1
|
Nie MZ, Zhang SS, Gu SX, Long J, Zhu YY. Advances in diarylpyrimidines and related analogues as HIV-1 nonnucleoside reverse transcriptase inhibitors (2019-2023). Eur J Med Chem 2024; 280:116973. [PMID: 39432934 DOI: 10.1016/j.ejmech.2024.116973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/21/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024]
Abstract
Nonnucleoside reverse transcriptase inhibitors (NNRTIs) have emerged as a vital cornerstone of highly active antiretroviral therapy (HAART) regimens, owing to their unique antiviral activity, low toxicity and high specificity. Diarylpyrimidines (DAPYs) as the second generation NNRTIs, represented by etravirine and rilpivirine, have attracted extensive attention due to their high anti-HIV potency. However, rapid emergence of resistant mutations, suboptimal pharmacokinetics (PK), and toxicity remain significant challenges. Recent structural modifications of DAPY analogues have focused on improving resistance profiles, optimizing PK properties (such as half-life and bioavailability), diversifying core structures through scaffold hopping, refining side-chain structures to enhance activity and selectivity, and reducing toxicity and side effects. Moreover, developing new DAPY analogues with broad-spectrum antiviral activity has become a key research priority. This review provides a comprehensive overview of the evolution of DAPYs from 2019 to 2023, including scaffold hopping and structural modifications of the right wing, left wing, central pyrimidine core, and linker, affording valuable insights for the future development of effective HIV-1 inhibitors.
Collapse
Affiliation(s)
- Mu-Zi Nie
- School of Chemical Engineering and Pharmacy, Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Shuang-Shuang Zhang
- School of Chemical Engineering and Pharmacy, Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Shuang-Xi Gu
- School of Chemical Engineering and Pharmacy, Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Jiao Long
- School of Chemical Engineering and Pharmacy, Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Yuan-Yuan Zhu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| |
Collapse
|
2
|
Huang WJ, Pannecouque C, De Clercq E, Wang S, Chen FE. Fragment Addition-Based Design of Heteroaromatic-Biphenyl-DAPYs as Potent and Orally Available Non-nucleoside Reverse Transcriptase Inhibitors Featuring Significantly Enhanced Safety. J Med Chem 2024; 67:17568-17584. [PMID: 39352547 DOI: 10.1021/acs.jmedchem.4c01571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Our previously disclosed biphenyl-DAPY 3 emerged as a potent inhibitor against WT HIV-1 and various mutant strains. Yet, its journey toward clinical application was thwarted by pronounced cytotoxicity and low selectivity (CC50 = 6 μM, SI = 3515). The safety improvement approach we employed in this work entailed the incorporation of diverse heteroaromatic substituents at the C5 position to exploit the tolerant regions of the NNRTIs' binding pocket through fragment addition-based drug design strategy, ultimately leading to the identification of a series of novel heteroaromatic-biphenyl-DAPYs. The exemplary compound 10d revealed a striking reduction in cytotoxicity (CC50 > 272.81 μM), nearly 45.5 times lower than 3, while showcasing 15-fold increase in selectivity (SI > 52632). This analog sustained exceptional anti-HIV-1 activity against both WT HIV-1 (EC50 = 5 nM) and various mutant strains. Compared to 3, a markedly slower rate of metabolism in human liver microsomes of 10d was observed. Its pharmacokinetic profile was equally captivating, featuring excellent oral bioavailability (F = 57.4%). Moreover, 10d exhibited a delicate sensitivity toward CYP, minimal inhibition of hERG, and no detectable acute toxicity in vivo. These enchanting findings illuminated the potential of 10d as a promising candidate for HIV-1 therapy.
Collapse
Affiliation(s)
- Wen-Juan Huang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | | | - Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, Leuven B-3000, Belgium
| | - Shuai Wang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Fen-Er Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| |
Collapse
|
3
|
Du S, Liu X, Hu X, Zhan P. Viral Protein Dimerization Quality Control: A Design Strategy for a Potential Viral Inhibitor. J Med Chem 2024; 67:16951-16966. [PMID: 39303015 DOI: 10.1021/acs.jmedchem.4c01540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The global pharmaceutical market has been profoundly impacted by the coronavirus pandemic, leading to an increased demand for specific drugs. Consequently, drug resistance has prompted continuous innovation in drug design strategies to effectively combat resistant pathogens or disease variants. Protein dimers play crucial roles in vivo, including catalytic reactions, signal transduction, and structural stability. The site of action for protein dimerization modulators typically does not reside within the active site of the protein, thereby potentially impeding resistance development. Therefore, harnessing viral protein dimerization modulators could represent a promising avenue for combating viral infections. In this Perspective, we provide a detailed introduction to the design principles and applications of dimerization modulators in antiviral research. Furthermore, we analyze various representative examples to elucidate their modes of action while presenting our perspective on dimerization modulators along with the opportunities and challenges associated with this groundbreaking area of investigation.
Collapse
Affiliation(s)
- Shaoqing Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, P. R. China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, P. R. China
| | - Xueping Hu
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, P. R. China
| |
Collapse
|
4
|
Maurya MR, Kumar N, Avecilla F. Controlled Modification of Triaminoguanidine-Based μ 3 Ligands in Multinuclear [V IVO]/[V VO 2] Complexes and Their Catalytic Potential in the Synthesis of 2-Amino-3-cyano-4 H-pyrans/4 H-chromenes. Inorg Chem 2024; 63:2505-2524. [PMID: 38243891 DOI: 10.1021/acs.inorgchem.3c03704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
Reaction of tris(2-hydroxybenzylidene)-triaminoguanidinium chloride (I·HCl) and tris(5-bromo-2-hydroxybenzylidene)-triaminoguanidinium chloride (II·HCl) with [VIVO(acac)2] (1:1 molar ratio) in refluxing methanol resulted in mononuclear [VIVO] complexes, [VIVO(H2L1')(MeOH)] (1) and [VIVO(H2L2')(MeOH)] (2), respectively, where I and II undergo intramolecular triazole ring formation. Aerial oxidation of 1 and 2 in MeOH in the presence of Cs2CO3 gave corresponding cis-[VVO2] complexes Cs[(VO2)(H2L1')] (3) and Cs[(VO2)(H2L2')] (4). However, reaction of an aerially oxidized methanolic solution of [VIVO(acac)2] with I·HCl and II·HCl in the presence of Cs2CO3 (in 1:1:1 molar ratio) gave mononuclear complexes Cs[(VO2)(H3L1)] (5) and Cs[(VO2)(H3L2)] (6) without intramolecular triazole ring formation. Similar anionic trinuclear complexes Cs2[(VO2)3(L1)] (7) and Cs2[(VO2)3(L2)] (8) were isolable upon increasing the amounts of the vanadium precursor and Cs2CO3 to 3 equiv to the reaction applied for 5 and 6. Keeping the reaction mixture of 1 in MeOH under air gave [VVO(H2L1')(OMe)] (9). Structures of 3, 7, 8, and 9 were confirmed by X-ray crystal structure study. A permanent porosity in the crystalline metal-organic framework of 7 confirmed by single-crystal X-ray investigation was further verified by the BET study. Along with a suitable reaction mechanism, these synthesized compounds were explored as effective catalysts for the synthesis of biomolecules 4H-pyran/4H-chromenes.
Collapse
Affiliation(s)
- Mannar R Maurya
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Naveen Kumar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Fernando Avecilla
- Universidade da Coruña, Grupo NanoToxGen, Centro Interdisciplinar de Química y Biología (CICA), Departamento de Química, Facultade de Ciencias, Campus de A Coruña, 15071A Coruña, Spain
| |
Collapse
|
5
|
Abimbola Salubi C, Abbo HS, Jahed N, Titinchi S. Medicinal chemistry perspectives on the development of piperazine-containing HIV-1 inhibitors. Bioorg Med Chem 2024; 99:117605. [PMID: 38246116 DOI: 10.1016/j.bmc.2024.117605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
The Human immunodeficiency virus (HIV) is the causative agent of acquired immunodeficiency syndrome (AIDS), one of the most perilous diseases known to humankind. A 2023 estimate put the number of people living with HIV around 40 million worldwide, with the majority benefiting from various antiretroviral therapies. Consequently, the urgent need for the development of effective drugs to combat this virus cannot be overstated. In the realm of medicinal and organic chemistry, the synthesis and identification of novel compounds capable of inhibiting HIV enzymes at different stages of their life cycle are of paramount importance. Notably, the spotlight is on the progress made in enhancing the potency of HIV inhibitors through the use of piperazine-based compounds. Multiple studies have revealed that the incorporation of a piperazine moiety results in a noteworthy enhancement of anti-HIV activity. The piperazine ring assumes a pivotal role in shaping the pharmacophore responsible for inhibiting HIV-1 at critical stage, including attachment, reverse transcription, integration, and protease activity. This review also sheds light on the various opportunities that can be exploited to develop effective antiretroviral targets and eliminate latent HIV reservoirs. The advancement of highly potent analogues in HIV inhibitor research has been greatly facilitated by contemporary medicinal strategies, including molecular/fragment hybridization, structure-based drug design, and bioisosterism. These techniques have opened up new avenues for the development of compounds with enhanced efficacy in combating the virus.
Collapse
Affiliation(s)
- Christiana Abimbola Salubi
- Department of Chemistry, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| | - Hanna S Abbo
- Department of Chemistry, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| | - Nazeeen Jahed
- Department of Chemistry, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| | - Salam Titinchi
- Department of Chemistry, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa.
| |
Collapse
|
6
|
Hu S, Chen J, Cao JX, Zhang SS, Gu SX, Chen FE. Quinolines and isoquinolines as HIV-1 inhibitors: Chemical structures, action targets, and biological activities. Bioorg Chem 2023; 136:106549. [PMID: 37119785 DOI: 10.1016/j.bioorg.2023.106549] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/09/2023] [Accepted: 04/13/2023] [Indexed: 05/01/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1), a lentivirus that causes acquired immunodeficiency syndrome (AIDS), poses a serious threat to global public health. Since the advent of the first drug zidovudine, a number of anti-HIV agents acting on different targets have been approved to combat HIV/AIDS. Among the abundant heterocyclic families, quinoline and isoquinoline moieties are recognized as promising scaffolds for HIV inhibition. This review intends to highlight the advances in diverse chemical structures and abundant biological activity of quinolines and isoquinolines as anti-HIV agents acting on different targets, which aims to provide useful references and inspirations to design and develop novel HIV inhibitors for medicinal chemists.
Collapse
Affiliation(s)
- Sha Hu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jiong Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jin-Xu Cao
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China; Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Shuang-Shuang Zhang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China; Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Shuang-Xi Gu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China; Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Fen-Er Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China; Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China; Department of Chemistry, Fudan University, Shanghai 200433, China.
| |
Collapse
|
7
|
Structure-directed expansion of biphenyl-pyridone derivatives as potent non-nucleoside reverse transcriptase inhibitors with significantly improved potency and safety. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
8
|
Ming W, Lu WL, Pannecouque C, Chen J, Wang HF, Xiao YQ, Hu S, Gu SX, Zhu YY, Chen FE. Hybrids of delavirdine and piperdin-4-yl-aminopyrimidines (DPAPYs) as potent HIV-1 NNRTIs: Design, synthesis and biological activities. Eur J Med Chem 2023; 248:115114. [PMID: 36640458 DOI: 10.1016/j.ejmech.2023.115114] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/01/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
The hybrids of delavirdine and piperdin-4-yl-aminopyrimidine (DPAPYs) were designed from two excellent HIV-1 NNRTIs delavirdine and piperidin-4-yl-aminopyrimidine via molecular hybridization. The target compounds 4a-r were prepared and evaluated for their cellular anti-HIV activities and cytotoxicities as well as the inhibitory activities against HIV-1 reverse transcriptase (RT). All the newly synthesized compounds demonstrated moderate to excellent potency against wild-type (WT) HIV-1 with EC50 values in a range of 5.7 to 0.0086 μM and against RT with IC50 values ranging from 12.0 to 0.11 μM, indicating that the DPAPYs were specific RT inhibitors. Among all, 4d displayed the most potent activity against WT HIV-1 (EC50 = 8.6 nM, SI = 2151). Gratifyingly, it exhibited good to excellent potency against the single HIV-1 mutants L100I, K103N, Y181C, Y188L, E138K, as well as the double mutant F227L + V106A. Furthermore, the preliminary structure-activity relationships were summarized, molecular modeling was conducted to explore the binding mode of DPAPYs and HIV-1 RT, and their physicochemical properties were also predicted.
Collapse
Affiliation(s)
- Wei Ming
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Wen-Long Lu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Christophe Pannecouque
- KU Leuven, Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, B-3000, Leuven, Belgium
| | - Jiong Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Hai-Feng Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China; Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Ya-Qi Xiao
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Sha Hu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Shuang-Xi Gu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China; Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Yuan-Yuan Zhu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Fen-Er Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China; Department of Chemistry, Fudan University, Shanghai, 200433, China; Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan, 430205, China.
| |
Collapse
|
9
|
Upadhyaya A, Panthi B, Verma S, Kumar S, Rajouria SK, Srivastava HK, Chandra P. Analogue and structure based approaches for modelling HIV-1 integrase inhibitors. J Biomol Struct Dyn 2023; 41:11946-11956. [PMID: 36734646 DOI: 10.1080/07391102.2023.2171129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 12/25/2022] [Indexed: 02/04/2023]
Abstract
A set of 220 inhibitors belonging to different structure classes and having HIV-1 integrase activity were collected along with their experimental pIC50 values. Geometries of all the inhibitors were fully optimized using B3LYP/6-31 + G(d) level of theory. These ligands were docked against 4 different HIV-1 integrase receptors (PDB IDs: 4LH5, 5KRS, 3ZSQ and 3ZSV). 30 docked poses were generated for all 220 inhibitors and ligand interaction of the first docked pose and the docked pose with the highest score were analysed. Residue GLU170 of 4LH5 receptor shows the highest number of interactions followed by ALA169, GLN168, HIS171 and ASP167 residues. Hydrogen bonding and stacking are mainly responsible for the interactions of these inhibitors with the receptor. We performed Molecular Dynamics (MD) simulation to observe the root-mean-square deviation (RMSD), for measure the average change of displacement between the atoms for a particular frame with respect to a reference and The Root Mean Square Fluctuation (RMSF) for characterization of local changes along the protein chain of the docked complexes. Analogue based models were generated to predict the pIC50 values for integrase inhibitors using various types of descriptors such as constitutional, geometrical, topological, quantum chemical and docking based descriptors. The best models were selected on the basis of statistical parameters and were validated by training and test set division. A few new inhibitors were designed on the basis of structure activity relationship and their pIC50 values were predicted using the generated models. All the designed new inhibitors a very high potential and may be used as potent inhibitors of HIV integrase. These models may be useful for further design and development of new and potent HIV integrase inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anurag Upadhyaya
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Bhavana Panthi
- Department of Chemistry, Indian Institute of Technology Kanpur, Kalyanpur Kanpur, Uttar Pradesh, India
| | - Shubham Verma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Changsari, Guwahati, Assam, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Suresh Kumar
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
- Department of Physics, Dyal Singh College, University of Delhi, Delhi, India
| | - Satish Kumar Rajouria
- Department of Physics, Zakir Husain Delhi College, University of Delhi, Delhi, India
| | - Hemant Kumar Srivastava
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Changsari, Guwahati, Assam, India
| | - Pranjal Chandra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
10
|
Xie X, Zheng YG, Chen H, Li J, Luo RH, Chen L, Zheng CB, Zhang S, Peng P, Ma D, Yang LM, Zheng YT, Liu H, Wang J. Structure-Based Design of Tropane Derivatives as a Novel Series of CCR5 Antagonists with Broad-Spectrum Anti-HIV-1 Activities and Improved Oral Bioavailability. J Med Chem 2022; 65:16526-16540. [PMID: 36472561 DOI: 10.1021/acs.jmedchem.2c01383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Blocking the entry of an HIV-1 targeting CCR5 coreceptor has emerged as an attractive strategy to develop HIV therapeutics. Maraviroc is the only CCR5 antagonist approved by FDA; however, serious side effects limited its clinical use. Herein, 21 novel tropane derivatives (6-26) were designed and synthesized based on the CCR5-maraviroc complex structure. Among them, compounds 25 and 26 had comparable activity to maraviroc and presented more potent inhibitory activity against a series of HIV-1 strains. In addition, compound 26 exhibited synergistic or additive antiviral effects in combination with other antiretroviral agents. Compared to maraviroc, both 25 and 26 displayed higher Cmax and AUC0-∞ and improved oral bioavailability in SD rats. In addition, compounds 25 and 26 showed no significant CYP450 inhibition and showed a novel binding mode with CCR5 different from that of maraviroc-CCR5. In summary, compounds 25 and 26 are promising drug candidates for the treatment of HIV-1 infection.
Collapse
Affiliation(s)
- Xiong Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Gui Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences /Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China.,Department of Pharmacy, Guangdong Women and Children Hospital, Guangzhou 511400, China
| | - Huan Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences /Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Jian Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Rong-Hua Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences /Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Liang Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chang-Bo Zheng
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Shurui Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Lingang Laboratory, Shanghai 200031, China
| | - Panfeng Peng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Dakota Ma
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Liu-Meng Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences /Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences /Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiang Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,Lingang Laboratory, Shanghai 200031, China
| |
Collapse
|
11
|
Gajjala RR, Chinta RR, Gopireddy VSR, Poola S, Balam SK, Chintha V, Pasupuleti VR, Avula VKR, Vallela S, Vasilievich Zyryanov G, Cirandur SR. Ethyl-4-(aryl)-6-methyl-2-(oxo/thio)-3,4-dihydro-1H-pyrimidine-5-carboxylates: Silica supported bismuth(III)triflate catalyzed synthesis and antioxidant activity. Bioorg Chem 2022; 129:106205. [DOI: 10.1016/j.bioorg.2022.106205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 11/02/2022]
|
12
|
Chapala VL, Paidikondala K, M GP, Katari NK, Kerru N, Jonnalagadda SB. A New Method for Preparation of Rilpivirine Intermediate. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.1933105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Vijaya Lakshmi Chapala
- Department of Chemistry, School of Science, GITAM Deemed to be University, Hyderabad, India
| | - Kalyani Paidikondala
- Department of Chemistry, School of Science, GITAM Deemed to be University, Hyderabad, India
| | - Giri Prasad M
- Department of Chemistry, School of Science, GITAM Deemed to be University, Hyderabad, India
| | - Naresh Kumar Katari
- Department of Chemistry, School of Science, GITAM Deemed to be University, Hyderabad, India
- School of Chemistry & Physics, College of Agriculture, Engineering & Science, Westville Campus, University of KwaZulu-Natal, Durban, South Africa
| | - Nagaraju Kerru
- Department of Chemistry. GITAM School of Sciences, GITAM Deemed to be University, Bengaluru, India
| | - Sreekantha B. Jonnalagadda
- School of Chemistry & Physics, College of Agriculture, Engineering & Science, Westville Campus, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
13
|
Singh PK, Khuntey B, Bhardiya SR, Singh M, Rai VK, Rai A. Co‐operative
Visible‐Light
and Cu/
Cu
2
O
@
g‐C3N4
Catalysis Towards Hantzsch/Biginelli Synthesis of
Dihydro‐Pyridine
/Pyrimidine. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Puneet K. Singh
- School of Physical Sciences Jawaharlal Nehru University New Delhi India
| | - Bhushashi Khuntey
- Department of Chemistry Guru Ghasidas Vishwavidyalaya Bilaspur Chhattisgarh India
| | - Smita R. Bhardiya
- Department of Chemistry Guru Ghasidas Vishwavidyalaya Bilaspur Chhattisgarh India
| | - Manorama Singh
- Department of Chemistry Guru Ghasidas Vishwavidyalaya Bilaspur Chhattisgarh India
| | - Vijai K. Rai
- Department of Chemistry Guru Ghasidas Vishwavidyalaya Bilaspur Chhattisgarh India
| | - Ankita Rai
- School of Physical Sciences Jawaharlal Nehru University New Delhi India
| |
Collapse
|
14
|
Laitinen T, Meili T, Koyioni M, Koutentis PA, Poso A, Hofmann-Lehmann R, Asquith CRM. Synthesis and evaluation of 1,2,3-dithiazole inhibitors of the nucleocapsid protein of feline immunodeficiency virus (FIV) as a model for HIV infection. Bioorg Med Chem 2022; 68:116834. [PMID: 35653871 DOI: 10.1016/j.bmc.2022.116834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022]
Abstract
We disclose a series of potent anti-viral 1,2,3-dithiazoles, accessed through a succinct synthetic approach from 4,5-dichloro-1,2,3-dithiazolium chloride (Appel's salt). A series of small libraries of compounds were screened against feline immunodeficiency virus (FIV) infected cells as a model for HIV. This approach highlighted new structure activity relationship understanding and led to the development of sub-micro molar anti-viral compounds with reduced toxicity. In addition, insight into the mechanistic progress of this system is provided via advanced QM-MM modelling. The 1,2,3-dithiazole represents a versatile scaffold with potential for further development to treat both FIV and HIV.
Collapse
Affiliation(s)
- Tuomo Laitinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Theres Meili
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich 8057, Switzerland
| | - Maria Koyioni
- Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | | | - Antti Poso
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland; Department of Internal Medicine VIII, University Hospital Tübingen, Otfried-Müller-Strasse 14, 72076 Tübingen, Germany
| | - Regina Hofmann-Lehmann
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Christopher R M Asquith
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland; Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, NC 27599, USA.
| |
Collapse
|
15
|
Comparative Study of Methods for the Pharmaceutical Preparation and Effectiveness of Darunavir Ethanolate Compositions with Mesoporous Carriers and Polymer Solid Dispersions. J Pharm Innov 2022. [DOI: 10.1007/s12247-022-09667-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
16
|
Linker optimization of HEPT derivatives as potent non-nucleoside HIV-1 reverse transcriptase inhibitors: from S=O to CHOR. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Das A, Dasgupta S, Pathak T. Crescent-shaped meta-Substituted Benzene Derivatives as a New Class of Non-Nucleoside Ribonuclease A Inhibitors. Bioorg Med Chem 2022; 71:116888. [DOI: 10.1016/j.bmc.2022.116888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 11/29/2022]
|
18
|
Jin X, Zhao LM, Wang S, Huang WJ, Zhang YX, Pannecouque C, De Clercq E, Chen FE. Structure-Based Discovery of Novel NH 2-Biphenyl-Diarylpyrimidines as Potent Non-Nucleoside Reverse Transcriptase Inhibitors with Significantly Improved Safety: From NH 2-Naphthyl-Diarylpyrimidine to NH 2-Biphenyl-Diarylpyrimidine. J Med Chem 2022; 65:8478-8492. [PMID: 35649164 DOI: 10.1021/acs.jmedchem.2c00468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Results from recently completed studies suggested that the NH2-naphthyl-diarylpyrimidine JX-7 displayed remarkable inhibitory activity against wild-type HIV-1 (EC50 = 5 nM) and numerous clinically observed variants in MT-4 cells; however, its high cytotoxicity (CC50 = 19 μM) precluded its further development as a clinical candidate. One approach we took to improve the safety involved replacing the naphthyl of JX-7 with biphenyl to provide a series of novel NH2-biphenyl-DAPYs. Investigation of the structure-activity relationships (SARs) led to the identification of 4ab, a potent NNRTI with significantly reduced cytotoxicity (CC50 = 120 μM), approximately 6-fold lower than JX-7, which maintained remarkable anti-HIV-1 activity against wild-type HIV-1 (EC50 = 1.9 nM) and multiple mutant strains simultaneously. Also, 4ab displayed weak CYP sensitivity, little inhibition of hERG, and no apparent in vivo acute toxicity. These promising results demonstrate that 4ab can be used as a drug candidate for HIV-1 therapy.
Collapse
Affiliation(s)
- Xin Jin
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, P. R. China
| | - Li-Min Zhao
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, P. R. China
| | - Shuai Wang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Wen-Juan Huang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Yin-Xiang Zhang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | | | - Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Fen-Er Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, P. R. China
| |
Collapse
|
19
|
Palafox MA, Kattan D, de Pedraza Velasco ML, Isasi J, Posada-Moreno P, Rani K, Singh SP, Rastogi VK. Base pairs with 4-amino-3-nitrobenzonitrile: comparison with the natural WC pairs. Dimer and tetramer forms, Infrared and Raman spectra, and several proposed antiviral modified nucleosides. J Biomol Struct Dyn 2022:1-23. [PMID: 35583120 DOI: 10.1080/07391102.2022.2069864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Base pairs of 4-amino-3-nitrobenzonitrile (4A-3NBN) molecule with uracil, thymine and cytosine nucleobases were optimized and compared to natural Watson-Crick (WC) pairs. The slightly greater flexibility of the -NO2 group of 4A-3NBN than the N3-H group of the natural nucleobases together with a noticeable higher dipole moment of its pairs can facilitate disruption of the DNA/RNA helix formation. Several new mutagenic modified nucleosides with 4A-3NBN and 3-amino-2-nitrobenzonitrile (3A-2NBN) were proposed as antiviral prodrugs and their base pairs optimized. The special characteristics of these prodrugs appear appropriated for their clinical use. The counterpoise (CP) corrected interaction energies of the base pairs were calculated and compared to the natural ones. The M06-2X DFT method was used for this purpose. The molecular structure of 4A-3NBN was analyzed in detail and the crystal unit cell was simulated by a tetramer form and eight dimer forms. The performance of the B3LYP, X3LYP and M06-2X methods was tested on the vibrational wavenumbers in the monomer, dimer and tetramer forms of 4A-3NBN. The observed IR and Raman bands were assigned according to the optimum dimer II form determined by B3LYP and by the tetramer form calculated by M06-2X, which is the expected unit cell that forms the crystal net. The two best scaling procedures were used.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- M Alcolea Palafox
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense, Madrid, Spain
| | - D Kattan
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense, Madrid, Spain
| | - M L de Pedraza Velasco
- Dpto. de Enfermería, Facultad de Enfermería, Fisioterapia y Podología, UCM, Madrid, Spain
| | - J Isasi
- Dpto. de Química Inorgánica, Facultad de Ciencias Químicas, UCM, Madrid, Spain
| | - P Posada-Moreno
- Dpto. de Enfermería, Facultad de Enfermería, Fisioterapia y Podología, UCM, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Kaushal Rani
- Department of Physics, Meerut College, Meerut, India
| | - S P Singh
- Department of Physics, Dr B R Ambedkar College, Mainpuri, India
| | - V K Rastogi
- Indian Spectroscopy Society, Ghaziabad, India
| |
Collapse
|
20
|
Wang Z, Cherukupalli S, Xie M, Wang W, Jiang X, Jia R, Pannecouque C, De Clercq E, Kang D, Zhan P, Liu X. Contemporary Medicinal Chemistry Strategies for the Discovery and Development of Novel HIV-1 Non-nucleoside Reverse Transcriptase Inhibitors. J Med Chem 2022; 65:3729-3757. [PMID: 35175760 DOI: 10.1021/acs.jmedchem.1c01758] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Currently, HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) are a major component of the highly active anti-retroviral therapy (HAART) regimen. However, the occurrence of drug-resistant strains and adverse reactions after long-term usage have inevitably compromised the clinical application of NNRTIs. Therefore, the development of novel inhibitors with distinct anti-resistance profiles and better pharmacological properties is still an enormous challenge. Herein, we summarize state-of-the-art medicinal chemistry strategies for the discovery of potent NNRTIs, such as structure-based design strategies, contemporary computer-aided drug design, covalent-binding strategies, and the application of multi-target-directed ligands. The strategies described here will facilitate the identification of promising HIV-1 NNRTIs.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Srinivasulu Cherukupalli
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Minghui Xie
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Wenbo Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Xiangyi Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Ruifang Jia
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China.,China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China.,China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China.,China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| |
Collapse
|
21
|
Rough Set Based Classification and Feature Selection Using Improved Harmony Search for Peptide Analysis and Prediction of Anti-HIV-1 Activities. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12042020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AIDS, which is caused by the most widespread HIV-1 virus, attacks the immune system of the human body, and despite the incredible endeavors for finding proficient medication strategies, the continuing spread of AIDS and claiming subsequent infections has not yet been decreased. Consequently, the discovery of innovative medicinal methodologies is highly in demand. Some available therapies, based on peptides, proclaim the treatment for several deadly diseases such as AIDS and cancer. Since many experimental types of research are restricted by the analysis period and expenses, computational methods overcome the issues effectually. In computational technique, the peptide residues with anti-HIV-1 activity are predicted by classification method, and the learning process of the classification is improved with significant features. Rough set-based algorithms are capable of dealing with the gaps and imperfections present in real-time data. In this work, feature selection using Rough Set Improved Harmony Search Quick Reduct and Rough Set Improved Harmony Search Relative Reduct with Rough Set Classification framework is implemented to classify Anti-HIV-1 peptides. The primary objective of the proposed methodology is to predict the peptides with an anti-HIV-1 activity using effective feature selection and classification algorithms incorporated in the proposed framework. The results of the proposed algorithms are comparatively studied with existing rough set feature selection algorithms and benchmark classifiers, and the reliability of the algorithms implemented in the proposed framework is measured by validity measures, such as Precision, Recall, F-measure, Kulczynski Index, and Fowlkes–Mallows Index. The final results show that the proposed framework analyzed and classified the peptides with a high predictive accuracy of 96%. In this study, we have investigated the ability of a rough set-based framework with sequence-based numeric features to classify anti-HIV-1 peptides, and the experimentation results show that the proposed framework discloses the most satisfactory solutions, where it rapidly congregates in the problem space and finds the best reduct, which improves the prediction accuracy of the given dataset.
Collapse
|
22
|
Structural Basis of 2-Phenylamino-4-phenoxyquinoline Derivatives as Potent HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020461. [PMID: 35056776 PMCID: PMC8781960 DOI: 10.3390/molecules27020461] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 12/20/2022]
Abstract
New target molecules, namely, 2-phenylamino-4-phenoxyquinoline derivatives, were designed using a molecular hybridization approach, which was accomplished by fusing the pharmacophore structures of three currently available drugs: nevirapine, efavirenz, and rilpivirine. The discovery of disubstituted quinoline indicated that the pyridinylamino substituent at the 2-position of quinoline plays an important role in its inhibitory activity against HIV-1 RT. The highly potent HIV-1 RT inhibitors, namely, 4-(2′,6′-dimethyl-4′-formylphenoxy)-2-(5″-cyanopyridin-2″ylamino)quinoline (6b) and 4-(2′,6′-dimethyl-4′-cyanophenoxy)-2-(5″-cyanopyridin-2″ylamino)quinoline (6d) exhibited half-maximal inhibitory concentrations (IC50) of 1.93 and 1.22 µM, respectively, which are similar to that of nevirapine (IC50 = 1.05 µM). The molecular docking results for these two compounds showed that both compounds interacted with Lys101, His235, and Pro236 residues through hydrogen bonding and interacted with Tyr188, Trp229, and Tyr318 residues through π–π stacking in HIV-1 RT. Interestingly, 6b was highly cytotoxic against MOLT-3 (acute lymphoblastic leukemia), HeLA (cervical carcinoma), and HL-60 (promyeloblast) cells with IC50 values of 12.7 ± 1.1, 25.7 ± 0.8, and 20.5 ± 2.1 µM, respectively. However, 6b and 6d had very low and no cytotoxicity, respectively, to-ward normal embryonic lung (MRC-5) cells. Therefore, the synthesis and biological evaluation of 2-phenylamino-4-phenoxyquinoline derivatives can serve as an excellent basis for the development of highly effective anti-HIV-1 and anticancer agents in the near future.
Collapse
|
23
|
Zhang YJ, Chen L, Xu J, Jiang HF, Zhu YR, Wang ZH, Xiong F. Evaluation of novel HIV-1 protease inhibitors with DRV-resistance by utilizing 3D-QSAR molecular docking and molecular dynamics simulation. NEW J CHEM 2022. [DOI: 10.1039/d2nj04492g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Molecular dynamics simulations were performed to explore the interaction mode of DRV derivatives binding to target proteins and to identify new potential HIV-1 PR inhibitors with stronger activity.
Collapse
Affiliation(s)
- Yan-Jun Zhang
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Lu Chen
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Jie Xu
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Hui-Fang Jiang
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Yi-Ren Zhu
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Zhong-Hua Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, P. R. China
| | - Fei Xiong
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| |
Collapse
|
24
|
KATE PRADEEP, PANDIT VIKRAM, JAWALE VIVEKANAND, BACHUTE MADHUSUDAN. L-Proline catalyzed one-pot three-component synthesis and evaluation for biological activities of tetrahydrobenzo[b]pyran: evaluation by green chemistry metrics. J CHEM SCI 2021. [DOI: 10.1007/s12039-021-01990-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Rezayati S, Ramazani A, Sajjadifar S, Aghahosseini H, Rezaei A. Design of a Schiff Base Complex of Copper Coated on Epoxy-Modified Core-Shell MNPs as an Environmentally Friendly and Novel Catalyst for the One-Pot Synthesis of Various Chromene-Annulated Heterocycles. ACS OMEGA 2021; 6:25608-25622. [PMID: 34632217 PMCID: PMC8495884 DOI: 10.1021/acsomega.1c03672] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 05/04/2023]
Abstract
An ecofriendly inorganic-organic hybrid and novel Schiff base complex of copper coated on epoxy-modified Fe3O4@SiO2 MNPs was successfully designed and prepared from readily available chemicals. In this method, a Schiff base complex as a linker is utilized to protect copper nanoparticles to the core-shell Fe3O4 exterior without agglomeration. The resulted Schiff base complex of copper coated on epoxy-modified Fe3O4@SiO2 MNPs was characterized and confirmed via different analyses such as FT-IR, TGA, XRD, VSM, FE-SEM, TEM, ICP, EDX, and BET. The novel catalyst was examined for the synthesis of various chromene-annulated heterocycles through the one-pot three component reaction of aromatic aldehydes, various phenols (2-hydroxynaphthalene-1,4-dione/resorcinol/β-naphthol), and malononitrile in ethanol at reflux conditions. This method includes important aspects like no usage of column chromatography, very short reaction times, simplicity of product isolation using ethanol, excellent yields, simple procedures, and magnetic recoverability of the catalyst. All in all, our method makes a novel and significant advancement in the synthesis of various chromene-annulated heterocycles.
Collapse
Affiliation(s)
- Sobhan Rezayati
- Department
of Chemistry, Faculty of Science, University
of Zanjan, Zanjan 45371-38791, Iran
| | - Ali Ramazani
- Department
of Chemistry, Faculty of Science, University
of Zanjan, Zanjan 45371-38791, Iran
- Department
of Biotechnology, Research Institute of Modern Biological Techniques
(RIMBT), University of Zanjan, Zanjan 45371-38791, Iran
| | - Sami Sajjadifar
- Department
of Chemistry, Payame Noor University, PO BOX 19395-4697 Tehran, Iran
| | - Hamideh Aghahosseini
- Department
of Chemistry, Faculty of Science, University
of Zanjan, Zanjan 45371-38791, Iran
| | - Aram Rezaei
- Nano
Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 1673-67145, Iran
| |
Collapse
|
26
|
Karimi N, Roudsari RV, Hajimahdi Z, Zarghi A. Design, Synthesis and Docking Studies of Thioimidazolyl Diketoacid Derivatives Targeting HIV-1 Integrase. Med Chem 2021; 18:616-628. [PMID: 34587886 DOI: 10.2174/1573406417666210929124944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/05/2021] [Accepted: 08/07/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Integrase enzyme is a validated drug target to discover novel structures as anti-HIV-1 agents. OBJECTIVE Novel series of thioimidazolyl diketo acid derivatives characterizing various substituents at N-1 and 2-thio positions of central ring were developed as HIV-1 integrase inhibitors. RESULTS The obtained molecules were evaluated in the enzyme assay, displaying promising integrase inhibitory activity with IC50 values ranging from 0.9 to 7.7 M. The synthesized compounds were also tested for antiviral activity and cytotoxicity using HeLa cells infected by the single-cycle replicable HIV-1 NL4-3. CONCLUSION The most potent compound was 18i with EC50=19 µM, IC50 0.9 µM and SI= 10.5. Docking studies indicated that the binding mode of the active molecule is well aligned with the known HIV-1 integrase inhibitors.
Collapse
Affiliation(s)
- Nafiseh Karimi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| | - Rouhollah Vahabpour Roudsari
- Department of Medical Lab technology, School of Allied Medical Sciences of Shahid Beheshti University of Medical Sciences, Tehran. Iran
| | - Zahra Hajimahdi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| | - Afshin Zarghi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| |
Collapse
|
27
|
Li B, Dong X, Zhang W, Chen T, Yu B, Zhao W, Yang Y, Wang X, Hu Q, Wang X. High-Throughput NanoBiT-Based Screening for Inhibitors of HIV-1 Vpu and Host BST-2 Protein Interaction. Int J Mol Sci 2021; 22:ijms22179308. [PMID: 34502213 PMCID: PMC8431494 DOI: 10.3390/ijms22179308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 12/18/2022] Open
Abstract
Bone marrow stromal cell antigen 2 (BST-2), also known as CD317 or tetherin, has been identified as a host restriction factor that suppresses the release of enveloped viruses from host cells by physically tethering viral particles to the cell surface; however, this host defense can be subverted by multiple viruses. For example, human immunodeficiency virus (HIV)-1 encodes a specific accessory protein, viral protein U (Vpu), to counteract BST-2 by binding to it and directing its lysosomal degradation. Thus, blocking the interaction between Vpu and BST-2 will provide a promising strategy for anti-HIV therapy. Here, we report a NanoLuc Binary Technology (NanoBiT)-based high-throughput screening assay to detect inhibitors that disrupt the Vpu-BST-2 interaction. Out of more than 1000 compounds screened, four inhibitors were identified with strong activity at nontoxic concentrations. In subsequent cell-based BST-2 degradation assays, inhibitor Y-39983 HCl restored the cell-surface and total cellular level of BST-2 in the presence of Vpu. Furthermore, the Vpu-mediated enhancement of pesudotyped viral particle production was inhibited by Y-39983 HCl. Our findings indicate that our newly developed assay can be used for the discovery of potential antiviral molecules with novel mechanisms of action.
Collapse
Affiliation(s)
- Boye Li
- The Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; (B.L.); (X.D.); (W.Z.); (T.C.); (B.Y.); (W.Z.); (Y.Y.); (X.W.)
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, Beijing 100124, China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing 100124, China
| | - Xiaoxiao Dong
- The Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; (B.L.); (X.D.); (W.Z.); (T.C.); (B.Y.); (W.Z.); (Y.Y.); (X.W.)
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing 100124, China
| | - Wenmei Zhang
- The Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; (B.L.); (X.D.); (W.Z.); (T.C.); (B.Y.); (W.Z.); (Y.Y.); (X.W.)
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, Beijing 100124, China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing 100124, China
| | - Tian Chen
- The Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; (B.L.); (X.D.); (W.Z.); (T.C.); (B.Y.); (W.Z.); (Y.Y.); (X.W.)
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing 100124, China
| | - Boyang Yu
- The Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; (B.L.); (X.D.); (W.Z.); (T.C.); (B.Y.); (W.Z.); (Y.Y.); (X.W.)
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing 100124, China
| | - Wenyue Zhao
- The Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; (B.L.); (X.D.); (W.Z.); (T.C.); (B.Y.); (W.Z.); (Y.Y.); (X.W.)
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing 100124, China
| | - Yishu Yang
- The Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; (B.L.); (X.D.); (W.Z.); (T.C.); (B.Y.); (W.Z.); (Y.Y.); (X.W.)
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing 100124, China
| | - Xiaoli Wang
- The Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; (B.L.); (X.D.); (W.Z.); (T.C.); (B.Y.); (W.Z.); (Y.Y.); (X.W.)
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing 100124, China
| | - Qin Hu
- The Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; (B.L.); (X.D.); (W.Z.); (T.C.); (B.Y.); (W.Z.); (Y.Y.); (X.W.)
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing 100124, China
- Correspondence: (Q.H.); (X.W.)
| | - Xiayan Wang
- The Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; (B.L.); (X.D.); (W.Z.); (T.C.); (B.Y.); (W.Z.); (Y.Y.); (X.W.)
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, Beijing 100124, China
- Correspondence: (Q.H.); (X.W.)
| |
Collapse
|
28
|
Shrivastava N, Husain A, Rashid M, Alsabeelah NF, Karim S, Siddiqui NA. Recent Advances Towards Treatment of HIV: Synthesis and SAR Studies. Mini Rev Med Chem 2021; 21:471-499. [PMID: 30864523 DOI: 10.2174/1389557519666190312170158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/03/2019] [Accepted: 03/06/2019] [Indexed: 11/22/2022]
Abstract
In the present study, authors want to encourage the research exertions through structureactivity relationship for the identification of effective molecules for the treatment of Human immunodeficiency virus because nowadays AIDS is considered as one of the main causes of death in human beings. A diversity of biological resources has been searched and developed for the treatment of HIV but unfortunately, until now, no medicine is found to be fully effective and safe for the cure of patients. Human immunodeficiency virus is a type of lentivirus which causes the infection of HIV and once it enters the human body, it stays for a longer period of time triggering immunodeficiency syndrome. For searching and developing new potent and effective anti-HIV molecules, medicinal chemists have engaged in countless targets with the structure-activity relationship (SAR) of molecules and on this basis, many antiretroviral therapies have been developed to cure HIV infection. Most of these new searched molecules have been found to be clinically active against various types of AIDS patient and auxiliary research in this area may lead to better treatment in the near future. This article encompasses and highlights the recent advancement of innumerable inhibitors laterally through synthetic, semi-synthetic and structure-activity relationship approaches.
Collapse
Affiliation(s)
- Neelima Shrivastava
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Asif Husain
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Mohammad Rashid
- College of Pharmacy and Dentistry, Buraydah Colleges, Buraydah, Al-Qassim 31717, Saudi Arabia
| | - Nimer Fehaid Alsabeelah
- College of Pharmacy and Dentistry, Buraydah Colleges, Buraydah, Al-Qassim 31717, Saudi Arabia
| | - Shahid Karim
- Department of Pharmacology, College of Medicine, King Abdul Aziz University, Jeddah 21589, Saudi Arabia
| | - Nasir Ali Siddiqui
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
29
|
Advancements in macromolecular crystallography: from past to present. Emerg Top Life Sci 2021; 5:127-149. [PMID: 33969867 DOI: 10.1042/etls20200316] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 11/17/2022]
Abstract
Protein Crystallography or Macromolecular Crystallography (MX) started as a new discipline of science with the pioneering work on the determination of the protein crystal structures by John Kendrew in 1958 and Max Perutz in 1960. The incredible achievements in MX are attributed to the development of advanced tools, methodologies, and automation in every aspect of the structure determination process, which have reduced the time required for solving protein structures from years to a few days, as evident from the tens of thousands of crystal structures of macromolecules available in PDB. The advent of brilliant synchrotron sources, fast detectors, and novel sample delivery methods has shifted the paradigm from static structures to understanding the dynamic picture of macromolecules; further propelled by X-ray Free Electron Lasers (XFELs) that explore the femtosecond regime. The revival of the Laue diffraction has also enabled the understanding of macromolecules through time-resolved crystallography. In this review, we present some of the astonishing method-related and technological advancements that have contributed to the progress of MX. Even with the rapid evolution of several methods for structure determination, the developments in MX will keep this technique relevant and it will continue to play a pivotal role in gaining unprecedented atomic-level details as well as revealing the dynamics of biological macromolecules. With many exciting developments awaiting in the upcoming years, MX has the potential to contribute significantly to the growth of modern biology by unraveling the mechanisms of complex biological processes as well as impacting the area of drug designing.
Collapse
|
30
|
Active Components from Cassia abbreviata Prevent HIV-1 Entry by Distinct Mechanisms of Action. Int J Mol Sci 2021; 22:ijms22095052. [PMID: 34068829 PMCID: PMC8126241 DOI: 10.3390/ijms22095052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 01/21/2023] Open
Abstract
Cassia abbreviata is widely used in Sub-Saharan Africa for treating many diseases, including HIV-1 infection. We have recently described the chemical structures of 28 compounds isolated from an alcoholic crude extract of barks and roots of C. abbreviata, and showed that six bioactive compounds inhibit HIV-1 infection. In the present study, we demonstrate that the six compounds block HIV-1 entry into cells: oleanolic acid, palmitic acid, taxifolin, piceatannol, guibourtinidol-(4α→8)-epiafzelechin, and a novel compound named as cassiabrevone. We report, for the first time, that guibourtinidol-(4α→8)-epiafzelechin and cassiabrevone inhibit HIV-1 entry (IC50 of 42.47 µM and 30.96 µM, respectively), as well as that piceatannol interacts with cellular membranes. Piceatannol inhibits HIV-1 infection in a dual-chamber assay mimicking the female genital tract, as well as HSV infection, emphasizing its potential as a microbicide. Structure-activity relationships (SAR) showed that pharmacophoric groups of piceatannol are strictly required to inhibit HIV-1 entry. By a ligand-based in silico study, we speculated that piceatannol and norartocarpetin may have a very similar mechanism of action and efficacy because of the highly comparable pharmacophoric and 3D space, while guibourtinidol-(4α→8)-epiafzelechin and cassiabrevone may display a different mechanism. We finally show that cassiabrevone plays a major role of the crude extract of CA by blocking the binding activity of HIV-1 gp120 and CD4.
Collapse
|
31
|
Seneviratne U, Wickramaratne S, Kotandeniya D, Groehler AS, Geraghty RJ, Dreis C, Pujari SS, Tretyakova NY. Synthesis and biological evaluation of pyrrolidine-functionalized nucleoside analogs. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02700-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
32
|
Khalil BA, Elemam NM, Maghazachi AA. Chemokines and chemokine receptors during COVID-19 infection. Comput Struct Biotechnol J 2021; 19:976-988. [PMID: 33558827 PMCID: PMC7859556 DOI: 10.1016/j.csbj.2021.01.034] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/17/2022] Open
Abstract
Chemokines are crucial inflammatory mediators needed during an immune response to clear pathogens. However, their excessive release is the main cause of hyperinflammation. In the recent COVID-19 outbreak, chemokines may be the direct cause of acute respiratory disease syndrome, a major complication leading to death in about 40% of severe cases. Several clinical investigations revealed that chemokines are directly involved in the different stages of SARS-CoV-2 infection. Here, we review the role of chemokines and their receptors in COVID-19 pathogenesis to better understand the disease immunopathology which may aid in developing possible therapeutic targets for the infection.
Collapse
Key Words
- AECs, airway epithelial cells
- AP-1, Activator Protein 1
- ARDS
- ARDS, acute respiratory disease syndrome
- BALF, bronchial alveolar lavage fluid
- CAP, community acquired pneumonia
- COVID-19
- CRS, cytokine releasing syndrome
- Chemokine Receptors
- Chemokines
- DCs, dendritic cells
- ECM, extracellular matrix
- GAGs, glycosaminoglycans
- HIV, human immunodeficiency virus
- HRSV, human respiratory syncytial virus
- IFN, interferon
- IMM, inflammatory monocytes and macrophages
- IP-10, IFN-γ-inducible protein 10
- IRF, interferon regulatory factor
- Immunity
- MERS-CoV, Middle East respiratory syndrome coronavirus
- NETs, neutrophil extracellular traps
- NF-κB, Nuclear Factor kappa-light-chain-enhancer of activated B cells
- NK cells, natural killer cells
- PBMCs, peripheral blood mononuclear cells
- PRR, pattern recognition receptors
- RSV, rous sarcoma virus
- SARS-CoV, severe acute respiratory syndrome coronavirus
- SARS-CoV-2
- TLR, toll like receptor
- TRIF, TIR-domain-containing adapter-inducing interferon-β
Collapse
Affiliation(s)
- Bariaa A. Khalil
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Immuno-Oncology Group, Sharjah Institute for Medical Research (SIMR), Sharjah, United Arab Emirates
| | - Noha Mousaad Elemam
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Immuno-Oncology Group, Sharjah Institute for Medical Research (SIMR), Sharjah, United Arab Emirates
| | - Azzam A. Maghazachi
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Immuno-Oncology Group, Sharjah Institute for Medical Research (SIMR), Sharjah, United Arab Emirates
| |
Collapse
|
33
|
A synergetic role of Aegle marmelos fruit ash in the synthesis of biscoumarins and 2-amino-4H-chromenes. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-020-04367-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Panigrahi D, Mishra A, Sahu SK, Azam MA, Vyshaag CM. A Combined approach of Pharmacophore Modeling, QSAR Study, Molecular Docking and in silico ADME/Tox prediction of 4-Arylthio & 4- Aryloxy-3- Iodopyridine-2(1H)-one analogs to identify potential Reverse Transcriptase inhibitor: Anti-HIV agents. Med Chem 2020; 18:51-87. [PMID: 33319692 DOI: 10.2174/1573406417666201214100822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/31/2020] [Accepted: 10/12/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Reverse transcriptase is an important therapeutic target to treat AIDS caused by the Human Immunodeficiency Virus (HIV). Despite many effective anti-HIV drugs, reverse transcriptase (RT) inhibitors remain the cornerstone of the drug regimen to treat AIDS. In the present work, we have expedited the use of different computational modules and presented an easy, cost-effective and high throughput screening method to identify potential reverse transcriptase inhibitors. METHODS A congeneric series of 4-Arylthio & 4-Aryloxy-3- Iodopyridine-2(1H)-one analogs having anti-HIV activity were subjected to structure-based 2D, 3D QSAR, Pharmacophore Modeling, and Molecular Docking to elucidate the structural properties required for the design of potent HIV-RT inhibitors. Prediction of preliminary Pharmacokinetic and the Drug Likeliness profile was performed for these compounds by in silico ADME study. RESULTS The 2D and 3D- QSAR models were developed by correlating two and three-dimensional descriptors with activity (pIC50) by sphere exclusion method and k-nearest neighbor molecular field analysis approach, respectively. The significant 2D- QSAR model developed by Partial Least Square associated with the Sphere Exclusion method (PLS-SE) having r2 and q2 values 0.9509 and 0.8038 respectively. The 3D-QSAR model by Step Wise variable selection method (SW-kNN MFA) is more significant which has a cross-validated squared correlation coefficient q2= 0.8509 and a non-cross-validated correlation coefficient pred_r2= 0.8102. The pharmacophore hypothesis was developed which comprised 5 features includes 3 aliphatic regions (Ala), 1 H-bond donor (HDr) and 1 H-bond acceptor (HAc). Docking studies of the selected inhibitors with the active site of reverse transcriptase enzyme showed hydrogen bond and π - π interaction with LYS-101, LYS-103, TYR- 181, TYR-188 and TRP-229 residues present at the active site. All the candidates with good bioavailability and ADMET drug likeliness properties. CONCLUSION The results of the present work provide more useful information and important structural insights for the discovery, design of novel and potent reverse transcriptase inhibitors with high therapeutic windows in the future.
Collapse
Affiliation(s)
- Debadash Panigrahi
- Drug Research Laboratory, Nodal Research Centre, College of Pharmaceutical Sciences, Puri, Baliguali, Puri- Konark Marine Drive road, Puri, Odisha. India
| | - Amiyakanta Mishra
- Drug Research Laboratory, Nodal Research Centre, College of Pharmaceutical Sciences, Puri, Baliguali, Puri- Konark Marine Drive road, Puri, Odisha. India
| | - Susanta Kumar Sahu
- Dept. of Pharmacy, Utkal University, VaniVihar, Bhubaneswar, Odisha. India
| | - Mohd Afzal Azam
- Dept. of Pharmaceutical Chemistry, J.S.S. College of Pharmacy, Ooty, Udhagamandalam, Tamil Nadu. India
| | - C M Vyshaag
- Dept. of Pharmaceutical Chemistry, J.S.S. College of Pharmacy, Ooty, Udhagamandalam, Tamil Nadu. India
| |
Collapse
|
35
|
Panigrahi D, Mishra A, Sahu SK. Rational in silico drug design of HIV-RT inhibitors through G-QSAR and molecular docking study of 4-arylthio and 4-aryloxy-3-iodopyridine-2(1-H)-one derivative. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2020. [DOI: 10.1186/s43088-020-00075-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Human immunodeficiency virus infection and acquired immune deficiency syndrome (HIV/AIDS) is a spectrum of conditions caused by infection with the human immunodeficiency virus (HIV). Antiretroviral therapy (ART) against HIV infection offers the promise of controlling disease progression and prolonging the survival of HIV-infected patients. Reverse transcriptase (RT) inhibitors remain the cornerstone of the drug regimen to treat AIDS. In this direction, by using group-based QSAR study (G-QSAR), identification of the structural need for the development of lead structure with reverse transcriptase inhibition on 97 reported structures was carried out. Docking analysis was performed further and suggested the structural properties required for binding affinity with the receptor. The molecules in the data set were fragmented into six (R1, R2, R3, R4, R5, and R6) by applying the fragmentation pattern. Three G-QSAR models were selected based on the statistical significance of the model. The molecular docking study was performed to explain the structural properties required for the design of potent HIV-RT inhibitors.
Results
The statistically validated QSAR models reveal the presence of higher hydrophobic groups containing single-bonded –Br atom, 2 aromatic bonded –NH group with less electronegativity, and entropic interaction fields at R2 essential for better anti-HIV activity. The presence of a lipophilic group at R3, oxygen and sulfur connected with two aromatic bonds at R4, and –CH3 group at R5 was fruitful for reverse transcriptase inhibition. Docking studies of the selected inhibitors with the active site of reverse transcriptase enzyme showed hydrogen bond, Van der Waal’s, charge, aromatic, and π–π interactions with residues present at the active site.
Conclusion
The results of the generated models provide significant site-specific insight into the structural requirements for reverse transcriptase inhibition during the design and development of novel anti-HIV compounds. Molecular docking study revealed the binding interaction between the ligand and the receptor which gave insight towards the structure-based design for the discovery of more potent compounds with better activity against HIV infection.
Collapse
|
36
|
Mäder P, Kattner L. Sulfoximines as Rising Stars in Modern Drug Discovery? Current Status and Perspective on an Emerging Functional Group in Medicinal Chemistry. J Med Chem 2020; 63:14243-14275. [DOI: 10.1021/acs.jmedchem.0c00960] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Patrick Mäder
- Endotherm GmbH, Science Park 2, 66123 Saarbruecken, Germany
| | - Lars Kattner
- Endotherm GmbH, Science Park 2, 66123 Saarbruecken, Germany
| |
Collapse
|
37
|
Zhou H, Zhu M, Ma L, Zhou J, Dong B, Zhang G, Cen S, Wang Y, Wang J. Piperidine scaffold as the novel P2-ligands in cyclopropyl-containing HIV-1 protease inhibitors: Structure-based design, synthesis, biological evaluation and docking study. PLoS One 2020; 15:e0235483. [PMID: 32697773 PMCID: PMC7375528 DOI: 10.1371/journal.pone.0235483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/17/2020] [Indexed: 11/19/2022] Open
Abstract
A series of potent HIV-1 protease inhibitors, containing diverse piperidine analogues as the P2-ligands, 4-substituted phenylsulfonamides as the P2'-ligands and a hydrophobic cyclopropyl group as the P1'-ligand, were designed, synthesized and evaluated in this work. Among these twenty-four target compounds, many of them exhibited excellent activity against HIV-1 protease with half maximal inhibitory concentration (IC50) values below 20 nM. Particularly, compound 22a containing a (R)-piperidine-3-carboxamide as the P2-ligand and a 4-methoxylphenylsulfonamide as the P2'-ligand exhibited the most effective inhibitory activity with an IC50 value of 3.61 nM. More importantly, 22a exhibited activity with inhibition of 42% and 26% against wild-type and Darunavir (DRV)-resistant HIV-1 variants, respectively. Additionally, the molecular docking of 22a with HIV-1 protease provided insight into the ligand-binding properties, which was of great value for further study.
Collapse
Affiliation(s)
- Huiyu Zhou
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Mei Zhu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ling Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, China
| | - Biao Dong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Guoning Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yucheng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Juxian Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
38
|
Das P, Almond DW, Tumbelty LN, Austin BE, Moura-Letts G. From Heterocycles to Carbacycles: Synthesis of Carbocyclic Nucleoside Analogues from Enals and Hydroxylamines. Org Lett 2020; 22:5491-5495. [PMID: 32602726 DOI: 10.1021/acs.orglett.0c01846] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Substituted and stereochemically dense carbacycles can be prepared by sequential dipolar cycloaddition and reductive cleavage from enals and hydroxylamines. The reaction sequence proceeds with high efficiency for a wide variety of enals and hydroxylamines. The reaction is regio- and diastereoselective for the initial formation of a bridged bisisoxazolidine intermediate, which then undergoes quantitative double N-O cleavage to produce carbacycles as single diastereomers.
Collapse
Affiliation(s)
- Pulakesh Das
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - David W Almond
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Lauren N Tumbelty
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Brooke E Austin
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Gustavo Moura-Letts
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| |
Collapse
|
39
|
Hosseinzadeh‐Baghan S, Mirzaei M, Eshtiagh‐Hosseini H, Zadsirjan V, Heravi MM, Mague JT. An inorganic–organic hybrid material based on a Keggin‐type polyoxometalate@Dysprosium as an effective and green catalyst in the synthesis of 2‐amino‐4
H
‐chromenes via multicomponent reactions. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5793] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sara Hosseinzadeh‐Baghan
- Department of Chemistry, Faculty of ScienceFerdowsi University of Mashhad Mashhad 917751436 Iran
| | - Masoud Mirzaei
- Department of Chemistry, Faculty of ScienceFerdowsi University of Mashhad Mashhad 917751436 Iran
| | | | - Vahideh Zadsirjan
- Department of ChemistrySchool of Science, Alzahra University PO Box 1993891176 Tehran Vanak Iran
| | - Majid M. Heravi
- Department of ChemistrySchool of Science, Alzahra University PO Box 1993891176 Tehran Vanak Iran
| | - Joel T. Mague
- Department of ChemistryTulane University New Orleans LA 70118 USA
| |
Collapse
|
40
|
Yang Y, Pannecouque C, Clercq ED, Zhuang C, Chen FE. Privileged scaffold inspired design of novel oxime-biphenyl-DAPYs in treatment of HIV-1. Bioorg Chem 2020; 99:103825. [DOI: 10.1016/j.bioorg.2020.103825] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/11/2020] [Accepted: 04/05/2020] [Indexed: 11/24/2022]
|
41
|
Sánchez-Murcia PA, de Castro S, García-Aparicio C, Jiménez MA, Corona A, Tramontano E, Sluis-Cremer N, Menéndez-Arias L, Velázquez S, Gago F, Camarasa MJ. Peptides Mimicking the β7/β8 Loop of HIV-1 Reverse Transcriptase p51 as "Hotspot-Targeted" Dimerization Inhibitors. ACS Med Chem Lett 2020; 11:811-817. [PMID: 32435389 DOI: 10.1021/acsmedchemlett.9b00623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/24/2020] [Indexed: 02/04/2023] Open
Abstract
A conformationally constrained short peptide designed to target a protein-protein interaction hotspot in HIV-1 reverse transcriptase (RT) disrupts p66-p51 interactions and paves the way to the development of novel RT dimerization inhibitors.
Collapse
Affiliation(s)
| | - Sonia de Castro
- Instituto de Química Médica (IQM, CSIC), Juan de la Cierva 3, E-28006 Madrid, Spain
| | | | - M. Angeles Jiménez
- Instituto de Química-Física Rocasolano (IQFR, CSIC), Serrano 119, E-28006Madrid, Spain
| | - Angela Corona
- University of Cagliari, Department of Life and Environmental Sciences, Cittadella Universitaria di
Monserrato, 09042 Monserrato, Cagliari, Italy
| | - Enzo Tramontano
- University of Cagliari, Department of Life and Environmental Sciences, Cittadella Universitaria di
Monserrato, 09042 Monserrato, Cagliari, Italy
| | - Nicolas Sluis-Cremer
- University of Pittsburgh School of Medicine, Division of Infectious Diseases, Pittsburgh, Pennsylvania 15261, United States
| | - Luis Menéndez-Arias
- Centro de Biología Molecular “Severo Ochoa” (CBMSO, CSIC & Universidad Autónoma de Madrid), Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Sonsoles Velázquez
- Instituto de Química Médica (IQM, CSIC), Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Federico Gago
- Departamento de Ciencias Biomédicas, Universidad de Alcalá, Unidad Asociada CSIC, E-28805 Alcalá de Henares, Madrid, Spain
| | - María-José Camarasa
- Instituto de Química Médica (IQM, CSIC), Juan de la Cierva 3, E-28006 Madrid, Spain
| |
Collapse
|
42
|
Fichez J, Soulie C, Le Corre L, Sayon S, Priet S, Alvarez K, Delelis O, Gizzi P, Prestat G, Gravier-Pelletier C, Marcelin AG, Calvez V, Busca P. Discovery, SAR study and ADME properties of methyl 4-amino-3-cyano-1-(2-benzyloxyphenyl)-1 H-pyrazole-5-carboxylate as an HIV-1 replication inhibitor. RSC Med Chem 2020; 11:577-582. [PMID: 33479659 PMCID: PMC7593888 DOI: 10.1039/d0md00025f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/14/2020] [Indexed: 11/21/2022] Open
Abstract
Inspired by the antiviral activity of known pyrazole-based HIV inhibitors, we screened our in-house library of pyrazole-based compounds to evaluate their in cellulo activity against HIV-1 replication. Two hits with very similar structures appeared from single and multiple-round infection assays to be non-toxic and active in a dose-dependent manner. Chemical expansion of their series allowed an in-depth and consistent structure-activity-relationship study (SAR) to be built. Further ADME evaluation led to the selection of 4-amino-3-cyano-1-(2-benzyloxyphenyl)-1H-pyrazole-5-carboxylate with an advantageous pharmacokinetic profile. Finally, examination of its mode of action revealed that this compound does not belong to the three main classes of anti-HIV drugs, a feature of prime interest in the context of viral resistance.
Collapse
Affiliation(s)
- Jeanne Fichez
- LCBPT , UMR CNRS 8601 , Université de Paris , Paris , France .
| | - Cathia Soulie
- Laboratoire de Virologie-CERVI , UMR S 1136 , Hôpital Pitié Salpêtrière - Sorbonne Université , Paris , France
| | | | - Sophie Sayon
- Laboratoire de Virologie-CERVI , UMR S 1136 , Hôpital Pitié Salpêtrière - Sorbonne Université , Paris , France
| | - Stéphane Priet
- Aix-Marseille Univ , Laboratoire AFMB , UMR CNRS 7257 , Marseille , France
- UMR EPV , Université Aix-Marseille - IRD 190 - INSERM 1207 - EHESP , Marseille , France
| | - Karine Alvarez
- Aix-Marseille Univ , Laboratoire AFMB , UMR CNRS 7257 , Marseille , France
| | | | - Patrick Gizzi
- PCBIS , UMS CNRS 3286 , ESBS - Université de Strasbourg , Illkirch , France
| | | | | | - Anne-Geneviève Marcelin
- Laboratoire de Virologie-CERVI , UMR S 1136 , Hôpital Pitié Salpêtrière - Sorbonne Université , Paris , France
| | - Vincent Calvez
- Laboratoire de Virologie-CERVI , UMR S 1136 , Hôpital Pitié Salpêtrière - Sorbonne Université , Paris , France
| | - Patricia Busca
- LCBPT , UMR CNRS 8601 , Université de Paris , Paris , France .
| |
Collapse
|
43
|
Buemi MR, Gitto R, Ielo L, Pannecouque C, De Luca L. Inhibition of HIV-1 RT activity by a new series of 3-(1,3,4-thiadiazol-2-yl)thiazolidin-4-one derivatives. Bioorg Med Chem 2020; 28:115431. [DOI: 10.1016/j.bmc.2020.115431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 01/19/2023]
|
44
|
Tan CJ, Li SF, Huang N, Zhang Y, Di YT, Zheng YT, Hao XJ. Daphnane Diterpenoids from Trigonostemon lii and Inhibition Activities Against HIV-1. NATURAL PRODUCTS AND BIOPROSPECTING 2020; 10:37-44. [PMID: 32048186 PMCID: PMC7046902 DOI: 10.1007/s13659-020-00231-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Natural products are the important source for the discovery of more potent anti-HIV agents. In this study, six daphnane diterpenoids including three unreported structures were isolated from Trigonostemon lii, which showed significant activities against HIV-1 strains replication in the nanomolar/picomolar range. Meanwhile, these diterpenoids significantly inhibited the fusion of H9/HIV-1 IIIB cells with uninfected C8166 cells, with the EC50s from 1.06 to 8.73 ng/mL, and did not show any inhibition activities against HIV-1 reverse transcriptase. Moreover, all of the diterpenoids shows significant inhibitions against T20-resistan HIV-1 strains, PNL4-3gp41(36G)V38E, N42S and pNL4-3gp41(36G)V38A, N42T. The results revealed that the six diterpenoids could be a new type of potential lead candidate as an HIV entry inhibitor, particularly for those infected by T20-resistant variants.
Collapse
Affiliation(s)
- Cheng-Jian Tan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, Yunnan, People's Republic of China
- School of Ethnic Medicine, Guizhou Minzu University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Shi-Fei Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, Yunnan, People's Republic of China
- Institute of Molecular Science, Shanxi University, Taiyuan, 030006, Shanxi, People's Republic of China
| | - Ning Huang
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, People's Republic of China
- School of Basic Medical, Kunming Medical University, Kunming, 650500, Yunnan, People's Republic of China
| | - Yu Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, Yunnan, People's Republic of China
| | - Ying-Tong Di
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, Yunnan, People's Republic of China
| | - Yong-Tang Zheng
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, People's Republic of China.
| | - Xiao-Jiang Hao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, Yunnan, People's Republic of China.
| |
Collapse
|
45
|
Kovalevsky A, Gerlits O, Beltran K, Weiss KL, Keen DA, Blakeley MP, Louis JM, Weber IT. Proton transfer and drug binding details revealed in neutron diffraction studies of wild-type and drug resistant HIV-1 protease. Methods Enzymol 2020; 634:257-279. [PMID: 32093836 PMCID: PMC11414022 DOI: 10.1016/bs.mie.2019.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
HIV-1 protease is an essential therapeutic target for the design and development of antiviral inhibitors to treat AIDS. We used room temperature neutron crystallography to accurately determine hydrogen atom positions in several protease complexes with clinical drugs, amprenavir and darunavir. Hydrogen bonding interactions were carefully mapped to provide an unprecedented picture of drug binding to the protease target. We demonstrate that hydrogen atom positions within the enzyme catalytic site can be altered by introducing drug resistant mutations and by protonating surface residues that trigger proton transfer reactions between the catalytic Asp residues and the hydroxyl group of darunavir. When protein perdeuteration is not feasible, we validate the use of initial H/D exchange with unfolded protein and partial deuteration in pure D2O with hydrogenous glycerol to maximize deuterium incorporation into the protein, with no detrimental effects on the growth of quality crystals suitable for neutron diffraction experiments.
Collapse
Affiliation(s)
- Andrey Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.
| | - Oksana Gerlits
- Department of Natural Sciences, Tennessee Wesleyan University, Athens, TN, United States
| | - Kaira Beltran
- Department of Natural Sciences, Tennessee Wesleyan University, Athens, TN, United States
| | - Kevin L Weiss
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - David A Keen
- ISIS Facility, Rutherford Appleton Laboratory, Harwell Campus, Didcot, United Kingdom
| | | | - John M Louis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, United States
| | - Irene T Weber
- Department of Biology, Georgia State University, Atlanta, GA, United States; Department of Chemistry, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
46
|
Xiao T, Tang JF, Meng G, Pannecouque C, Zhu YY, Liu GY, Xu ZQ, Wu FS, Gu SX, Chen FE. Indazolyl-substituted piperidin-4-yl-aminopyrimidines as HIV-1 NNRTIs: Design, synthesis and biological activities. Eur J Med Chem 2020; 186:111864. [DOI: 10.1016/j.ejmech.2019.111864] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/25/2019] [Accepted: 11/06/2019] [Indexed: 11/25/2022]
|
47
|
Martínez-Gualda B, Sun L, Martí-Marí O, Noppen S, Abdelnabi R, Bator CM, Quesada E, Delang L, Mirabelli C, Lee H, Schols D, Neyts J, Hafenstein S, Camarasa MJ, Gago F, San-Félix A. Scaffold Simplification Strategy Leads to a Novel Generation of Dual Human Immunodeficiency Virus and Enterovirus-A71 Entry Inhibitors. J Med Chem 2019; 63:349-368. [PMID: 31809045 DOI: 10.1021/acs.jmedchem.9b01737] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Currently, there are only three FDA-approved drugs that inhibit human immunodeficiency virus (HIV) entry-fusion into host cells. The situation is even worse for enterovirus EV71 infection for which no antiviral therapies are available. We describe here the discovery of potent entry dual inhibitors of HIV and EV71. These compounds contain in their structure three or four tryptophan (Trp) residues linked to a central scaffold. Critical for anti-HIV/EV71 activity is the presence of extra phenyl rings, bearing one or two carboxylates, at the C2 position of the indole ring of each Trp residue. The most potent derivatives, 22 and 30, inhibit early steps of the replicative cycles of HIV-1 and EV-A71 by interacting with their respective viral surfaces (glycoprotein gp120 of HIV and the fivefold axis of the EV-A71 capsid). The high potency, low toxicity, facile chemical synthesis, and great opportunities for chemical optimization make them useful prototypes for future medicinal chemistry studies.
Collapse
Affiliation(s)
| | - Liang Sun
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , University of Leuven , B-3000 Leuven , Belgium
| | | | - Sam Noppen
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , University of Leuven , B-3000 Leuven , Belgium
| | - Rana Abdelnabi
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , University of Leuven , B-3000 Leuven , Belgium
| | - Carol M Bator
- Department of Biochemistry and Molecular Biology, Huck Institutes of the Life Sciences , The Pennsylvania State University , University Park , 16802 State College , Pennsylvania , United States
| | - Ernesto Quesada
- Instituto de Química Médica (IQM-CSIC) , 28006 Madrid , Spain
| | - Leen Delang
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , University of Leuven , B-3000 Leuven , Belgium
| | - Carmen Mirabelli
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , University of Leuven , B-3000 Leuven , Belgium
| | - Hyunwook Lee
- Department of Biochemistry and Molecular Biology, Huck Institutes of the Life Sciences , The Pennsylvania State University , University Park , 16802 State College , Pennsylvania , United States
| | - Dominique Schols
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , University of Leuven , B-3000 Leuven , Belgium
| | - Johan Neyts
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , University of Leuven , B-3000 Leuven , Belgium
| | - Susan Hafenstein
- Department of Biochemistry and Molecular Biology, Huck Institutes of the Life Sciences , The Pennsylvania State University , University Park , 16802 State College , Pennsylvania , United States.,Department of Medicine , The Pennsylvania State University College of Medicine , 17033 Hershey , Pennsylvania , United States
| | | | - Federico Gago
- Departamento de Ciencias Biomédicas y Unidad Asociada IQM-UAH , Universidad de Alcalá , Alcalá de Henares, E-28805 Madrid , Spain
| | - Ana San-Félix
- Instituto de Química Médica (IQM-CSIC) , 28006 Madrid , Spain
| |
Collapse
|
48
|
Brahmachari G, Mandal M. One‐pot multicomponent synthesis of a new series of curcumin‐derived 4
H
‐pyrans under ambient conditions. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis, Department of ChemistryVisva‐Bharati (a Central University) Santiniketan West Bengal 731 235 India
| | - Mullicka Mandal
- Laboratory of Natural Products & Organic Synthesis, Department of ChemistryVisva‐Bharati (a Central University) Santiniketan West Bengal 731 235 India
| |
Collapse
|
49
|
Becica J, Hruszkewycz DP, Steves JE, Elward JM, Leitch DC, Dobereiner GE. High-Throughput Discovery and Evaluation of a General Catalytic Method for N-Arylation of Weakly Nucleophilic Sulfonamides. Org Lett 2019; 21:8981-8986. [PMID: 31651171 DOI: 10.1021/acs.orglett.9b03380] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Through targeted high-throughput experimentation (HTE), we have identified the Pd/AdBippyPhos catalyst system as an effective and general method to construct densely functionalized N,N-diaryl sulfonamide motifs relevant to medicinal chemistry. AdBippyPhos is particularly effective for the installation of heteroaromatic groups. Computational steric parametrization of the investigated ligands reveals the potential importance of remote steric demand, where a large cone angle combined with an accessible Pd center is correlated to successful catalysts for C-N coupling reactions.
Collapse
Affiliation(s)
- Joseph Becica
- Department of Chemistry , Temple University , Philadelphia , Pennsylvania 19122 , United States.,Chemical Development , GlaxoSmithKline , Collegeville , Pennsylvania 19426 , United States
| | - Damian P Hruszkewycz
- Chemical Development , GlaxoSmithKline , Collegeville , Pennsylvania 19426 , United States
| | - Janelle E Steves
- Chemical Development , GlaxoSmithKline , Collegeville , Pennsylvania 19426 , United States
| | - Jennifer M Elward
- Molecular Design, Data & Computational Sciences , GlaxoSmithKline , Collegeville , Pennsylvania 19426 , United States
| | - David C Leitch
- Chemical Development , GlaxoSmithKline , Collegeville , Pennsylvania 19426 , United States.,Department of Chemistry , University of Victoria , Victoria , British Columbia V8P 5C2 , Canada
| | - Graham E Dobereiner
- Department of Chemistry , Temple University , Philadelphia , Pennsylvania 19122 , United States
| |
Collapse
|
50
|
Maeda K, Das D, Kobayakawa T, Tamamura H, Takeuchi H. Discovery and Development of Anti-HIV Therapeutic Agents: Progress Towards Improved HIV Medication. Curr Top Med Chem 2019; 19:1621-1649. [PMID: 31424371 PMCID: PMC7132033 DOI: 10.2174/1568026619666190712204603] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/14/2019] [Accepted: 06/21/2019] [Indexed: 01/09/2023]
Abstract
The history of the human immunodeficiency virus (HIV)/AIDS therapy, which spans over 30 years, is one of the most dramatic stories of science and medicine leading to the treatment of a disease. Since the advent of the first AIDS drug, AZT or zidovudine, a number of agents acting on different drug targets, such as HIV enzymes (e.g. reverse transcriptase, protease, and integrase) and host cell factors critical for HIV infection (e.g. CD4 and CCR5), have been added to our armamentarium to combat HIV/AIDS. In this review article, we first discuss the history of the development of anti-HIV drugs, during which several problems such as drug-induced side effects and the emergence of drug-resistant viruses became apparent and had to be overcome. Nowadays, the success of Combination Antiretroviral Therapy (cART), combined with recently-developed powerful but nonetheless less toxic drugs has transformed HIV/AIDS from an inevitably fatal disease into a manageable chronic infection. However, even with such potent cART, it is impossible to eradicate HIV because none of the currently available HIV drugs are effective in eliminating occult “dormant” HIV cell reservoirs. A number of novel unique treatment approaches that should drastically improve the quality of life (QOL) of patients or might actually be able to eliminate HIV altogether have also been discussed later in the review.
Collapse
Affiliation(s)
- Kenji Maeda
- National Center for Global Health and Medicine (NCGM) Research Institute, Tokyo 162-8655, Japan
| | - Debananda Das
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health (NCI/NIH), Bethesda, MD, United States
| | - Takuya Kobayakawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo 101-0062, Japan
| | - Hirokazu Tamamura
- Department of Molecular Virology, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan
| | - Hiroaki Takeuchi
- Department of Molecular Virology, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan
| |
Collapse
|