1
|
Corner TP, Teo RZR, Wu Y, Salah E, Nakashima Y, Fiorini G, Tumber A, Brasnett A, Holt-Martyn JP, Figg WD, Zhang X, Brewitz L, Schofield CJ. Structure-guided optimisation of N-hydroxythiazole-derived inhibitors of factor inhibiting hypoxia-inducible factor-α. Chem Sci 2023; 14:12098-12120. [PMID: 37969593 PMCID: PMC10631261 DOI: 10.1039/d3sc04253g] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/12/2023] [Indexed: 11/17/2023] Open
Abstract
The human 2-oxoglutarate (2OG)- and Fe(ii)-dependent oxygenases factor inhibiting hypoxia-inducible factor-α (FIH) and HIF-α prolyl residue hydroxylases 1-3 (PHD1-3) regulate the response to hypoxia in humans via catalysing hydroxylation of the α-subunits of the hypoxia-inducible factors (HIFs). Small-molecule PHD inhibitors are used for anaemia treatment; by contrast, few selective inhibitors of FIH have been reported, despite their potential to regulate the hypoxic response, either alone or in combination with PHD inhibition. We report molecular, biophysical, and cellular evidence that the N-hydroxythiazole scaffold, reported to inhibit PHD2, is a useful broad spectrum 2OG oxygenase inhibitor scaffold, the inhibition potential of which can be tuned to achieve selective FIH inhibition. Structure-guided optimisation resulted in the discovery of N-hydroxythiazole derivatives that manifest substantially improved selectivity for FIH inhibition over PHD2 and other 2OG oxygenases, including Jumonji-C domain-containing protein 5 (∼25-fold), aspartate/asparagine-β-hydroxylase (>100-fold) and histone Nε-lysine demethylase 4A (>300-fold). The optimised N-hydroxythiazole-based FIH inhibitors modulate the expression of FIH-dependent HIF target genes and, consistent with reports that FIH regulates cellular metabolism, suppressed lipid accumulation in adipocytes. Crystallographic studies reveal that the N-hydroxythiazole derivatives compete with both 2OG and the substrate for binding to the FIH active site. Derivatisation of the N-hydroxythiazole scaffold has the potential to afford selective inhibitors for 2OG oxygenases other than FIH.
Collapse
Affiliation(s)
- Thomas P Corner
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| | - Ryan Z R Teo
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| | - Yue Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization and Department of Chemistry, China Pharmaceutical University Nanjing 211198 China
| | - Eidarus Salah
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| | - Yu Nakashima
- Institute of Natural Medicine, University of Toyama 2630-Sugitani 930-0194 Toyama Japan
| | - Giorgia Fiorini
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| | - Anthony Tumber
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| | - Amelia Brasnett
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| | - James P Holt-Martyn
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| | - William D Figg
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| | - Xiaojin Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization and Department of Chemistry, China Pharmaceutical University Nanjing 211198 China
| | - Lennart Brewitz
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| |
Collapse
|
2
|
Tumber A, Salah E, Brewitz L, Corner TP, Schofield CJ. Kinetic and inhibition studies on human Jumonji-C (JmjC) domain-containing protein 5. RSC Chem Biol 2023; 4:399-413. [PMID: 37292060 PMCID: PMC10246557 DOI: 10.1039/d2cb00249c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/19/2023] [Indexed: 06/10/2023] Open
Abstract
Jumonji-C (JmjC) domain-containing protein 5 (JMJD5) is a human 2-oxoglutarate (2OG) and Fe(ii)-dependent oxygenase which catalyses the post-translational C3 hydroxylation of arginyl-residues and which is linked to the circadian rhythm and to cancer biology through as yet unidentified mechanisms. We report robust solid phase extraction coupled to mass spectrometry (SPE-MS)-based JMJD5 assays which enable kinetic and high-throughput inhibition studies. The kinetic studies reveal that some synthetic 2OG derivatives, notably including a 2OG derivative with a cyclic carbon backbone (i.e. (1R)-3-(carboxycarbonyl)cyclopentane-1-carboxylic acid), are efficient alternative cosubstrates of JMJD5 and of factor inhibiting hypoxia-inducible transcription factor HIF-α (FIH), but not of the Jumonji-C (JmjC) histone Nε-methyl lysine demethylase KDM4E, apparently reflecting the closer structural similarity of JMJD5 and FIH. The JMJD5 inhibition assays were validated by investigating the effect of reported 2OG oxygenase inhibitors on JMJD5 catalysis; the results reveal that broad-spectrum 2OG oxygenase inhibitors are also efficient JMJD5 inhibitors (e.g. N-oxalylglycine, pyridine-2,4-dicarboxylic acid, ebselen) whereas most 2OG oxygenase inhibitors that are in clinical use (e.g. roxadustat) do not inhibit JMJD5. The SPE-MS assays will help enable the development of efficient and selective JMJD5 inhibitors for investigating the biochemical functions of JMJD5 in cellular studies.
Collapse
Affiliation(s)
- Anthony Tumber
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford UK
| | - Eidarus Salah
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford UK
| | - Lennart Brewitz
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford UK
| | - Thomas P Corner
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford UK
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford UK
| |
Collapse
|
3
|
Islam MS, Markoulides M, Chowdhury R, Schofield CJ. Structural analysis of the 2-oxoglutarate binding site of the circadian rhythm linked oxygenase JMJD5. Sci Rep 2022; 12:20680. [PMID: 36450832 PMCID: PMC9712658 DOI: 10.1038/s41598-022-24154-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/10/2022] [Indexed: 12/05/2022] Open
Abstract
JmjC (Jumonji-C) domain-containing 5 (JMJD5) plays important roles in circadian regulation in plants and humans and is involved in embryonic development and cell proliferation. JMJD5 is a 2-oxoglutarate (2OG) and Fe(II) dependent oxygenase of the JmjC subfamily, which includes histone Nε-methyl lysine-demethylases (KDMs) and hydroxylases catalysing formation of stable alcohol products. JMJD5 is reported to have KDM activity, but has been shown to catalyse C-3 hydroxylation of arginine residues in sequences from human regulator of chromosome condensation domain-containing protein 1 (RCCD1) and ribosomal protein S6 (RPS6) in vitro. We report crystallographic analyses of human JMJD5 complexed with 2OG analogues, including the widely used hypoxia mimic pyridine-2,4-dicarboxylate, both D- and L-enantiomers of the oncometabolite 2-hydroxyglutarate, and a cyclic N-hydroxyimide. The results support the assignment of JMJD5 as a protein hydroxylase and reveal JMJD5 has an unusually compact 2OG binding pocket suitable for exploitation in development of selective inhibitors. They will be useful in the development of chemical probes to investigate the physiologically relevant roles of JMJD5 in circadian rhythm and development and explore its potential as a medicinal chemistry target.
Collapse
Affiliation(s)
- Md Saiful Islam
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Marios Markoulides
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Rasheduzzaman Chowdhury
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
4
|
Yang J, Hu Y, Zhang B, Liang X, Li X. The JMJD Family Histone Demethylases in Crosstalk Between Inflammation and Cancer. Front Immunol 2022; 13:881396. [PMID: 35558079 PMCID: PMC9090529 DOI: 10.3389/fimmu.2022.881396] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/23/2022] [Indexed: 02/05/2023] Open
Abstract
Inflammation has emerged as a key player in regulating cancer initiation, progression, and therapeutics, acting as a double edged sword either facilitating cancer progression and therapeutic resistance or inducing anti-tumor immune responses. Accumulating evidence has linked the epigenetic modifications of histones to inflammation and cancer, and histone modifications-based strategies have shown promising therapeutic potentials against cancer. The jumonji C domain-containing (JMJD) family histone demethylases have exhibited multiple regulator functions in inflammatory processes and cancer development, and a number of therapeutic strategies targeting JMJD histone demethylases to modulate inflammatory cells and their products have been successfully evaluated in clinical or preclinical tumor models. This review summarizes current understanding of the functional roles and mechanisms of JMJD histone demethylases in crosstalk between inflammation and cancer, and highlights recent clinical and preclinical progress on harnessing the JMJD histone demethylases to regulate cancer-related inflammation for future cancer therapeutics.
Collapse
Affiliation(s)
- Jia Yang
- Department of Gynecology and Obstetrics and Pediatric Nephrology Nursing, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Yuan Hu
- Department of Gynecology and Obstetrics and Pediatric Nephrology Nursing, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Binjing Zhang
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiao Liang
- Department of Gynecology and Obstetrics and Pediatric Nephrology Nursing, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Xin Li
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Conservation of the unusual dimeric JmjC fold of JMJD7 from Drosophila melanogaster to humans. Sci Rep 2022; 12:6065. [PMID: 35410347 PMCID: PMC9001643 DOI: 10.1038/s41598-022-10028-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/30/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractThe JmjC family of 2-oxoglutarate dependent oxygenases catalyse a range of hydroxylation and demethylation reactions in humans and other animals. Jumonji domain-containing 7 (JMJD7) is a JmjC (3S)-lysyl-hydroxylase that catalyses the modification of Developmentally Regulated GTP Binding Proteins 1 and 2 (DRG1 and 2); JMJD7 has also been reported to have histone endopeptidase activity. Here we report biophysical and biochemical studies on JMJD7 from Drosophila melanogaster (dmJMJD7). Notably, crystallographic analyses reveal that the unusual dimerization mode of JMJD7, which involves interactions between both the N- and C-terminal regions of both dmJMJD7 monomers and disulfide formation, is conserved in human JMJD7 (hsJMJD7). The results further support the assignment of JMJD7 as a lysyl hydroxylase and will help enable the development of selective inhibitors for it and other JmjC oxygenases.
Collapse
|
6
|
Perry GS, Das M, Woon ECY. Inhibition of AlkB Nucleic Acid Demethylases: Promising New Epigenetic Targets. J Med Chem 2021; 64:16974-17003. [PMID: 34792334 DOI: 10.1021/acs.jmedchem.1c01694] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The AlkB family of nucleic acid demethylases is currently of intense chemical, biological, and medical interest because of its critical roles in several key cellular processes, including epigenetic gene regulation, RNA metabolism, and DNA repair. Emerging evidence suggests that dysregulation of AlkB demethylases may underlie the pathogenesis of several human diseases, particularly obesity, diabetes, and cancer. Hence there is strong interest in developing selective inhibitors for these enzymes to facilitate their mechanistic and functional studies and to validate their therapeutic potential. Herein we review the remarkable advances made over the past 20 years in AlkB demethylase inhibition research. We discuss the rational design of reported inhibitors, their mode-of-binding, selectivity, cellular activity, and therapeutic opportunities. We further discuss unexplored structural elements of the AlkB subfamilies and propose potential strategies to enable subfamily selectivity. It is hoped that this perspective will inspire novel inhibitor design and advance drug discovery research in this field.
Collapse
Affiliation(s)
- Gemma S Perry
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Mohua Das
- Lab of Precision Oncology and Cancer Evolution, Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Esther C Y Woon
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| |
Collapse
|
7
|
Nakashima Y, Brewitz L, Tumber A, Salah E, Schofield CJ. 2-Oxoglutarate derivatives can selectively enhance or inhibit the activity of human oxygenases. Nat Commun 2021; 12:6478. [PMID: 34759269 PMCID: PMC8580996 DOI: 10.1038/s41467-021-26673-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/12/2021] [Indexed: 01/18/2023] Open
Abstract
2-Oxoglutarate (2OG) oxygenases are validated agrochemical and human drug targets. The potential for modulating their activity with 2OG derivatives has not been explored, possibly due to concerns regarding selectivity. We report proof-of-principle studies demonstrating selective enhancement or inhibition of 2OG oxygenase activity by 2-oxo acids. The human 2OG oxygenases studied, factor inhibiting hypoxia-inducible transcription factor HIF-α (FIH) and aspartate/asparagine-β-hydroxylase (AspH), catalyze C3 hydroxylations of Asp/Asn-residues. Of 35 tested 2OG derivatives, 10 enhance and 17 inhibit FIH activity. Comparison with results for AspH reveals that 2OG derivatives selectively enhance or inhibit FIH or AspH. Comparison of FIH structures complexed with 2OG derivatives to those for AspH provides insight into the basis of the observed selectivity. 2-Oxo acid derivatives have potential as drugs, for use in biomimetic catalysis, and in functional studies. The results suggest that the in vivo activity of 2OG oxygenases may be regulated by natural 2-oxo acids other than 2OG.
Collapse
Affiliation(s)
- Yu Nakashima
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, UK
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, 930-0194, Toyama, Japan
| | - Lennart Brewitz
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, UK
| | - Anthony Tumber
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, UK
| | - Eidarus Salah
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, UK
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, UK.
| |
Collapse
|
8
|
Baby S, Gurukkala Valapil D, Shankaraiah N. Unravelling KDM4 histone demethylase inhibitors for cancer therapy. Drug Discov Today 2021; 26:1841-1856. [PMID: 34051367 DOI: 10.1016/j.drudis.2021.05.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/06/2021] [Accepted: 05/21/2021] [Indexed: 12/15/2022]
Abstract
Epigenetic enzyme-targeted therapy is a promising new development in the field of drug discovery. To date, histone deacetylases and DNA methyltransferases have been investigated as druggable epigenetic enzyme targets in cancer therapeutics. Histone methyltransferases and lysine demethylase inhibitors are the latest groups of epi-drugs being actively studied in clinical trials. KDM4s are JmjC domain-containing histone H3 lysine 9/36 demethylase enzymes, belonging to the 2-OG-dependent oxygenases, which are upregulated in multiple malignancies. In the recent years, these enzymes have captured much attention as a novel target in cancer therapy. Herein, we traverse the discovery path and current challenges in designing potent KDM4 inhibitors as potential anticancer agents. We discuss the considerable efforts and proposed future strategies to develop selective small molecule inhibitors of KDM4s, highlighting scaffold candidates and cyclic skeletons for which activity data, selectivity profiles and structure-activity relationships (SARs) have been studied.
Collapse
Affiliation(s)
- Stephin Baby
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Durgesh Gurukkala Valapil
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India.
| |
Collapse
|
9
|
Lee SJ, You JS, Gharbi A, Kim YJ, Lee MS, Kim DH, Lee KW, Jung ID, Park YM. IOX1 activity as sepsis therapy and an antibiotic against multidrug-resistant bacteria. Sci Rep 2021; 11:2942. [PMID: 33536477 PMCID: PMC7858575 DOI: 10.1038/s41598-021-82377-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/14/2021] [Indexed: 11/20/2022] Open
Abstract
Sepsis is caused by organ dysfunction initiated by an unrestrained host immune response to infection. The emergence of antibiotic-resistant bacteria has rapidly increased in the last decades and has stimulated a firm research platform to combat infections caused by antibiotic-resistant bacteria that cannot be eradicated with conventional antibiotics. Strategies like epigenetic regulators such as lysine demethylase (Kdm) has received attention as a new target. Thus, we sought to investigate the epigenetic mechanisms in sepsis pathophysiology with the aim of discovering new concepts for treatment. A transcriptome analysis of dendritic cells during their inflammatory state identified Kdm as a critical molecule in sepsis regulation. Next, 8-hydroxyquinoline-5-carboxylic acid (IOX1) ability to control endotoxemia induced by Lipopolysaccharide and bacterial sepsis was demonstrated. IOX1 has been shown to regulate endotoxemia and sepsis caused by Escherichia coli and carbapenem-resistant Acinetobacter baumannii and has also contributed to the suppression of multidrug-resistant bacterial growth through the inhibition of DNA Gyrase. These findings show that IOX1 could be a component agent against bacterial sepsis by functioning as a broad-spectrum antibiotic with dual effects.
Collapse
Affiliation(s)
- Su Jin Lee
- Department of Immunology, Laboratory of Dendritic Cell Differentiation and Regulation, School of Medicine, Konkuk University, Chungju, Seoul, 380-701, Republic of Korea
| | - Jueng Soo You
- Department of Biochemistry, School of Medicine, Konkuk University, Chungju, Seoul, 380-701, Republic of Korea
| | - Amal Gharbi
- Dandi Bioscience Inc, 6Th Floor of Real Company, 66, Acha San-ro, Seongdong-gu, Seoul, Republic of Korea
| | - Yong Joo Kim
- Dandi Bioscience Inc, 6Th Floor of Real Company, 66, Acha San-ro, Seongdong-gu, Seoul, Republic of Korea
| | - Mi Suk Lee
- Dandi Bioscience Inc, 6Th Floor of Real Company, 66, Acha San-ro, Seongdong-gu, Seoul, Republic of Korea
| | - Dong Hwan Kim
- Division of Life Science, Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828, Republic of Korea.,Division of Applied Life Science (BK21 Plus), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Keun Woo Lee
- Division of Life Science, Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828, Republic of Korea.,Division of Applied Life Science (BK21 Plus), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - In Duk Jung
- Dandi Bioscience Inc, 6Th Floor of Real Company, 66, Acha San-ro, Seongdong-gu, Seoul, Republic of Korea.
| | - Yeong Min Park
- Department of Immunology, Laboratory of Dendritic Cell Differentiation and Regulation, School of Medicine, Konkuk University, Chungju, Seoul, 380-701, Republic of Korea. .,Dandi Bioscience Inc, 6Th Floor of Real Company, 66, Acha San-ro, Seongdong-gu, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Brewitz L, Nakashima Y, Schofield CJ. Synthesis of 2-oxoglutarate derivatives and their evaluation as cosubstrates and inhibitors of human aspartate/asparagine-β-hydroxylase. Chem Sci 2020; 12:1327-1342. [PMID: 34163896 PMCID: PMC8179049 DOI: 10.1039/d0sc04301j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
2-Oxoglutarate (2OG) is involved in biological processes including oxidations catalyzed by 2OG oxygenases for which it is a cosubstrate. Eukaryotic 2OG oxygenases have roles in collagen biosynthesis, lipid metabolism, DNA/RNA modification, transcriptional regulation, and the hypoxic response. Aspartate/asparagine-β-hydroxylase (AspH) is a human 2OG oxygenase catalyzing post-translational hydroxylation of Asp/Asn-residues in epidermal growth factor-like domains (EGFDs) in the endoplasmic reticulum. AspH is of chemical interest, because its Fe(ii) cofactor is complexed by two rather than the typical three residues. AspH is upregulated in hypoxia and is a prognostic marker on the surface of cancer cells. We describe studies on how derivatives of its natural 2OG cosubstrate modulate AspH activity. An efficient synthesis of C3- and/or C4-substituted 2OG derivatives, proceeding via cyanosulfur ylid intermediates, is reported. Mass spectrometry-based AspH assays with >30 2OG derivatives reveal that some efficiently inhibit AspH via competing with 2OG as evidenced by crystallographic and solution analyses. Other 2OG derivatives can substitute for 2OG enabling substrate hydroxylation. The results show that subtle changes, e.g. methyl- to ethyl-substitution, can significantly alter the balance between catalysis and inhibition. 3-Methyl-2OG, a natural product present in human nutrition, was the most efficient alternative cosubstrate identified; crystallographic analyses reveal the binding mode of (R)-3-methyl-2OG and other 2OG derivatives to AspH and inform on the balance between turnover and inhibition. The results will enable the use of 2OG derivatives as mechanistic probes for other 2OG utilizing enzymes and suggest 2-oxoacids other than 2OG may be employed by some 2OG oxygenases in vivo.
Collapse
Affiliation(s)
- Lennart Brewitz
- Chemistry Research Laboratory, University of Oxford 12 Mansfield Road OX1 3TA Oxford UK
| | - Yu Nakashima
- Chemistry Research Laboratory, University of Oxford 12 Mansfield Road OX1 3TA Oxford UK
| | | |
Collapse
|
11
|
Arifuzzaman S, Khatun MR, Khatun R. Emerging of lysine demethylases (KDMs): From pathophysiological insights to novel therapeutic opportunities. Biomed Pharmacother 2020; 129:110392. [PMID: 32574968 DOI: 10.1016/j.biopha.2020.110392] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years, there have been remarkable scientific advancements in the understanding of lysine demethylases (KDMs) because of their demethylation of diverse substrates, including nucleic acids and proteins. Novel structural architectures, physiological roles in the gene expression regulation, and ability to modify protein functions made KDMs the topic of interest in biomedical research. These structural diversities allow them to exert their function either alone or in complex with numerous other bio-macromolecules. Impressive number of studies have demonstrated that KDMs are localized dynamically across the cellular and tissue microenvironment. Their dysregulation is often associated with human diseases, such as cancer, immune disorders, neurological disorders, and developmental abnormalities. Advancements in the knowledge of the underlying biochemistry and disease associations have led to the development of a series of modulators and technical compounds. Given the distinct biophysical and biochemical properties of KDMs, in this review we have focused on advances related to the structure, function, disease association, and therapeutic targeting of KDMs highlighting improvements in both the specificity and efficacy of KDM modulation.
Collapse
Affiliation(s)
- Sarder Arifuzzaman
- Department of Pharmacy, Jahangirnagar University, Dhaka-1342, Bangladesh; Everest Pharmaceuticals Ltd., Dhaka-1208, Bangladesh.
| | - Mst Reshma Khatun
- Department of Pharmacy, Jahangirnagar University, Dhaka-1342, Bangladesh
| | - Rabeya Khatun
- Department of Pediatrics, TMSS Medical College and Rafatullah Community Hospital, Gokul, Bogura, 5800, Bangladesh
| |
Collapse
|
12
|
Souto JA, Sarno F, Nebbioso A, Papulino C, Álvarez R, Lombino J, Perricone U, Padova A, Altucci L, de Lera ÁR. A New Family of Jumonji C Domain-Containing KDM Inhibitors Inspired by Natural Product Purpurogallin. Front Chem 2020; 8:312. [PMID: 32523934 PMCID: PMC7261929 DOI: 10.3389/fchem.2020.00312] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/30/2020] [Indexed: 12/12/2022] Open
Abstract
Aberrant epigenetic modifications are involved in cancer development. Jumonji C domain-containing histone lysine demethylases (KDMs) are found mainly up-regulated in breast, prostate, and colon cancer. Currently, growing interest is focusing on the identification and development of new inhibitors able to block the activity of KDMs and thus reduce tumor progression. KDM4A is known to play a role in several cellular physiological processes, and was recently found overexpressed in a number of pathological states, including cancer. In this work, starting from the structure of purpurogallin 9aa, previously identified as a natural KDM4A inhibitor, we synthesized two main sets of compound derivatives in order to improve their inhibitory activity against KDM4A in vitro and in cells, as well as their antitumor action. Based on the hypothetical biogenesis of the 5-oxo-5H-benzo[7]annulene skeleton of the natural product purpurogallin (Salfeld, 1960; Horner et al., 1961; Dürckheimer and Paulus, 1985; Tanaka et al., 2002; Yanase et al., 2005) the pyrogallol and catechol units were first combined with structural modifications at different positions of the aryl ring using enzyme-mediated oxidative conditions, generating a series of benzotropolone analogs. Two of the synthetic analogs of purpurogallin, 9ac and 9bc, showed an efficient inhibition (50 and 80%) of KDM4A in enzymatic assays and in cells by increasing levels of its specific targets, H3K9me3/2 and H3K36me3. However, these two compounds/derivatives did not induce cell death. We then synthesized a further set of analogs of these two compounds with greater structural diversification. The most potent of these analogs, 9bf, displayed the highest KDM4A inhibitory enzymatic activity in vitro (IC50 of 10.1 and 24.37 μM) in colon cancer cells, and the strongest antitumor action in several solid and hematological human cancer cell lines with no toxic effect in normal cells. Our findings suggest that further development of this compound and its derivatives may lead to the identification of new therapeutic antitumor agents acting through inhibition of KDM4A.
Collapse
Affiliation(s)
- José A Souto
- Departamento de Química Orgánica, Facultade de Química and Centro de Investigacións Biomédicas (CINBIO), Universidade de Vigo, Vigo, Spain
| | - Federica Sarno
- Dipartimento di Medicina di Precisione, Università Degli Studi Della Campania "L. Vanvitelli", Naples, Italy
| | - Angela Nebbioso
- Dipartimento di Medicina di Precisione, Università Degli Studi Della Campania "L. Vanvitelli", Naples, Italy
| | | | - Rosana Álvarez
- Departamento de Química Orgánica, Facultade de Química and Centro de Investigacións Biomédicas (CINBIO), Universidade de Vigo, Vigo, Spain
| | | | | | | | - Lucia Altucci
- Dipartimento di Medicina di Precisione, Università Degli Studi Della Campania "L. Vanvitelli", Naples, Italy
| | - Ángel R de Lera
- Departamento de Química Orgánica, Facultade de Química and Centro de Investigacións Biomédicas (CINBIO), Universidade de Vigo, Vigo, Spain
| |
Collapse
|
13
|
Lee DH, Kim GW, Jeon YH, Yoo J, Lee SW, Kwon SH. Advances in histone demethylase KDM4 as cancer therapeutic targets. FASEB J 2020; 34:3461-3484. [PMID: 31961018 DOI: 10.1096/fj.201902584r] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/20/2019] [Accepted: 01/08/2020] [Indexed: 12/26/2022]
Abstract
The KDM4 subfamily H3K9 histone demethylases are epigenetic regulators that control chromatin structure and gene expression by demethylating histone H3K9, H3K36, and H1.4K26. The KDM4 subfamily mainly consists of four proteins (KDM4A-D), all harboring the Jumonji C domain (JmjC) but with differential substrate specificities. KDM4A-C proteins also possess the double PHD and Tudor domains, whereas KDM4D lacks these domains. KDM4 proteins are overexpressed or deregulated in multiple cancers, cardiovascular diseases, and mental retardation and are thus potential therapeutic targets. Despite extensive efforts, however, there are very few KDM4-selective inhibitors. Defining the exact physiological and oncogenic functions of KDM4 demethylase will provide the foundation for the discovery of novel potent inhibitors. In this review, we focus on recent studies highlighting the oncogenic functions of KDM4s and the interplay between KDM4-mediated epigenetic and metabolic pathways in cancer. We also review currently available KDM4 inhibitors and discuss their potential as therapeutic agents for cancer treatment.
Collapse
Affiliation(s)
- Dong Hoon Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Go Woon Kim
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Yu Hyun Jeon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Jung Yoo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Sang Wu Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - So Hee Kwon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea.,Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
14
|
Dandawate P, Ghosh C, Palaniyandi K, Paul S, Rawal S, Pradhan R, Sayed AAA, Choudhury S, Standing D, Subramaniam D, Padhye S, Gunewardena S, Thomas SM, O’ Neil M, Tawfik O, Welch DR, Jensen RA, Maliski S, Weir S, Iwakuma T, Anant S, Dhar A. The Histone Demethylase KDM3A, Increased in Human Pancreatic Tumors, Regulates Expression of DCLK1 and Promotes Tumorigenesis in Mice. Gastroenterology 2019; 157:1646-1659.e11. [PMID: 31442435 PMCID: PMC6878178 DOI: 10.1053/j.gastro.2019.08.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 07/31/2019] [Accepted: 08/08/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS The histone lysine demethylase 3A (KDM3A) demethylates H3K9me1 and H3K9Me2 to increase gene transcription and is upregulated in tumors, including pancreatic tumors. We investigated its activities in pancreatic cancer cell lines and its regulation of the gene encoding doublecortin calmodulin-like kinase 1 (DCLK1), a marker of cancer stem cells. METHODS We knocked down KDM3A in MiaPaCa-2 and S2-007 pancreatic cancer cell lines and overexpressed KDM3A in HPNE cells (human noncancerous pancreatic ductal cell line); we evaluated cell migration, invasion, and spheroid formation under hypoxic and normoxic conditions. Nude mice were given orthotopic injections of S2-007 cells, with or without (control) knockdown of KDM3A, and HPNE cells, with or without (control) overexpression of KDM3A; tumor growth was assessed. We analyzed pancreatic tumor tissues from mice and pancreatic cancer cell lines by immunohistochemistry and immunoblotting. We performed RNA-sequencing analysis of MiaPaCa-2 and S2-007 cells with knockdown of KDM3A and evaluated localization of DCLK1 and KDM3A by immunofluorescence. We analyzed the cancer genome atlas for levels of KDM3A and DCLK1 messenger RNA in human pancreatic ductal adenocarcinoma (PDAC) tissues and association with patient survival time. RESULTS Levels of KDM3A were increased in human pancreatic tumor tissues and cell lines, compared with adjacent nontumor pancreatic tissues, such as islet and acinar cells. Knockdown of KDM3A in S2-007 cells significantly reduced colony formation, invasion, migration, and spheroid formation, compared with control cells, and slowed growth of orthotopic tumors in mice. We identified KDM3A-binding sites in the DCLK1 promoter; S2-007 cells with knockdown of KDM3A had reduced levels of DCLK1. HPNE cells that overexpressed KDM3A formed foci and spheres in culture and formed tumors and metastases in mice, whereas control HPNE cells did not. Hypoxia induced sphere formation and increased levels of KDM3A in S2-007 cells and in HPNE cells that overexpressed DCLK1, but not control HPNE cells. Levels of KDM3A and DCLK1 messenger RNA were higher in human PDAC than nontumor pancreatic tissues and correlated with shorter survival times of patients. CONCLUSIONS We found human PDAC samples and pancreatic cancer cell lines to overexpress KDM3A. KDM3A increases expression of DCLK1, and levels of both proteins are increased in human PDAC samples. Knockdown of KDM3A in pancreatic cancer cell lines reduced their invasive and sphere-forming activities in culture and formation of orthotopic tumors in mice. Hypoxia increased expression of KDM3A in pancreatic cancer cells. Strategies to disrupt this pathway might be developed for treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Prasad Dandawate
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Chandrayee Ghosh
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Kanagaraj Palaniyandi
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Santanu Paul
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Sonia Rawal
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Rohan Pradhan
- Interdisciplinary Science and Technology Research Academy, Abeda Inamdar Senior College, Camp, Pune 411001, India
| | - Afreen Asif Ali Sayed
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Sonali Choudhury
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - David Standing
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Dharmalingam Subramaniam
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Subhash Padhye
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA.,Interdisciplinary Science and Technology Research Academy, Abeda Inamdar Senior College, Camp, Pune 411001, India
| | - Sumedha Gunewardena
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Sufi M. Thomas
- Department of Otolaryngology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Moura O’ Neil
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Ossama Tawfik
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Danny R. Welch
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Roy A. Jensen
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Sally Maliski
- School of Nursing, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Scott Weir
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Tomoo Iwakuma
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Shrikant Anant
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas.
| | - Animesh Dhar
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
15
|
Screening of inhibitors against histone demethylation jumonji domain-containing protein 3 by capillary electrophoresis. J Chromatogr A 2019; 1613:460625. [PMID: 31668999 DOI: 10.1016/j.chroma.2019.460625] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 11/21/2022]
Abstract
Jumonji domain-containing proteins (JMJDs) play an important role in the epigenetic regulation of gene expression. Aberrant regulation of histone modification has been observed in the progression of a variety of diseases, such as neurological disorders and cancer. Therefore, discovery of selective modulators of JMJDs is very attractive in new drug discovery. Herein, a simple capillary electrophoresis (CE) method was developed for screening of inhibitors against JMJD3. A known JMJD3 inhibitor GSK-J1, 5-carboxyfluorescein labeled substrate peptide with an amino acid sequence of KAPRKQLATKAARK(me3)SAPATGG (truncated from histone H3), as well as a small chemical library composed of 37 purified natural compounds and 30 natural extracts were used for method development and validation. The separation of substrate from its demethylated product was achieved by addition of polycation hexadimethrine bromide (HDB) in the running buffer. The enzyme activity was thus assayed accurately through separating the demethylated product from the substrate and then measuring the peak area of the product. The enzyme inhibition can be read out by comparing the peak area of the demethylated product obtained in the present of inhibitors and that of the negative control in the absence of any inhibitor. The merit of the method is proved by discovering two new JMJD3 inhibitors: salvianic acid A and puerarin 6''-O-xyloside.
Collapse
|
16
|
Małecki PH, Rüger N, Roatsch M, Krylova O, Link A, Jung M, Heinemann U, Weiss MS. Structure-Based Screening of Tetrazolylhydrazide Inhibitors versus KDM4 Histone Demethylases. ChemMedChem 2019; 14:1828-1839. [PMID: 31475772 PMCID: PMC6899576 DOI: 10.1002/cmdc.201900441] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/02/2019] [Indexed: 12/12/2022]
Abstract
Human histone demethylases are known to play an important role in the development of several tumor types. Consequently, they have emerged as important medical targets for the treatment of human cancer. Herein, structural studies on tetrazolylhydrazide inhibitors as a new scaffold for a certain class of histone demethylases, the JmjC proteins, are reported. A series of compounds are structurally described and their respective binding modes to the KDM4D protein, which serves as a high-resolution model to represent the KDM4 subfamily in crystallographic studies, are examined. Similar to previously reported inhibitors, the compounds described herein are competitors for the natural KDM4 cofactor, 2-oxoglutarate. The tetrazolylhydrazide scaffold fills an important gap in KDM4 inhibition and newly described, detailed interactions of inhibitor moieties pave the way to the development of compounds with high target-binding affinity and increased membrane permeability, at the same time.
Collapse
Affiliation(s)
- Piotr H Małecki
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany.,Macromolecular Structure and Interaction, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125, Berlin, Germany.,Current address: International Institute of Molecular and Cell Biology, Ks. Trojdena Street 4, 02-109, Warsaw, Poland
| | - Nicole Rüger
- Institute of Pharmacy, Universität Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489, Greifswald, Germany
| | - Martin Roatsch
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstr. 25, 79104, Freiburg, Germany.,Current address: Københavns Universitet, Center for Biopharmaceuticals, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Oxana Krylova
- Department of Molecular Biophysics, Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Andreas Link
- Institute of Pharmacy, Universität Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489, Greifswald, Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstr. 25, 79104, Freiburg, Germany
| | - Udo Heinemann
- Macromolecular Structure and Interaction, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Manfred S Weiss
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| |
Collapse
|
17
|
Aghamir SMK, Heshmat R, Ebrahimi M, Ketabchi SE, Parichehreh Dizaji S, Khatami F. The Impact Of Succinate Dehydrogenase Gene (SDH) Mutations In Renal Cell Carcinoma (RCC): A Systematic Review. Onco Targets Ther 2019; 12:7929-7940. [PMID: 31579262 PMCID: PMC6771773 DOI: 10.2147/ott.s207460] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 09/09/2019] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Renal cell cancer (RCC) syndrome is linked to Krebs cycle compartments and their coding genes' alterations like succinate dehydrogenase genes (SDHx). Here we present a systematic review of the SDH genes' mutations and their impact on both RCC diagnosis and prognosis. METHODS This systematic review includes any study in which tissue samples of RCC are considered in correlation with the SDHx mutations, microsatellite instability (MSI), and protein expression. For this purpose, a systematic search of MEDLINE (PubMed), Scopus, Embase, and Web of Science databases was conducted and finally 5384 articles were recruited. All studies' content was checked to find the related ones which were 145 articles, which with data extraction were limited to nineteen. RESULTS The final selected nineteen studies investigating the SDHx role in RCC tumor genesis were included, among which fifteen were mutation analysis, three were just SDHx protein expression, and two were MSI and mutation analysis studies. A total of 432 RCC patients were reported by SDH mutations, and 64 patients with MSI and SDH expression change were reported in 514 surgically resected renal epithelial tumors. The most common mutation was the single nucleotide variant rs772551056 (c.137G>A) of SDHB. For SDHC, c.380A>G presented in 48 RCC patients, and for SDHA a novel germline mutation c.2T>C: p.M1T in an occasional case of gastrointestinal stromal tumor intricate with RCC. CONCLUSION RCC as an aggressive type of kidney cancer needs some biomarkers to be diagnosed exactly. It was shown recently that the succinate dehydrogenase gene variations can provide this diagnostic and prognostic biomarker. For this purpose, SDHB rs772551056 associated with its protein expression alterations can be taken into account. It is possible that a novel mutation of SDHA (c.2T>C: p.M1T) can provide evidence of GIST associated with RCC as well.
Collapse
Affiliation(s)
| | - Ramin Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Ebrahimi
- Department of Internal Medicine, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Somayeh Parichehreh Dizaji
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Khatami
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Wu G, Zhao T, Kang D, Zhang J, Song Y, Namasivayam V, Kongsted J, Pannecouque C, De Clercq E, Poongavanam V, Liu X, Zhan P. Overview of Recent Strategic Advances in Medicinal Chemistry. J Med Chem 2019; 62:9375-9414. [PMID: 31050421 DOI: 10.1021/acs.jmedchem.9b00359] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introducing novel strategies, concepts, and technologies that speed up drug discovery and the drug development cycle is of great importance both in the highly competitive pharmaceutical industry as well as in academia. This Perspective aims to present a "big-picture" overview of recent strategic innovations in medicinal chemistry and drug discovery.
Collapse
Affiliation(s)
- Gaochan Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Tong Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Jian Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Yuning Song
- Department of Clinical Pharmacy , Qilu Hospital of Shandong University , 250012 Ji'nan , China
| | - Vigneshwaran Namasivayam
- Pharmaceutical Institute, Pharmaceutical Chemistry II , University of Bonn , 53121 Bonn , Germany
| | - Jacob Kongsted
- Department of Physics, Chemistry, and Pharmacy , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , K.U. Leuven , Herestraat 49 Postbus 1043 (09.A097) , B-3000 Leuven , Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , K.U. Leuven , Herestraat 49 Postbus 1043 (09.A097) , B-3000 Leuven , Belgium
| | - Vasanthanathan Poongavanam
- Department of Physics, Chemistry, and Pharmacy , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| |
Collapse
|
19
|
Wilson C, Krieg AJ. KDM4B: A Nail for Every Hammer? Genes (Basel) 2019; 10:E134. [PMID: 30759871 PMCID: PMC6410163 DOI: 10.3390/genes10020134] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 01/01/2023] Open
Abstract
Epigenetic changes are well-established contributors to cancer progression and normal developmental processes. The reversible modification of histones plays a central role in regulating the nuclear processes of gene transcription, DNA replication, and DNA repair. The KDM4 family of Jumonj domain histone demethylases specifically target di- and tri-methylated lysine 9 on histone H3 (H3K9me3), removing a modification central to defining heterochromatin and gene repression. KDM4 enzymes are generally over-expressed in cancers, making them compelling targets for study and therapeutic inhibition. One of these family members, KDM4B, is especially interesting due to its regulation by multiple cellular stimuli, including DNA damage, steroid hormones, and hypoxia. In this review, we discuss what is known about the regulation of KDM4B in response to the cellular environment, and how this context-dependent expression may be translated into specific biological consequences in cancer and reproductive biology.
Collapse
Affiliation(s)
- Cailin Wilson
- Department of Pathology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Adam J Krieg
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR 97239, USA.
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA.
| |
Collapse
|
20
|
Chen AY, Adamek RN, Dick BL, Credille CV, Morrison CN, Cohen SM. Targeting Metalloenzymes for Therapeutic Intervention. Chem Rev 2019; 119:1323-1455. [PMID: 30192523 PMCID: PMC6405328 DOI: 10.1021/acs.chemrev.8b00201] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metalloenzymes are central to a wide range of essential biological activities, including nucleic acid modification, protein degradation, and many others. The role of metalloenzymes in these processes also makes them central for the progression of many diseases and, as such, makes metalloenzymes attractive targets for therapeutic intervention. Increasing awareness of the role metalloenzymes play in disease and their importance as a class of targets has amplified interest in the development of new strategies to develop inhibitors and ultimately useful drugs. In this Review, we provide a broad overview of several drug discovery efforts focused on metalloenzymes and attempt to map out the current landscape of high-value metalloenzyme targets.
Collapse
Affiliation(s)
- Allie Y Chen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Rebecca N Adamek
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Benjamin L Dick
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Cy V Credille
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Christine N Morrison
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Seth M Cohen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| |
Collapse
|
21
|
Chaturvedi SS, Ramanan R, Waheed SO, Karabencheva-Christova TG, Christov CZ. Structure-function relationships in KDM7 histone demethylases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 117:113-125. [DOI: 10.1016/bs.apcsb.2019.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
22
|
Frei P, Hevey R, Ernst B. Dynamic Combinatorial Chemistry: A New Methodology Comes of Age. Chemistry 2018; 25:60-73. [DOI: 10.1002/chem.201803365] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Priska Frei
- Institute of Molecular Pharmacy, PharmacenterUniversity of Basel Klingelbergstrasse 50 4056 Basel Switzerland
| | - Rachel Hevey
- Institute of Molecular Pharmacy, PharmacenterUniversity of Basel Klingelbergstrasse 50 4056 Basel Switzerland
| | - Beat Ernst
- Institute of Molecular Pharmacy, PharmacenterUniversity of Basel Klingelbergstrasse 50 4056 Basel Switzerland
| |
Collapse
|
23
|
Guillade L, Sarno F, Tarhonskaya H, Nebbioso A, Alvarez S, Kawamura A, Schofield CJ, Altucci L, de Lera ÁR. Synthesis and Biological Evaluation of Tripartin, a Putative KDM4 Natural Product Inhibitor, and 1-Dichloromethylinden-1-ol Analogues. ChemMedChem 2018; 13:1949-1956. [PMID: 30047603 DOI: 10.1002/cmdc.201800377] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/19/2018] [Indexed: 12/17/2022]
Abstract
The natural product tripartin has been reported to inhibit the N-methyl-lysine histone demethylase KDM4A. A synthesis of tripartin starting from 3,5-dimethoxyphenylacrylic acid was developed, and the enantiomers were separated by chiral HPLC. We observed that both tripartin enantiomers manifested an apparent increase in H3K9me3 levels when dosed in cells, as measured by western blot analysis. Thus, there is no enantiomeric discrimination toward this natural product in terms of its effects on cellular histone methylation status. Interestingly, tripartin did not inhibit isolated KDM4A-E under our assay conditions (IC50 >100 μm). Tripartin analogues with a dichloromethylcarbinol group derived from the indanone scaffold were synthesized and found to be inactive against isolated recombinant KDM4 enzymes and in cell-based assays. Although the precise cellular mode of action of tripartin is unclear, our evidence suggests that it may affect histone methylation status via a mechanism other than direct inhibition of the KDM4 histone demethylases.
Collapse
Affiliation(s)
- Lucía Guillade
- Departamento de Química Orgánica, Facultade de Química, CINBIO and IBIV, Universidade de Vigo, Campus As Lagoas-Marcosende, 36310, Vigo, Spain
| | - Federica Sarno
- Università degli Studi della Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Napoli, Italy
| | - Hanna Tarhonskaya
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Angela Nebbioso
- Università degli Studi della Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Napoli, Italy
| | - Susana Alvarez
- Departamento de Química Orgánica, Facultade de Química, CINBIO and IBIV, Universidade de Vigo, Campus As Lagoas-Marcosende, 36310, Vigo, Spain
| | - Akane Kawamura
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Lucia Altucci
- Università degli Studi della Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Napoli, Italy
| | - Ángel R de Lera
- Departamento de Química Orgánica, Facultade de Química, CINBIO and IBIV, Universidade de Vigo, Campus As Lagoas-Marcosende, 36310, Vigo, Spain
| |
Collapse
|
24
|
Das M, Yang T, Dong J, Prasetya F, Xie Y, Wong KHQ, Cheong A, Woon ECY. Multiprotein Dynamic Combinatorial Chemistry: A Strategy for the Simultaneous Discovery of Subfamily-Selective Inhibitors for Nucleic Acid Demethylases FTO and ALKBH3. Chem Asian J 2018; 13:2854-2867. [PMID: 29917331 DOI: 10.1002/asia.201800729] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/12/2018] [Indexed: 12/18/2022]
Abstract
Dynamic combinatorial chemistry (DCC) is a powerful supramolecular approach for discovering ligands for biomolecules. To date, most, if not all, biologically templated DCC systems employ only a single biomolecule to direct the self-assembly process. To expand the scope of DCC, herein, a novel multiprotein DCC strategy has been developed that combines the discriminatory power of a zwitterionic "thermal tag" with the sensitivity of differential scanning fluorimetry. This strategy is highly sensitive and could differentiate the binding of ligands to structurally similar subfamily members. Through this strategy, it was possible to simultaneously identify subfamily-selective probes against two clinically important epigenetic enzymes: FTO (7; IC50 =2.6 μm) and ALKBH3 (8; IC50 =3.7 μm). To date, this is the first report of a subfamily-selective ALKBH3 inhibitor. The developed strategy could, in principle, be adapted to a broad range of proteins; thus it is of broad scientific interest.
Collapse
MESH Headings
- AlkB Homolog 3, Alpha-Ketoglutarate-Dependent Dioxygenase/antagonists & inhibitors
- AlkB Homolog 3, Alpha-Ketoglutarate-Dependent Dioxygenase/chemistry
- AlkB Homolog 3, Alpha-Ketoglutarate-Dependent Dioxygenase/genetics
- AlkB Homolog 5, RNA Demethylase/antagonists & inhibitors
- AlkB Homolog 5, RNA Demethylase/chemistry
- AlkB Homolog 5, RNA Demethylase/genetics
- Alpha-Ketoglutarate-Dependent Dioxygenase FTO/antagonists & inhibitors
- Alpha-Ketoglutarate-Dependent Dioxygenase FTO/chemistry
- Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics
- Catalysis
- Combinatorial Chemistry Techniques/methods
- Enzyme Inhibitors/chemistry
- Fluorometry/methods
- Humans
- Hydrazones/chemistry
- Kinetics
- Ligands
- Molecular Structure
- Oxidoreductases, O-Demethylating/antagonists & inhibitors
- Oxidoreductases, O-Demethylating/chemistry
- Oxidoreductases, O-Demethylating/genetics
- Peptides/chemistry
- Peptides/genetics
- Protein Denaturation
- Protein Engineering
- Protein Structure, Secondary
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/genetics
- Transition Temperature
Collapse
Affiliation(s)
- Mohua Das
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Tianming Yang
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Jinghua Dong
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Fransisca Prasetya
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Yiming Xie
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Kendra H Q Wong
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Adeline Cheong
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Esther C Y Woon
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| |
Collapse
|
25
|
Targeting lysine specific demethylase 4A (KDM4A) tandem TUDOR domain – A fragment based approach. Bioorg Med Chem Lett 2018; 28:1708-1713. [DOI: 10.1016/j.bmcl.2018.04.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 12/12/2022]
|
26
|
Lin H, Li Q, Li Q, Zhu J, Gu K, Jiang X, Hu Q, Feng F, Qu W, Chen Y, Sun H. Small molecule KDM4s inhibitors as anti-cancer agents. J Enzyme Inhib Med Chem 2018; 33:777-793. [PMID: 29651880 PMCID: PMC6010108 DOI: 10.1080/14756366.2018.1455676] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Histone demethylation is a vital process in epigenetic regulation of gene expression. A number of histone demethylases are present to control the methylated states of histone. Among these enzymes, KDM4s are one subfamily of JmjC KDMs and play important roles in both normal and cancer cells. The discovery of KDM4s inhibitors is a potential therapeutic strategy against different diseases including cancer. Here, we summarize the development of KDM4s inhibitors and some related pharmaceutical information to provide an update of recent progress in KDM4s inhibitors.
Collapse
Affiliation(s)
- Hongzhi Lin
- a Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| | - Qihang Li
- a Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| | - Qi Li
- a Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| | - Jie Zhu
- a Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| | - Kai Gu
- a Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| | - Xueyang Jiang
- b Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| | - Qianqian Hu
- a Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| | - Feng Feng
- b Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| | - Wei Qu
- b Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| | - Yao Chen
- c School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing , China
| | - Haopeng Sun
- a Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| |
Collapse
|
27
|
Backe MB, Andersson JL, Bacos K, Christensen DP, Hansen JB, Dorosz JJ, Gajhede M, Dahlby T, Bysani M, Kristensen LH, Ling C, Olsen L, Mandrup-Poulsen T. Lysine demethylase inhibition protects pancreatic β cells from apoptosis and improves β-cell function. Mol Cell Endocrinol 2018; 460:47-56. [PMID: 28684291 DOI: 10.1016/j.mce.2017.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 06/27/2017] [Accepted: 07/02/2017] [Indexed: 01/04/2023]
Abstract
Transcriptional changes control β-cell survival in response to inflammatory stress. Posttranslational modifications of histone and non-histone transcriptional regulators activate or repress gene transcription, but the link to cell-fate signaling is unclear. Inhibition of lysine deacetylases (KDACs) protects β cells from cytokine-induced apoptosis and reduces type 1 diabetes incidence in animals. We hypothesized that also lysine demethylases (KDMs) regulate β-cell fate in response to inflammatory stress. Expression of the demethylase Kdm6B was upregulated by proinflammatory cytokines suggesting a possible role in inflammation-induced β-cell destruction. Inhibition of KDM6 demethylases using the selective inhibitor GSK-J4 protected insulin-producing cells and human and mouse islets from cytokine-induced apoptosis by blunting nuclear factor (NF)-κB signaling and endoplasmic reticulum (ER) stress response gene expression. GSK-J4 furthermore increased expression of insulin gene and glucose-stimulated insulin secretion. Expression of genes regulating purinergic and cytokine ligand-receptor interactions was downregulated following GSK-J4 exposure, while expression of genes involved in cell maintenance and survival was upregulated. These data suggest that KDMs are important regulators of inflammation-induced β-cell dysfunction and death.
Collapse
Affiliation(s)
- Marie Balslev Backe
- Immuno-endocrinology Laboratory, Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - Jan Legaard Andersson
- Section of Biostructural Reseach, Department of Drug Design and Pharmacology, University of Copenhagen, Denmark
| | - Karl Bacos
- Unit for Epigenetics and Diabetes, Department of Clinical Sciences, Lund University, Scania University Hospital, Malmö, Sweden
| | - Dan Ploug Christensen
- Immuno-endocrinology Laboratory, Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - Jakob Bondo Hansen
- Immuno-endocrinology Laboratory, Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - Jerzy Jòzef Dorosz
- Section of Biostructural Reseach, Department of Drug Design and Pharmacology, University of Copenhagen, Denmark
| | - Michael Gajhede
- Section of Biostructural Reseach, Department of Drug Design and Pharmacology, University of Copenhagen, Denmark
| | - Tina Dahlby
- Immuno-endocrinology Laboratory, Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - Madhusudhan Bysani
- Unit for Epigenetics and Diabetes, Department of Clinical Sciences, Lund University, Scania University Hospital, Malmö, Sweden
| | - Line Hyltoft Kristensen
- Section of Biostructural Reseach, Department of Drug Design and Pharmacology, University of Copenhagen, Denmark
| | - Charlotte Ling
- Unit for Epigenetics and Diabetes, Department of Clinical Sciences, Lund University, Scania University Hospital, Malmö, Sweden
| | - Lars Olsen
- Section of Biostructural Reseach, Department of Drug Design and Pharmacology, University of Copenhagen, Denmark
| | - Thomas Mandrup-Poulsen
- Immuno-endocrinology Laboratory, Department of Biomedical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
28
|
Lee HJ, Kim BK, Yoon KB, Kim YC, Han SY. Novel inhibitors of lysine (K)-specific Demethylase 4A with anticancer activity. Invest New Drugs 2017; 35:733-741. [PMID: 28905188 DOI: 10.1007/s10637-017-0496-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/20/2017] [Indexed: 10/18/2022]
Abstract
Lysine (K)-specific demethylase 4A (KDM4A) is a histone demethylase that removes methyl residues from trimethylated or dimethylated histone 3 at lysines 9 and 36. Overexpression of KDM4A is found in various cancer types. To identify KDM4A inhibitors with anti-tumor functions, screening with an in vitro KDM4A enzyme activity assay was carried out. The benzylidenehydrazine analogue LDD2269 was selected, with an IC50 of 6.56 μM of KDM4A enzyme inhibition, and the binding mode was investigated using in silico molecular docking. Demethylation inhibition by LDD2269 was confirmed with a cell-based assay using antibodies against methylated histone at lysines 9 and 36. HCT-116 colon cancer cell line proliferation was suppressed by LDD2269, which also interfered with soft-agar growth and migration of HCT-116 cells. AnnexinV staining and PARP cleavage experiments showed apoptosis induction by LDD2269. Derivatives of LDD2269 were synthesized and the structure-activity relationship was explored. LDD2269 is reported here as a strong inhibitor of KDM4A in in vitro and cell-based systems, with anti-tumor functions.
Collapse
Affiliation(s)
- Hyo Jeong Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Bo-Kyoung Kim
- School of Life Sciences, Gwangju Institute of Science & Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea.,New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, Republic of Korea
| | - Kyoung Bin Yoon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Yong-Chul Kim
- School of Life Sciences, Gwangju Institute of Science & Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea.
| | - Sun-Young Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam, 52828, Republic of Korea.
| |
Collapse
|
29
|
Mbenza NM, Vadakkedath PG, McGillivray DJ, Leung IKH. NMR studies of the non-haem Fe(II) and 2-oxoglutarate-dependent oxygenases. J Inorg Biochem 2017; 177:384-394. [PMID: 28893416 DOI: 10.1016/j.jinorgbio.2017.08.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/21/2017] [Accepted: 08/30/2017] [Indexed: 01/13/2023]
Abstract
The non-haem Fe(II) and 2-oxoglutarate (2OG)-dependent oxygenases belong to a superfamily of structurally-related enzymes that play important biological roles in plants, microorganisms and animals. Structural, mechanistic and functional studies of 2OG oxygenases require efficient and effective biophysical tools. Nuclear magnetic resonance (NMR) spectroscopy is a useful tool to study this enzyme superfamily. It has been applied to obtain information about enzyme kinetics, identify and characterise 2OG oxygenase-catalysed oxidation products, elucidate the catalytic mechanism, monitor ligand binding and study protein dynamics. This review summarises the types of information that NMR spectroscopy can provide in the studies of 2OG oxygenases, highlights the advantages of the technique and describes its drawbacks.
Collapse
Affiliation(s)
- Naasson M Mbenza
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand
| | - Praveen G Vadakkedath
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand.; MacDiarmid Institute for Advanced Materials and Nanotechnology, PO Box 600, Wellington 6140, New Zealand
| | - Duncan J McGillivray
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand.; MacDiarmid Institute for Advanced Materials and Nanotechnology, PO Box 600, Wellington 6140, New Zealand
| | - Ivanhoe K H Leung
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand..
| |
Collapse
|
30
|
Histone demethylase JMJD2C: epigenetic regulators in tumors. Oncotarget 2017; 8:91723-91733. [PMID: 29207681 PMCID: PMC5710961 DOI: 10.18632/oncotarget.19176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 06/28/2017] [Indexed: 11/25/2022] Open
Abstract
Histone methylation is one of the major epigenetic modifications, and various histone methylases and demethylases participate in the epigenetic regulating. JMJD2C has been recently identified as one of the histone lysine demethylases. As one member of the Jumonji-C histone demethylase family, JMJD2C has the ability to demethylate tri- or di-methylated histone 3 and 2 in either K9 (lysine residue 9) or K36 (lysine residue 36) sites by an oxidative reaction, thereby affecting heterochromatin formation, genomic imprinting, X-chromosome inactivation, and transcriptional regulation of genes. JMJD2C was firstly found to involve in embryonic development and stem cell regulation. Afterwards, aberrant status of JMJD2C histone methylation was observed during the formation and development of various tumors, and it has been reported to play crucial roles in the progression of breast cancer, prostate carcinomas, osteosarcoma, blood neoplasms and so on, indicating that JMJD2C represents a promising anti-cancer target. In this review, we will focus on the research progress and prospect of JMJD2C in tumors, and provide abundant evidence for the functional application and therapeutic potential of targeting JMJD2C in tumors.
Collapse
|
31
|
Fang Z, Wang TQ, Li H, Zhang G, Wu XA, Yang L, Peng YL, Zou J, Li LL, Xiang R, Yang SY. Discovery of pyrazolo[1,5-a]pyrimidine-3-carbonitrile derivatives as a new class of histone lysine demethylase 4D (KDM4D) inhibitors. Bioorg Med Chem Lett 2017; 27:3201-3204. [PMID: 28539219 DOI: 10.1016/j.bmcl.2017.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/17/2017] [Accepted: 05/01/2017] [Indexed: 02/05/2023]
Abstract
Herein we report the discovery of a series of new small molecule inhibitors of histone lysine demethylase 4D (KDM4D). Molecular docking was first performed to screen for new KDM4D inhibitors from various chemical databases. Two hit compounds were retrieved. Further structural optimization and structure-activity relationship (SAR) analysis were carried out to the more selective one, compound 2, which led to the discovery of several new KDM4D inhibitors. Among them, compound 10r is the most potent one with an IC50 value of 0.41±0.03μM against KDM4D. Overall, compound 10r could be taken as a good lead compound for further studies.
Collapse
Affiliation(s)
- Zhen Fang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tian-Qi Wang
- Department of Clinical Medicine, School of Medicine, Nankai University, Tianjin 300071, China
| | - Hui Li
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Guo Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Xiao-Ai Wu
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li Yang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yu-Lan Peng
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jun Zou
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lin-Li Li
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Rong Xiang
- Department of Clinical Medicine, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Sheng-Yong Yang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
32
|
Abstract
Cancer cell hallmarks are underpinned by transcriptional programmes operating in the context of a dynamic and complicit epigenomic environment. Somatic alterations of chromatin modifiers are among the most prevalent cancer perturbations. There is a pressing need for targeted chemical probes to dissect these complex, interconnected gene regulatory circuits. Validated chemical probes empower mechanistic research while providing the pharmacological proof of concept that is required to translate drug-like derivatives into therapy for cancer patients. In this Review, we describe chemical probe development for epigenomic effector proteins that are linked to cancer pathogenesis. By annotating these reagents, we aim to share our perspectives on an informative 'epigenomic toolbox' of broad utility to the research community.
Collapse
Affiliation(s)
- Jake Shortt
- Gene Regulation Laboratory, Research Division, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3052, Australia
- School of Clinical Sciences at Monash Health, Monash University, Clayton 3168, Australia
| | - Christopher J Ott
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, USA
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts 02142, USA
| | - Ricky W Johnstone
- Gene Regulation Laboratory, Research Division, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3052, Australia
| | - James E Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, USA
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
33
|
Jambhekar A, Anastas JN, Shi Y. Histone Lysine Demethylase Inhibitors. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a026484. [PMID: 28049654 DOI: 10.1101/cshperspect.a026484] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The dynamic regulation of covalent modifications to histones is essential for maintaining genomic integrity and cell identity and is often compromised in cancer. Aberrant expression of histone lysine demethylases has been documented in many types of blood and solid tumors, and thus demethylases represent promising therapeutic targets. Recent advances in high-throughput chemical screening, structure-based drug design, and structure-activity relationship studies have improved both the specificity and the in vivo efficacy of demethylase inhibitors. This review will briefly outline the connection between demethylases and cancer and will provide a comprehensive overview of the structure, specificity, and utility of currently available demethylase inhibitors. To date, a select group of demethylase inhibitors is being evaluated in clinical trials, and additional compounds may soon follow from the bench to the bedside.
Collapse
Affiliation(s)
- Ashwini Jambhekar
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts 02115
| | - Jamie N Anastas
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts 02115.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Yang Shi
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts 02115.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
34
|
Thaler F, Mercurio C. Compounds and methods for inhibiting histone demethylases: a patent evaluation of US20160102096A1. Expert Opin Ther Pat 2016; 26:1367-1370. [PMID: 27730846 DOI: 10.1080/13543776.2016.1246539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The Jumonji C (JmjC) domain containing histone lysine demethylases have a clear role both in the development and in some diseases including inflammation and cancer. The histone lysine demethylases represent an attractive target for the identification of therapeutic agents and the pyridine derivatives are a scaffolds largely investigated for the identification and development of inhibitors of enzymes of the Jumonji family. This commentary is a scientific evaluation of a patent application US20160102096A1 that describes novel pyridine derivatives in which the introduction of specific substituents is used to modulate the selectivity profile of the inhibitors.
Collapse
Affiliation(s)
- Florian Thaler
- a Experimental Therapeutics Unit , IFOM - The FIRC Institute of Molecular Oncology , Milan , Italy
| | - Ciro Mercurio
- a Experimental Therapeutics Unit , IFOM - The FIRC Institute of Molecular Oncology , Milan , Italy
| |
Collapse
|
35
|
Protein-Directed Dynamic Combinatorial Chemistry: A Guide to Protein Ligand and Inhibitor Discovery. Molecules 2016; 21:molecules21070910. [PMID: 27438816 PMCID: PMC6273345 DOI: 10.3390/molecules21070910] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/04/2016] [Accepted: 07/08/2016] [Indexed: 01/16/2023] Open
Abstract
Protein-directed dynamic combinatorial chemistry is an emerging technique for efficient discovery of novel chemical structures for binding to a target protein. Typically, this method relies on a library of small molecules that react reversibly with each other to generate a combinatorial library. The components in the combinatorial library are at equilibrium with each other under thermodynamic control. When a protein is added to the equilibrium mixture, and if the protein interacts with any components of the combinatorial library, the position of the equilibrium will shift and those components that interact with the protein will be amplified, which can then be identified by a suitable biophysical technique. Such information is useful as a starting point to guide further organic synthesis of novel protein ligands and enzyme inhibitors. This review uses literature examples to discuss the practicalities of applying this method to inhibitor discovery, in particular, the set-up of the combinatorial library, the reversible reactions that may be employed, and the choice of detection methods to screen protein ligands from a mixture of reversibly forming molecules.
Collapse
|
36
|
Johansson C, Velupillai S, Tumber A, Szykowska A, Hookway ES, Nowak RP, Strain-Damerell C, Gileadi C, Philpott M, Burgess-Brown N, Wu N, Kopec J, Nuzzi A, Steuber H, Egner U, Badock V, Munro S, LaThangue NB, Westaway S, Brown J, Athanasou N, Prinjha R, Brennan PE, Oppermann U. Structural analysis of human KDM5B guides histone demethylase inhibitor development. Nat Chem Biol 2016; 12:539-45. [PMID: 27214403 DOI: 10.1038/nchembio.2087] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 04/07/2016] [Indexed: 12/13/2022]
Abstract
Members of the KDM5 (also known as JARID1) family are 2-oxoglutarate- and Fe(2+)-dependent oxygenases that act as histone H3K4 demethylases, thereby regulating cell proliferation and stem cell self-renewal and differentiation. Here we report crystal structures of the catalytic core of the human KDM5B enzyme in complex with three inhibitor chemotypes. These scaffolds exploit several aspects of the KDM5 active site, and their selectivity profiles reflect their hybrid features with respect to the KDM4 and KDM6 families. Whereas GSK-J1, a previously identified KDM6 inhibitor, showed about sevenfold less inhibitory activity toward KDM5B than toward KDM6 proteins, KDM5-C49 displayed 25-100-fold selectivity between KDM5B and KDM6B. The cell-permeable derivative KDM5-C70 had an antiproliferative effect in myeloma cells, leading to genome-wide elevation of H3K4me3 levels. The selective inhibitor GSK467 exploited unique binding modes, but it lacked cellular potency in the myeloma system. Taken together, these structural leads deliver multiple starting points for further rational and selective inhibitor design.
Collapse
Affiliation(s)
- Catrine Johansson
- Structural Genomics Consortium, University of Oxford, Headington, UK
- Botnar Research Centre, NIHR Oxford Biomedical Research Unit, University of Oxford, Oxford, UK
| | | | - Anthony Tumber
- Structural Genomics Consortium, University of Oxford, Headington, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Edward S Hookway
- Botnar Research Centre, NIHR Oxford Biomedical Research Unit, University of Oxford, Oxford, UK
| | - Radoslaw P Nowak
- Structural Genomics Consortium, University of Oxford, Headington, UK
- Botnar Research Centre, NIHR Oxford Biomedical Research Unit, University of Oxford, Oxford, UK
| | | | - Carina Gileadi
- Structural Genomics Consortium, University of Oxford, Headington, UK
| | - Martin Philpott
- Botnar Research Centre, NIHR Oxford Biomedical Research Unit, University of Oxford, Oxford, UK
| | | | - Na Wu
- Botnar Research Centre, NIHR Oxford Biomedical Research Unit, University of Oxford, Oxford, UK
| | - Jola Kopec
- Structural Genomics Consortium, University of Oxford, Headington, UK
| | - Andrea Nuzzi
- Structural Genomics Consortium, University of Oxford, Headington, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Ursula Egner
- Bayer Healthcare Pharmaceuticals, Berlin, Germany
| | | | - Shonagh Munro
- Department of Oncology, University of Oxford, Oxford, UK
| | | | - Sue Westaway
- Epinova DPU, Immuno-Inflammation Therapy Area, GlaxoSmithKline R&D, Stevenage, UK
| | - Jack Brown
- Epinova DPU, Immuno-Inflammation Therapy Area, GlaxoSmithKline R&D, Stevenage, UK
| | - Nick Athanasou
- Botnar Research Centre, NIHR Oxford Biomedical Research Unit, University of Oxford, Oxford, UK
| | - Rab Prinjha
- Epinova DPU, Immuno-Inflammation Therapy Area, GlaxoSmithKline R&D, Stevenage, UK
| | - Paul E Brennan
- Structural Genomics Consortium, University of Oxford, Headington, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Udo Oppermann
- Structural Genomics Consortium, University of Oxford, Headington, UK
- Botnar Research Centre, NIHR Oxford Biomedical Research Unit, University of Oxford, Oxford, UK
| |
Collapse
|
37
|
Kim TD, Oh S, Lightfoot SA, Shin S, Wren JD, Janknecht R. Upregulation of PSMD10 caused by the JMJD2A histone demethylase. Int J Clin Exp Med 2016; 9:10123-10134. [PMID: 28883898 PMCID: PMC5584593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
PSMD10, also known as gankyrin, is associated with the proteasome and has been shown to be an oncoprotein in the liver. Here, we report that PSMD10 expression is stimulated by the histone demethylase JMJD2A/KDM4A and its interaction partner, the ETV1 transcription factor, in LNCaP prostate cancer cells. Global analysis of expression patterns revealed that PSMD10 mRNA levels are positively correlated with those of both JMJD2A and ETV1. In human prostate tumors, PSMD10 is highly overexpressed at the protein level and correlates with JMJD2A overexpression; further, PSMD10 expression is enhanced in the prostates of transgenic JMJD2A mice. Moreover, PSMD10 is particularly overexpressed in high Gleason score prostate tumors. Downregulation of PSMD10 in LNCaP prostate cancer cells impaired their growth, indicating that PSMD10 may exert a pro-oncogenic function in the prostate. Lastly, we observed that PSMD10 expression is correlated to YAP1, a component of the Hippo signaling pathway and whose gene promoter is regulated by JMJD2A, and that PSMD10 can cooperate with YAP1 in stimulating LNCaP cell growth. Altogether, these data indicate that PSMD10 is a novel downstream effector of JMJD2A and suggest that inhibition of the JMJD2A histone demethylase by small molecule drugs may be effective to curtail the oncogenic activity of PSMD10 in various PSMD10-overexpressing tumors.
Collapse
Affiliation(s)
- Tae-Dong Kim
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Sangphil Oh
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Stan A Lightfoot
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Sook Shin
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jonathan D Wren
- Arthritis & Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Stephenson Cancer Center, Oklahoma City, OK 73104, USA
| | - Ralf Janknecht
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Stephenson Cancer Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
38
|
San Jose-Eneriz E, Agirre X, Rodríguez-Otero P, Prosper F. Epigenetic regulation of cell signaling pathways in acute lymphoblastic leukemia. Epigenomics 2016; 5:525-38. [PMID: 24059799 DOI: 10.2217/epi.13.56] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a heterogeneous cancer that is characterized by rapid and uncontrolled proliferation of immature B- or T-lymphoid precursors. Although ALL has been regarded as a genetic disease for many years, the crucial importance of epigenetic alterations in leukemogenesis has become increasingly evident. Epigenetic mechanisms, which include DNA methylation and histone modifications, are critical for gene regulation during many key biological processes. Here, we review the cell signaling pathways that are regulated by DNA methylation or histone modifications in ALL. Recent studies have highlighted the fundamental role of these modifications in ALL development, and suggested that future investigation into the specific genes and pathways that are altered by epigenetic mechanisms can contribute to the development of novel drug-based therapies for ALL.
Collapse
Affiliation(s)
- Edurne San Jose-Eneriz
- Oncology Division, Foundation for Applied Medical Research, University of Navarra, Pamplona, Spain
| | | | | | | |
Collapse
|
39
|
Kim TD, Shin S, Janknecht R. ETS transcription factor ERG cooperates with histone demethylase KDM4A. Oncol Rep 2016; 35:3679-88. [PMID: 27109047 PMCID: PMC4869937 DOI: 10.3892/or.2016.4747] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 01/11/2016] [Indexed: 12/20/2022] Open
Abstract
ERG (ETS-related gene) is a member of the ETS (erythroblast transformation-specific) family of transcription factors. Overexpression of the ERG transcription factor is observed in half of all prostate tumors and is an underlying cause of this disease. However, the mechanisms involved in the functions of ERG are still not fully understood. In the present study, we showed that ERG can directly bind to KDM4A (also known as JMJD2A), a histone demethylase that particularly demethylates lysine 9 on histone H3. ERG and KDM4A cooperated in upregulating the promoter of Yes-associated protein 1 (YAP1), a downstream effector in the Hippo signaling pathway and crucial growth regulator. Multiple ERG binding sites within the human YAP1 gene promoter were identified and their impact on transcription was determined through mutational analysis. Furthermore, we found that ERG expression reduced histone H3 lysine 9 trimethylation at the YAP1 gene promoter, consistent with its epigenetic regulation through the ERG interaction partner, KDM4A. Finally, downregulation of YAP1 phenocopied the growth-retarding effect of ERG or KDM4A depletion in human VCaP prostate cancer cells. Collectively, these results elucidated a novel mechanism - ERG promotes prostate tumorigenesis together with KDM4A through the upregulation of YAP1. A corollary is that KDM4A as well as YAP1 inhibitors may prove beneficial for the therapy of ERG-overexpressing prostate tumors.
Collapse
Affiliation(s)
- Tae-Dong Kim
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Sook Shin
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ralf Janknecht
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
40
|
Black JC, Whetstine JR. Tipping the lysine methylation balance in disease. Biopolymers 2016; 99:127-35. [PMID: 23175387 DOI: 10.1002/bip.22136] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 08/01/2012] [Accepted: 08/02/2012] [Indexed: 12/28/2022]
Abstract
Genomic instability is a major contributing factor to the development and onset of diseases such as cancer. Emerging evidence has demonstrated that maintaining the proper balance of histone lysine methylation is critical to preserve genomic integrity. Genome-wide association studies, gene sequencing, and genome-wide mapping approaches have helped identify mutations, copy number changes, and aberrant gene regulation of lysine methyltransferases (KMTs) and demethylases (KDMs) associated with cancer and cognitive disorders. Structural analysis of KMTs and KDMs has demonstrated the drugability of these enzymes and has led to the discovery of small molecule inhibitors. Use of these inhibitors has allowed better understanding of the biochemical properties of KMTs and KDMs and demonstrated potential for therapeutic use. This review will highlight the methyl modifications, KMTs and KDMs associated with cancer and neurological disorders and how KMT and KDM and the potential for treatment of these conditions with small molecule inhibitors.
Collapse
Affiliation(s)
- Joshua C Black
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, 13th Street, Charlestown, MA 02129
| | | |
Collapse
|
41
|
Korczynska M, Le DD, Younger N, Gregori-Puigjané E, Tumber A, Krojer T, Velupillai S, Gileadi C, Nowak RP, Iwasa E, Pollock SB, Torres IO, Oppermann U, Shoichet BK, Fujimori DG. Docking and Linking of Fragments To Discover Jumonji Histone Demethylase Inhibitors. J Med Chem 2016; 59:1580-98. [PMID: 26699912 PMCID: PMC5080985 DOI: 10.1021/acs.jmedchem.5b01527] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Development of tool molecules that inhibit Jumonji demethylases allows for the investigation of cancer-associated transcription. While scaffolds such as 2,4-pyridinedicarboxylic acid (2,4-PDCA) are potent inhibitors, they exhibit limited selectivity. To discover new inhibitors for the KDM4 demethylases, enzymes overexpressed in several cancers, we docked a library of 600,000 fragments into the high-resolution structure of KDM4A. Among the most interesting chemotypes were the 5-aminosalicylates, which docked in two distinct but overlapping orientations. Docking poses informed the design of covalently linked fragment compounds, which were further derivatized. This combined approach improved affinity by ∼ 3 log-orders to yield compound 35 (Ki = 43 nM). Several hybrid inhibitors were selective for KDM4C over the related enzymes FIH, KDM2A, and KDM6B while lacking selectivity against the KDM3 and KDM5 subfamilies. Cocrystal structures corroborated the docking predictions. This study extends the use of structure-based docking from fragment discovery to fragment linking optimization, yielding novel KDM4 inhibitors.
Collapse
Affiliation(s)
- Magdalena Korczynska
- Department of Pharmaceutical Chemistry, University of California, San Francisco, Genentech Hall, 600 16th Street, MC2280, San Francisco, California 94158-2280, United States
| | - Daniel D. Le
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, Genentech Hall, 600 16th Street, MC2280, San Francisco, California 94158-2280, United States
| | - Noah Younger
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, Genentech Hall, 600 16th Street, MC2280, San Francisco, California 94158-2280, United States
| | - Elisabet Gregori-Puigjané
- Department of Pharmaceutical Chemistry, University of California, San Francisco, Genentech Hall, 600 16th Street, MC2280, San Francisco, California 94158-2280, United States
| | - Anthony Tumber
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, U.K
- Nuffield Department of Clinical Medicine, Target Discovery Institute (TDI), University of Oxford, Oxford OX3 7BN, U.K
| | - Tobias Krojer
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, U.K
| | | | - Carina Gileadi
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, U.K
| | - Radosław P. Nowak
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, U.K
| | - Eriko Iwasa
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, Genentech Hall, 600 16th Street, MC2280, San Francisco, California 94158-2280, United States
| | - Samuel B. Pollock
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, Genentech Hall, 600 16th Street, MC2280, San Francisco, California 94158-2280, United States
| | - Idelisse Ortiz Torres
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, Genentech Hall, 600 16th Street, MC2280, San Francisco, California 94158-2280, United States
| | - Udo Oppermann
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, U.K
- Botnar Research Center, University of Oxford, Oxford OX3 7LD, U.K
| | - Brian K. Shoichet
- Department of Pharmaceutical Chemistry, University of California, San Francisco, Genentech Hall, 600 16th Street, MC2280, San Francisco, California 94158-2280, United States
| | - Danica Galonić Fujimori
- Department of Pharmaceutical Chemistry, University of California, San Francisco, Genentech Hall, 600 16th Street, MC2280, San Francisco, California 94158-2280, United States
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, Genentech Hall, 600 16th Street, MC2280, San Francisco, California 94158-2280, United States
| |
Collapse
|
42
|
Gelato KA, Shaikhibrahim Z, Ocker M, Haendler B. Targeting epigenetic regulators for cancer therapy: modulation of bromodomain proteins, methyltransferases, demethylases, and microRNAs. Expert Opin Ther Targets 2016; 20:783-99. [DOI: 10.1517/14728222.2016.1134490] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | | | - Matthias Ocker
- Global Drug Discovery, Bayer Pharma AG, Berlin, Germany
- Department of Gastroenterology/Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
43
|
Westaway SM, Preston AGS, Barker MD, Brown F, Brown JA, Campbell M, Chung CW, Diallo H, Douault C, Drewes G, Eagle R, Gordon L, Haslam C, Hayhow TG, Humphreys PG, Joberty G, Katso R, Kruidenier L, Leveridge M, Liddle J, Mosley J, Muelbaier M, Randle R, Rioja I, Rueger A, Seal GA, Sheppard RJ, Singh O, Taylor J, Thomas P, Thomson D, Wilson DM, Lee K, Prinjha RK. Cell Penetrant Inhibitors of the KDM4 and KDM5 Families of Histone Lysine Demethylases. 1. 3-Amino-4-pyridine Carboxylate Derivatives. J Med Chem 2016; 59:1357-69. [PMID: 26771107 DOI: 10.1021/acs.jmedchem.5b01537] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Optimization of KDM6B (JMJD3) HTS hit 12 led to the identification of 3-((furan-2-ylmethyl)amino)pyridine-4-carboxylic acid 34 and 3-(((3-methylthiophen-2-yl)methyl)amino)pyridine-4-carboxylic acid 39 that are inhibitors of the KDM4 (JMJD2) family of histone lysine demethylases. Compounds 34 and 39 possess activity, IC50 ≤ 100 nM, in KDM4 family biochemical (RFMS) assays with ≥ 50-fold selectivity against KDM6B and activity in a mechanistic KDM4C cell imaging assay (IC50 = 6-8 μM). Compounds 34 and 39 are also potent inhibitors of KDM5C (JARID1C) (RFMS IC50 = 100-125 nM).
Collapse
Affiliation(s)
- Susan M Westaway
- Epinova Discovery Performance Unit, Medicines Research Centre, GlaxoSmithKline R&D , Stevenage SG1 2NY, U.K
| | - Alex G S Preston
- Epinova Discovery Performance Unit, Medicines Research Centre, GlaxoSmithKline R&D , Stevenage SG1 2NY, U.K
| | - Michael D Barker
- Epinova Discovery Performance Unit, Medicines Research Centre, GlaxoSmithKline R&D , Stevenage SG1 2NY, U.K
| | - Fiona Brown
- Platform Technology and Science, Medicines Research Centre, GlaxoSmithKline R&D , Stevenage SG1 2NY, U.K
| | - Jack A Brown
- Epinova Discovery Performance Unit, Medicines Research Centre, GlaxoSmithKline R&D , Stevenage SG1 2NY, U.K
| | - Matthew Campbell
- Epinova Discovery Performance Unit, Medicines Research Centre, GlaxoSmithKline R&D , Stevenage SG1 2NY, U.K
| | - Chun-Wa Chung
- Platform Technology and Science, Medicines Research Centre, GlaxoSmithKline R&D , Stevenage SG1 2NY, U.K
| | - Hawa Diallo
- Epinova Discovery Performance Unit, Medicines Research Centre, GlaxoSmithKline R&D , Stevenage SG1 2NY, U.K
| | - Clement Douault
- Epinova Discovery Performance Unit, Medicines Research Centre, GlaxoSmithKline R&D , Stevenage SG1 2NY, U.K
| | - Gerard Drewes
- Cellzome GmbH, a GSK Company , Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Robert Eagle
- Platform Technology and Science, Medicines Research Centre, GlaxoSmithKline R&D , Stevenage SG1 2NY, U.K
| | - Laurie Gordon
- Platform Technology and Science, Medicines Research Centre, GlaxoSmithKline R&D , Stevenage SG1 2NY, U.K
| | - Carl Haslam
- Platform Technology and Science, Medicines Research Centre, GlaxoSmithKline R&D , Stevenage SG1 2NY, U.K
| | - Thomas G Hayhow
- Epinova Discovery Performance Unit, Medicines Research Centre, GlaxoSmithKline R&D , Stevenage SG1 2NY, U.K
| | - Philip G Humphreys
- Epinova Discovery Performance Unit, Medicines Research Centre, GlaxoSmithKline R&D , Stevenage SG1 2NY, U.K
| | - Gerard Joberty
- Cellzome GmbH, a GSK Company , Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Roy Katso
- Platform Technology and Science, Medicines Research Centre, GlaxoSmithKline R&D , Stevenage SG1 2NY, U.K
| | - Laurens Kruidenier
- Epinova Discovery Performance Unit, Medicines Research Centre, GlaxoSmithKline R&D , Stevenage SG1 2NY, U.K
| | - Melanie Leveridge
- Platform Technology and Science, Medicines Research Centre, GlaxoSmithKline R&D , Stevenage SG1 2NY, U.K
| | - John Liddle
- Epinova Discovery Performance Unit, Medicines Research Centre, GlaxoSmithKline R&D , Stevenage SG1 2NY, U.K
| | - Julie Mosley
- Platform Technology and Science, Medicines Research Centre, GlaxoSmithKline R&D , Stevenage SG1 2NY, U.K
| | - Marcel Muelbaier
- Cellzome GmbH, a GSK Company , Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Rebecca Randle
- Platform Technology and Science, Medicines Research Centre, GlaxoSmithKline R&D , Stevenage SG1 2NY, U.K
| | - Inma Rioja
- Epinova Discovery Performance Unit, Medicines Research Centre, GlaxoSmithKline R&D , Stevenage SG1 2NY, U.K
| | - Anne Rueger
- Cellzome GmbH, a GSK Company , Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Gail A Seal
- Epinova Discovery Performance Unit, Medicines Research Centre, GlaxoSmithKline R&D , Stevenage SG1 2NY, U.K
| | - Robert J Sheppard
- Epinova Discovery Performance Unit, Medicines Research Centre, GlaxoSmithKline R&D , Stevenage SG1 2NY, U.K
| | - Onkar Singh
- Platform Technology and Science, Medicines Research Centre, GlaxoSmithKline R&D , Stevenage SG1 2NY, U.K
| | - Joanna Taylor
- Platform Technology and Science, Medicines Research Centre, GlaxoSmithKline R&D , Stevenage SG1 2NY, U.K
| | - Pamela Thomas
- Platform Technology and Science, Medicines Research Centre, GlaxoSmithKline R&D , Stevenage SG1 2NY, U.K
| | - Douglas Thomson
- Cellzome GmbH, a GSK Company , Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - David M Wilson
- Epinova Discovery Performance Unit, Medicines Research Centre, GlaxoSmithKline R&D , Stevenage SG1 2NY, U.K
| | - Kevin Lee
- Epinova Discovery Performance Unit, Medicines Research Centre, GlaxoSmithKline R&D , Stevenage SG1 2NY, U.K
| | - Rab K Prinjha
- Epinova Discovery Performance Unit, Medicines Research Centre, GlaxoSmithKline R&D , Stevenage SG1 2NY, U.K
| |
Collapse
|
44
|
Hu J, Wang X, Chen L, Huang M, Tang W, Zuo J, Liu YC, Shi Z, Liu R, Shen J, Xiong B. Design and discovery of new pyrimidine coupled nitrogen aromatic rings as chelating groups of JMJD3 inhibitors. Bioorg Med Chem Lett 2016; 26:721-725. [PMID: 26776360 DOI: 10.1016/j.bmcl.2016.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/31/2015] [Accepted: 01/05/2016] [Indexed: 11/28/2022]
Abstract
The histone methylation on lysine residues is one of the most studied post-translational modifications, and its aberrant states have been associated with many human diseases. In 2012, Kruidenier et al. reported GSK-J1 as a selective Jumonji H3K27 demethylase (JMJD3 and UTX) inhibitor. However, there is limited information on the structure-activity relationship of this series of compounds. Moreover, there are few scaffolds reported as chelating groups for Fe(II) ion in Jumonji demethylase inhibitors development. To further elaborate the structure-activity relationship of selective JMJD3 inhibitors and to explore the novel chelating groups for Fe(II) ion, we initialized a medicinal chemistry modification based on the GSK-J1 structure. Finally, we found that several compounds bearing different chelating groups showed similar activities with respect to GSK-J1 and excellent metabolic stability in liver microsomes. The ethyl ester prodrugs of these inhibitors also showed a better activity than GSK-J4 for inhibition of TNF-α production in LPS-stimulated murine macrophage cell line Raw 264.7 cells. Taking together, the current study not only discovered alternative potent JMJD3 inhibitors, but also can benefit other researchers to design new series of Jumonji demethylase inhibitors based on the identified chelating groups.
Collapse
Affiliation(s)
- Jianping Hu
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Xin Wang
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Lin Chen
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Min Huang
- Department of Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Wei Tang
- Department of Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Jianping Zuo
- Department of Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yu-Chih Liu
- Shanghai ChemPartner Co. LTD, Building 5, 998 Halei Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, China
| | - Zhe Shi
- Shanghai ChemPartner Co. LTD, Building 5, 998 Halei Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, China
| | - Rongfeng Liu
- Shanghai ChemPartner Co. LTD, Building 5, 998 Halei Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, China
| | - Jingkang Shen
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| | - Bing Xiong
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| |
Collapse
|
45
|
Feng T, Li D, Wang H, Zhuang J, Liu F, Bao Q, Lei Y, Chen W, Zhang X, Xu X, Sun H, You Q, Guo X. Novel 5-carboxy-8-HQ based histone demethylase JMJD2A inhibitors: Introduction of an additional carboxyl group at the C-2 position of quinoline. Eur J Med Chem 2015; 105:145-55. [DOI: 10.1016/j.ejmech.2015.09.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 09/05/2015] [Accepted: 09/08/2015] [Indexed: 01/22/2023]
|
46
|
Haslam C, Hellicar J, Dunn A, Fuetterer A, Hardy N, Marshall P, Paape R, Pemberton M, Resemannand A, Leveridge M. The Evolution of MALDI-TOF Mass Spectrometry toward Ultra-High-Throughput Screening: 1536-Well Format and Beyond. ACTA ACUST UNITED AC 2015; 21:176-86. [DOI: 10.1177/1087057115608605] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/30/2015] [Indexed: 12/11/2022]
Abstract
Mass spectrometry (MS) offers a label-free, direct-detection method, in contrast to fluorescent or colorimetric methodologies. Over recent years, solid-phase extraction–based techniques, such as the Agilent RapidFire system, have emerged that are capable of analyzing samples in <10 s. While dramatically faster than liquid chromatography–coupled MS, an analysis time of 8–10 s is still considered relatively slow for full-diversity high-throughput screening (HTS). Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF) offers an alternative for high-throughput MS detection. However, sample preparation and deposition onto the MALDI target, as well as interference from matrix ions, have been considered limitations for the use of MALDI for screening assays. Here we describe the development and validation of assays for both small-molecule and peptide analytes using MALDI-TOF coupled with nanoliter liquid handling. Using the JMJD2c histone demethylase and acetylcholinesterase as model systems, we have generated robust data in a 1536 format and also increased sample deposition to 6144 samples per target. Using these methods, we demonstrate that this technology can deliver fast sample analysis time with low sample volume, and data comparable to that of current RapidFire assays.
Collapse
Affiliation(s)
- Carl Haslam
- Department of Biological Sciences, GlaxoSmithKline, Stevenage, UK
| | - John Hellicar
- Department of Biological Sciences, GlaxoSmithKline, Stevenage, UK
| | - Adrian Dunn
- Department of Chemical Sciences, GlaxoSmithKline, Stevenage, UK
| | | | - Neil Hardy
- Department of Sample Management and Automation, GlaxoSmithKline, Stevenage, UK
| | - Peter Marshall
- Department of Chemical Sciences, GlaxoSmithKline, Stevenage, UK
| | | | | | | | | |
Collapse
|
47
|
Gale M, Yan Q. High-throughput screening to identify inhibitors of lysine demethylases. Epigenomics 2015; 7:57-65. [PMID: 25687466 DOI: 10.2217/epi.14.63] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Lysine demethylases (KDMs) are epigenetic regulators whose dysfunction is implicated in the pathology of many human diseases including various types of cancer, inflammation and X-linked intellectual disability. Particular demethylases have been identified as promising therapeutic targets, and tremendous efforts are being devoted toward developing suitable small-molecule inhibitors for clinical and research use. Several High-throughput screening strategies have been developed to screen for small-molecule inhibitors of KDMs, each with advantages and disadvantages in terms of time, cost, effort, reliability and sensitivity. In this Special Report, we review and evaluate the High-throughput screening methods utilized for discovery of novel small-molecule KDM inhibitors.
Collapse
Affiliation(s)
- Molly Gale
- Department of Pathology, Yale School of Medicine, New Haven, 310 Cedar St., BML348C, PO Box 208023, New Haven, CT 06520, USA
| | | |
Collapse
|
48
|
Rüger N, Roatsch M, Emmrich T, Franz H, Schüle R, Jung M, Link A. Tetrazolylhydrazides as Selective Fragment-Like Inhibitors of the JumonjiC-Domain-Containing Histone Demethylase KDM4A. ChemMedChem 2015; 10:1875-83. [DOI: 10.1002/cmdc.201500335] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Nicole Rüger
- Institute of Pharmacy; Ernst-Moritz-Arndt-Universität Greifswald; Friedrich-Ludwig-Jahn-Str. 17 17487 Greifswald Germany
| | - Martin Roatsch
- Institute of Pharmaceutical Sciences; Albert-Ludwigs-Universität Freiburg; Albertstr. 25 79104 Freiburg Germany
| | - Thomas Emmrich
- Institute of Pharmacy; Ernst-Moritz-Arndt-Universität Greifswald; Friedrich-Ludwig-Jahn-Str. 17 17487 Greifswald Germany
| | - Henriette Franz
- University of Freiburg Medical Center; Department of Urology, Women's Hospital and Center for Clinical Research; Breisacher Str. 66 79106 Freiburg Germany
| | - Roland Schüle
- University of Freiburg Medical Center; Department of Urology, Women's Hospital and Center for Clinical Research; Breisacher Str. 66 79106 Freiburg Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences; Albert-Ludwigs-Universität Freiburg; Albertstr. 25 79104 Freiburg Germany
| | - Andreas Link
- Institute of Pharmacy; Ernst-Moritz-Arndt-Universität Greifswald; Friedrich-Ludwig-Jahn-Str. 17 17487 Greifswald Germany
| |
Collapse
|
49
|
Advances in the development of histone lysine demethylase inhibitors. Curr Opin Pharmacol 2015; 23:52-60. [PMID: 26057211 DOI: 10.1016/j.coph.2015.05.009] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/11/2015] [Accepted: 05/15/2015] [Indexed: 11/22/2022]
Abstract
The covalent modification of histones is closely associated with regulation of gene transcription. Chromatin modifications have been suggested to represent an epigenetic code that is dynamically 'written' and 'erased' by specialized proteins, and 'read', or interpreted, by proteins that translate the code into gene expression changes. Initially thought to be an irreversible process, histone methylation is now known to be reversed by demethylases, FAD dependent amineoxidases and by iron(II)-alpha-ketoglutarate dependent deoxygenases of the Jumonji family. Altered histone demethylase activities have been associated with human disease, including cancer. The first wave of novel investigational drugs directed against KDM1A has recently entered the clinic, and the first specific inhibitor targeting a Jumonji KDM is advancing in preclinical regulatory studies.
Collapse
|
50
|
Liu K, Liu Y, Lau JL, Min J. Epigenetic targets and drug discovery Part 2: Histone demethylation and DNA methylation. Pharmacol Ther 2015; 151:121-40. [PMID: 25857453 DOI: 10.1016/j.pharmthera.2015.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 03/31/2015] [Indexed: 02/06/2023]
Abstract
Chromatin structure is dynamically modulated by various chromatin modifications, such as histone/DNA methylation and demethylation. We have reviewed histone methyltransferases and methyllysine binders in terms of small molecule screening and drug discovery in the first part of this review series. In this part, we will summarize recent progress in chemical probe and drug discovery of histone demethylases and DNA methyltransferases. Histone demethylation and DNA methylation have attracted a lot of attention regarding their biology and disease implications. Correspondingly, many small molecule compounds have been designed to modulate the activity of histone demethylases and DNA methyltransferases, and some of them have been developed into therapeutic drugs or put into clinical trials.
Collapse
Affiliation(s)
- Ke Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, PR China; Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Yanli Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, PR China; Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Johnathan L Lau
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jinrong Min
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, PR China; Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|