1
|
Hoque A, Surve M, Kalyanakrishnan S, Sunoj RB. Reinforcement Learning for Improving Chemical Reaction Performance. J Am Chem Soc 2024. [PMID: 39356950 DOI: 10.1021/jacs.4c08866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Deep learning (DL) methods have gained notable prominence in predictive and generative tasks in molecular space. However, their application in chemical reactions remains grossly underutilized. Chemical reactions are intrinsically complex: typically involving multiple molecules besides bond-breaking/forming events. In reaction discovery, one aims to maximize yield and/or selectivity that depends on a number of factors, mostly centered on reacting partners and reaction conditions. Herein, we introduce RE-EXPLORE, a novel approach that integrates deep reinforcement learning (RL) with an RNN-based deep generative model to identify prospective new reactants/catalysts, whose yield/selectivity is estimated using a pretrained regressor. Three chemical databases (ChEMBL, ZINC, and COCONUT containing half a million to one million unlabeled molecules) are independently used for pretraining the generators to enrich them with valuable information from diverse chemical space. Standard RL methods are found to be insufficient, as learners tend to prioritize exploitation for immediate gains, resulting in repetitive generation of same/similar molecules. Our engineered reward function includes a Tanimoto-based uniqueness factor within the RL loop that improved the exploration of the environment and has helped accrue larger returns. Integration of a user-defined core fragment into the generated molecules facilitated learning of specific reaction types. Together, RE-EXPLORE can navigate the reaction space toward practically meaningful regions and offers notable improvements across the three distinct reaction types considered in this study. It identifies high-yielding substrates and highly enantioselective chiral catalysts. This RL-based approach has the potential to expedite reaction discovery and aid in the synthesis planning of important compounds, including drugs and pharmaceuticals.
Collapse
Affiliation(s)
- Ajnabiul Hoque
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Mihir Surve
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Shivaram Kalyanakrishnan
- Department of Computer Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Raghavan B Sunoj
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
- Center for Machine Intelligence and Data Science (CMInDS), Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
2
|
Kubyshkin V, Rubini M. Proline Analogues. Chem Rev 2024; 124:8130-8232. [PMID: 38941181 DOI: 10.1021/acs.chemrev.4c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Within the canonical repertoire of the amino acid involved in protein biogenesis, proline plays a unique role as an amino acid presenting a modified backbone rather than a side-chain. Chemical structures that mimic proline but introduce changes into its specific molecular features are defined as proline analogues. This review article summarizes the existing chemical, physicochemical, and biochemical knowledge about this peculiar family of structures. We group proline analogues from the following compounds: substituted prolines, unsaturated and fused structures, ring size homologues, heterocyclic, e.g., pseudoproline, and bridged proline-resembling structures. We overview (1) the occurrence of proline analogues in nature and their chemical synthesis, (2) physicochemical properties including ring conformation and cis/trans amide isomerization, (3) use in commercial drugs such as nirmatrelvir recently approved against COVID-19, (4) peptide and protein synthesis involving proline analogues, (5) specific opportunities created in peptide engineering, and (6) cases of protein engineering with the analogues. The review aims to provide a summary to anyone interested in using proline analogues in systems ranging from specific biochemical setups to complex biological systems.
Collapse
Affiliation(s)
| | - Marina Rubini
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
3
|
Martino SD, Petri GL, De Rosa M. Hepatitis C: The Story of a Long Journey through First, Second, and Third Generation NS3/4A Peptidomimetic Inhibitors. What Did We Learn? J Med Chem 2024; 67:885-921. [PMID: 38179950 DOI: 10.1021/acs.jmedchem.3c01971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Hepatitis C viral (HCV) infection is the leading cause of liver failure and still represents a global health burden. Over the past decade, great advancements made HCV curable, and sustained viral remission significantly improved to more than 98%. Historical treatment with pegylated interferon alpha and ribavirin has been displaced by combinations of direct-acting antivirals. These regimens include drugs targeting different stages of the HCV life cycle. However, the emergence of viral resistance remains a big concern. The design of peptidomimetic inhibitors (PIs) able to fit and fill the conserved substrate envelope region within the active site helped avoid contact with the vulnerable sites of the most common resistance-associated substitutions Arg155, Ala156, and Asp168. Herein, we give an overview of HCV NS3 PIs discovered during the past decade, and we deeply discuss the rationale behind the structural optimization efforts essential to achieve pangenotypic activity.
Collapse
Affiliation(s)
- Simona Di Martino
- Drug Discovery Unit, Medicinal Chemistry Group, Ri.MED Foundation, Palermo 90133, Italy
| | - Giovanna Li Petri
- Drug Discovery Unit, Medicinal Chemistry Group, Ri.MED Foundation, Palermo 90133, Italy
| | - Maria De Rosa
- Drug Discovery Unit, Medicinal Chemistry Group, Ri.MED Foundation, Palermo 90133, Italy
| |
Collapse
|
4
|
Ren P, Li S, Wang S, Zhang X, Bai F. Computer-Aided Prediction of the Interactions of Viral Proteases with Antiviral Drugs: Antiviral Potential of Broad-Spectrum Drugs. Molecules 2023; 29:225. [PMID: 38202808 PMCID: PMC10780089 DOI: 10.3390/molecules29010225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Human society is facing the threat of various viruses. Proteases are promising targets for the treatment of viral infections. In this study, we collected and profiled 170 protease sequences from 125 viruses that infect humans. Approximately 73 of them are viral 3-chymotrypsin-like proteases (3CLpro), and 11 are pepsin-like aspartic proteases (PAPs). Their sequences, structures, and substrate characteristics were carefully analyzed to identify their conserved nature for proposing a pan-3CLpro or pan-PAPs inhibitor design strategy. To achieve this, we used computational prediction and modeling methods to predict the binding complex structures for those 73 3CLpro with 4 protease inhibitors of SARS-CoV-2 and 11 protease inhibitors of HCV. Similarly, the complex structures for the 11 viral PAPs with 9 protease inhibitors of HIV were also obtained. The binding affinities between these compounds and proteins were also evaluated to assess their pan-protease inhibition via MM-GBSA. Based on the drugs targeting viral 3CLpro and PAPs, repositioning of the active compounds identified several potential uses for these drug molecules. As a result, Compounds 1-2, modified based on the structures of Ray1216 and Asunaprevir, indicate potential inhibition of DENV protease according to our computational simulation results. These studies offer ideas and insights for future research in the design of broad-spectrum antiviral drugs.
Collapse
Affiliation(s)
- Pengxuan Ren
- School of Life Science and Technology, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; (P.R.); (S.L.); (S.W.)
| | - Shiwei Li
- School of Life Science and Technology, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; (P.R.); (S.L.); (S.W.)
| | - Shihang Wang
- School of Life Science and Technology, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; (P.R.); (S.L.); (S.W.)
| | - Xianglei Zhang
- School of Life Science and Technology, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; (P.R.); (S.L.); (S.W.)
| | - Fang Bai
- School of Life Science and Technology, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; (P.R.); (S.L.); (S.W.)
- School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| |
Collapse
|
5
|
Niu ZX, Nie P, Herdewijn P, Wang YT. Synthetic approaches and application of clinically approved small-molecule drugs to treat hepatitis. Eur J Med Chem 2023; 262:115919. [PMID: 37922830 DOI: 10.1016/j.ejmech.2023.115919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
Hepatitis, a global public health concern, presents a significant burden on healthcare systems worldwide. Particularly, hepatitis B and C are viral infections that can lead to severe liver damage, cirrhosis, and even hepatocellular carcinoma (HCC). The urgency to combat these diseases has driven researchers to explore existing small-molecule drugs as potential therapeutics. This comprehensive review provides a systematic overview of synthetic routes to key antiviral agents used to manage hepatitis. Furthermore, it elucidates the mechanisms of action of these drugs, shedding light on their interference with viral replication and liver disease progression. The review also discusses the clinical applications of these drugs, including their use in combination therapies and various patient populations. By evaluating the synthetic pathways and clinical utility of these drugs, this review not only consolidates current knowledge but also highlights potential future directions for research and drug development in the fight against hepatitis, ultimately contributing to improved patient outcomes and reduced global disease burden.
Collapse
Affiliation(s)
- Zhen-Xi Niu
- Department of Pharmacy, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Peng Nie
- Rega Institute for Medical Research, Medicinal Chemistry, KU Leuven, Herestraat 49-Box 1041, 3000, Leuven, Belgium.
| | - Piet Herdewijn
- Rega Institute for Medical Research, Medicinal Chemistry, KU Leuven, Herestraat 49-Box 1041, 3000, Leuven, Belgium.
| | - Ya-Tao Wang
- First People's Hospital of Shangqiu, Henan Province, Shangqiu, 476100, China; Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun, 130033, China.
| |
Collapse
|
6
|
Meanwell NA. Applications of Bioisosteres in the Design of Biologically Active Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18087-18122. [PMID: 36961953 DOI: 10.1021/acs.jafc.3c00765] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The design of bioisosteres represents a creative and productive approach to improve a molecule, including by enhancing potency, addressing pharmacokinetic challenges, reducing off-target liabilities, and productively modulating physicochemical properties. Bioisosterism is a principle exploited in the design of bioactive compounds of interest to both medicinal and agricultural chemists, and in this review, we provide a synopsis of applications where this kind of molecular editing has proved to be advantageous in molecule optimization. The examples selected for discussion focus on bioisosteres of carboxylic acids, applications of fluorine and fluorinated motifs in compound design, some applications of the sulfoximine functionality, the design of bioisosteres of drug-H2O complexes, and the design of bioisosteres of the phenyl ring.
Collapse
Affiliation(s)
- Nicholas A Meanwell
- The Baruch S. Blumberg Institute, 3805 Old Easton Rd, Doylestown, Pennsylvania 18902, United States
| |
Collapse
|
7
|
Yadav Y, Singh K, Sharma S, Mishra VK, Sagar R. Recent Efforts in Identification of Privileged Scaffolds as Antiviral Agents. Chem Biodivers 2023; 20:e202300921. [PMID: 37589569 DOI: 10.1002/cbdv.202300921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 08/18/2023]
Abstract
Viral infections are the most important health concern nowadays to mankind, which is unexpectedly increasing the health complications and fatality rate worldwide. The recent viral infection outbreak developed a pressing need for small molecules that can be quickly deployed for the control/treatment of re-emerging or new emerging viral infections. Numerous viruses, including the human immunodeficiency virus (HIV), hepatitis, influenza, SARS-CoV-1, SARS-CoV-2, and others, are still challenging due to emerging resistance to known drugs. Therefore, there is always a need to search for new antiviral small molecules that can combat viral infection with new modes of action. This review highlighted recent progress in developing new antiviral molecules based on natural product-inspired scaffolds. Herein, the structure-activity relationship of the FDA-approved drugs along with the molecular docking studies of selected compounds have been discussed against several target proteins. The findings of new small molecules as neuraminidase inhibitors, other than known drug scaffolds, Anti-HIV and SARS-CoV are incorporated in this review paper.
Collapse
Affiliation(s)
- Yogesh Yadav
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Kavita Singh
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sunil Sharma
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Vinay Kumar Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Ram Sagar
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
8
|
Cai J, Sun B, Yu S, Zhang H, Zhang W. Heck Macrocyclization in Forging Non-Natural Large Rings including Macrocyclic Drugs. Int J Mol Sci 2023; 24:ijms24098252. [PMID: 37175956 PMCID: PMC10179193 DOI: 10.3390/ijms24098252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The intramolecular Heck reaction is a well-established strategy for natural product total synthesis. When constructing large rings, this reaction is also referred to as Heck macrocyclization, which has proved a viable avenue to access diverse naturally occurring macrocycles. Less noticed but likewise valuable, it has created novel macrocycles of non-natural origin that neither serve as nor derive from natural products. This review presents a systematic account of the title reaction in forging this non-natural subset of large rings, thereby addressing a topic rarely covered in the literature. Walking through two complementary sections, namely (1) drug discovery research and (2) synthetic methodology development, it demonstrates that beyond the well-known domain of natural product synthesis, Heck macrocyclization also plays a remarkable role in forming synthetic macrocycles, in particular macrocyclic drugs.
Collapse
Affiliation(s)
- Jiayou Cai
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| | - Bin Sun
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| | - Siqi Yu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| | - Han Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| | - Weicheng Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| |
Collapse
|
9
|
Musso JV, Gebel P, Gramm V, Frey W, Buchmeiser MR. Tungsten Oxo and Tungsten Imido Alkylidene N-Heterocyclic Carbene Complexes for the Visible-Light-Induced Ring-Opening Metathesis Polymerization of Dicyclopentadiene. Macromolecules 2023. [DOI: 10.1021/acs.macromol.3c00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
10
|
Ren J, Vaid TM, Lee H, Ojeda I, Johnson ME. Evaluation of interactions between the hepatitis C virus NS3/4A and sulfonamidobenzamide based molecules using molecular docking, molecular dynamics simulations and binding free energy calculations. J Comput Aided Mol Des 2023; 37:53-65. [PMID: 36427108 PMCID: PMC9839505 DOI: 10.1007/s10822-022-00490-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/17/2022] [Indexed: 11/26/2022]
Abstract
The Hepatitis C Virus (HCV) NS3/4A is an attractive target for the treatment of Hepatitis C infection. Herein, we present an investigation of HCV NS3/4A inhibitors based on a sulfonamidobenzamide scaffold. Inhibitor interactions with HCV NS3/4A were explored by molecular docking, molecular dynamics simulations, and MM/PBSA binding free energy calculations. All of the inhibitors adopt similar molecular docking poses in the catalytic site of the protease that are stabilized by hydrogen bond interactions with G137 and the catalytic S139, which are known to be important for potency and binding stability. The quantitative assessments of binding free energies from MM/PBSA correlate well with the experimental results, with a high coefficient of determination, R2 of 0.92. Binding free energy decomposition analyses elucidate the different contributions of Q41, F43, H57, R109, K136, G137, S138, S139, A156, M485, and Q526 in binding different inhibitors. The importance of these sidechain contributions was further confirmed by computational alanine scanning mutagenesis. In addition, the sidechains of K136 and S139 show crucial but distinct contributions to inhibitor binding with HCV NS3/4A. The structural basis of the potency has been elucidated, demonstrating the importance of the R155 sidechain conformation. This extensive exploration of binding energies and interactions between these compounds and HCV NS3/4A at the atomic level should benefit future antiviral drug design.
Collapse
Affiliation(s)
- Jinhong Ren
- Center for Biomolecular Sciences and Department of Pharmaceutical Sciences, University of Illinois at Chicago, 900 S. Ashland Ave, Chicago, IL, 60607, USA
- BeiGene (Beijing) Co., Ltd, No. 30 Science Park Road, Zhong-Guan-Cun Life Sciences Park, Changping District, Beijing, 102206, People's Republic of China
| | - Tasneem M Vaid
- Center for Biomolecular Sciences and Department of Pharmaceutical Sciences, University of Illinois at Chicago, 900 S. Ashland Ave, Chicago, IL, 60607, USA
| | - Hyun Lee
- Center for Biomolecular Sciences and Department of Pharmaceutical Sciences, University of Illinois at Chicago, 900 S. Ashland Ave, Chicago, IL, 60607, USA
- Biophysics Core at Research Resource Center, University of Illinois at Chicago, 1100 S. Ashland Ave, Chicago, IL, 60607, USA
| | - Isabel Ojeda
- Center for Biomolecular Sciences and Department of Pharmaceutical Sciences, University of Illinois at Chicago, 900 S. Ashland Ave, Chicago, IL, 60607, USA
| | - Michael E Johnson
- Center for Biomolecular Sciences and Department of Pharmaceutical Sciences, University of Illinois at Chicago, 900 S. Ashland Ave, Chicago, IL, 60607, USA.
| |
Collapse
|
11
|
Dongbang S, Doyle AG. Ni/Photoredox-Catalyzed C(sp 3)-C(sp 3) Coupling between Aziridines and Acetals as Alcohol-Derived Alkyl Radical Precursors. J Am Chem Soc 2022; 144:20067-20077. [PMID: 36256882 DOI: 10.1021/jacs.2c09294] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aziridines are readily available C(sp3) precursors that afford valuable β-functionalized amines upon ring opening. In this article, we report a Ni/photoredox methodology for C(sp3)-C(sp3) cross-coupling between aziridines and methyl/1°/2° aliphatic alcohols activated as benzaldehyde dialkyl acetals. Orthogonal activation modes of each alkyl coupling partner facilitate cross-selectivity in the C(sp3)-C(sp3) bond-forming reaction: the benzaldehyde dialkyl acetal is activated via hydrogen atom abstraction and β-scission via a bromine radical (generated in situ from single-electron oxidation of bromide), whereas the aziridine is activated at the Ni center via reduction. We demonstrate that an Ni(II) azametallacycle, conventionally proposed in aziridine cross-coupling, is not an intermediate in the productive cross-coupling. Rather, stoichiometric organometallic and linear free energy relationship studies indicate that aziridine activation proceeds via Ni(I) oxidative addition, a previously unexplored elementary step.
Collapse
Affiliation(s)
- Sun Dongbang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Abigail G Doyle
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.,Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
12
|
Dhankhar J, Hofer MD, Linden A, Čorić I. Site-Selective C-H Arylation of Diverse Arenes Ortho to Small Alkyl Groups. Angew Chem Int Ed Engl 2022; 61:e202205470. [PMID: 35830351 DOI: 10.1002/anie.202205470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Indexed: 01/07/2023]
Abstract
Catalytic systems for direct C-H activation of arenes commonly show preference for electronically activated and sterically exposed C-H sites. Here we show that a range of functionally rich and pharmaceutically relevant arene classes can undergo site-selective C-H arylation ortho to small alkyl substituents, preferably endocyclic methylene groups. The C-H activation is experimentally supported as being the selectivity-determining step, while computational studies of the transition state models indicate the relevance of non-covalent interactions between the catalyst and the methylene group of the substrate. Our results suggest that preference for C(sp2 )-H activation next to alkyl groups could be a general selectivity mode, distinct from common steric and electronic factors.
Collapse
Affiliation(s)
- Jyoti Dhankhar
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Micha D Hofer
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Anthony Linden
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Ilija Čorić
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|
13
|
Monroe MK, Wang H, Anderson CF, Jia H, Flexner C, Cui H. Leveraging the therapeutic, biological, and self-assembling potential of peptides for the treatment of viral infections. J Control Release 2022; 348:1028-1049. [PMID: 35752254 PMCID: PMC11022941 DOI: 10.1016/j.jconrel.2022.06.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/06/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022]
Abstract
Peptides and peptide-based materials have an increasing role in the treatment of viral infections through their use as active pharmaceutical ingredients, targeting moieties, excipients, carriers, or structural components in drug delivery systems. The discovery of peptide-based therapeutic compounds, coupled with the development of new stabilization and formulation strategies, has led to a resurgence of antiviral peptide therapeutics over the past two decades. The ability of peptides to bind cell receptors and to facilitate membrane penetration and subsequent intracellular trafficking enables their use in various antiviral systems for improved targeting efficiency and treatment efficacy. Importantly, the self-assembly of peptides into well-defined nanostructures provides a vast library of discrete constructs and supramolecular biomaterials for systemic and local delivery of antiviral agents. We review here the recent progress in exploiting the therapeutic, biological, and self-assembling potential of peptides, peptide conjugates, and their supramolecular assemblies in treating human viral infections, with an emphasis on the treatment strategies for Human Immunodeficiency Virus (HIV).
Collapse
Affiliation(s)
- Maya K Monroe
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, United States of America; Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, United States of America
| | - Han Wang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, United States of America; Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, United States of America
| | - Caleb F Anderson
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, United States of America; Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, United States of America
| | - Hongpeng Jia
- Department of Surgery, The Johns Hopkins University School of Medicine, United States of America
| | - Charles Flexner
- Divisions of Clinical Pharmacology and Infectious Diseases, The Johns Hopkins University School of Medicine and Bloomberg School of Public Health, Baltimore, MD 21205, United States of America.
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, United States of America; Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, United States of America; Deptartment of Oncology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States of America; Center for Nanomedicine, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, MD 21231, United States of America.
| |
Collapse
|
14
|
Site‐Selective C–H Arylation of Diverse Arenes Ortho to Small Alkyl Groups. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Sofia MJ. Curing Hepatitis C with Direct‐Acting Antiviral Therapy. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2022:13-57. [DOI: 10.1002/9783527810697.ch2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
16
|
Zheng C, Schneider M, Marion A, Antes I. The Q41R mutation in the HCV-protease enhances the reactivity towards MAVS by suppressing non-reactive pathways. Phys Chem Chem Phys 2022; 24:2126-2138. [PMID: 35029245 DOI: 10.1039/d1cp05002h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent experimental findings pointed out a new mutation in the HCV protease, Q41R, responsible for a significant enhancement of the enzyme's reactivity towards the mitochondrial antiviral-signaling protein (MAVS). The Q41R mutation is located rather far from the active site, and its involvement in the overall reaction mechanism is thus unclear. We used classical molecular dynamics and QM/MM to study the acylation reaction of HCV NS3/4A protease variants bound to MAVS and the NS4A/4B substrate and uncovered the indirect mechanism by which the Q41R mutation plays a critical role in the efficient cleavage of the substrate. Our simulations reveal that there are two major conformations of the MAVS H1'(p) residue for the wild type protease and only one conformation for the Q41R mutant. The conformational space of H1'(p) is restricted by the Q41R mutation due to a π-π stacking between H1'(p) and R41 as well as a strong hydrogen bond between the backbone of H57 and the side chain of R41. Further QM/MM calculations indicate that the complex with the conformation ruled out by the Q41R substitution is a non-reactive species due to its higher free energy barrier for the acylation reaction. Based on our calculations, we propose a kinetic mechanism that explains experimental data showing an increase of apparent rate constants for MAVS cleavage in Q41R mutants. Our model predicts that the non-reactive conformation of the enzyme-substrate complex modulates reaction kinetics like an uncompetitive inhibitor.
Collapse
Affiliation(s)
- Chen Zheng
- Technische Universität München (TUM), TUM School of Life Sciences, Freising 85354, Germany. .,Technische Universität München (TUM), TUM Center for Functional Protein Assemblies, Garching 85747, Germany
| | - Markus Schneider
- Technische Universität München (TUM), TUM School of Life Sciences, Freising 85354, Germany. .,Technische Universität München (TUM), TUM Center for Functional Protein Assemblies, Garching 85747, Germany
| | - Antoine Marion
- Technische Universität München (TUM), TUM School of Life Sciences, Freising 85354, Germany. .,Middle East Technical University, Department of Chemistry, Ankara 06800, Turkey.
| | - Iris Antes
- Technische Universität München (TUM), TUM School of Life Sciences, Freising 85354, Germany. .,Technische Universität München (TUM), TUM Center for Functional Protein Assemblies, Garching 85747, Germany
| |
Collapse
|
17
|
Sikdar A, Gupta R, Boura E. Reviewing Antiviral Research Against Viruses Causing Human Diseases - A Structure Guided Approach. Curr Mol Pharmacol 2021; 15:306-337. [PMID: 34348638 DOI: 10.2174/1874467214666210804152836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 11/22/2022]
Abstract
The littlest of all the pathogens, viruses have continuously been the foremost strange microorganisms to consider. Viral Infections can cause extreme sicknesses as archived by the HIV/AIDS widespread or the later Ebola or Zika episodes. Apprehensive framework distortions are too regularly watched results of numerous viral contaminations. Besides, numerous infections are oncoviruses, which can trigger different sorts of cancer. Nearly every year a modern infection species rises debilitating the world populace with an annihilating episode. Subsequently, the need of creating antivirals to combat such rising infections. In any case, from the innovation of to begin with antiviral medicate Idoxuridine in 1962 to the revelation of Baloxavir marboxil (Xofluza) that was FDA-approved in 2018, the hone of creating antivirals has changed significantly. In this article, different auxiliary science strategies have been described that can be referral for therapeutics innovation.
Collapse
Affiliation(s)
- Arunima Sikdar
- Department of Hematology and Oncology, School of Medicine, The University of Tennessee Health Science Center, 920 Madison Ave, P.O.Box-38103, Memphis, Tennessee. United States
| | - Rupali Gupta
- Department of Neurology, Duke University Medical Center, Durham, North Carolina. United States
| | - Evzen Boura
- Department of Molecular Biology and Biochemistry, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 542/2, P.O. Box:16000, Prague. Czech Republic
| |
Collapse
|
18
|
Sun MR, Li HL, Ba MY, Cheng W, Zhu HL, Duan YT. Cyclopropyl Scaffold: A Generalist for Marketed Drugs. Mini Rev Med Chem 2021; 21:150-170. [PMID: 32727325 DOI: 10.2174/1389557520666200729161150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/23/2019] [Accepted: 04/26/2020] [Indexed: 11/22/2022]
Abstract
In recent decades, much attention has been given to cyclopropyl scaffolds, which commonly exist in natural products and synthetic organic molecules. Clinical drug molecules with cyclopropyl rings are an area of focus in therapeutic research due to their interesting chemical properties and unique pharmacology activity. These molecular drugs against different targets are applicable in some therapeutic treatment fields including cancer, infection, respiratory disorder, cardiovascular and cerebrovascular diseases, dysphrenia, nervous system disorders, endocrine and metabolic disorders, skin disease, digestive disorders, urogenital diseases, otolaryngological and dental diseases, and eye diseases. This review is a guide for pharmacologists who are in search of valid preclinical/clinical drug compounds where the progress, from 1961 to the present day, of approved marketed drugs containing cyclopropyl scaffold is examined.
Collapse
Affiliation(s)
- Mo-Ran Sun
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan450001, China
| | - Hong-Liang Li
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan450001, China
| | - Meng-Yu Ba
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan450001, China
| | - Weyland Cheng
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou 450018, China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, China
| | - Yong-Tao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou 450018, China
| |
Collapse
|
19
|
Matthew AN, Leidner F, Lockbaum GJ, Henes M, Zephyr J, Hou S, Desaboini NR, Timm J, Rusere LN, Ragland DA, Paulsen JL, Prachanronarong K, Soumana DI, Nalivaika EA, Yilmaz NK, Ali A, Schiffer CA. Drug Design Strategies to Avoid Resistance in Direct-Acting Antivirals and Beyond. Chem Rev 2021; 121:3238-3270. [PMID: 33410674 PMCID: PMC8126998 DOI: 10.1021/acs.chemrev.0c00648] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Drug resistance is prevalent across many diseases, rendering therapies ineffective with severe financial and health consequences. Rather than accepting resistance after the fact, proactive strategies need to be incorporated into the drug design and development process to minimize the impact of drug resistance. These strategies can be derived from our experience with viral disease targets where multiple generations of drugs had to be developed to combat resistance and avoid antiviral failure. Significant efforts including experimental and computational structural biology, medicinal chemistry, and machine learning have focused on understanding the mechanisms and structural basis of resistance against direct-acting antiviral (DAA) drugs. Integrated methods show promise for being predictive of resistance and potency. In this review, we give an overview of this research for human immunodeficiency virus type 1, hepatitis C virus, and influenza virus and the lessons learned from resistance mechanisms of DAAs. These lessons translate into rational strategies to avoid resistance in drug design, which can be generalized and applied beyond viral targets. While resistance may not be completely avoidable, rational drug design can and should incorporate strategies at the outset of drug development to decrease the prevalence of drug resistance.
Collapse
Affiliation(s)
- Ashley N. Matthew
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
- Virginia Commonwealth University
| | - Florian Leidner
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Gordon J. Lockbaum
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Mina Henes
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Jacqueto Zephyr
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Shurong Hou
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Nages Rao Desaboini
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Jennifer Timm
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
- Rutgers University
| | - Linah N. Rusere
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
- Raybow Pharmaceutical
| | - Debra A. Ragland
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
- University of North Carolina, Chapel Hill
| | - Janet L. Paulsen
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
- Schrodinger, Inc
| | - Kristina Prachanronarong
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
- Icahn School of Medicine at Mount Sinai
| | - Djade I. Soumana
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
- Cytiva
| | - Ellen A. Nalivaika
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Akbar Ali
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| |
Collapse
|
20
|
Tompa DR, Immanuel A, Srikanth S, Kadhirvel S. Trends and strategies to combat viral infections: A review on FDA approved antiviral drugs. Int J Biol Macromol 2021; 172:524-541. [PMID: 33454328 PMCID: PMC8055758 DOI: 10.1016/j.ijbiomac.2021.01.076] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022]
Abstract
The infectious microscopic viruses invade living cells to reproduce themselves, and causes chronic infections such as HIV/AIDS, hepatitis B and C, flu, etc. in humans which may lead to death if not treated. Different strategies have been utilized to develop new and superior antiviral drugs to counter the viral infections. The FDA approval of HIV nucleoside reverse transcriptase inhibitor, zidovudine in 1987 boosted the development of antiviral agents against different viruses. Currently, there are a number of combination drugs developed against various viral infections to arrest the activity of same or different viral macromolecules at multiple stages of its life cycle; among which majority are targeted to interfere with the replication of viral genome. Besides these, other type of antiviral molecules includes entry inhibitors, integrase inhibitors, protease inhibitors, interferons, immunomodulators, etc. The antiviral drugs can be toxic to human cells, particularly in case of administration of combination drugs, and on the other hand viruses can grow resistant to the antiviral drugs. Furthermore, emergence of new viruses like Ebola, coronaviruses (SARS-CoV, SARS-CoV-2) emphasizes the need for more innovative strategies to develop better antiviral drugs to fight the existing and the emerging viral infections. Hence, we reviewed the strategic enhancements in developing antiviral drugs for the treatment of different viral infections over the years.
Collapse
Affiliation(s)
- Dharma Rao Tompa
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - Aruldoss Immanuel
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - Srimari Srikanth
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - Saraboji Kadhirvel
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India.
| |
Collapse
|
21
|
Slagman S, Fessner WD. Biocatalytic routes to anti-viral agents and their synthetic intermediates. Chem Soc Rev 2021; 50:1968-2009. [DOI: 10.1039/d0cs00763c] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An assessment of biocatalytic strategies for the synthesis of anti-viral agents, offering guidelines for the development of sustainable production methods for a future COVID-19 remedy.
Collapse
Affiliation(s)
- Sjoerd Slagman
- Institut für Organische Chemie und Biochemie
- Technische Universität Darmstadt
- Germany
| | - Wolf-Dieter Fessner
- Institut für Organische Chemie und Biochemie
- Technische Universität Darmstadt
- Germany
| |
Collapse
|
22
|
Gao W, Webber AL, Maxwell J, Anderson M, Caro L, Chung C, Miltenburg AMM, Popa S, Van Dyck K, Wenning L, Mangin E, Fandozzi C, Railkar R, Shire NJ, Fraser I, Howell B, Talal AH, Stoch SA. Fine-Needle Aspiration for the Evaluation of Hepatic Pharmacokinetics of Vaniprevir: A Randomized Trial in Patients With Hepatitis C Virus Infection. Clin Pharmacol Ther 2020; 107:1325-1333. [PMID: 31868916 DOI: 10.1002/cpt.1737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/31/2019] [Indexed: 11/10/2022]
Abstract
Fine-needle aspiration (FNA) for serial hepatic sampling may be an efficient and less invasive alternative to core needle biopsy (CNB), the current standard for liver tissue sampling. In this randomized, open-label trial in 31 participants with hepatitis C virus genotype 1 infection (NCT01678131/Merck protocol PN048), we evaluated the feasibility of using FNA to obtain human liver tissue samples appropriate for measuring hepatic pharmacokinetics (PK), using vaniprevir as a tool compound. The primary end point was successful retrieval of liver tissue specimens with measurable vaniprevir concentrations at two of three specified FNA time points. Twenty-nine patients met the primary end point and, therefore, were included in the PK analyses. Hepatic vaniprevir concentrations obtained with FNA were consistent with known vaniprevir PK properties. The shape of liver FNA and CNB concentration-time profiles were comparable. In conclusion, FNA may be effective for serial tissue sampling to assess hepatic drug exposure in patients with liver disease.
Collapse
Affiliation(s)
- Wei Gao
- Merck & Co., Inc, Kenilworth, New Jersey, USA
| | | | | | | | | | - Chris Chung
- Merck & Co., Inc, Kenilworth, New Jersey, USA
| | | | - Serghei Popa
- Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova
| | | | | | - Eric Mangin
- Merck & Co., Inc, Kenilworth, New Jersey, USA
| | | | | | | | - Iain Fraser
- Merck & Co., Inc, Kenilworth, New Jersey, USA
| | | | | | | |
Collapse
|
23
|
Gundala R, Balutia H, Lavanya R, Velayutham R, Roy KK. HCV NS3 serine protease as a drug target for the development of drugs against hepatocellular carcinoma (liver cancer). CANCER-LEADING PROTEASES 2020:243-263. [DOI: 10.1016/b978-0-12-818168-3.00009-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
24
|
Girvin ZC, Andrews MK, Liu X, Gellman SH. Foldamer-templated catalysis of macrocycle formation. Science 2019; 366:1528-1531. [PMID: 31857487 PMCID: PMC7956107 DOI: 10.1126/science.aax7344] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/13/2019] [Accepted: 11/04/2019] [Indexed: 12/19/2022]
Abstract
Macrocycles, compounds containing a ring of 12 or more atoms, find use in human medicine, fragrances, and biological ion sensing. The efficient preparation of macrocycles is a fundamental challenge in synthetic organic chemistry because the high entropic cost of large-ring closure allows undesired intermolecular reactions to compete. Here, we present a bioinspired strategy for macrocycle formation through carbon-carbon bond formation. The process relies on a catalytic oligomer containing α- and β-amino acid residues to template the ring-closing process. The α/β-peptide foldamer adopts a helical conformation that displays a catalytic primary amine-secondary amine diad in a specific three-dimensional arrangement. This catalyst promotes aldol reactions that form rings containing 14 to 22 atoms. Utility is demonstrated in the synthesis of the natural product robustol.
Collapse
Affiliation(s)
- Zebediah C Girvin
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Xinyu Liu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Samuel H Gellman
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
25
|
Tyagi M, Begnini F, Poongavanam V, Doak BC, Kihlberg J. Drug Syntheses Beyond the Rule of 5. Chemistry 2019; 26:49-88. [DOI: 10.1002/chem.201902716] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/20/2019] [Indexed: 01/26/2023]
Affiliation(s)
- Mohit Tyagi
- Department of Chemistry–BMC Uppsala University Box 576 75123 Uppsala Sweden
| | - Fabio Begnini
- Department of Chemistry–BMC Uppsala University Box 576 75123 Uppsala Sweden
| | | | - Bradley C. Doak
- Department of Medicinal Chemistry, MIPS Monash University 381 Royal Parade Parkville Victoria 3052 Australia
| | - Jan Kihlberg
- Department of Chemistry–BMC Uppsala University Box 576 75123 Uppsala Sweden
| |
Collapse
|
26
|
Campos KR, Coleman PJ, Alvarez JC, Dreher SD, Garbaccio RM, Terrett NK, Tillyer RD, Truppo MD, Parmee ER. The importance of synthetic chemistry in the pharmaceutical industry. Science 2019; 363:363/6424/eaat0805. [PMID: 30655413 DOI: 10.1126/science.aat0805] [Citation(s) in RCA: 268] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Innovations in synthetic chemistry have enabled the discovery of many breakthrough therapies that have improved human health over the past century. In the face of increasing challenges in the pharmaceutical sector, continued innovation in chemistry is required to drive the discovery of the next wave of medicines. Novel synthetic methods not only unlock access to previously unattainable chemical matter, but also inspire new concepts as to how we design and build chemical matter. We identify some of the most important recent advances in synthetic chemistry as well as opportunities at the interface with partner disciplines that are poised to transform the practice of drug discovery and development.
Collapse
Affiliation(s)
- Kevin R Campos
- Global Chemistry, Merck & Co. Inc., Kenilworth, NJ 07033, USA.
| | - Paul J Coleman
- Global Chemistry, Merck & Co. Inc., Kenilworth, NJ 07033, USA.
| | - Juan C Alvarez
- Global Chemistry, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | | | | | | | | | | | - Emma R Parmee
- Global Chemistry, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| |
Collapse
|
27
|
Cummings MD, Sekharan S. Structure-Based Macrocycle Design in Small-Molecule Drug Discovery and Simple Metrics To Identify Opportunities for Macrocyclization of Small-Molecule Ligands. J Med Chem 2019; 62:6843-6853. [DOI: 10.1021/acs.jmedchem.8b01985] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Maxwell D. Cummings
- Janssen Research and Development, LLC, Welsh and McKean Roads, Spring House, Pennsylvania 19477, United States
| | - Sivakumar Sekharan
- Cambridge Crystallographic Data Centre, 252 Nassau Street, Princeton, New Jersey 08542, United States
| |
Collapse
|
28
|
Kammarabutr J, Mahalapbutr P, Nutho B, Kungwan N, Rungrotmongkol T. Low susceptibility of asunaprevir towards R155K and D168A point mutations in HCV NS3/4A protease: A molecular dynamics simulation. J Mol Graph Model 2019; 89:122-130. [PMID: 30884449 DOI: 10.1016/j.jmgm.2019.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 01/02/2023]
Abstract
Hepatitis C has become an important health problem that requires expensive treatment and leads to liver tumorigenesis. Hepatitis C virus (HCV), which is the main cause of hepatitis C, has a high mutation rate due to the lack of proofreading activity of the RNA polymerase enzyme. The NS3/4A serine protease is an important target for anti-HCV drug discovery and development because of its crucial role in the cleavage of the polypeptides involved in viral replication. In the present study, all-atom molecular dynamics simulation was performed to elucidate the effect of the single point mutations R155K and D168A in the HCV genotype 1 NS3/4A protease on the structural dynamics, molecular interactions and susceptibility of asunaprevir (ASV), a second-generation NS3/4A protease inhibitor. Principal component analysis indicated that these two mutations converted the direction of motion of residues 123, 155 and 168 in the binding pocket to significantly point outwards from ASV, resulting in a loss of the hydrogen bond network of residues R123···R155···D168. The free energy calculations based on different semiempirical QM/MM-GBSA methods revealed that the binding affinity of ASV with the two mutant forms of the NS3/4A protease was significantly decreased in the order of wild-type < R155K < D168A. This work provided useful structural information regarding the atomistic understanding of acquired drug resistance against ASV caused by the R155K and D168A mutations.
Collapse
Affiliation(s)
- Jirayu Kammarabutr
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Panupong Mahalapbutr
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Bodee Nutho
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Nawee Kungwan
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Muang District, Chiang Mai, 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Thanyada Rungrotmongkol
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand; Ph.D. Program in Bioinformatics and Computational Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
29
|
Özen A, Prachanronarong K, Matthew AN, Soumana DI, Schiffer CA. Resistance outside the substrate envelope: hepatitis C NS3/4A protease inhibitors. Crit Rev Biochem Mol Biol 2019; 54:11-26. [PMID: 30821513 DOI: 10.1080/10409238.2019.1568962] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Direct acting antivirals have dramatically increased the efficacy and tolerability of hepatitis C treatment, but drug resistance has emerged with some of these inhibitors, including nonstructural protein 3/4 A protease inhibitors (PIs). Although many co-crystal structures of PIs with the NS3/4A protease have been reported, a systematic review of these crystal structures in the context of the rapidly emerging drug resistance especially for early PIs has not been performed. To provide a framework for designing better inhibitors with higher barriers to resistance, we performed a quantitative structural analysis using co-crystal structures and models of HCV NS3/4A protease in complex with natural substrates and inhibitors. By comparing substrate structural motifs and active site interactions with inhibitor recognition, we observed that the selection of drug resistance mutations correlates with how inhibitors deviate from viral substrates in molecular recognition. Based on this observation, we conclude that guiding the design process with native substrate recognition features is likely to lead to more robust small molecule inhibitors with decreased susceptibility to resistance.
Collapse
Affiliation(s)
- Ayşegül Özen
- a Department of Biochemistry and Molecular Pharmacology , University of Massachusetts Medical School , Worcester , MA , USA
| | - Kristina Prachanronarong
- a Department of Biochemistry and Molecular Pharmacology , University of Massachusetts Medical School , Worcester , MA , USA
| | - Ashley N Matthew
- a Department of Biochemistry and Molecular Pharmacology , University of Massachusetts Medical School , Worcester , MA , USA
| | - Djade I Soumana
- a Department of Biochemistry and Molecular Pharmacology , University of Massachusetts Medical School , Worcester , MA , USA
| | - Celia A Schiffer
- a Department of Biochemistry and Molecular Pharmacology , University of Massachusetts Medical School , Worcester , MA , USA
| |
Collapse
|
30
|
Zhu W, Zhang B, Li M, Mo F, Mi T, Wu Y, Teng Z, Zhou Q, Li W, Hu B. Precisely controlling endogenous protein dosage in hPSCs and derivatives to model FOXG1 syndrome. Nat Commun 2019; 10:928. [PMID: 30804331 PMCID: PMC6389984 DOI: 10.1038/s41467-019-08841-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 01/23/2019] [Indexed: 01/25/2023] Open
Abstract
Dosage of key regulators impinge on developmental disorders such as FOXG1 syndrome. Since neither knock-out nor knock-down strategy assures flexible and precise protein abundance control, to study hypomorphic or haploinsufficiency expression remains challenging. We develop a system in human pluripotent stem cells (hPSCs) using CRISPR/Cas9 and SMASh technology, with which we can target endogenous proteins for precise dosage control in hPSCs and at multiple stages of neural differentiation. We also reveal FOXG1 dose-dependently affect the cellular constitution of human brain, with 60% mildly affect GABAergic interneuron development while 30% thresholds the production of MGE derived neurons. Abnormal interneuron differentiation accounts for various neurological defects such as epilepsy or seizures, which stimulates future innovative cures of FOXG1 syndrome. By means of its robustness and easiness, dosage-control of proteins in hPSCs and their derivatives will update the understanding and treatment of additional diseases caused by abnormal protein dosage. Altered dosage of developmental regulators such as transcription factors can result in disorders, such as FOXG1 syndrome. Here, the authors demonstrate the utility of SMASh technology for modulating protein dosage by modeling FOXG1 syndrome using human pluripotent stem cell-derived neurons and neural organoids.
Collapse
Affiliation(s)
- Wenliang Zhu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Boya Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Mengqi Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Fan Mo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Tingwei Mi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yihui Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Zhaoqian Teng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China. .,Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China. .,Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
| | - Baoyang Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China. .,Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
31
|
Sabatino V, Ward TR. Aqueous olefin metathesis: recent developments and applications. Beilstein J Org Chem 2019; 15:445-468. [PMID: 30873229 PMCID: PMC6404410 DOI: 10.3762/bjoc.15.39] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/24/2019] [Indexed: 12/22/2022] Open
Abstract
Olefin metathesis is one of the most powerful C-C double-bond-forming reactions. Metathesis reactions have had a tremendous impact in organic synthesis, enabling a variety of applications in polymer chemistry, drug discovery and chemical biology. Although challenging, the possibility to perform aqueous metatheses has become an attractive alternative, not only because water is a more sustainable medium, but also to exploit biocompatible conditions. This review focuses on the progress made in aqueous olefin metatheses and their applications in chemical biology.
Collapse
Affiliation(s)
- Valerio Sabatino
- Department of Chemistry, University of Basel, Building 1096, Mattenstraße 24a, Biopark Rosental, 4058, Basel, Switzerland
| | - Thomas R Ward
- Department of Chemistry, University of Basel, Building 1096, Mattenstraße 24a, Biopark Rosental, 4058, Basel, Switzerland
| |
Collapse
|
32
|
Abstract
Protein-protein interactions are ubiquitous, essential to almost all known biological processes, and offer attractive opportunities for therapeutic intervention. Linear peptide drugs, however, can be applied therapeutically as protein recognition motifs only to a limited extent because of their poor permeability, decreased receptor selectivity, and proteolytic stability. A major strategy in peptide chemistry is directed toward chemical modification and macrocyclization in order to limit a peptide's conformational possibilities, to increase its chemical and enzymatic stability, to prolong the time of action, and to increase activity and selectivity toward the receptor.
Collapse
Affiliation(s)
- Ye Che
- Discovery Sciences, Pfizer Inc., Groton, CT, USA.
| |
Collapse
|
33
|
Liverton NJ. Evolution of HCV NS3/4a Protease Inhibitors. TOPICS IN MEDICINAL CHEMISTRY 2019. [DOI: 10.1007/7355_2018_39] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
34
|
Ashraf MU, Iman K, Khalid MF, Salman HM, Shafi T, Rafi M, Javaid N, Hussain R, Ahmad F, Shahzad-Ul-Hussan S, Mirza S, Shafiq M, Afzal S, Hamera S, Anwar S, Qazi R, Idrees M, Qureshi SA, Chaudhary SU. Evolution of efficacious pangenotypic hepatitis C virus therapies. Med Res Rev 2018; 39:1091-1136. [PMID: 30506705 DOI: 10.1002/med.21554] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 12/12/2022]
Abstract
Hepatitis C compromises the quality of life of more than 350 million individuals worldwide. Over the last decade, therapeutic regimens for treating hepatitis C virus (HCV) infections have undergone rapid advancements. Initially, structure-based drug design was used to develop molecules that inhibit viral enzymes. Subsequently, establishment of cell-based replicon systems enabled investigations into various stages of HCV life cycle including its entry, replication, translation, and assembly, as well as role of host proteins. Collectively, these approaches have facilitated identification of important molecules that are deemed essential for HCV life cycle. The expanded set of putative virus and host-encoded targets has brought us one step closer to developing robust strategies for efficacious, pangenotypic, and well-tolerated medicines against HCV. Herein, we provide an overview of the development of various classes of virus and host-directed therapies that are currently in use along with others that are undergoing clinical evaluation.
Collapse
Affiliation(s)
- Muhammad Usman Ashraf
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan.,Virology Laboratory, Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Kanzal Iman
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Muhammad Farhan Khalid
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan.,Department of Biomedical Engineering, University of Engineering and Technology, Lahore, Pakistan
| | - Hafiz Muhammad Salman
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan.,Plant Biotechnology Laboratory, Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Talha Shafi
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Momal Rafi
- Department of Statistics, University of Gujrat, Gujrat, Pakistan
| | - Nida Javaid
- Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Rashid Hussain
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Fayyaz Ahmad
- Department of Statistics, University of Gujrat, Gujrat, Pakistan
| | | | - Shaper Mirza
- Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Muhammad Shafiq
- Plant Biotechnology Laboratory, Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Samia Afzal
- Virology Laboratory, Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Sadia Hamera
- Department of Plant Genetics, Institute of Life Sciences, University of Rostock, Germany
| | - Saima Anwar
- Department of Biomedical Engineering, University of Engineering and Technology, Lahore, Pakistan
| | - Romena Qazi
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital & Research Centre, Lahore, Pakistan
| | - Muhammad Idrees
- Virology Laboratory, Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.,Hazara University, Mansehra, Pakistan
| | - Sohail A Qureshi
- Institute of Integrative Biosciences, CECOS-University of Information Technology and Emerging Sciences, Peshawar, Pakistan
| | - Safee Ullah Chaudhary
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| |
Collapse
|
35
|
Armacost KA. The Transition from Academia: Overcoming the Barrier to a Career in the Drug Discovery Industry. J Chem Inf Model 2018; 58:1161-1163. [PMID: 29727178 DOI: 10.1021/acs.jcim.8b00262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This perspective describes the transition from academic training (specifically graduate school and a postdoctoral fellowship) to a career in the pharmaceutical industry as a computational chemist. My personal journey from childhood to senior scientist is described, along with suggestions and insights into a career in the pharmaceutical industry.
Collapse
Affiliation(s)
- Kira A Armacost
- Modeling & Informatics, MRL , Merck & Co., Inc. , West Point , Pennsylvania 19486 , United States
| |
Collapse
|
36
|
Young RJ, Leeson PD. Mapping the Efficiency and Physicochemical Trajectories of Successful Optimizations. J Med Chem 2018; 61:6421-6467. [DOI: 10.1021/acs.jmedchem.8b00180] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Robert J. Young
- GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Paul D. Leeson
- Paul Leeson Consulting Ltd., The Malt House, Main Street, Congerstone, Nuneaton, Warwickshire CV13 6LZ, U.K
| |
Collapse
|
37
|
Alihodžić S, Bukvić M, Elenkov IJ, Hutinec A, Koštrun S, Pešić D, Saxty G, Tomašković L, Žiher D. Current Trends in Macrocyclic Drug Discovery and beyond -Ro5. PROGRESS IN MEDICINAL CHEMISTRY 2018; 57:113-233. [DOI: 10.1016/bs.pmch.2018.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
38
|
The discovery and optimization of naphthalene-linked P2-P4 Macrocycles as inhibitors of HCV NS3 protease. Bioorg Med Chem Lett 2018; 28:43-48. [DOI: 10.1016/j.bmcl.2017.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 10/29/2017] [Accepted: 11/02/2017] [Indexed: 12/18/2022]
|
39
|
Agbowuro AA, Huston WM, Gamble AB, Tyndall JDA. Proteases and protease inhibitors in infectious diseases. Med Res Rev 2017; 38:1295-1331. [PMID: 29149530 DOI: 10.1002/med.21475] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/10/2017] [Accepted: 10/17/2017] [Indexed: 12/31/2022]
Abstract
There are numerous proteases of pathogenic organisms that are currently targeted for therapeutic intervention along with many that are seen as potential drug targets. This review discusses the chemical and biological makeup of some key druggable proteases expressed by the five major classes of disease causing agents, namely bacteria, viruses, fungi, eukaryotes, and prions. While a few of these enzymes including HIV protease and HCV NS3-4A protease have been targeted to a clinically useful level, a number are yet to yield any clinical outcomes in terms of antimicrobial therapy. A significant aspect of this review discusses the chemical and pharmacological characteristics of inhibitors of the various proteases discussed. A total of 25 inhibitors have been considered potent and safe enough to be trialed in humans and are at different levels of clinical application. We assess the mechanism of action and clinical performance of the protease inhibitors against infectious agents with their developmental strategies and look to the next frontiers in the use of protease inhibitors as anti-infective agents.
Collapse
Affiliation(s)
| | - Wilhelmina M Huston
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Allan B Gamble
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
40
|
Jin G, Lee J, Lee K. Chemical genetics-based development of small molecules targeting hepatitis C virus. Arch Pharm Res 2017; 40:1021-1036. [PMID: 28856597 DOI: 10.1007/s12272-017-0949-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/20/2017] [Indexed: 12/21/2022]
Abstract
Hepatitis C virus (HCV) infection is a major worldwide problem that has emerged as one of the most significant diseases affecting humans. There are currently no vaccines or efficient therapies without side effects, despite today's advanced medical technology. Currently, the common therapy for most patients (i.e. genotype 1) is combination of HCV-specific direct-acting antivirals (DAAs). Up to 2011, the standard of care (SOC) was a combination of peg-IFNα with ribavirin (RBV). After approval of NS3/4A protease inhibitor, SOC was peg-IFNα and RBV with either the first-generation DAAs boceprevir or telaprevir. In the past several years, various novel small molecules have been discovered and some of them (i.e., HCV polymerase, protease, helicase and entry inhibitors) have undergone clinical trials. Between 2013 and 2016, the second-generation DAA drugs simeprevir, asunaprevir, daclatasvir, dasabuvir, sofosbuvir, and elbasvir were approved, as well as the combinational drugs Harvoni®, Zepatier®, Technivie®, and Epclusa®. A number of reviews have been recently published describing the structure-activity relationship (SAR) in the development of HCV inhibitors and outlining current therapeutic approaches to hepatitis C infection. Target identification involves studying a drug's mechanism of action (MOA), and a variety of target identification methods have been developed in the past few years. Chemical biology has emerged as a powerful tool for studying biological processes using small molecules. The use of chemical genetic methods is a valuable strategy for studying the molecular mechanisms of the viral lifecycle and screening for anti-viral agents. Two general screening approaches have been employed: forward and reverse chemical genetics. This review reveals information on the small molecules in HCV drug discovery by using chemical genetics for targeting the HCV protein and describes successful examples of targets identified with these methods.
Collapse
Affiliation(s)
- Guanghai Jin
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Jisu Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea.
| |
Collapse
|
41
|
Caro L, de Hoon J, Depré M, Cilissen C, Miller J, Gao W, Panebianco D, Guo Z, Troemel SL, Anderson MS, Uemura N, Butterton J, Wagner J, Wright DH. Single-Dose and Multiple-Dose Pharmacokinetics of Vaniprevir in Healthy Men. Clin Transl Sci 2017; 10:480-486. [PMID: 28796416 PMCID: PMC6402189 DOI: 10.1111/cts.12482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/22/2017] [Indexed: 12/26/2022] Open
Abstract
Vaniprevir is an inhibitor of the hepatitis C virus (HCV) NS3/4A protease. The aim of these double‐blind, placebo‐controlled phase I studies was to evaluate the safety and pharmacokinetics of vaniprevir in healthy male volunteers. The primary objective for both studies was the safety and tolerability of vaniprevir. Single‐dose and steady‐state pharmacokinetics were also assessed. In both studies, there was no apparent relationship between the frequency or intensity of adverse events and vaniprevir dose. At single doses >20 mg, the plasma area under the curve (AUC)0–∞ and maximum concentration (Cmax) increased in a greater‐than‐dose‐proportional manner. The geometric mean ratios (GMRs; fed/fasted) were 1.22 and 0.79 for AUC0–∞ and Cmax, respectively. Following multiple doses, GMR accumulations for AUC0–12h and Cmax (day 14/day 1) ranged from 1.53 to 1.90 and from 1.41 to 1.92, respectively. These data support the use of vaniprevir with peginterferon and ribavirin in patients with HCV infection.
Collapse
Affiliation(s)
- L Caro
- Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - J de Hoon
- Center for Clinical Pharmacology, University Hospitals, Leuven, Belgium
| | - M Depré
- Center for Clinical Pharmacology, University Hospitals, Leuven, Belgium
| | - C Cilissen
- Merck Sharp & Dohme (Europe) Inc., Brussels, Belgium
| | - J Miller
- Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - W Gao
- Merck & Co., Inc., Kenilworth, New Jersey, USA
| | | | - Z Guo
- Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - S L Troemel
- Merck & Co., Inc., Kenilworth, New Jersey, USA
| | | | - N Uemura
- Merck & Co., Inc., Kenilworth, New Jersey, USA.,Current affiliation: Oita University, Oita, Japan
| | - J Butterton
- Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - J Wagner
- Merck & Co., Inc., Kenilworth, New Jersey, USA.,Current affiliation: Takeda Pharmaceuticals U.S.A., Inc., Deerfield, Illinois, USA
| | - D H Wright
- Merck & Co., Inc., Kenilworth, New Jersey, USA
| |
Collapse
|
42
|
Novel peptidyl α-aminoalkylphosphonates as inhibitors of hepatitis C virus NS3/4A protease. Antiviral Res 2017; 144:286-298. [DOI: 10.1016/j.antiviral.2017.06.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 05/10/2017] [Accepted: 06/20/2017] [Indexed: 12/13/2022]
|
43
|
Matthew AN, Zephyr J, Hill CJ, Jahangir M, Newton A, Petropoulos CJ, Huang W, Kurt-Yilmaz N, Schiffer CA, Ali A. Hepatitis C Virus NS3/4A Protease Inhibitors Incorporating Flexible P2 Quinoxalines Target Drug Resistant Viral Variants. J Med Chem 2017; 60:5699-5716. [PMID: 28594175 DOI: 10.1021/acs.jmedchem.7b00426] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A substrate envelope-guided design strategy is reported for improving the resistance profile of HCV NS3/4A protease inhibitors. Analogues of 5172-mcP1P3 were designed by incorporating diverse quinoxalines at the P2 position that predominantly interact with the invariant catalytic triad of the protease. Exploration of structure-activity relationships showed that inhibitors with small hydrophobic substituents at the 3-position of P2 quinoxaline maintain better potency against drug resistant variants, likely due to reduced interactions with residues in the S2 subsite. In contrast, inhibitors with larger groups at this position were highly susceptible to mutations at Arg155, Ala156, and Asp168. Excitingly, several inhibitors exhibited exceptional potency profiles with EC50 values ≤5 nM against major drug resistant HCV variants. These findings support that inhibitors designed to interact with evolutionarily constrained regions of the protease, while avoiding interactions with residues not essential for substrate recognition, are less likely to be susceptible to drug resistance.
Collapse
Affiliation(s)
- Ashley N Matthew
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School , Worcester, Massachusetts 01605, United States
| | - Jacqueto Zephyr
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School , Worcester, Massachusetts 01605, United States
| | - Caitlin J Hill
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School , Worcester, Massachusetts 01605, United States
| | - Muhammad Jahangir
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School , Worcester, Massachusetts 01605, United States
| | - Alicia Newton
- Monogram Biosciences , South San Francisco, California 94080, United States
| | | | - Wei Huang
- Monogram Biosciences , South San Francisco, California 94080, United States
| | - Nese Kurt-Yilmaz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School , Worcester, Massachusetts 01605, United States
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School , Worcester, Massachusetts 01605, United States
| | - Akbar Ali
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School , Worcester, Massachusetts 01605, United States
| |
Collapse
|
44
|
Hayes CN, Chayama K. Why highly effective drugs are not enough: the need for an affordable solution to eliminating HCV. Expert Rev Clin Pharmacol 2017; 10:583-594. [PMID: 28374641 DOI: 10.1080/17512433.2017.1313111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Because of the rapid pace of development of new direct-acting antiviral (DAA) drugs, chronic hepatitis C virus (HCV) infection is now increasingly considered curable. However, the emphasis on DAA therapies disregards key issues related to cost, availability, and antiviral resistance. Areas covered: This perspective provides an overview of current HCV therapies and the development of DAAs, followed by a discussion of the limitations of DAA therapy. A literature search was used to select relevant studies, and a web search for relevant news articles and press releases was conducted. Expert commentary: Despite cure rates exceeding 90%, now is not the time to declare victory against HCV but to reinforce recent progress by addressing the issues of cost and availability as well as by developing strategies to manage antiviral resistance. Future drug development efforts should place greater emphasis on targeting host factors required for HCV replication, for which the barrier to resistance is higher, and effort should continue to develop a vaccine against HCV. Finally, efforts should be made to facilitate large-scale screening in endemic areas to identify and treat patients as early as possible to reduce long-term risks of advanced liver disease and their attendant costs of management.
Collapse
Affiliation(s)
- C Nelson Hayes
- a Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences , Hiroshima University , Hiroshima , Japan.,b Liver Research Project Center , Hiroshima University , Hiroshima , Japan
| | - Kazuaki Chayama
- a Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences , Hiroshima University , Hiroshima , Japan.,b Liver Research Project Center , Hiroshima University , Hiroshima , Japan.,c Laboratory for Digestive Diseases, Center for Genomic Medicine , RIKEN , Hiroshima , Japan
| |
Collapse
|
45
|
|
46
|
Hayes CN, Imamura M, Chayama K. The practical management of chronic hepatitis C infection in Japan - dual therapy of daclatasvir + asunaprevir. Expert Rev Gastroenterol Hepatol 2017; 11:103-113. [PMID: 27936974 DOI: 10.1080/17474124.2017.1270205] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Without treatment, many of the 200 million people worldwide with chronic hepatitis C virus (HCV) infection will develop cirrhosis or liver cancer. Japan was the first nation to approve an interferon-free therapy for HCV, and sustained viral response (SVR) rates >90% have been achieved with asunaprevir, a protease inhibitor, plus daclatasvir, an inhibitor of the non-structural 5A (NS5A) protein. Areas covered: This review provides an overview of the results from both clinical trials and real world experience with asunaprevir and daclatasvir therapy focused primarily on Japan. A literature search using the keywords 'asunaprevir,' 'daclatasvir,' 'interferon-free therapy,' and 'direct-acting antiviral drugs' was initially used to select relevant literature for inclusion in the review. Expert commentary: While not approved in the United States, dual therapy with asunaprevir plus daclatasvir has already been successfully used in Japan and throughout East Asia to treat many thousands of patients. Pre-existing or treatment-emergent NS5A-Y93 or -L31 resistance-associated variants (RAVs) may lead to viral breakthrough, and alternative therapies should be considered for these patients, but patients who harbor NS5A RAVs only at low frequency are likely to achieve SVR. The therapy has also been shown to be safe and effective with renal dysfunction or liver cirrhosis.
Collapse
Affiliation(s)
- C Nelson Hayes
- a Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences , Hiroshima University , Minami-ku , Hiroshima , Japan.,b Liver Research Project Center , Hiroshima University , Hiroshima , Japan
| | - Michio Imamura
- a Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences , Hiroshima University , Minami-ku , Hiroshima , Japan.,b Liver Research Project Center , Hiroshima University , Hiroshima , Japan
| | - Kazuaki Chayama
- a Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences , Hiroshima University , Minami-ku , Hiroshima , Japan.,b Liver Research Project Center , Hiroshima University , Hiroshima , Japan.,c Laboratory for Digestive Diseases , Center for Genomic Medicine, RIKEN , Hiroshima , Japan
| |
Collapse
|
47
|
Brown FK, Sherer EC, Johnson SA, Holloway MK, Sherborne BS. The evolution of drug design at Merck Research Laboratories. J Comput Aided Mol Des 2016; 31:255-266. [PMID: 27878643 DOI: 10.1007/s10822-016-9993-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/14/2016] [Indexed: 11/30/2022]
Abstract
On October 5, 1981, Fortune magazine published a cover article entitled the "Next Industrial Revolution: Designing Drugs by Computer at Merck". With a 40+ year investment, we have been in the drug design business longer than most. During its history, the Merck drug design group has had several names, but it has always been in the "design" business, with the ultimate goal to provide an actionable hypothesis that could be tested experimentally. Often the result was a small molecule but it could just as easily be a peptide, biologic, predictive model, reaction, process, etc. To this end, the concept of design is now front and center in all aspects of discovery, safety assessment and early clinical development. At present, the Merck design group includes computational chemistry, protein structure determination, and cheminformatics. By bringing these groups together under one umbrella, we were able to align activities and capabilities across multiple research sites and departments. This alignment from 2010 to 2016 resulted in an 80% expansion in the size of the department, reflecting the increase in impact due to a significant emphasis across the organization to "design first" along the entire drug discovery path from lead identification (LID) to first in human (FIH) dosing. One of the major advantages of this alignment has been the ability to access all of the data and create an adaptive approach to the overall LID to FIH pathway for any modality, significantly increasing the quality of candidates and their probability of success. In this perspective, we will discuss how we crafted a new strategy, defined the appropriate phenotype for group members, developed the right skillsets, and identified metrics for success in order to drive continuous improvement. We will not focus on the tactical implementation, only giving specific examples as appropriate.
Collapse
Affiliation(s)
- Frank K Brown
- Structural Chemistry Department, MRL Research Laboratories, West Point, PA, USA.
| | - Edward C Sherer
- Structural Chemistry Department, MRL Research Laboratories, Rahway, NJ, USA
| | - Scott A Johnson
- Structural Chemistry Department, MRL Research Laboratories, Boston, MA, USA
| | | | - Bradley S Sherborne
- Structural Chemistry Department, MRL Research Laboratories, Kenilworth, NJ, USA
| |
Collapse
|
48
|
Grychowska K, Kubica B, Drop M, Colacino E, Bantreil X, Pawłowski M, Martinez J, Subra G, Zajdel P, Lamaty F. Application of the ring-closing metathesis to the formation of 2-aryl-1H-pyrrole-3-carboxylates as building blocks for biologically active compounds. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.09.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
49
|
Kumada H, Mochida S, Suzuki F, Chayama K, Karino Y, Nakamura K, Fujimoto G, Howe AYM, Ludmerer SW, Mobashery N. Vaniprevir plus peginterferon alfa-2b and ribavirin in treatment-experienced Japanese patients with hepatitis C virus genotype 1 (GT1b) infection: Phase 3 studies. J Gastroenterol Hepatol 2016; 31:1674-1683. [PMID: 26936417 DOI: 10.1111/jgh.13328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/18/2016] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIM Vaniprevir is a macrocyclic hepatitis C virus (HCV) non-structural (NS)3/4A protease inhibitor. The objective of these phase 3 multicenter, open-label trials was to evaluate the safety and efficacy of vaniprevir + peginterferon alfa-2b + ribavirin (PR) in Japanese patients with HCV genotype (GT)1 infection who had previously failed treatment with interferon-based regimens. METHODS Japanese patients with chronic HCV GT1 were enrolled. In PN044, patients with previous relapse or virologic breakthrough were randomized to vaniprevir (300 mg twice daily) + PR for 12 weeks followed by PR for another 12 weeks (12-week arm) or vaniprevir + PR for 24 weeks (24-week arm). In PN045, patients with previous partial/null response received vaniprevir + PR for 24 weeks. The primary endpoint was sustained virologic response at 24 weeks after completing treatment (SVR24 ). RESULTS In PN044 (n = 51), SVR24 was 92.0% and 96.2% in the 12- and 24-week arms, respectively. In PN045 (n = 42), SVR24 was 61.9% in all patients and 55.2% in previous null responders. In both studies, vaniprevir + PR was generally safe and well tolerated; the majority of adverse events were mild/moderate and included pyrexia, decreased hemoglobin, headache, nausea, pruritus, and decreased platelet count. Polymorphisms in the HCV NS3 gene at baseline (Y56, Q80, and V170) did not impact treatment outcome. Virologic failure was principally associated with the on-treatment emergence of R155 or D168 mutations. CONCLUSIONS Vaniprevir + PR is an effective, well-tolerated treatment for Japanese patients with HCV GT1 infection who failed previous interferon-based treatment. ClinicalTrials.gov Identifier NCT01405937 and NCT01405560 (Protocols PN044 and PN045).
Collapse
Affiliation(s)
| | - Satoshi Mochida
- Department of Gastroenterology and Hepatology, Saitama Medical University, Saitama, Japan
| | - Fumitaka Suzuki
- Department of Hepatology, Toranomon Hospital, Kanagawa, Japan.
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Hiroshima University, Hiroshima, Japan
| | - Yoshiyasu Karino
- Department of Gastroenterology, Sapporo-Kosei General Hospital, Sapporo, Japan
| | | | | | - Anita Y M Howe
- Merck & Co., Inc., Kenilworth, New Jersey, USA.,Former employee of Merck & Co., Inc., Kenilworth, New Jersey, USA
| | | | - Niloufar Mobashery
- Merck & Co., Inc., Kenilworth, New Jersey, USA.,Former employee of Merck & Co., Inc., Kenilworth, New Jersey, USA
| |
Collapse
|
50
|
McCauley JA, Rudd MT. Hepatitis C virus NS3/4a protease inhibitors. Curr Opin Pharmacol 2016; 30:84-92. [DOI: 10.1016/j.coph.2016.07.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/20/2016] [Accepted: 07/25/2016] [Indexed: 02/04/2023]
|