Mo4L2Mn (L = Zol, ZolC8) were characterized by using single-crystal X-ray crystallography and/or IR spectroscopy, elemental and energy dispersive X-ray analysis and 31P NMR. We found promising activity against human nonsmall cell lung cancer (NCI-H460) cells with IC50 values for growth inhibition of ∼5 μM per bisphosphonate ligand. The effects of bisphosphonate complexation on IC50 decreased with increasing bisphosphonate chain length: C0 ≈ 6.1×, C6 ≈ 3.4×, and C8 ≈ 1.1×. We then determined the activity of one of the most potent compounds in the series, Mo4Zol2Mn(III), against SK-ES-1 sarcoma cells in a mouse xenograft system finding a ∼5× decrease in tumor volume than found with the parent compound zoledronate at the same compound dosing (5 μg/mouse). Overall, the results are of interest since we show for the first time that heteropolyoxomolybdate-bisphosphonate hybrids kill tumor cells in vitro and significantly decrease tumor growth, in vivo, opening up new possibilities for targeting both Ras as well as epidermal growth factor receptor driven cancers.
Collapse
Affiliation(s)
- Amandine Boulmier
- Institut Lavoisier de Versailles, UMR 8180, Université de Versailles Saint-Quentin en Yvelines, Université Paris-Saclay, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France
| | - Xinxin Feng
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 6180, USA
| | - Olivier Oms
- Institut Lavoisier de Versailles, UMR 8180, Université de Versailles Saint-Quentin en Yvelines, Université Paris-Saclay, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France
| | - Pierre Mialane
- Institut Lavoisier de Versailles, UMR 8180, Université de Versailles Saint-Quentin en Yvelines, Université Paris-Saclay, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France
| | - Eric Rivière
- Institut de Chimie Moléculaire et des Matériaux d’Orsay, UMR 8182, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Christopher J. Shin
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 6180, USA
| | - Jiaqi Yao
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 6180, USA
| | - Tadahiko Kubo
- Department of Orthopedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, Japan
| | - Taisuke Furuta
- Department of Orthopedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, Japan
| | - Eric Oldfield
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 6180, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 1110 W Green Street, Urbana, Illinois 61801, USA
| | - Anne Dolbecq
- Institut Lavoisier de Versailles, UMR 8180, Université de Versailles Saint-Quentin en Yvelines, Université Paris-Saclay, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France
| |
Collapse
|
23
|
Synthesis of novel pyrazolo[3,4- b ]quinolinyl acetamide analogs, their evaluation for antimicrobial and anticancer activities, validation by molecular modeling and CoMFA analysis. Eur J Med Chem 2017; 130:223-239. [DOI: 10.1016/j.ejmech.2017.02.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 11/18/2022]
|
24
|
Fan M, Zhou W, Jiang Y, Ma D. CuI/Oxalamide Catalyzed Couplings of (Hetero)aryl Chlorides and Phenols for Diaryl Ether Formation. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mengyang Fan
- State Key Laboratory of Bioorganic & Natural Products Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 354 Fenglin Lu Shanghai 200032 China
| | - Wei Zhou
- State Key Laboratory of Bioorganic & Natural Products Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 354 Fenglin Lu Shanghai 200032 China
| | - Yongwen Jiang
- State Key Laboratory of Bioorganic & Natural Products Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 354 Fenglin Lu Shanghai 200032 China
| | - Dawei Ma
- State Key Laboratory of Bioorganic & Natural Products Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 354 Fenglin Lu Shanghai 200032 China
| |
Collapse
|
25
|
Fan M, Zhou W, Jiang Y, Ma D. CuI/Oxalamide Catalyzed Couplings of (Hetero)aryl Chlorides and Phenols for Diaryl Ether Formation. Angew Chem Int Ed Engl 2016; 55:6211-5. [DOI: 10.1002/anie.201601035] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Mengyang Fan
- State Key Laboratory of Bioorganic & Natural Products Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 354 Fenglin Lu Shanghai 200032 China
| | - Wei Zhou
- State Key Laboratory of Bioorganic & Natural Products Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 354 Fenglin Lu Shanghai 200032 China
| | - Yongwen Jiang
- State Key Laboratory of Bioorganic & Natural Products Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 354 Fenglin Lu Shanghai 200032 China
| | - Dawei Ma
- State Key Laboratory of Bioorganic & Natural Products Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 354 Fenglin Lu Shanghai 200032 China
| |
Collapse
|
26
|
Wang Y, Chen F, Di H, Xu Y, Xiao Q, Wang X, Wei H, Lu Y, Zhang L, Zhu J, Sheng C, Lan L, Li J. Discovery of Potent Benzofuran-Derived Diapophytoene Desaturase (CrtN) Inhibitors with Enhanced Oral Bioavailability for the Treatment of Methicillin-Resistant Staphylococcus aureus (MRSA) Infections. J Med Chem 2016; 59:3215-30. [PMID: 26999509 DOI: 10.1021/acs.jmedchem.5b01984] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Blocking the staphyloxanthin biosynthesis process has emerged as a new promising antivirulence strategy. Previously, we first revealed that CrtN is a druggable target against infections caused by pigmented Staphylococcus aureus (S. aureus) and that naftifine was an effective CrtN inhibitor. Here, we identify a new type of benzofuran-derived CrtN inhibitor with submicromolar IC50 values that is based on the naftifine scaffold. The most potent analog, 5m, inhibits the pigment production of S. aureus Newman and three MRSA strains, with IC50 values of 0.38-5.45 nM, without any impact on the survival of four strains (up to 200 μM). Notably, compound 5m (1 μM) could significantly sensitize four strains to immune clearance and could effectively attenuate the virulence of three strains in vivo. Moreover, 5m was determined to be a weak antifungal reagent (MIC > 16 μg/mL). Combined with good oral bioavailability (F = 42.2%) and excellent safety profiles, these data demonstrate that 5m may be a good candidate for the treatment of MRSA infections.
Collapse
Affiliation(s)
- Youxin Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Feifei Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
| | - Hongxia Di
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
| | - Yong Xu
- Hubei Bio-pharmaceutical Industrial Technological Institute Inc. , Wuhan 430075, China
| | - Qiang Xiao
- Hubei Bio-pharmaceutical Industrial Technological Institute Inc. , Wuhan 430075, China
| | - Xuehai Wang
- Humanwell Healthcare (Group) Co. Ltd , 666 Gaoxin Road, Wuhan 430075, China
| | - Hanwen Wei
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Yanli Lu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Lingling Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Jin Zhu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Chunquan Sheng
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University , Shanghai 200433, China
| | - Lefu Lan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
| | - Jian Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| |
Collapse
|
27
|
Sri Charan Bindu B, Mishra DP, Narayan B. Inhibition of virulence of Staphylococcus aureus – a food borne pathogen – by squalene, a functional lipid. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
28
|
Vinogradov AS, Platonov VE. Synthesis of perfluorinated biaryls by reaction of perfluoroarylzinc compounds with perfluoroarenes. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2015. [DOI: 10.1134/s107042801510005x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Saad A, Zhu W, Rousseau G, Mialane P, Marrot J, Haouas M, Taulelle F, Dessapt R, Serier-Brault H, Rivière E, Kubo T, Oldfield E, Dolbecq A. Polyoxomolybdate Bisphosphonate Heterometallic Complexes: Synthesis, Structure, and Activity on a Breast Cancer Cell Line. Chemistry 2015; 21:10537-47. [DOI: 10.1002/chem.201406565] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/12/2015] [Indexed: 01/15/2023]
|
30
|
Trenin AS. [Microbial metabolites that inhibit sterol biosynthesis, their chemical diversity and characteristics of mode of action]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2015; 39:633-57. [PMID: 25696927 DOI: 10.1134/s1068162013060095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Inhibitors of sterol biosynthesis (ISB) are widespread in nature and characterized by appreciable diversity both in their chemical structure and mode of action. Many of these inhibitors express noticeable biological activity and approved themselves in development of various pharmaceuticals. In this review there is a detailed description of biologically active microbial metabolites with revealed chemical structure that have ability to inhibit sterol biosynthesis. Inhibitors of mevalonate pathway in fungous and mammalian cells, exhibiting hypolipidemic or antifungal activity, as well as inhibitors of alternative non-mevalonate (pyruvate gliceraldehyde phosphate) isoprenoid pathway, which are promising in the development of affective antimicrobial or antiparasitic drugs, are under consideration in this review. Chemical formulas of the main natural inhibitors and their semi-synthetic derivatives are represented. Mechanism of their action at cellular and biochemical level is discussed. Special attention is given to inhibitors of 3-hydroxy-3-methylglutaryl Coenzyme A (HMG-CoA) reductase (group of lovastatin) and inhibitors of acyl-CoA-cholesterol-acyl transferase (ACAT) that possess hypolipidemic activity and could be affective in the treatment of atherosclerosis. In case of inhibitors of late stages of sterol biosynthesis (after squalene formation) special attention is paid to compounds possessing evident antifungal and antitumoral activity. Explanation of mechanism of anticancer and antiviral action of microbial ISB, as well as the description of their ability to induce apoptosis is given.
Collapse
|
31
|
Furubayashi M, Li L, Katabami A, Saito K, Umeno D. Directed evolution of squalene synthase for dehydrosqualene biosynthesis. FEBS Lett 2014; 588:3375-81. [PMID: 25093296 DOI: 10.1016/j.febslet.2014.07.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 07/20/2014] [Accepted: 07/22/2014] [Indexed: 10/24/2022]
Abstract
Squalene synthase (SQS) catalyzes the first step of sterol/hopanoid biosynthesis in various organisms. It has been long recognized that SQSs share a common ancestor with carotenoid synthases, but it is not known how these enzymes selectively produce their own product. In this study, SQSs from yeast, human, and bacteria were independently subjected to directed evolution for the production of the C30 carotenoid backbone, dehydrosqualene. This was accomplished via high-throughput screening with Pantoea ananatis phytoene desaturase, which can selectively convert dehydrosqualene into yellow carotenoid pigments. Genetic analysis of the resultant mutants revealed various mutations that could effectively convert SQS into a "dehydrosqualene synthase." All of these mutations are clustered around the residues that have been proposed to be important for NADPH binding.
Collapse
Affiliation(s)
- Maiko Furubayashi
- Department of Applied Chemistry and Biotechnology, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| | - Ling Li
- Department of Applied Chemistry and Biotechnology, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| | - Akinori Katabami
- Department of Applied Chemistry and Biotechnology, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| | - Kyoichi Saito
- Department of Applied Chemistry and Biotechnology, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| | - Daisuke Umeno
- Department of Applied Chemistry and Biotechnology, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan; Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
32
|
Shang N, Li Q, Ko TP, Chan HC, Li J, Zheng Y, Huang CH, Ren F, Chen CC, Zhu Z, Galizzi M, Li ZH, Rodrigues-Poveda CA, Gonzalez-Pacanowska D, Veiga-Santos P, de Carvalho TMU, de Souza W, Urbina JA, Wang AHJ, Docampo R, Li K, Liu YL, Oldfield E, Guo RT. Squalene synthase as a target for Chagas disease therapeutics. PLoS Pathog 2014; 10:e1004114. [PMID: 24789335 PMCID: PMC4006925 DOI: 10.1371/journal.ppat.1004114] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 03/28/2014] [Indexed: 12/20/2022] Open
Abstract
Trypanosomatid parasites are the causative agents of many neglected tropical diseases and there is currently considerable interest in targeting endogenous sterol biosynthesis in these organisms as a route to the development of novel anti-infective drugs. Here, we report the first x-ray crystallographic structures of the enzyme squalene synthase (SQS) from a trypanosomatid parasite, Trypanosoma cruzi, the causative agent of Chagas disease. We obtained five structures of T. cruzi SQS and eight structures of human SQS with four classes of inhibitors: the substrate-analog S-thiolo-farnesyl diphosphate, the quinuclidines E5700 and ER119884, several lipophilic bisphosphonates, and the thiocyanate WC-9, with the structures of the two very potent quinuclidines suggesting strategies for selective inhibitor development. We also show that the lipophilic bisphosphonates have low nM activity against T. cruzi and inhibit endogenous sterol biosynthesis and that E5700 acts synergistically with the azole drug, posaconazole. The determination of the structures of trypanosomatid and human SQS enzymes with a diverse set of inhibitors active in cells provides insights into SQS inhibition, of interest in the context of the development of drugs against Chagas disease. Chagas disease is caused by the protozoan parasite Trypanosoma cruzi and affects eight million individuals, primarily in Latin America. Currently there is no cure for chronic T. cruzi infections. Unlike humans, this parasite use a variety of sterols (e.g. ergosterol, 24-ethyl-cholesta-5,7,22-trien-3 beta ol, and its 22-dihydro analogs), rather than cholesterol in their cell membranes, so inhibiting endogenous sterol biosynthesis is an important therapeutic target. Here, we report the first structure of the parasite's squalene synthase, which catalyzes the first committed step in sterol biosynthesis, as well as the structures of a broad range of squalene synthase inhibitors active against the clinically relevant intracellular stages, opening the way to new approaches to treating this neglected tropical disease.
Collapse
Affiliation(s)
- Na Shang
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Qian Li
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Tzu-Ping Ko
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Hsiu-Chien Chan
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jikun Li
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Yingying Zheng
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Chun-Hsiang Huang
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Feifei Ren
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Chun-Chi Chen
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Zhen Zhu
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Melina Galizzi
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Zhu-Hong Li
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Carlos A. Rodrigues-Poveda
- Instituto de Parasitología y Biomedicina “Lopez-Neyra”, Consejo Superior de Investigaciones Cientificas, Granada, Spain
| | - Dolores Gonzalez-Pacanowska
- Instituto de Parasitología y Biomedicina “Lopez-Neyra”, Consejo Superior de Investigaciones Cientificas, Granada, Spain
| | - Phercyles Veiga-Santos
- Laboratório de Ultraestrutura Celular Hertha Meyer, CCS, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, Brazil
- Diretoria de Programa, Instituto Nacional de Metrologia, Normalização e Qualidade Industrial–INMETRO, Duque de Caxias, Rio de Janeiro, Brazil
| | - Tecia Maria Ulisses de Carvalho
- Laboratório de Ultraestrutura Celular Hertha Meyer, CCS, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, Brazil
- Diretoria de Programa, Instituto Nacional de Metrologia, Normalização e Qualidade Industrial–INMETRO, Duque de Caxias, Rio de Janeiro, Brazil
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, CCS, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, Brazil
- Diretoria de Programa, Instituto Nacional de Metrologia, Normalização e Qualidade Industrial–INMETRO, Duque de Caxias, Rio de Janeiro, Brazil
| | - Julio A. Urbina
- Instituto Venezolano de Investigaciones Cientificas, Caracas, Venezuela
| | | | - Roberto Docampo
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Kai Li
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Yi-Liang Liu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Eric Oldfield
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail: (EO); (RTG)
| | - Rey-Ting Guo
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- * E-mail: (EO); (RTG)
| |
Collapse
|
33
|
Hessler F, Korotvička A, Nečas D, Valterová I, Kotora M. Syntheses of a Flobufen Metabolite and Dapoxetine Based on Enantioselective Allylation of Aromatic Aldehydes. European J Org Chem 2014. [DOI: 10.1002/ejoc.201301899] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
34
|
Whitcomb EA, Shang F, Taylor A. Common cell biologic and biochemical changes in aging and age-related diseases of the eye: toward new therapeutic approaches to age-related ocular diseases. Invest Ophthalmol Vis Sci 2013; 54:ORSF31-6. [PMID: 24335065 DOI: 10.1167/iovs.13-12808] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Elizabeth A Whitcomb
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts
| | | | | |
Collapse
|
35
|
Antonic V, Stojadinovic A, Zhang B, Izadjoo MJ, Alavi M. Pseudomonas aeruginosa induces pigment production and enhances virulence in a white phenotypic variant of Staphylococcus aureus. Infect Drug Resist 2013; 6:175-86. [PMID: 24232573 PMCID: PMC3825675 DOI: 10.2147/idr.s49039] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Staphyloxanthin is a virulence factor which protects Staphylococcus aureus in stress conditions. We isolated two pigment variants of S. aureus and one strain of Pseudomonas aeruginosa from a single wound infection. S. aureus variants displayed white and yellow colony phenotypes. The sequence of the operons for staphyloxanthin synthesis indicated that coding and promoter regions were identical between the two pigment variants. Quorum sensing controls pigment synthesis in some bacteria. It is also shown that P. aeruginosa quorum-sensing molecules affect S. aureus transcription. We explored whether the co-infecting P. aeruginosa can affect pigment production in the white S. aureus variant. In co-culture experiments between the white variants and a selected number of Gram-positive and Gram-negative bacteria, only P. aeruginosa induced pigment production in the white variant. Gene expression analysis of the white variant did not indicate upregulation of the crtM and other genes known to be involved in pigment production (sigB, sarA, farnesyl pyrophosphate synthase gene [FPP-synthase], hfq). In contrast, transcription of the catalase gene was significantly upregulated after co-culture. P. aeruginosa-induced pigment synthesis and catalase upregulation correlated with increased resistance to polymyxin B, hydrogen peroxide, and the intracellular environment of macrophages. Our data indicate the presence of silent but functional staphyloxanthin synthesis machinery in a white phenotypic variant of S. aureus which is activated by a co-infecting P. aeruginosa via inter-species communication. Another S. aureus virulence factor, catalase is also induced by this co-infecting bacterium. The resulting phenotypic changes are directly correlated with resistance of the white variant to stressful conditions.
Collapse
Affiliation(s)
- Vlado Antonic
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA ; Diagnostic and Translational Research Center, Gaithersburg, MD, USA ; Combat Wound Initiative Program, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
36
|
Saad A, Rousseau G, El Moll H, Oms O, Mialane P, Marrot J, Parent L, Mbomekallé IM, Dessapt R, Dolbecq A. Molybdenum Bisphosphonates with Cr(III) or Mn(III) Ions. J CLUST SCI 2013. [DOI: 10.1007/s10876-013-0655-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
37
|
Combined structure-based pharmacophore, virtual screening, and 3D-QSAR studies of structural diverse dehydrosqualene synthase inhibitors. Med Chem Res 2013. [DOI: 10.1007/s00044-012-0465-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
38
|
Indole and 7-benzyloxyindole attenuate the virulence of Staphylococcus aureus. Appl Microbiol Biotechnol 2013; 97:4543-52. [PMID: 23318836 DOI: 10.1007/s00253-012-4674-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 12/13/2012] [Accepted: 12/19/2012] [Indexed: 12/29/2022]
Abstract
Human pathogens can readily develop drug resistance due to the long-term use of antibiotics that mostly inhibit bacterial growth. Unlike antibiotics, antivirulence compounds diminish bacterial virulence without affecting cell viability and thus, may not lead to drug resistance. Staphylococcus aureus is a major agent of nosocomial infections and produces diverse virulence factors, such as the yellow carotenoid staphyloxanthin, which promotes resistance to reactive oxygen species (ROS) and the host immune system. To identify novel antivirulence compounds, bacterial signal indole present in animal gut and diverse indole derivatives were investigated with respect to reducing staphyloxanthin production and the hemolytic activity of S. aureus. Treatment with indole or its derivative 7-benzyloxyindole (7BOI) caused S. aureus to become colorless and inhibited its hemolytic ability without affecting bacterial growth. As a result, S. aureus was more easily killed by hydrogen peroxide (H₂O₂) and by human whole blood in the presence of indole or 7BOI. In addition, 7BOI attenuated S. aureus virulence in an in vivo model of nematode Caenorhabditis elegans, which is readily infected and killed by S. aureus. Transcriptional analyses showed that both indole and 7BOI repressed the expressions of several virulence genes such as α-hemolysin gene hla, enterotoxin seb, and the protease genes splA and sspA and modulated the expressions of the important regulatory genes agrA and sarA. These findings show that indole derivatives are potential candidates for use in antivirulence strategies against persistent S. aureus infection.
Collapse
|
39
|
Antibiotics for Emerging Pathogens. Infect Dis (Lond) 2013. [DOI: 10.1007/978-1-4614-5719-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
40
|
Leejae S, Hasap L, Voravuthikunchai SP. Inhibition of staphyloxanthin biosynthesis in Staphylococcus aureus by rhodomyrtone, a novel antibiotic candidate. J Med Microbiol 2012; 62:421-428. [PMID: 23242641 DOI: 10.1099/jmm.0.047316-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Staphyloxanthin is the eponymous feature of the human pathogen Staphylococcus aureus, and the pigment promotes resistance to reactive oxygen species and host neutrophil-based killing. To probe the possible use of rhodomyrtone isolated from Rhodomyrtus tomentosa (Aiton) Hassk. leaves to inhibit pigment production in S. aureus, experiments were carried out to compare pigment production and the susceptibility of rhodomyrtone-treated S. aureus and untreated cells to oxidants in vitro. In addition, we observed the innate immune clearance of S. aureus after incubation with rhodomyrtone using an ex vivo assay system - human whole-blood survival. The results indicated that rhodomyrtone-treated S. aureus exhibited reduced pigmentation, and that rhodomyrtone treatment led to a dose-dependent increase in the susceptibility of the pathogen to H(2)O(2) and singlet oxygen killing. Consequently, the survival ability of the treated organisms decreased in freshly isolated human whole blood due to less carotenoid pigment to act as an antioxidant scavenger. Rhodomyrtone may be acting via effects on DnaK and/or σ(B), resulting in many additional effects on bacterial virulence.
Collapse
Affiliation(s)
- Sukanlaya Leejae
- Department of Microbiology and Natural Products Research Center, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand
| | - Laila Hasap
- Department of Microbiology and Natural Products Research Center, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand
| | - Supayang Piyawan Voravuthikunchai
- Department of Microbiology and Natural Products Research Center, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand
| |
Collapse
|
41
|
Fitzgerald-Hughes D, Devocelle M, Humphreys H. Beyond conventional antibiotics for the future treatment of methicillin-resistantStaphylococcus aureusinfections: two novel alternatives. ACTA ACUST UNITED AC 2012; 65:399-412. [DOI: 10.1111/j.1574-695x.2012.00954.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 03/02/2012] [Accepted: 03/02/2012] [Indexed: 12/31/2022]
|
42
|
El Moll H, Zhu W, Oldfield E, Rodriguez-Albelo LM, Mialane P, Marrot J, Vila N, Mbomekallé IM, Rivière E, Duboc C, Dolbecq A. Polyoxometalates functionalized by bisphosphonate ligands: synthesis, structural, magnetic, and spectroscopic characterizations and activity on tumor cell lines. Inorg Chem 2012; 51:7921-31. [PMID: 22725619 DOI: 10.1021/ic3010079] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the synthesis and characterization of eight new Mo, W, or V-containing polyoxometalate (POM) bisphosphonate complexes with metal nuclearities ranging from 1 to 6. The compounds were synthesized in water by treating Mo(VI), W(VI), V(IV), or V(V) precursors with biologically active bisphosphonates H(2)O(3)PC(R)(OH)PO(3)H(2) (R = C(3)H(6)NH(2), Ale; R = CH(2)S(CH(3))(2), Sul and R = C(4)H(5)N(2), Zol, where Ale = alendronate, Sul = (2-Hydroxy-2,2-bis-phosphono-ethyl)-dimethyl-sulfonium and Zol = zoledronate). Mo(6)(Sul)(2) and Mo(6)(Zol)(2) contain two trinuclear Mo(VI) cores which can rotate around a central oxo group while Mo(Ale)(2) and W(Ale)(2) are mononuclear species. In V(5)(Ale)(2) and V(5)(Zol)(2) a central V(IV) ion is surrounded by two V(V) dimers bound to bisphosphonate ligands. V(6)(Ale)(4) can be viewed as the condensation of one V(5)(Ale)(2) with one additional V(IV) ion and two Ale ligands, while V(3)(Zol)(3) is a triangular V(IV) POM. These new POM bisphosphonates complexes were all characterized by single-crystal X-ray diffraction. The stability of the Mo and W POMs was studied by (31)P NMR spectroscopy and showed that all compounds except the mononuclear Mo(Ale)(2) and W(Ale)(2) were stable in solution. EPR measurements performed on the vanadium derivatives confirmed the oxidation state of the V ions and evidenced their stability in aqueous solution. Electrochemical studies on V(5)(Ale)(2) and V(5)(Zol)(2) showed reduction of V(V) to V(IV), and magnetic susceptibility investigations on V(3)(Zol)(3) enabled a detailed analysis of the magnetic interactions. The presence of zoledronate or vanadium correlated with the most potent activity (IC(50)~1-5 μM) against three human tumor cell lines.
Collapse
Affiliation(s)
- Hani El Moll
- Institut Lavoisier de Versailles, UMR 8180, Université de Versailles Saint-Quentin en Yvelines, 45 Avenue des Etats-Unis, 78035 Versailles cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Zhang Y, Lin FY, Li K, Zhu W, Liu YL, Cao R, Pang R, Lee E, Axelson J, Hensler M, Wang K, Molohon KJ, Wang Y, Mitchell DA, Nizet V, Oldfield E. HIV-1 Integrase Inhibitor-Inspired Antibacterials Targeting Isoprenoid Biosynthesis. ACS Med Chem Lett 2012; 3:402-406. [PMID: 22662288 DOI: 10.1021/ml300038t] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We report the discovery of antibacterial leads, keto- and diketo-acids, targeting two prenyl transferases: undecaprenyl diphosphate synthase (UPPS) and dehydrosqualene synthase (CrtM). The leads were suggested by the observation that keto- and diketo-acids bind to the active site Mg(2+)/Asp domain in HIV-1 integrase, and similar domains are present in prenyl transferases. We report the x-ray crystallographic structures of one diketo-acid and one keto-acid bound to CrtM, which supports the Mg(2+) binding hypothesis, together with the x-ray structure of one diketo-acid bound to UPPS. In all cases, the inhibitors bind to a farnesyl diphosphate substrate-binding site. Compound 45 had cell growth inhibition MIC(90) values of ~250-500 ng/mL against S. aureus, 500 ng/mL against Bacillus anthracis, 4 μg/mL against Listeria monocytogenes and Enterococcus faecium, and 1 μg/mL against Streptococcus pyogenes M1, but very little activity against E. coli (DH5α, K12) or human cell lines.
Collapse
Affiliation(s)
- Yonghui Zhang
- PrenylX Research Institute, Zhangjiagang, 215600, People's Republic of
China
| | | | | | | | | | | | | | | | | | - Mary Hensler
- Department of Pediatrics and
Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California
92093, United States
| | | | | | | | | | - Victor Nizet
- Department of Pediatrics and
Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California
92093, United States
| | | |
Collapse
|
44
|
Liu CI, Jeng WY, Chang WJ, Ko TP, Wang AHJ. Binding modes of zaragozic acid A to human squalene synthase and staphylococcal dehydrosqualene synthase. J Biol Chem 2012; 287:18750-7. [PMID: 22474324 DOI: 10.1074/jbc.m112.351254] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Zaragozic acids (ZAs) belong to a family of fungal metabolites with nanomolar inhibitory activity toward squalene synthase (SQS). The enzyme catalyzes the committed step of sterol synthesis and has attracted attention as a potential target for antilipogenic and antiinfective therapies. Here, we have determined the structure of ZA-A complexed with human SQS. ZA-A binding induces a local conformational change in the substrate binding site, and its C-6 acyl group also extends over to the cofactor binding cavity. In addition, ZA-A effectively inhibits a homologous bacterial enzyme, dehydrosqualene synthase (CrtM), which synthesizes the precursor of staphyloxanthin in Staphylococcus aureus to cope with oxidative stress. Size reduction at Tyr(248) in CrtM further increases the ZA-A binding affinity, and it reveals a similar overall inhibitor binding mode to that of human SQS/ZA-A except for the C-6 acyl group. These structures pave the way for further improving selectivity and development of a new generation of anticholesterolemic and antimicrobial inhibitors.
Collapse
Affiliation(s)
- Chia-I Liu
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | | | | | | | | |
Collapse
|
45
|
Gaupp R, Ledala N, Somerville GA. Staphylococcal response to oxidative stress. Front Cell Infect Microbiol 2012; 2:33. [PMID: 22919625 PMCID: PMC3417528 DOI: 10.3389/fcimb.2012.00033] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 02/29/2012] [Indexed: 12/23/2022] Open
Abstract
Staphylococci are a versatile genus of bacteria that are capable of causing acute and chronic infections in diverse host species. The success of staphylococci as pathogens is due in part to their ability to mitigate endogenous and exogenous oxidative and nitrosative stress. Endogenous oxidative stress is a consequence of life in an aerobic environment; whereas, exogenous oxidative and nitrosative stress are often due to the bacteria's interaction with host immune systems. To overcome the deleterious effects of oxidative and nitrosative stress, staphylococci have evolved protection, detoxification, and repair mechanisms that are controlled by a network of regulators. In this review, we summarize the cellular targets of oxidative stress, the mechanisms by which staphylococci sense oxidative stress and damage, oxidative stress protection and repair mechanisms, and regulation of the oxidative stress response. When possible, special attention is given to how the oxidative stress defense mechanisms help staphylococci control oxidative stress in the host.
Collapse
Affiliation(s)
- Rosmarie Gaupp
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln NE, USA
| | | | | |
Collapse
|
46
|
Lipophilic analogs of zoledronate and risedronate inhibit Plasmodium geranylgeranyl diphosphate synthase (GGPPS) and exhibit potent antimalarial activity. Proc Natl Acad Sci U S A 2012; 109:4058-63. [PMID: 22392982 DOI: 10.1073/pnas.1118215109] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report the results of an in vitro screening assay targeting the intraerythrocytic form of the malaria parasite Plasmodium falciparum using a library of 560 prenyl-synthase inhibitors. Based on "growth-rescue" and enzyme-inhibition experiments, geranylgeranyl diphosphate synthase (GGPPS) is shown to be a major target for the most potent leads, BPH-703 and BPH-811, lipophilic analogs of the bone-resorption drugs zoledronate and risedronate. We determined the crystal structures of these inhibitors bound to a Plasmodium GGPPS finding that their head groups bind to the [Mg(2+)](3) cluster in the active site in a similar manner to that found with their more hydrophilic parents, whereas their hydrophobic tails occupy a long-hydrophobic tunnel spanning both molecules in the dimer. The results of isothermal-titration-calorimetric experiments show that both lipophilic bisphosphonates bind to GGPPS with, on average, a ΔG of -9 kcal mol(-1), only 0.5 kcal mol(-1) worse than the parent bisphosphonates, consistent with the observation that conversion to the lipophilic species has only a minor effect on enzyme activity. However, only the lipophilic species are active in cells. We also tested both compounds in mice, finding major decreases in parasitemia and 100% survival. These results are of broad general interest because they indicate that it may be possible to overcome barriers to cell penetration of existing bisphosphonate drugs in this and other systems by simple covalent modification to form lipophilic analogs that retain their enzyme-inhibition activity and are also effective in vitro and in vivo.
Collapse
|
47
|
Antibiotics for Emerging Pathogens. Infect Dis (Lond) 2012. [DOI: 10.1007/978-1-0716-2463-0_523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
48
|
Targeting the host–pathogen interface for treatment of Staphylococcus aureus infection. Semin Immunopathol 2011; 34:299-315. [DOI: 10.1007/s00281-011-0297-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 10/17/2011] [Indexed: 12/15/2022]
|
49
|
Abstract
The use of Quantitative Structure-Activity Relationship models to address problems in drug discovery has a mixed history, generally resulting from the misapplication of QSAR models that were either poorly constructed or used outside of their domains of applicability. This situation has motivated the development of a variety of model performance metrics (r(2), PRESS r(2), F-tests, etc.) designed to increase user confidence in the validity of QSAR predictions. In a typical workflow scenario, QSAR models are created and validated on training sets of molecules using metrics such as Leave-One-Out or many-fold cross-validation methods that attempt to assess their internal consistency. However, few current validation methods are designed to directly address the stability of QSAR predictions in response to changes in the information content of the training set. Since the main purpose of QSAR is to quickly and accurately estimate a property of interest for an untested set of molecules, it makes sense to have a means at hand to correctly set user expectations of model performance. In fact, the numerical value of a molecular prediction is often less important to the end user than knowing the rank order of that set of molecules according to their predicted end point values. Consequently, a means for characterizing the stability of predicted rank order is an important component of predictive QSAR. Unfortunately, none of the many validation metrics currently available directly measure the stability of rank order prediction, making the development of an additional metric that can quantify model stability a high priority. To address this need, this work examines the stabilities of QSAR rank order models created from representative data sets, descriptor sets, and modeling methods that were then assessed using Kendall Tau as a rank order metric, upon which the Shannon entropy was evaluated as a means of quantifying rank-order stability. Random removal of data from the training set, also known as Data Truncation Analysis (DTA), was used as a means for systematically reducing the information content of each training set while examining both rank order performance and rank order stability in the face of training set data loss. The premise for DTA ROE model evaluation is that the response of a model to incremental loss of training information will be indicative of the quality and sufficiency of its training set, learning method, and descriptor types to cover a particular domain of applicability. This process is termed a "rank order entropy" evaluation or ROE. By analogy with information theory, an unstable rank order model displays a high level of implicit entropy, while a QSAR rank order model which remains nearly unchanged during training set reductions would show low entropy. In this work, the ROE metric was applied to 71 data sets of different sizes and was found to reveal more information about the behavior of the models than traditional metrics alone. Stable, or consistently performing models, did not necessarily predict rank order well. Models that performed well in rank order did not necessarily perform well in traditional metrics. In the end, it was shown that ROE metrics suggested that some QSAR models that are typically used should be discarded. ROE evaluation helps to discern which combinations of data set, descriptor set, and modeling methods lead to usable models in prioritization schemes and provides confidence in the use of a particular model within a specific domain of applicability.
Collapse
|
50
|
Koohang A, Bailey JL, Coates RM, Erickson HK, Owen D, Poulter CD. Enantioselective inhibition of squalene synthase by aziridine analogues of presqualene diphosphate. J Org Chem 2010; 75:4769-77. [PMID: 20545375 DOI: 10.1021/jo100718z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Squalene synthase catalyzes the conversion of two molecules of (E,E)-farnesyl diphosphate to squalene via the cyclopropylcarbinyl intermediate, presqualene diphosphate (PSPP). Since this novel reaction constitutes the first committed step in sterol biosynthesis, there has been considerable interest and research on the stereochemistry and mechanism of the process and in the design of selective inhibitors of the enzyme. This paper reports the synthesis and characterization of five racemic and two enantiopure aziridine analogues of PSPP and the evaluation of their potencies as inhibitors of recombinant yeast squalene synthase. The key aziridine-2-methanol intermediates (6-OH, 7-OH, and 8-OH) were obtained by N-alkylations or by an N-acylation-reduction sequence of (+/-)-, (2R,3S)-, and (2S,3R)-2,3-aziridinofarnesol (9-OH) protected as tert-butyldimethylsilyl ethers. S(N)2 displacements of the corresponding methanesulfonates with pyrophosphate and methanediphosphonate anions afforded aziridine 2-methyl diphosphates and methanediphosphonates bearing N-undecyl, N-bishomogeranyl, and N-(alpha-methylene)bishomogeranyl substituents as mimics for the 2,6,10-trimethylundeca-2,5,9-trienyl side chain of PSPP. The 2R,3S diphosphate enantiomer bearing the N-bishomogeranyl substituent corresponding in absolute stereochemistry to PSPP proved to be the most potent inhibitor (IC(50) 1.17 +/- 0.08 muM in the presence of inorganic pyrophosphate), a value 4-fold less than that of its 2S,3R stereoisomer. The other aziridine analogues bearing the N-(alpha-methylene)bishomogeranyl and N-undecyl substituents, and the related methanediphosphonates, exhibited lower affinities for recombinant squalene synthase.
Collapse
Affiliation(s)
- Ali Koohang
- Department of Chemistry, University of Illinois, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | | | | | | | | | | |
Collapse
|