1
|
Marchesani F, Rebecchi F, Pieroni M, Faggiano S, Annunziato G, Spaggiari C, Bruno S, Rinaldi S, Giaccari R, Costantino G, Campanini B. Chemical Probes to Investigate Central Nervous System Disorders: Design, Synthesis and Mechanism of Action of a Potent Human Serine Racemase Inhibitor. ACS Med Chem Lett 2024; 15:1298-1305. [PMID: 39140049 PMCID: PMC11318019 DOI: 10.1021/acsmedchemlett.4c00174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 08/15/2024] Open
Abstract
The intricate signaling network within the central nervous system (CNS) involving N-methyl-d-aspartate receptors (NMDARs) has been recognized as a key player in severe neurodegenerative diseases. The indirect modulation of NMDAR-mediated neurotransmission through inhibition of serine racemase (SR)-the enzyme responsible for the synthesis of the NMDAR coagonist d-serine-has been suggested as a therapeutic strategy to treat these conditions. Despite the inherent challenges posed by SR conformational flexibility, a ligand-based drug design strategy has successfully produced a series of potent covalent inhibitors structurally related to amino acid analogues. Among these inhibitors, O-(2-([1,1'-biphenyl]-4-yl)-1-carboxyethyl)hydroxylammonium chloride (28) has emerged as a valuable candidate with a K d of about 5 μM, which makes it one of the most potent hSR inhibitors reported to date. This molecule is expected to inspire the identification of selective hSR inhibitors that might find applications as tools in the study and treatment of several CNS pathologies.
Collapse
Affiliation(s)
| | | | - Marco Pieroni
- Department
of Food and Drug, University of Parma, 43124 Parma, Italy
- P4T
Group, University of Parma, 43124 Parma, Italy
- Interdepartmental
Research Center for the Innovation of Health Products “Biopharmanet-tec”, University of Parma, 43124 Parma, Italy
- Centro
Interdipartimentale Misure (CIM) “G. Casnati”, University of Parma, 43124 Parma, Italy
| | - Serena Faggiano
- Department
of Food and Drug, University of Parma, 43124 Parma, Italy
- Institute
of Biophysics, National Research Council, 56124 Pisa, Italy
| | - Giannamaria Annunziato
- Department
of Food and Drug, University of Parma, 43124 Parma, Italy
- Centro
Interdipartimentale Misure (CIM) “G. Casnati”, University of Parma, 43124 Parma, Italy
| | - Chiara Spaggiari
- Department
of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Stefano Bruno
- Department
of Food and Drug, University of Parma, 43124 Parma, Italy
- Interdepartmental
Research Center for the Innovation of Health Products “Biopharmanet-tec”, University of Parma, 43124 Parma, Italy
| | - Sofia Rinaldi
- Department
of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Roberta Giaccari
- Department
of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Gabriele Costantino
- Department
of Food and Drug, University of Parma, 43124 Parma, Italy
- Interdepartmental
Research Center for the Innovation of Health Products “Biopharmanet-tec”, University of Parma, 43124 Parma, Italy
- Centro
Interdipartimentale Misure (CIM) “G. Casnati”, University of Parma, 43124 Parma, Italy
| | - Barbara Campanini
- Department
of Food and Drug, University of Parma, 43124 Parma, Italy
- Interdepartmental
Research Center for the Innovation of Health Products “Biopharmanet-tec”, University of Parma, 43124 Parma, Italy
| |
Collapse
|
2
|
Singh P, Nerella SG, Swain B, Angeli A, Ullah Q, Supuran CT, Arifuddin M. Design, synthesis and in vitro evaluation of novel thiazole-coumarin hybrids as selective and potent human carbonic anhydrase IX and XII inhibitors. Int J Biol Macromol 2024; 268:131548. [PMID: 38642682 DOI: 10.1016/j.ijbiomac.2024.131548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 03/13/2024] [Accepted: 04/10/2024] [Indexed: 04/22/2024]
Abstract
The coumarin is one of the most promising classes of non-classical carbonic anhydrase (CA, EC 4.2.1.1) inhibitors. In continuation of our ongoing work on search of coumarin based selective carbonic anhydrase inhibitors, a new series of 6-aminocoumarin based 16 novel analogues of coumarin incorporating thiazole (4a-p) have been synthesized and studied for their hCA inhibitory activity against a panel of human carbonic anhydrases (hCAs). Most of these newly synthesized compounds exhibited interesting inhibition constants in the nanomolar range. Among the tested compounds, the compounds 4f having 4-methoxy substitution exhibited activity at 90.9 nM against hCA XII isoform. It is noteworthy to see that all compounds were specifically and selectively active against isoforms hCA IX and hCA XII, with Ki under 1000 nM range. It is anticipated that these newly synthesized coumarin-thiazole hybrids (4a-p) may emerge as potential leads candidates against hCA IX and hCA XII as selective inhibitors compared to hCA I and hCA II.
Collapse
Affiliation(s)
- Priti Singh
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Sridhar Goud Nerella
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Baijayantimala Swain
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Andrea Angeli
- Università degli Studi di Firenze, Neurofarba Dept., Sezione di ScienzeFarmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Qasim Ullah
- Physical Science Section, School of Sciences, Maulana Azad National Urdu University (MANUU), Hyderabad 500032, Telangana, India
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Neurofarba Dept., Sezione di ScienzeFarmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| | - Mohammed Arifuddin
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India.
| |
Collapse
|
3
|
Abaeva M, Ieritano C, Hopkins WS, Schipper DJ. Unsymmetrical Imidazopyrimidine-Based Ligand and Bimetallic Complexes. Inorg Chem 2024; 63:1010-1019. [PMID: 38055895 DOI: 10.1021/acs.inorgchem.3c03062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
With bimetallic catalysts becoming increasingly important, the development of electronically and structurally diverse binucleating ligands is desired. This work describes the synthesis of unsymmetric ligand 2,7-di(pyridin-2-yl)imidazo[1,2-a]pyrimidine (dpip) that is achieved in four steps on a multigram scale in an overall 54% yield. The ability of dpip to act as a scaffold for the formation of bimetallic complexes is demonstrated with the one-step syntheses of the dicopper complex [Cu2(dpip)(μ-OH)(CF3COO)3] (4), the dipalladium complex [Pd2(dpip)(μ-OH)(CF3COO)2](CF3COO)·CF3COOH (5), and the dimeric dinickel complex [Ni4(dpip)2(μ-Cl)4Cl2MeOH6][2Cl] (6) in good yields (79-92%). All bimetallic complexes were characterized by spectroscopic methods and X-ray crystallography, which revealed metal-metal distances between 3.4821(9) and 4.106(2) Å. Additionally, quantum chemical calculations were conducted on complex 4 and an analogous 1,8-naphthyridine-based dicopper complex to investigate the differences between the imidazopyrimidine motif reported here and the widely used 1,8-naphthyridine motif. Natural bonding orbital (NBO) and Mayer bond order (MBO) analyses validated the ability of dpip to coordinate metals more strongly. Finally, NBO calculations quantified the differences in the binding energy between the two pockets of the unsymmetrical dpip ligand.
Collapse
Affiliation(s)
- Mila Abaeva
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Christian Ieritano
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Watermine Innovation, Waterloo, Ontario N0B 2T0, Canada
| | - W Scott Hopkins
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Watermine Innovation, Waterloo, Ontario N0B 2T0, Canada
| | - Derek J Schipper
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
4
|
Nalawade J, Shinde A, Abhale YK, Nandurkar Y, Bobade VD, Sarkar D, Mhaske PC. Synthesis and antimicrobial Evaluation of Novel 2'-aryl-4-aryl-2,4'-Bisthiazole and 2'-aryl-4-Pyridyl-2,4'-Bisthiazole Derivatives as Potential Antibacterial Agents. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2023.2180524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Jitendra Nalawade
- Department of Chemistry, H. P. T. Arts and R. Y. K. Science College (Affiliated to Savitribai Phule Pune University), Nashik, India
| | - Abhijit Shinde
- Department of Chemistry, S. P. Mandali’s Sir Parashurambhau College (Affiliated to Savitribai Phule Pune University), Pune, India
| | | | - Yogesh Nandurkar
- Department of Chemistry, S. P. Mandali’s Sir Parashurambhau College (Affiliated to Savitribai Phule Pune University), Pune, India
| | - Vivek D. Bobade
- Department of Chemistry, H. P. T. Arts and R. Y. K. Science College (Affiliated to Savitribai Phule Pune University), Nashik, India
| | - Dhiman Sarkar
- CSIR-National Chemical Laboratory, Combi Chem Bio Resource Centre, Pune, India
| | - Pravin C. Mhaske
- Department of Chemistry, S. P. Mandali’s Sir Parashurambhau College (Affiliated to Savitribai Phule Pune University), Pune, India
| |
Collapse
|
5
|
Coşkun GP, Sahin Z, Erdoğan Ö, Çevik Ö, Biltekin SN, Yurttas L, Berk B, Ülgen M, Demirayak Ş. Discovery of novel potent human chondrosarcoma (SW1353) inhibitors: 4-(2/3/4-pyridyl)thiazole 2-acetamide derivatives. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Girardini M, Ferlenghi F, Annunziato G, Degiacomi G, Papotti B, Marchi C, Sammartino JC, Rasheed SS, Contini A, Pasca MR, Vacondio F, Evans JC, Dick T, Müller R, Costantino G, Pieroni M. Expanding the knowledge around antitubercular 5-(2-aminothiazol-4-yl)isoxazole-3-carboxamides: Hit-to-lead optimization and release of a novel antitubercular chemotype via scaffold derivatization. Eur J Med Chem 2023; 245:114916. [PMID: 36399878 PMCID: PMC10583863 DOI: 10.1016/j.ejmech.2022.114916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/13/2022]
Abstract
Tuberculosis is one of the deadliest infectious diseases in the world, and the increased number of multidrug-resistant and extensively drug-resistant strains is a reason for concern. We have previously reported a series of substituted 5-(2-aminothiazol-4-yl)isoxazole-3-carboxamides with growth inhibitory activity against Mycobacterium tuberculosis strains and low propensity to be substrate of efflux pumps. Encouraged by these preliminary results, we have undertaken a medicinal chemistry campaign to determine the metabolic fate of these compounds and to delineate a reliable body of Structure-Activity Relationships. Keeping intact the (thiazol-4-yl)isoxazole-3-carboxamide core, as it is deemed to be the pharmacophore of the molecule, we have extensively explored the structural modifications able to confer good activity and avoid rapid clearance. Also, a small set of analogues based on isostere manipulation of the 2-aminothiazole were prepared and tested, with the aim to disclose novel antitubercular chemotypes. These studies, combined, were instrumental in designing improved compounds such as 42g and 42l, escaping metabolic degradation by human liver microsomes and, at the same time, maintaining good antitubercular activity against both drug-susceptible and drug-resistant strains.
Collapse
Affiliation(s)
- Miriam Girardini
- P4T Group, Italy; Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Francesca Ferlenghi
- Department of Food and Drug, University of Parma, 43124, Parma, Italy; Centro Interdipartimentale "Biopharmanet-tec", Università degli Studi di Parma, Parma, Italy
| | | | - Giulia Degiacomi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Bianca Papotti
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Cinzia Marchi
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - José Camilla Sammartino
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Sari S Rasheed
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University Campus, 66123, Saarbrücken, Germany; German Centre for Infection Research, partner site Hannover-Braunschweig, Germany
| | - Anna Contini
- P4T Group, Italy; Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Maria Rosalia Pasca
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Federica Vacondio
- Department of Food and Drug, University of Parma, 43124, Parma, Italy; Centro Interdipartimentale "Biopharmanet-tec", Università degli Studi di Parma, Parma, Italy
| | - Joanna C Evans
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA; Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA; Department of Microbiology and Immunology, Georgetown University, Washington DC, USA
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University Campus, 66123, Saarbrücken, Germany; German Centre for Infection Research, partner site Hannover-Braunschweig, Germany
| | - Gabriele Costantino
- P4T Group, Italy; Department of Food and Drug, University of Parma, 43124, Parma, Italy; Centro Interdipartimentale "Biopharmanet-tec", Università degli Studi di Parma, Parma, Italy; Centro Interdipartimentale Misure (CIM) 'G. Casnati', University of Parma, Parma, Italy
| | - Marco Pieroni
- P4T Group, Italy; Department of Food and Drug, University of Parma, 43124, Parma, Italy; Centro Interdipartimentale "Biopharmanet-tec", Università degli Studi di Parma, Parma, Italy.
| |
Collapse
|
7
|
Murthy S, Nizi MG, Maksimainen MM, Massari S, Alaviuhkola J, Lippok BE, Vagaggini C, Sowa ST, Galera-Prat A, Ashok Y, Venkannagari H, Prunskaite-Hyyryläinen R, Dreassi E, Lüscher B, Korn P, Tabarrini O, Lehtiö L. [1,2,4]Triazolo[3,4- b]benzothiazole Scaffold as Versatile Nicotinamide Mimic Allowing Nanomolar Inhibition of Different PARP Enzymes. J Med Chem 2023; 66:1301-1320. [PMID: 36598465 PMCID: PMC9884089 DOI: 10.1021/acs.jmedchem.2c01460] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We report [1,2,4]triazolo[3,4-b]benzothiazole (TBT) as a new inhibitor scaffold, which competes with nicotinamide in the binding pocket of human poly- and mono-ADP-ribosylating enzymes. The binding mode was studied through analogues and cocrystal structures with TNKS2, PARP2, PARP14, and PARP15. Based on the substitution pattern, we were able to identify 3-amino derivatives 21 (OUL243) and 27 (OUL232) as inhibitors of mono-ARTs PARP7, PARP10, PARP11, PARP12, PARP14, and PARP15 at nM potencies, with 27 being the most potent PARP10 inhibitor described to date (IC50 of 7.8 nM) and the first PARP12 inhibitor ever reported. On the contrary, hydroxy derivative 16 (OUL245) inhibits poly-ARTs with a selectivity toward PARP2. The scaffold does not possess inherent cell toxicity, and the inhibitors can enter cells and engage with the target protein. This, together with favorable ADME properties, demonstrates the potential of TBT scaffold for future drug development efforts toward selective inhibitors against specific enzymes.
Collapse
Affiliation(s)
- Sudarshan Murthy
- Faculty
of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu90220, Finland
| | - Maria Giulia Nizi
- Department
of Pharmaceutical Sciences, University of
Perugia, Perugia06123, Italy
| | - Mirko M. Maksimainen
- Faculty
of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu90220, Finland
| | - Serena Massari
- Department
of Pharmaceutical Sciences, University of
Perugia, Perugia06123, Italy
| | - Juho Alaviuhkola
- Faculty
of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu90220, Finland
| | - Barbara E. Lippok
- Institute
of Biochemistry and Molecular Biology, RWTH
Aachen University, Aachen52074, Germany
| | - Chiara Vagaggini
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, SienaI-53100, Italy
| | - Sven T. Sowa
- Faculty
of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu90220, Finland
| | - Albert Galera-Prat
- Faculty
of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu90220, Finland
| | - Yashwanth Ashok
- Faculty
of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu90220, Finland
| | - Harikanth Venkannagari
- Faculty
of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu90220, Finland
| | | | - Elena Dreassi
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, SienaI-53100, Italy
| | - Bernhard Lüscher
- Institute
of Biochemistry and Molecular Biology, RWTH
Aachen University, Aachen52074, Germany
| | - Patricia Korn
- Institute
of Biochemistry and Molecular Biology, RWTH
Aachen University, Aachen52074, Germany
| | - Oriana Tabarrini
- Department
of Pharmaceutical Sciences, University of
Perugia, Perugia06123, Italy,
| | - Lari Lehtiö
- Faculty
of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu90220, Finland,
| |
Collapse
|
8
|
Mao J, Wang D, Xu P, Wang Y, Zhang H, Wang S, Xu F, Wang J, Zhang F. Structure-Based Drug Design and Synthesis of Novel N-Aryl-2,4-bithiazole-2-amine CYP1B1-Selective Inhibitors in Overcoming Taxol Resistance in A549 Cells. J Med Chem 2022; 65:16451-16480. [PMID: 36512763 DOI: 10.1021/acs.jmedchem.2c01306] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As a promising therapeutic target for cancer, CYP1B1 is overexpressed in Taxol-resistant A549 cells; however, its role in drug resistance still remains unclear. Bioinformatic analysis data indicated that CYP1B1 was closely correlated with AKT/ERK1/2 and focal adhesion pathways, thereby playing an important role in Taxol resistance and cancer migration/invasion. Along similar lines, the AhR agonist 7,12-dimethylbenz[a]anthracene (DMBA) enhanced Taxol resistance and promoted migration/invasion of A549 and H460 cells likely stemming from CYP1B1 upregulation. Moreover, 83 novel N-aryl-2,4-bithiazole-2-amine CYP1B1-selective inhibitors were designed and synthesized to verify the role of CYP1B1 in Taxol-resistant A549 cells. Impressively, the most potent and selective one, namely, 77, remarkably inhibited AKT/ERK1/2 and FAK/SRC pathways and thereby reversed Taxol resistance as well as inhibited both migration and invasion of A549/Taxol cells. Collectively, this study not only displayed the role of CYP1B1 in Taxol resistance and cancer migration/invasion but also helped unlock the CYP1B1-oriented anticancer discovery.
Collapse
Affiliation(s)
- Jianping Mao
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang110016, Liaoning, P. R. China
| | - Dong Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang110016, Liaoning, P. R. China
| | - Ping Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang110016, Liaoning, P. R. China
| | - Ying Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang110016, Liaoning, P. R. China
| | - Haoyu Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang110016, Liaoning, P. R. China
| | - Shiyu Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang110016, Liaoning, P. R. China
| | - Feng Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang110016, Liaoning, P. R. China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang110016, Liaoning, P. R. China
| | - Fengjiao Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang110016, Liaoning, P. R. China
| |
Collapse
|
9
|
A Green Approach to 2-Substituted Benzo- and Naphthothiazoles via N-bromosuccinimide/Bromide-Mediated C(aryl)-S Bond Formation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227876. [PMID: 36431980 PMCID: PMC9697867 DOI: 10.3390/molecules27227876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/17/2022]
Abstract
2-Substituted benzo- and naphthothiazoles have been conveniently prepared from the intramolecular cyclization of phenylthioureas and activated thiobenzanilides or the coupling of isothiocyanates with amines under mild conditions using N-bromosuccinimide/tetrabutylammonium bromide in 1,2-dimethoxyethane (DME) under ambient conditions. The reactions produce moderate to excellent yields with good functional group tolerance and avoid the use of harsh thermal conditions, corrosive reagents, halogenated solvents, toxic metal salts, and expensive metal catalysts, and are amenable to preparations on a gram-scale.
Collapse
|
10
|
Fakhry MM, Mahmoud K, Nafie MS, Noor AO, Hareeri RH, Salama I, Kishk SM. Rational Design, Synthesis and Biological Evaluation of Novel Pyrazoline-Based Antiproliferative Agents in MCF-7 Cancer Cells. Pharmaceuticals (Basel) 2022; 15:1245. [PMID: 36297358 PMCID: PMC9607164 DOI: 10.3390/ph15101245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 09/05/2023] Open
Abstract
Breast cancer is a disease in which cells in the breast divide continuously without control. There are great limitations in cancer chemotherapy. Hence, it is essential to search for new cancer therapeutics. Herein, a novel series of EGFR/HER2 dual inhibitors has been designed based on the hybridization of thiazole and pyrazoline fragments. The synthesized compounds were screened for their anti-proliferative activity against MCF-7 breast cancer cell line and MCF-10 normal breast cell line. Interestingly, synthesized compounds 6e and 6k showed very potent antiproliferative activity towards MCF-7 with IC50 values of 7.21 and 8.02 µM, respectively. Furthermore, enzymatic assay was performed against EGFR and HER2 to prove the dual inhibitory action. Compounds 6e and 6k showed potent inhibitory activity for EGFR with IC50 of 0.009 and 0.051 µM, respectively, and for HER2 with IC50 of 0.013 and 0.027 µM, respectively. Additionally, compounds 6e and 6k significantly stimulated apoptotic breast cancer cell death. Compound 6e was further explored for its anticancer activity in vivo using a Xenograft model. Moreover, computational modeling studies, ADMET studies and toxicity prediction were performed to investigate their potential drug candidates.
Collapse
Affiliation(s)
- Mariam M. Fakhry
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr 11829, Egypt
| | - Kazem Mahmoud
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr 11829, Egypt
| | - Mohamed S. Nafie
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Ahmad O. Noor
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rawan H. Hareeri
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ismail Salama
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Safaa M. Kishk
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
11
|
Ivasechko I, Yushyn I, Roszczenko P, Senkiv J, Finiuk N, Lesyk D, Holota S, Czarnomysy R, Klyuchivska O, Khyluk D, Kashchak N, Gzella A, Bielawski K, Bielawska A, Stoika R, Lesyk R. Development of Novel Pyridine-Thiazole Hybrid Molecules as Potential Anticancer Agents. Molecules 2022; 27:molecules27196219. [PMID: 36234755 PMCID: PMC9570594 DOI: 10.3390/molecules27196219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Novel pyridine-thiazole hybrid molecules were synthesized and subjected to physico-chemical characterization and screening of their cytotoxic action towards a panel of cell lines derived from different types of tumors (carcinomas of colon, breast, and lung, glioblastoma and leukemia), and normal human keratinocytes, for comparison. High antiproliferative activity of the 3-(2-fluorophenyl)-1-[4-methyl-2-(pyridin-2-ylamino)-thiazol-5-yl]-propenone 3 and 4-(2-{1-(2-fluorophenyl)-3-[4-methyl-2-(pyridin-2-ylamino)-thiazol-5-yl]-3-oxopropylsulfanyl}-acetylamino)-benzoic acid ethyl ester 4 was revealed. The IC50 of the compound 3 in HL-60 cells of the acute human promyelocytic leukemia was 0.57 µM, while in the pseudo-normal human cell lines, the IC50 of this compound was >50 µM, which suggests that the compounds 3 and 4 might be perspective anticancer agents. The detected selectivity of the derivatives 3 and 4 for cancer cell lines inspired us to study the mechanisms of their cytotoxic action. It was shown that preincubation of tumor cells with Fluzaparib (inhibitor of PARP1) reduced the cytotoxic activity of the derivatives 3 and 4 by more than twice. The ability of these compounds to affect DNA nativity and cause changes in nucleus morphology allows for the suggestion that the mechanism of action of the novel pyridine-thiazole derivatives might be related to inducing the genetic instability in tumor cells.
Collapse
Affiliation(s)
- Iryna Ivasechko
- Institute of Cell Biology of National Academy of Sciences of Ukraine, 14/16 Drahomanov Str., 79005 Lviv, Ukraine
| | - Ihor Yushyn
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| | - Piotr Roszczenko
- Department of Biotechnology, Faculty of Pharmacy, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Julia Senkiv
- Institute of Cell Biology of National Academy of Sciences of Ukraine, 14/16 Drahomanov Str., 79005 Lviv, Ukraine
| | - Nataliya Finiuk
- Institute of Cell Biology of National Academy of Sciences of Ukraine, 14/16 Drahomanov Str., 79005 Lviv, Ukraine
| | - Danylo Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| | - Serhii Holota
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Faculty of Pharmacy, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Olga Klyuchivska
- Institute of Cell Biology of National Academy of Sciences of Ukraine, 14/16 Drahomanov Str., 79005 Lviv, Ukraine
| | - Dmytro Khyluk
- Department of Organic Chemistry, Medical University of Lublin, Aleje Racławickie 1, 20-059 Lublin, Poland
| | - Nataliya Kashchak
- Institute of Cell Biology of National Academy of Sciences of Ukraine, 14/16 Drahomanov Str., 79005 Lviv, Ukraine
| | - Andrzej Gzella
- Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Faculty of Pharmacy, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Anna Bielawska
- Department of Biotechnology, Faculty of Pharmacy, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Rostyslav Stoika
- Institute of Cell Biology of National Academy of Sciences of Ukraine, 14/16 Drahomanov Str., 79005 Lviv, Ukraine
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
- Correspondence: ; Tel.: +380-677038010
| |
Collapse
|
12
|
Xu Z, Tang Q, Xu T, Cai Y, Lei P, Chen Y, Zou W, Dong C, Lan K, Wu S, Zhou HB. Discovery of aminothiazole derivatives as novel human enterovirus A71 capsid protein inhibitors. Bioorg Chem 2022; 122:105683. [DOI: 10.1016/j.bioorg.2022.105683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 12/12/2022]
|
13
|
Wang J, Takahashi K, Shoup TM, Gong L, Li Y, El Fakhri G, Zhang Z, Brownell AL. Organomediated Cleavage of Benzoyl Group Enables an Efficient Synthesis of 1- (6-Nitropyridin-2-yl)thiourea and its application for developing 18F-labeled PET Tracers. Bioorg Chem 2022; 124:105804. [DOI: 10.1016/j.bioorg.2022.105804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/08/2022] [Accepted: 04/08/2022] [Indexed: 11/24/2022]
|
14
|
Johnson M, Nowlan S, Sahin G, Barnett DA, Joy AP, Touaibia M, Cuperlovic-Culf M, Zofija Avizonis D, Turcotte S. Decrease of Intracellular Glutamine by STF-62247 Results in the Accumulation of Lipid Droplets in von Hippel-Lindau Deficient Cells. Front Oncol 2022; 12:841054. [PMID: 35223522 PMCID: PMC8865074 DOI: 10.3389/fonc.2022.841054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/13/2022] [Indexed: 01/01/2023] Open
Abstract
Kidney cancer is one of the top ten cancer diagnosed worldwide and its incidence has increased the last 20 years. Clear Cell Renal Cell Carcinoma (ccRCC) are characterized by mutations that inactivate the von Hippel-Lindau (VHL) tumor suppressor gene and evidence indicated alterations in metabolic pathways, particularly in glutamine metabolism. We previously identified a small molecule, STF-62247, which target VHL-deficient renal tumors by affecting late-stages of autophagy and lysosomal signaling. In this study, we investigated ccRCC metabolism in VHL-deficient and proficient cells exposed to the small molecule. Metabolomics profiling using 1H NMR demonstrated that STF-62247 increases levels of glucose, pyruvate, glycerol 3-phosphate while glutamate, asparagine, and glutathione significantly decreased. Diminution of glutamate and glutamine was further investigated using mass spectrometry, western blot analyses, enzymatic activities, and viability assays. We found that expression of SLC1A5 increases in VHL-deficient cells treated with STF-62247, possibly to stimulate glutamine uptake intracellularly to counteract the diminution of this amino acid. However, exogenous addition of glutamine was not able to rescue cell viability induced by the small molecule. Instead, our results showed that VHL-deficient cells utilize glutamine to produce fatty acid in response to STF-62247. Surprisingly, this occurs through oxidative phosphorylation in STF-treated cells while control cells use reductive carboxylation to sustain lipogenesis. We also demonstrated that STF-62247 stimulated expression of stearoyl-CoA desaturase (SCD1) and peripilin2 (PLIN2) to generate accumulation of lipid droplets in VHL-deficient cells. Moreover, the carnitine palmitoyltransferase 1A (CPT1A), which control the entry of fatty acid into mitochondria for β-oxidation, also increased in response to STF-62247. CPT1A overexpression in ccRCC is known to limit tumor growth. Together, our results demonstrated that STF-62247 modulates cellular metabolism of glutamine, an amino acid involved in the autophagy-lysosome process, to support lipogenesis, which could be implicated in the signaling driving to cell death.
Collapse
Affiliation(s)
- Mathieu Johnson
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada.,Atlantic Cancer Research Institute, Moncton, NB, Canada
| | - Sarah Nowlan
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada.,Atlantic Cancer Research Institute, Moncton, NB, Canada
| | - Gülsüm Sahin
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada.,Atlantic Cancer Research Institute, Moncton, NB, Canada
| | | | - Andrew P Joy
- Atlantic Cancer Research Institute, Moncton, NB, Canada
| | - Mohamed Touaibia
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| | | | | | - Sandra Turcotte
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada.,Atlantic Cancer Research Institute, Moncton, NB, Canada
| |
Collapse
|
15
|
Bouhamdani N, Comeau D, Coholan A, Cormier K, Turcotte S. Targeting lysosome function causes selective cytotoxicity in VHL-inactivated renal cell carcinomas. Carcinogenesis 2020; 41:828-840. [PMID: 31556451 DOI: 10.1093/carcin/bgz161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/02/2019] [Accepted: 09/18/2019] [Indexed: 01/04/2023] Open
Abstract
The inactivation of the tumor suppressor gene, von Hippel-Lindau (VHL), has been identified as the earliest event in renal cell carcinoma (RCC) development. The loss of heterogeneity by chromosome 3p deletion followed by inactivating mutations on the second VHL copy are events present in close to 90% of patients. Our study illustrates a lysosomal vulnerability in VHL-inactivated RCC in vitro. By investigating the mechanism of action of the previously identified STF-62247, a small bioactive compound known for its selective cytotoxic properties towards VHL-defective models, we present the promising approach of targeting truncal-driven VHL inactivation through lysosome disruption. Furthermore, by analyzing the open platform for exploring cancer genomic data (cbioportal), we uncover the high alteration frequency of essential lysosomal and autophagic genes in sequenced biopsies from clear cell RCC patient primary tumors. By investigating lysosome physiology, we also identify VHL-inactivated cells' inability to maintain their lysosomes at the perinuclear localization in response to STF-62247-induced stress and accumulate cytoplasmic inclusion bodies in response to an inefficient lysosomal degradative capacity. Finally, by testing other known lysosomal-disrupting agents (LDAs), we show that these are selectively cytotoxic to cells lacking VHL functions. Our study builds a strong platform that could specifically link genetic clonal ccRCC evolution to lysosomal and trafficking vulnerabilities.
Collapse
Affiliation(s)
- Nadia Bouhamdani
- Chemistry and Biochemistry Department, Université de Moncton, Moncton, New-Brunswick, Canada.,Atlantic Cancer Research Institute, Moncton, New-Brunswick, Canada
| | - Dominique Comeau
- Department of Biology, Université de Moncton, Moncton, New-Brunswick, Canada
| | - Alexandre Coholan
- Chemistry and Biochemistry Department, Université de Moncton, Moncton, New-Brunswick, Canada.,Atlantic Cancer Research Institute, Moncton, New-Brunswick, Canada
| | - Kevin Cormier
- Chemistry and Biochemistry Department, Université de Moncton, Moncton, New-Brunswick, Canada.,Atlantic Cancer Research Institute, Moncton, New-Brunswick, Canada
| | - Sandra Turcotte
- Chemistry and Biochemistry Department, Université de Moncton, Moncton, New-Brunswick, Canada.,Atlantic Cancer Research Institute, Moncton, New-Brunswick, Canada
| |
Collapse
|
16
|
Farahati R, Behzadi H, Mousavi-Khoshdel SM, Ghaffarinejad A. Evaluation of corrosion inhibition of 4-(pyridin-3-yl) thiazol-2-amine for copper in HCl by experimental and theoretical studies. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127658] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Yu Q, Kumata K, Li H, Zhang Y, Chen Z, Zhang X, Shao T, Hatori A, Yamasaki T, Xie L, Hu K, Wang G, Josephson L, Sun S, Zhang MR, Liang SH. Synthesis and evaluation of 6-( 11C-methyl(4-(pyridin-2-yl)thiazol-2-yl)amino)benzo[d]thiazol-2(3H)-one for imaging γ-8 dependent transmembrane AMPA receptor regulatory protein by PET. Bioorg Med Chem Lett 2020; 30:126879. [PMID: 31879207 DOI: 10.1016/j.bmcl.2019.126879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/27/2019] [Accepted: 11/30/2019] [Indexed: 10/25/2022]
Abstract
Transmembrane AMPA receptor regulatory proteins (TARPs) are a recently discovered family of proteins that modulate AMPA receptors activity. Based on a potent and selective TARP subtype γ-8 antagonist, 6-(methyl(4-(pyridin-2-yl)thiazol-2-yl)amino)benzo[d]thiazol-2(3H)-one (compound 9), we perform the radiosynthesis of its 11C-isotopologue 1 and conduct preliminary PET evaluation to test the feasibility of imaging TARP γ-8 dependent receptors in vivo.
Collapse
Affiliation(s)
- Qingzhen Yu
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, United States
| | - Katsushi Kumata
- Department of Radiopharmaceutics Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Hua Li
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, United States
| | - Yiding Zhang
- Department of Radiopharmaceutics Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Zhen Chen
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, United States
| | - Xiaofei Zhang
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, United States
| | - Tuo Shao
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, United States
| | - Akiko Hatori
- Department of Radiopharmaceutics Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Tomoteru Yamasaki
- Department of Radiopharmaceutics Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Lin Xie
- Department of Radiopharmaceutics Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Kuan Hu
- Department of Radiopharmaceutics Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Gangqiang Wang
- Hubei Collaborative Innovation Centre for Non-power Nuclear Technology, College of Nuclear Technology & Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Lee Josephson
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, United States
| | - Shaofa Sun
- Hubei Collaborative Innovation Centre for Non-power Nuclear Technology, College of Nuclear Technology & Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, PR China.
| | - Ming-Rong Zhang
- Department of Radiopharmaceutics Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan.
| | - Steven H Liang
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, United States.
| |
Collapse
|
18
|
Bouhamdani N, Comeau D, Cormier K, Turcotte S. STF-62247 accumulates in lysosomes and blocks late stages of autophagy to selectively target von Hippel-Lindau-inactivated cells. Am J Physiol Cell Physiol 2019; 316:C605-C620. [DOI: 10.1152/ajpcell.00483.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Autophagy is a highly conserved, homeostatic process by which cytosolic components reach lysosomes for degradation. The roles played by different autophagic processes in cancer are complex and remain cancer type and stage dependent. Renal cell carcinoma (RCC) is the most common subtype of kidney cancer and is characterized by the inactivation of the von Hippel-Lindau (VHL) tumor suppressor. Our previous study identified a small compound, STF-62247, as an autophagy-modulating molecule causing selective cytotoxicity for VHL-inactivated cells. This present study investigates the effects of STF-62247 specifically on the macroautophagic flux to better characterize its mechanism of action in RCC. Our results clearly demonstrate that this compound is a potent blocker of late stages of autophagy. We show that inhibiting autophagy by CRISPR knockouts of autophagy-related genes rendered VHL-deficient cells insensitive to STF-62247, uncovering the importance of the autophagic pathway in STF-selective cell death. By exploiting the autofluorescence of STF-62247, we pinpointed its cellular localization to lysosomes. Finally, in response to prolonged STF treatments, we show that VHL-proficient cells are able to surmount the block in late stages of autophagy by restoring their lysosome numbers. Conversely, an increase in autophagic vesicles accompanied by a time-dependent decrease in lysosomes was observed in VHL-deficient cells. This is the first mechanistic study investigating STF-62447’s effects on the autophagic flux in RCC. Importantly, our study reclassifies STF-62247 as a blocker of later stages of autophagy and highlights the possibility of blocking this process through lysosome disruption in VHL-mutated RCCs.
Collapse
Affiliation(s)
- Nadia Bouhamdani
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
- Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada
| | - Dominique Comeau
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
- Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada
| | - Kevin Cormier
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
- Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada
| | - Sandra Turcotte
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
- Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada
| |
Collapse
|
19
|
Yang X, Li F, Zhang W. 4-(Pyridin-4-yl)thiazol-2-amine as an efficient non-toxic inhibitor for mild steel in hydrochloric acid solutions. RSC Adv 2019; 9:10454-10464. [PMID: 35515274 PMCID: PMC9062505 DOI: 10.1039/c8ra09618j] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/21/2019] [Indexed: 11/21/2022] Open
Abstract
A novel eco-friendly corrosion inhibitor, namely, 4-(pyridin-4-yl)thiazol-2-amine (PTA), was synthesized and evaluated as a corrosion inhibitor for mild steel in 1 M HCl solution. Its inhibition effect against mild steel corrosion was investigated via weight loss methods, electrochemical measurements, and surface analyses. The experimental results showed that PTA is an effective corrosion inhibitor for mild steel in an acid medium, and the maximum inhibition efficiency reached 96.06% at 0.2 mM concentration. Polarization studies showed that PTA acted as a mixed inhibitor. The sorption behavior on the steel surface complies with the Langmuir adsorption isotherm, exhibiting both physisorption and chemisorption. The constitution and characteristic of the protective layer on the steel surface were verified using scanning electron microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDX) and UV-Vis spectroscopy. Quantum chemistry calculations were used to study the relationship between the inhibition efficiency and molecular structure of the inhibitor.
Collapse
Affiliation(s)
- Xifeng Yang
- Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Science Suzhou 215123 P. R. China
- School of Physics and Electronic Engineering, Changshu Institute of Technology Changshu 215500 P. R. China
| | - Feng Li
- Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Science Suzhou 215123 P. R. China
| | - Weiwei Zhang
- School of Marine Science and Technology, Harbin Institute of Technology Weihai 264209 P. R. China
| |
Collapse
|
20
|
Bestgen B, Kufareva I, Seetoh W, Abell C, Hartmann RW, Abagyan R, Le Borgne M, Filhol O, Cochet C, Lomberget T, Engel M. 2-Aminothiazole Derivatives as Selective Allosteric Modulators of the Protein Kinase CK2. 2. Structure-Based Optimization and Investigation of Effects Specific to the Allosteric Mode of Action. J Med Chem 2019; 62:1817-1836. [PMID: 30689946 DOI: 10.1021/acs.jmedchem.8b01765] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein CK2 has gained much interest as an anticancer drug target in the past decade. We had previously described the identification of a new allosteric site on the catalytic α-subunit, along with first small molecule ligands based on the 4-(4-phenylthiazol-2-ylamino)benzoic acid scaffold. In the present work, structure optimizations guided by a binding model led to the identification of the lead compound 2-hydroxy-4-((4-(naphthalen-2-yl)thiazol-2-yl)amino)benzoic acid (27), showing a submicromolar potency against purified CK2α (IC50 = 0.6 μM). Furthermore, 27 induced apoptosis and cell death in 786-O renal cell carcinoma cells (EC50 = 5 μM) and inhibited STAT3 activation even more potently than the ATP-competitive drug candidate CX-4945 (EC50 of 1.6 μM vs 5.3 μM). Notably, the potencies of our allosteric ligands to inhibit CK2 varied depending on the individual substrate. Altogether, the novel allosteric pocket was proved a druggable site, offering an excellent perspective to develop efficient and selective allosteric CK2 inhibitors.
Collapse
Affiliation(s)
- Benoît Bestgen
- Université de Lyon, Université Lyon 1, Faculté de Pharmacie, ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453, INSERM US7, 69373 Lyon Cedex 8, France.,Pharmaceutical and Medicinal Chemistry , Saarland University , Campus C2.3, 66123 Saarbrücken , Germany.,Institut National de la Santé et de la Recherche Médicale , U1036, 38000 Grenoble , France.,Commissariat à l'Energie Atomique, Institute of Life Sciences Research and Technologies, Biology of Cancer and Infection, 38000 Grenoble , France.,Unité Mixte de Recherche-S1036 , University of Grenoble Alpes , 38000 Grenoble , France
| | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences , University of California, San Diego , La Jolla , California 92093 , United States
| | - Weiguang Seetoh
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| | - Chris Abell
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| | - Rolf W Hartmann
- Department of Drug Design and Optimization , Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) , Campus C2.3, 66123 Saarbrücken , Germany
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences , University of California, San Diego , La Jolla , California 92093 , United States
| | - Marc Le Borgne
- Université de Lyon, Université Lyon 1, Faculté de Pharmacie, ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453, INSERM US7, 69373 Lyon Cedex 8, France
| | - Odile Filhol
- Institut National de la Santé et de la Recherche Médicale , U1036, 38000 Grenoble , France.,Commissariat à l'Energie Atomique, Institute of Life Sciences Research and Technologies, Biology of Cancer and Infection, 38000 Grenoble , France.,Unité Mixte de Recherche-S1036 , University of Grenoble Alpes , 38000 Grenoble , France
| | - Claude Cochet
- Institut National de la Santé et de la Recherche Médicale , U1036, 38000 Grenoble , France.,Commissariat à l'Energie Atomique, Institute of Life Sciences Research and Technologies, Biology of Cancer and Infection, 38000 Grenoble , France.,Unité Mixte de Recherche-S1036 , University of Grenoble Alpes , 38000 Grenoble , France
| | - Thierry Lomberget
- Université de Lyon, Université Lyon 1, Faculté de Pharmacie, ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453, INSERM US7, 69373 Lyon Cedex 8, France
| | - Matthias Engel
- Pharmaceutical and Medicinal Chemistry , Saarland University , Campus C2.3, 66123 Saarbrücken , Germany
| |
Collapse
|
21
|
Savitha B, Koti Reddy E, Parthasarathi D, Pakkath R, Sajith AM, Ananda kumar CS, Haridas KR, Syed Ali Padusha M. A Highly Efficient Catalyst for the Suzuki-Miyaura Cross-Coupling Reaction of 5-(5-chloropyridin-3-yl)-3-methyl-1,3,4-oxadiazol-2(3H
)-one. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Bhaskaran Savitha
- Postgraduate and Research Department of Chemistry, Jamal Mohamed College; Bharathidasan University; Tiruchirappalli Tamil Nadu 620020 India
| | - Eeda Koti Reddy
- Department of Chemistry; Vignan's Foundation for Science, Technology and Research - VFSTR (Deemed to be University); Vadlamudi Guntur Andhra Pradesh 522 213 India
| | - D. Parthasarathi
- Postgraduate and Research Department of Chemistry, Jamal Mohamed College; Bharathidasan University; Tiruchirappalli Tamil Nadu 620020 India
| | - Rajeesh Pakkath
- School of Chemical Sciences; Kannur University; Payyanur Campus, Edat P.O Kannur Kerala 670327 India
| | - Ayyiliath M. Sajith
- Postgraduate and Research Department of Chemistry, Kasaragod Government College; Kannur University; Kasaragod Kerala 671123 India
| | - C. S. Ananda kumar
- Department of Nanotechnology; Visvesvaraya Technological University; CPGS Muddenahalli 562 101 India
- Centre for Material Science; University of Mysore, Manasagangotri; Mysuru Karnataka 570 006 India
| | - Karickal R. Haridas
- School of Chemical Sciences; Kannur University; Payyanur Campus, Edat P.O Kannur Kerala 670327 India
| | - M. Syed Ali Padusha
- Postgraduate and Research Department of Chemistry, Jamal Mohamed College; Bharathidasan University; Tiruchirappalli Tamil Nadu 620020 India
| |
Collapse
|
22
|
Dibenzoxanthenes induce apoptosis and autophagy in HeLa cells by modeling the PI3K/Akt pathway. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 187:76-88. [PMID: 30099272 DOI: 10.1016/j.jphotobiol.2018.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/18/2018] [Accepted: 08/01/2018] [Indexed: 11/23/2022]
Abstract
A new series of dibenzoxanthene derivatives 4a-4d (4a: 1-oxo-5-bromo-11-cyano-13c-methoxy-1,13c-dihydroxyl-dibenzo[a,kl]xanthene, 4b: 1-oxo-5-bromo-11-cyano-13c-ethoxy-1,13c-dihydroxyl-dibenzo[a,kl]xanthene, 4c: 1-oxo-5-bromo-11-cyano-13c-propoxy-1,13c-dihydroxyl-dibenzo[a,kl]xanthene and 4d: 1-oxo-5-bromo-11-cyano-13c-butoxy-1,13c-dihydroxyl-dibenzo[a,kl]xanthene) were synthesized and the molecular mechanisms of anti-cancer activities were investigated. These compounds showed excellent anti-tumor activity against A549, Eca-109, HeLa, HepG2 and SGC-7901 cell lines. Compounds 4a-4d could effectively inhibit the migration and invasion of HeLa cells in wound healing and transwell assays. Compounds induced the DNA damage and arrested in cell cycle distribution at G0/G1 phase. Apoptosis induced by compounds was detected using morphological observation of nuclear changes and FITC-Annexin V/PI staining. Additionally, compounds also induced the autophagy of HeLa cells through observing AO staining and upregulated the expression of LC3II and Beclin-1 proteins. Furthermore, treatment with autophagy inhibitor 3-methyladenine induced an obvious decrease in apoptotic rate in HeLa cells. This indicated that autophagy further promoted the HeLa cells apoptosis. Compounds 4a-4d enhanced the intracellular Ca2+ and ROS. Then the mitochondrial membrane potential of HeLa cells was depolarized and the cytochrome C was released from mitochondria into cytoplasm. Activities of the apoptotic factors Bcl-2, Bax, caspase-3 were measured using western blotting. After HeLa cells were exposed to compounds, the expressions of PI3K and Akt protein were decreased. Compounds exhibit anti-cancer activity via apoptosis and autophagy through inhibition of PI3K/Akt signaling pathway in HeLa cells.
Collapse
|
23
|
Malik G, Swyka RA, Tiwari VK, Fei X, Applegate GA, Berkowitz DB. A thiocyanopalladation/carbocyclization transformation identified through enzymatic screening: stereocontrolled tandem C-SCN and C-C bond formation. Chem Sci 2017; 8:8050-8060. [PMID: 29568453 PMCID: PMC5855125 DOI: 10.1039/c7sc04083k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 09/29/2017] [Indexed: 12/31/2022] Open
Abstract
Herein we describe a formal thiocyanopalladation/carbocyclization transformation and its parametrization and optimization using a new elevated temperature plate-based version of our visual colorimetric enzymatic screening method for reaction discovery. The carbocyclization step leads to C-SCN bond formation in tandem with C-C bond construction and is highly stereoselective, showing nearly absolute 1,2-anti-stereoinduction (5 examples) for substrates bearing allylic substitution, and nearly absolute 1,3-syn-stereoinduction (16 examples) for substrates bearing propargylic substitution. Based upon these high levels of stereoinduction, the dependence of the 1,2-stereoinduction upon cyclization substrate geometry, and the generally high preference for the transoid vinyl thiocyanate alkene geometry, a mechanistic model is proposed, involving (i) Pd(ii)-enyne coordination, (ii) thiocyanopalladation, (iii) migratory insertion and (iv) β-elimination. Examples of transition metal-mediated C-SCN bond formation that proceed smoothly on unactivated substrates and allow for preservation of the SCN moiety are lacking. Yet, the thiocyanate functionality is of great value for biophysical chemistry (vibrational Stark effect) and medicinal chemistry (S,N-heterocycle construction). The title transformation accommodates C-, O-, N- and S-bridged substrates (6 examples), thereby providing the corresponding carbocyclic or heterocyclic scaffolds. The reaction is also shown to be compatible with a significant range of substituents, varying in steric and electronic demand, including a wide range of substituted aromatics, fused bicyclic and heterocyclic systems, and even biaryl systems. Combination of this new transformation with asymmetric allylation and Grubbs ring-closing metathesis provides for a streamlined enantio- and diastereoselective entry into the oxabicyclo[3.2.1]octyl core of the natural products massarilactone and annuionone A, as also evidenced by low temperature X-ray crystal structure determination. Utilizing this bicyclic scaffold, we demonstrate the versatility of the thiocyanate moiety for structural diversification post-cyclization. Thus, the bridging vinyl thiocyanate moiety is smoothly elaborated into a range of derivative functionalities utilizing transformations that cleave the S-CN bond, add the elements of RS-CN across a π-system and exploit the SCN moiety as a cycloaddition partner (7 diverse examples). Among the new functionalities thereby generated are thiotetrazole and sulfonyl tetrazole heterocycles that serve as carboxylate and phosphate surrogates, respectively, highlighting the potential of this approach for future applications in medicinal chemistry or chemical biology.
Collapse
Affiliation(s)
- G Malik
- Department of Chemistry , University of Nebraska , Lincoln , NE 68588 , USA .
| | - R A Swyka
- Department of Chemistry , University of Nebraska , Lincoln , NE 68588 , USA .
| | - V K Tiwari
- Department of Chemistry , University of Nebraska , Lincoln , NE 68588 , USA .
| | - X Fei
- Department of Chemistry , University of Nebraska , Lincoln , NE 68588 , USA .
| | - G A Applegate
- Department of Chemistry , University of Nebraska , Lincoln , NE 68588 , USA .
| | - D B Berkowitz
- Department of Chemistry , University of Nebraska , Lincoln , NE 68588 , USA .
| |
Collapse
|
24
|
Balti M, Plas A, Meinguet C, Haufroid M, Thémans Q, Efrit ML, Wouters J, Lanners S. Synthesis of 4- and 5-arylthiazolinethiones as inhibitors of indoleamine 2,3-dioxygenase. Bioorg Med Chem Lett 2017; 27:3607-3610. [PMID: 28651980 DOI: 10.1016/j.bmcl.2016.06.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/16/2016] [Accepted: 06/18/2016] [Indexed: 10/21/2022]
Abstract
Docking studies of 4-phenylthiazolinethione on human IDO1 suggest complexation of the heme iron by the exocyclic sulfur atom further reinforced by hydrophobic interactions of the phenyl ring within pocket A of the enzyme. On this basis, chemical modifications were proposed to increase inhibition activity. Synthetic routes had to be adapted and optimized to yield the desired substituted 4- and 5-arylthiazolinethiones. Their biological evaluation shows that 5-aryl regioisomers are systematically less potent than the corresponding 4-aryl analogs. Substitution on the phenyl ring does not significantly increase inhibition potency, except for 4-Br and 4-Cl derivatives.
Collapse
Affiliation(s)
- Monaem Balti
- NAMEDIC-NARILIS, University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium; Laboratory of Organic Synthesis and Heterocyclic Chemistry, Department of Chemistry, College of Sciences at Tunis, El Manar University, Campus, 1060 Tunis, Tunisia
| | - Aurélie Plas
- NAMEDIC-NARILIS, University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium
| | - Céline Meinguet
- NAMEDIC-NARILIS, University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium
| | - Marie Haufroid
- NAMEDIC-NARILIS, University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium
| | - Quentin Thémans
- NAMEDIC-NARILIS, University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium
| | - Mohamed Lotfi Efrit
- Laboratory of Organic Synthesis and Heterocyclic Chemistry, Department of Chemistry, College of Sciences at Tunis, El Manar University, Campus, 1060 Tunis, Tunisia
| | - Johan Wouters
- NAMEDIC-NARILIS, University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium
| | - Steve Lanners
- NAMEDIC-NARILIS, University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium.
| |
Collapse
|
25
|
Bouhamdani N, Joy A, Barnett D, Cormier K, Léger D, Chute IC, Lamarre S, Ouellette R, Turcotte S. Quantitative proteomics to study a small molecule targeting the loss of von Hippel-Lindau in renal cell carcinomas. Int J Cancer 2017; 141:778-790. [PMID: 28486780 DOI: 10.1002/ijc.30774] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 02/24/2017] [Accepted: 04/25/2017] [Indexed: 12/29/2022]
Abstract
Inactivation of the tumor suppressor gene, von Hippel-Lindau (VHL), is known to play an important role in the development of sporadic clear cell renal cell carcinomas (ccRCCs). Even if available targeted therapies for metastatic RCCs (mRCCs) have helped to improve progression-free survival rates, they have no durable clinical response. We have previously shown the feasibility of specifically targeting the loss of VHL with the identification of a small molecule, STF-62247. Understanding its functionality is crucial for developing durable personalized therapeutic agents differing from those available targeting hypoxia inducible factor (HIF-) pathways. By using SILAC proteomics, we identified 755 deregulated proteins in response to STF-62247 that were further analyzed by ingenuity pathway analysis (IPA). Bioinformatics analyses predicted alterations in 37 signaling pathways in VHL-null cells in response to treatment. Validation of some altered pathways shows that STF-62247's selectivity is linked to an important inhibition of mTORC1 activation in VHL-null cells leading to protein synthesis arrest, a mechanism differing from two allosteric inhibitors Rapamycin and Everolimus. Altogether, our study identified signaling cascades driving STF-62247 response and brings further knowledge for this molecule that shows selectivity for the loss of VHL. The use of a global SILAC approach was successful in identifying novel affected signaling pathways that could be exploited for the development of new personalized therapeutic strategies to target VHL-inactivated RCCs.
Collapse
Affiliation(s)
- Nadia Bouhamdani
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, E1A 3E9, Canada.,Atlantic Cancer Research Institute, Moncton, E1C 8X3, Canada
| | - Andrew Joy
- Atlantic Cancer Research Institute, Moncton, E1C 8X3, Canada
| | - David Barnett
- Atlantic Cancer Research Institute, Moncton, E1C 8X3, Canada
| | - Kevin Cormier
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, E1A 3E9, Canada.,Atlantic Cancer Research Institute, Moncton, E1C 8X3, Canada
| | - Daniel Léger
- Atlantic Cancer Research Institute, Moncton, E1C 8X3, Canada
| | - Ian C Chute
- Atlantic Cancer Research Institute, Moncton, E1C 8X3, Canada
| | - Simon Lamarre
- Department of Biology, Université de Moncton, Moncton, E1A 3E9, Canada
| | - Rodney Ouellette
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, E1A 3E9, Canada.,Atlantic Cancer Research Institute, Moncton, E1C 8X3, Canada
| | - Sandra Turcotte
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, E1A 3E9, Canada.,Atlantic Cancer Research Institute, Moncton, E1C 8X3, Canada
| |
Collapse
|
26
|
Ishida A, Wang L, Tachrim ZP, Suzuki T, Sakihama Y, Hashidoko Y, Hashimoto M. Comprehensive Synthesis of Photoreactive Phenylthiourea Derivatives for the Photoaffinity Labeling. ChemistrySelect 2017. [DOI: 10.1002/slct.201601675] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Akiko Ishida
- Division of Applied Science; Graduate School of Agriculture; Hokkaido University; Kita 9, Nishi 9, Kita-ku Sapporo 060-8589 Japan, Web
| | - Lei Wang
- Division of Applied Science; Graduate School of Agriculture; Hokkaido University; Kita 9, Nishi 9, Kita-ku Sapporo 060-8589 Japan, Web
| | - Zetryana Puteri Tachrim
- Division of Applied Science; Graduate School of Agriculture; Hokkaido University; Kita 9, Nishi 9, Kita-ku Sapporo 060-8589 Japan, Web
| | - Takeyuki Suzuki
- Division of Applied Science; The Institute of Scientific and Industrial Research; Osaka University; Mihogaoka, Ibaraki-shi Osaka 567-0047 Japan, Supporting information for this article is given via a link at the end of the document
| | - Yasuko Sakihama
- Division of Applied Science; Graduate School of Agriculture; Hokkaido University; Kita 9, Nishi 9, Kita-ku Sapporo 060-8589 Japan, Web
| | - Yasuyuki Hashidoko
- Division of Applied Science; Graduate School of Agriculture; Hokkaido University; Kita 9, Nishi 9, Kita-ku Sapporo 060-8589 Japan, Web
| | - Makoto Hashimoto
- Division of Applied Science; Graduate School of Agriculture; Hokkaido University; Kita 9, Nishi 9, Kita-ku Sapporo 060-8589 Japan, Web
| |
Collapse
|
27
|
Discovery and Optimization of N-Substituted 2-(4-pyridinyl)thiazole carboxamides against Tumor Growth through Regulating Angiogenesis Signaling Pathways. Sci Rep 2016; 6:33434. [PMID: 27633259 PMCID: PMC5025770 DOI: 10.1038/srep33434] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 08/26/2016] [Indexed: 11/16/2022] Open
Abstract
Inhibition of angiogenesis is considered as one of the desirable pathways for the treatment of tumor growth and metastasis. Herein we demonstrated that a series of pyridinyl-thiazolyl carboxamide derivatives were designed, synthesized and examined against angiogenesis through a colony formation and migration assays of human umbilical vein endothelial cells (HUVECs) in vitro. A structure-activity relationship (SAR) study was carried out and optimization toward this series of compounds resulted in the discovery of N-(3-methoxyphenyl)-4-methyl-2-(2-propyl-4-pyridinyl)thiazole-5-carboxamide (3k). The results indicated that compound 3k showed similar or better effects compared to Vandetanib in suppressing HUVECs colony formation and migration as well as VEGF-induced angiogenesis in the aortic ring spreading model and chick embryo chorioallantoic membrane (CAM) model. More importantly, compound 3k also strongly blocked tumor growth with the dosage of 30 mg/kg/day, and subsequent mechanism exploration suggested that this series of compounds took effect mainly through angiogenesis signaling pathways. Together, these results suggested compound 3k may serve as a lead for a novel class of angiogenesis inhibitors for cancer treatments.
Collapse
|
28
|
Sudhakar K, Thirupathi G, Balakishan A, Narsima chary S, Ravi S. Facile synthesis of novel (1-Aryl/alkyl-1H-1,2,3-triazol- 4-yl)methyl-2-bromo-4-methylthiazole-5-carboxylates by Cu(I) catalyzed click reaction. RUSS J GEN CHEM+ 2016. [DOI: 10.1134/s1070363216070306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Synthesis, antitumor activity and mechanism of action of novel 1,3-thiazole derivatives containing hydrazide–hydrazone and carboxamide moiety. Bioorg Med Chem Lett 2016; 26:3263-3270. [DOI: 10.1016/j.bmcl.2016.05.059] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/09/2016] [Accepted: 05/21/2016] [Indexed: 11/30/2022]
|
30
|
Wang HY, Huang K, De Jesús M, Espinosa S, Piñero-Santiago LE, Barnes CL, Ortiz-Marciales M. Synthesis of enantiopure 1,2-azido and 1,2-amino alcohols via regio- and stereoselective ring-opening of enantiopure epoxides by sodium azide in hot water. TETRAHEDRON, ASYMMETRY 2016; 27:91-100. [PMID: 26843787 PMCID: PMC4733893 DOI: 10.1016/j.tetasy.2015.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A practical and convenient method for the efficient and regio- and stereoselective ring-opening of enantiopure monosubstituted epoxides by sodium azide under hydrolytic conditions is reported. The ring-opening of enantiopure styryl and pyridyl (S)-epoxides by N3- in hot water takes place preferentially at the internal position with complete inversion of configuration to produce (R)-2-azido ethanols with up to 99% enantio- and regioselectivity, while the (S)-adamantyl oxirane provides mainly the (S)-1-adamantyl-2-azido ethanol in excellent yield. In general, 1,2-amino ethanols were obtained in high yield and excellent enantiopurity by the reduction of the chiral 1,2-azido ethanols with PPh3 in water/THF, and then converted into the Boc or acetamide derivatives.
Collapse
Affiliation(s)
- Hai-Yang Wang
- Department of Chemistry, University of Puerto Rico-Humacao, CALL BOX 860, Humacao, PR 00792, USA
| | - Kun Huang
- Department of Chemistry, University of Puerto Rico-Humacao, CALL BOX 860, Humacao, PR 00792, USA
| | - Melvin De Jesús
- Department of Chemistry, University of Puerto Rico-Humacao, CALL BOX 860, Humacao, PR 00792, USA
| | - Sandraliz Espinosa
- Department of Chemistry, University of Puerto Rico-Humacao, CALL BOX 860, Humacao, PR 00792, USA
| | - Luis E. Piñero-Santiago
- Department of Chemistry, University of Puerto Rico-Humacao, CALL BOX 860, Humacao, PR 00792, USA
| | - Charles L. Barnes
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| | | |
Collapse
|
31
|
Dao-Huy T, Waldner BJ, Wimmer L, Schnürch M, Mihovilovic MD. Synthesis ofendo- andexo-N-Protected 5-Arylated 2-Aminothiazoles through Direct Arylation: An Efficient Route to Cell Differentiation Accelerators. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
32
|
Zhao J, Xu J, Chen J, He M, Wang X. Potassium iodide and ammonium nitrate catalyzed aerobic oxidative cyclization of ketones with thioureas in ionic liquid: an access to 2-aminothiazoles. Tetrahedron 2015. [DOI: 10.1016/j.tet.2014.12.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
33
|
|
34
|
Makam P, Kannan T. 2-Aminothiazole derivatives as antimycobacterial agents: Synthesis, characterization, in vitro and in silico studies. Eur J Med Chem 2014; 87:643-56. [DOI: 10.1016/j.ejmech.2014.09.086] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 06/21/2014] [Accepted: 09/09/2014] [Indexed: 10/24/2022]
|
35
|
Rostom SA, Faidallah HM, Radwan MF, Badr MH. Bifunctional ethyl 2-amino-4-methylthiazole-5-carboxylate derivatives: Synthesis and in vitro biological evaluation as antimicrobial and anticancer agents. Eur J Med Chem 2014; 76:170-81. [DOI: 10.1016/j.ejmech.2014.02.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 01/15/2014] [Accepted: 02/08/2014] [Indexed: 12/11/2022]
|
36
|
Gudipudi G, Sagurthi SR, Perugu S, Achaiah G, David Krupadanam GL. Rational design and synthesis of novel 2-(substituted-2H-chromen-3-yl)-5-aryl-1H-imidazole derivatives as an anti-angiogenesis and anti-cancer agent. RSC Adv 2014. [DOI: 10.1039/c4ra09945a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Based on the earlier proven pharmacophore analogues of cancer a novel 2-(substituted-2H-chromen-3-yl)-5-aryl-1H-imidazoles were rationally designed, synthesized and used for competitive biological activity against cancer cell lines.
Collapse
Affiliation(s)
| | | | - Shyam Perugu
- Department of Biochemistry
- Osmania University
- Hyderabad, India 500 007
| | - G. Achaiah
- Medicinal Chemistry Division
- University College of Pharmaceutical Sciences
- Kakatiya University
- Warangal, India 500 009
| | | |
Collapse
|
37
|
Hypoxia-Directed Drug Strategies to Target the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 772:111-45. [DOI: 10.1007/978-1-4614-5915-6_6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
38
|
|
39
|
Identifying novel targets in renal cell carcinoma: design and synthesis of affinity chromatography reagents. Bioorg Med Chem 2013; 22:711-20. [PMID: 24387866 DOI: 10.1016/j.bmc.2013.12.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 11/29/2013] [Accepted: 12/08/2013] [Indexed: 01/25/2023]
Abstract
Two novel scaffolds, 4-pyridylanilinothiazoles (PAT) and 3-pyridylphenylsulfonyl benzamides (PPB), previously identified as selective cytotoxins for von Hippel-Lindau-deficient Renal Carcinoma cells, were used as templates to prepare affinity chromatography reagents to aid the identification of the molecular targets of these two classes. Structure-activity data and computational models were used to predict possible points of attachment for linker chains. In the PAT class, Click coupling of long chain azides with 2- and 3-pyridylanilinothiazoleacetylenes gave triazole-linked pyridylanilinothiazoles which did not retain the VHL-dependent selectivity of parent analogues. For the PPB class, Sonagashira coupling of 4-iodo-(3-pyridylphenylsulfonyl)benzamide with a propargyl hexaethylene glycol carbamate gave an acetylene which was reduced to the corresponding alkyl 3-pyridylphenylsulfonylbenzamide. This reagent retained the VHL-dependent selectivity of the parent analogues and was successfully utilized as an affinity reagent.
Collapse
|
40
|
Structure-activity relationships of 2-aminothiazoles effective against Mycobacterium tuberculosis. Bioorg Med Chem 2013; 21:6385-97. [PMID: 24075144 DOI: 10.1016/j.bmc.2013.08.048] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/16/2013] [Accepted: 08/23/2013] [Indexed: 11/23/2022]
Abstract
A series of 2-aminothiazoles was synthesized based on a HTS scaffold from a whole-cell screen against Mycobacterium tuberculosis (Mtb). The SAR shows the central thiazole moiety and the 2-pyridyl moiety at C-4 of the thiazole are intolerant to modification. However, the N-2 position of the aminothiazole exhibits high flexibility and we successfully improved the antitubercular activity of the initial hit by more than 128-fold through introduction of substituted benzoyl groups at this position. N-(3-Chlorobenzoyl)-4-(2-pyridinyl)-1,3-thiazol-2-amine (55) emerged as one of the most promising analogues with a MIC of 0.024μM or 0.008μg/mL in 7H9 media and therapeutic index of nearly ∼300. However, 55 is rapidly metabolized by human liver microsomes (t1/2=28min) with metabolism occurring at the invariant aminothiazole moiety and Mtb develops spontaneous low-level resistance with a frequency of ∼10(-5).
Collapse
|
41
|
Cuconati A, Mills C, Goddard C, Zhang X, Yu W, Guo H, Xu X, Block TM. Suppression of AKT anti-apoptotic signaling by a novel drug candidate results in growth arrest and apoptosis of hepatocellular carcinoma cells. PLoS One 2013; 8:e54595. [PMID: 23355882 PMCID: PMC3552860 DOI: 10.1371/journal.pone.0054595] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 12/13/2012] [Indexed: 12/31/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third most common cause of cancer fatalities worldwide, with limited treatment options and five year survival rates of between <5 and 15%. To address this medical need, we conducted a screen of a drug-like small molecule library for HCC-selective cytotoxins. We report here the identification of a disubstituted aminothiazole termed HBF-0079, with remarkable selective toxicity for HCC-derived cell lines versus non-HCC liver lines and most other cancer lines. HBF-0079 caused irreversible growth arrest and apoptosis of the HCC lines Huh7, Hep3B, HepaRG as well as the hepatoblastoma line HepG2, with CC50 values from ∼0.7−7.7 µM, while more than 45 µM was needed to achieve CC50 values for the immortalized normal hepatocyte lines THLE-2 and PH5CH. Of the sixty cancer lines from the National Cancer Institute panel, only five exhibited >50% growth inhibition by HBF-0079. In Huh7 cells, HBF-0079 induced cell cycle arrest in G1 and concomitant apoptosis, and its effects were irreversible after removal of the compound. These observations corroborate a loss of AKT phosphorylation at the mTORC2-targeted residue S473, with concurrent loss of phosphorylation of the mTORC1 targets SK6 and 4EBP1 in Huh7 but not PH5CH cells. Finally, growth of Hep3B-derived tumors in a murine xenograft model was significantly repressed by the compound through either systemic or intratumoral administration of formulated HBF-0079. The potential for development of this drug candidate is discussed.
Collapse
Affiliation(s)
- Andrea Cuconati
- Institute for Hepatitis and Virus Research, Hepatitis B Foundation, Doylestown, Pennsylvania, United States of America
- * E-mail: (AC); (TB)
| | - Courtney Mills
- Institute for Hepatitis and Virus Research, Hepatitis B Foundation, Doylestown, Pennsylvania, United States of America
| | - Cally Goddard
- Institute for Hepatitis and Virus Research, Hepatitis B Foundation, Doylestown, Pennsylvania, United States of America
| | - Xianchao Zhang
- Drexel Institute for Biotechnology and Virology Research, Drexel University College of Medicine, Doylestown, Pennsylvania, United States of America
| | - Wenquan Yu
- Institute for Hepatitis and Virus Research, Hepatitis B Foundation, Doylestown, Pennsylvania, United States of America
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, People’s Republic of China
| | - Haitao Guo
- Drexel Institute for Biotechnology and Virology Research, Drexel University College of Medicine, Doylestown, Pennsylvania, United States of America
| | - Xiaodong Xu
- Institute for Hepatitis and Virus Research, Hepatitis B Foundation, Doylestown, Pennsylvania, United States of America
- Enantigen Therapeutics, Incorporated, Doylestown, Pennsylvania, United States of America
| | - Timothy M. Block
- Institute for Hepatitis and Virus Research, Hepatitis B Foundation, Doylestown, Pennsylvania, United States of America
- Drexel Institute for Biotechnology and Virology Research, Drexel University College of Medicine, Doylestown, Pennsylvania, United States of America
- * E-mail: (AC); (TB)
| |
Collapse
|
42
|
Bischoff P, Josset E, Dumont FJ. Novel pharmacological modulators of autophagy and therapeutic prospects. Expert Opin Ther Pat 2012; 22:1053-79. [PMID: 22860892 DOI: 10.1517/13543776.2012.715148] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Autophagy is an intracellular process of self-digestion involving the lysosomal degradation of cytoplasmic organelles and macromolecules. It occurs at low basal levels to perform housekeeping functions and is dramatically augmented upon nutrient depletion or exposure to other stresses, thus maintaining cellular homeostasis and energy balance and providing cytoprotective responses to adverse conditions. Mounting evidence that autophagy malfunction contributes to the pathogenesis of diverse human diseases has stimulated efforts to identify pharmacological agents that modulate autophagy in potentially beneficial ways. Here, we review the progresses accomplished toward this goal in recent years, as reflected by the patent literature. AREAS COVERED Patent applications published from 2008 to mid-2012 that pertain to the pharmacological modulation of autophagy are reviewed and their potential therapeutic utilities are discussed. EXPERT OPINION Of 40 patents related to autophagy, 21 claim novel enhancers or inhibitors of autophagy. One of the most promising applications of these compounds concerns cancer therapy, a few of them being already considered for clinical evaluation. Further work is, however, needed to identify compounds that target unique molecular effectors/regulators of autophagy to selectively modulate its various stages in different tissues and to design therapeutic interventions applicable to a broad variety of dysfunctional autophagy-associated disorders.
Collapse
Affiliation(s)
- Pierre Bischoff
- Université de Strasbourg, Centre Régional de Lutte contre le Cancer Paul Strauss, 3 rue de la Porte de l'Hôpital, Strasbourg, France
| | | | | |
Collapse
|
43
|
Chan DA, Sutphin PD, Nguyen P, Turcotte S, Lai EW, Banh A, Reynolds GE, Chi JT, Wu J, Solow-Cordero DE, Bonnet M, Flanagan JU, Bouley DM, Graves EE, Denny WA, Hay MP, Giaccia AJ. Targeting GLUT1 and the Warburg effect in renal cell carcinoma by chemical synthetic lethality. Sci Transl Med 2011; 3:94ra70. [PMID: 21813754 DOI: 10.1126/scitranslmed.3002394] [Citation(s) in RCA: 419] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Identifying new targeted therapies that kill tumor cells while sparing normal tissue is a major challenge of cancer research. Using a high-throughput chemical synthetic lethal screen, we sought to identify compounds that exploit the loss of the von Hippel-Lindau (VHL) tumor suppressor gene, which occurs in about 80% of renal cell carcinomas (RCCs). RCCs, like many other cancers, are dependent on aerobic glycolysis for ATP production, a phenomenon known as the Warburg effect. The dependence of RCCs on glycolysis is in part a result of induction of glucose transporter 1 (GLUT1). Here, we report the identification of a class of compounds, the 3-series, exemplified by STF-31, which selectively kills RCCs by specifically targeting glucose uptake through GLUT1 and exploiting the unique dependence of these cells on GLUT1 for survival. Treatment with these agents inhibits the growth of RCCs by binding GLUT1 directly and impeding glucose uptake in vivo without toxicity to normal tissue. Activity of STF-31 in these experimental renal tumors can be monitored by [(18)F]fluorodeoxyglucose uptake by micro-positron emission tomography imaging, and therefore, these agents may be readily tested clinically in human tumors. Our results show that the Warburg effect confers distinct characteristics on tumor cells that can be selectively targeted for therapy.
Collapse
Affiliation(s)
- Denise A Chan
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Bonnet M, Flanagan JU, Chan DA, Lai EW, Nguyen P, Giaccia AJ, Hay MP. SAR studies of 4-pyridyl heterocyclic anilines that selectively induce autophagic cell death in von Hippel-Lindau-deficient renal cell carcinoma cells. Bioorg Med Chem 2011; 19:3347-56. [PMID: 21561782 PMCID: PMC3115526 DOI: 10.1016/j.bmc.2011.04.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 04/15/2011] [Accepted: 04/21/2011] [Indexed: 01/08/2023]
Abstract
We recently identified a class of pyridyl aniline thiazoles (PAT) that displayed selective cytotoxicity for von Hippel-Lindau (VHL) deficient renal cell carcinoma (RCC) cells in vitro and in vivo. Structure-activity relationship (SAR) studies were used to develop a comparative molecular field analysis (CoMFA) model that related VHL-selective potency to the three-dimensional arrangement of chemical features of the chemotype. We now report the further molecular alignment-guided exploration of the chemotype to discover potent and selective PAT analogues. The contribution of the central thiazole ring was explored using a series of five- and six-membered ring heterocyclic replacements to vary the electronic and steric interactions in the central unit. We also explored a positive steric CoMFA contour adjacent to the pyridyl ring using Pd-catalysed cross-coupling Suzuki-Miyaura, Sonogashira and nucleophilic displacement reactions to prepare of a series of aryl-, alkynyl-, alkoxy- and alkylamino-substituted pyridines, respectively. In vitro potency and selectivity were determined using paired RCC cell lines: the VHL-null cell line RCC4 and the VHL-positive cell line RCC4-VHL. Active analogues selectively induced autophagy in RCC4 cells. We have used the new SAR data to further develop the CoMFA model, and compared this to a 2D-QSAR method. Our progress towards realising the therapeutic potential of this chemotype as a targeted cytotoxic therapy for the treatment of RCC by exploiting the absence of the VHL tumour suppressor gene is reported.
Collapse
Affiliation(s)
- Muriel Bonnet
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand
| | - Jack, U. Flanagan
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand
| | - Denise A. Chan
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Edwin W. Lai
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Phuong Nguyen
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amato J. Giaccia
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael P. Hay
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
45
|
Schnürch M, Waldner B, Hilber K, Mihovilovic MD. Synthesis of 5-arylated N-arylthiazole-2-amines as potential skeletal muscle cell differentiation promoters. Bioorg Med Chem Lett 2011; 21:2149-54. [DOI: 10.1016/j.bmcl.2011.01.123] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 01/24/2011] [Accepted: 01/27/2011] [Indexed: 12/22/2022]
|
46
|
Essick EE, Sam F. Oxidative stress and autophagy in cardiac disease, neurological disorders, aging and cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2010; 3. [PMID: 20716941 PMCID: PMC2952075 DOI: 10.4161/oxim.3.3.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Autophagy is a catalytic process of the bulk degradation of long-lived cellular components, ultimately resulting in lysosomal digestion within mature cytoplasmic compartments known as autophagolysosomes. Autophagy serves many functions in the cell, including maintaining cellular homeostasis, a means of cell survival during stress (e.g., nutrient deprivation or starvation) or conversely as a mechanism for cell death. Increased reactive oxygen species (ROS) production and the resulting oxidative cell stress that occurs in many disease states has been shown to induce autophagy. The following review focuses on the roles that autophagy plays in response to the ROS generated in several diseases.
Collapse
Affiliation(s)
- Eric E Essick
- Whitaker Cardiovascular Institute; Boston University School of Medicine; Boston, MA USA
| | - Flora Sam
- Whitaker Cardiovascular Institute; Boston University School of Medicine; Boston, MA USA,Cardiovascular Section and Evans Department of Medicine; Boston University School of Medicine; Boston, MA USA
| |
Collapse
|