1
|
Drakopoulos A, Koszegi Z, Seier K, Hübner H, Maurel D, Sounier R, Granier S, Gmeiner P, Calebiro D, Decker M. Design, Synthesis, and Characterization of New δ Opioid Receptor-Selective Fluorescent Probes and Applications in Single-Molecule Microscopy of Wild-Type Receptors. J Med Chem 2024; 67:12618-12631. [PMID: 39044606 PMCID: PMC11386433 DOI: 10.1021/acs.jmedchem.4c00627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The delta opioid receptor (δOR or DOR) is a G protein-coupled receptor (GPCR) showing a promising profile as a drug target for nociception and analgesia. Herein, we design and synthesize new fluorescent antagonist probes with high δOR selectivity that are ideally suited for single-molecule microscopy (SMM) applications in unmodified, untagged receptors. Using our new probes, we investigated wild-type δOR localization and mobility at low physiological receptor densities for the first time. Furthermore, we investigate the potential formation of δOR homodimers, as such a receptor organization might exhibit distinct pharmacological activity, potentially paving the way for innovative pharmacological therapies. Our findings indicate that the majority of δORs labeled with these probes exist as freely diffusing monomers on the cell surface in a simple cell model. This discovery advances our understanding of OR behavior and offers potential implications for future therapeutic research.
Collapse
Affiliation(s)
- Antonios Drakopoulos
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität (JMU) Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Zsombor Koszegi
- Institute of Metabolism and Systems Research, University of Birmingham, B15 2TT Birmingham, U.K
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, B15 2TT Birmingham, U.K
| | - Kerstin Seier
- Institute of Pharmacology and Toxicology, Julius-Maximilians University of Würzburg, Versbacher Strasse 9, 97078 Würzburg, Germany
| | - Harald Hübner
- Chair of Pharmaceutical Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Damien Maurel
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, 34094 Cedex 5 Montpellier, France
| | - Rémy Sounier
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, 34094 Cedex 5 Montpellier, France
| | - Sébastien Granier
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, 34094 Cedex 5 Montpellier, France
| | - Peter Gmeiner
- Chair of Pharmaceutical Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Davide Calebiro
- Institute of Metabolism and Systems Research, University of Birmingham, B15 2TT Birmingham, U.K
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, B15 2TT Birmingham, U.K
| | - Michael Decker
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität (JMU) Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
2
|
Leon Duque MA, Vallavoju N, Woo CM. Chemical tools for the opioids. Mol Cell Neurosci 2023; 125:103845. [PMID: 36948231 PMCID: PMC10247539 DOI: 10.1016/j.mcn.2023.103845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/09/2023] [Accepted: 03/15/2023] [Indexed: 03/24/2023] Open
Abstract
The opioids are potent and widely used pain management medicines despite also possessing severe liabilities that have fueled the opioid crisis. The pharmacological properties of the opioids primarily derive from agonism or antagonism of the opioid receptors, but additional effects may arise from specific compounds, opioid receptors, or independent targets. The study of the opioids, their receptors, and the development of remediation strategies has benefitted from derivatization of the opioids as chemical tools. While these studies have primarily focused on the opioids in the context of the opioid receptors, these chemical tools may also play a role in delineating mechanisms that are independent of the opioid receptors. In this review, we describe recent advances in the development and applications of opioid derivatives as chemical tools and highlight opportunities for the future.
Collapse
Affiliation(s)
- Mark Anthony Leon Duque
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, MA 02138, United States of America
| | - Nandini Vallavoju
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, MA 02138, United States of America
| | - Christina M Woo
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, MA 02138, United States of America.
| |
Collapse
|
3
|
Giakomidi D, Bird MF, Guerrini R, Calo G, Lambert DG. Fluorescent opioid receptor ligands as tools to study opioid receptor function. J Pharmacol Toxicol Methods 2021; 113:107132. [PMID: 34728348 DOI: 10.1016/j.vascn.2021.107132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/12/2021] [Accepted: 10/25/2021] [Indexed: 11/30/2022]
Abstract
Opioid receptors are divided into the three classical types: MOP(μ:mu), DOP(δ:delta) and KOP(κ:kappa) that are naloxone-sensitive and an additional naloxone-insensitive nociceptin/orphanin FQ(N/OFQ) peptide receptor(NOP). Studies to determine opioid receptor location and turnover variably rely on; (i) measuring receptor mRNA, (ii) genetically tagging receptors, (iii) labelling receptors with radioligands, (iv) use of antibodies in immunohistochemistry/Western Blotting or (v) measuring receptor function coupled with the use of selective antagonists. All have their drawbacks with significant issues relating to mRNA not necessarily predicting protein, poor antibody selectivity and utility of radiolabels in low expression systems. In this minireview we discuss use of fluorescently labelled opioid receptor ligands. To maintain the pharmacological properties of the corresponding parent ligand fluorescently labelled ligands must take into account fluorophore (brightness and propensity to bleach), linker length and chemistry, and site to which the linker (and hence probe) will be attached. Use of donor and acceptor fluorophores with spectral overlap facilitates use in FRET type assays to determine proximity of ligand or tagged receptor pairs. There is a wide range of probes of agonist and antagonist nature for all four opioid receptor types; caution is needed with agonist probes due to the possibility for internalization. We have produced two novel ATTO based probes; DermorphinATTO488 (MOP) and N/OFQATTO594 (NOP). These probes label MOP and NOP in a range of preparations and using N/OFQATTO594 we demonstrate internalization and ligand-receptor interaction by FRET. Fluorescent opioid probes offer potential methodological advantages over more traditional use of antibodies and radiolabels.
Collapse
Affiliation(s)
- Despina Giakomidi
- Department of Cardiovascular Sciences (Anaesthesia, Critical Care and Pain Management), University of Leicester, Hodgkin Building, Leicester LE1 9HN. UK
| | - Mark F Bird
- Department of Cardiovascular Sciences (Anaesthesia, Critical Care and Pain Management), University of Leicester, Hodgkin Building, Leicester LE1 9HN. UK
| | - Remo Guerrini
- Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, Italy
| | - Girolamo Calo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - David G Lambert
- Department of Cardiovascular Sciences (Anaesthesia, Critical Care and Pain Management), University of Leicester, Hodgkin Building, Leicester LE1 9HN. UK.
| |
Collapse
|
4
|
Borgarelli C, Klingl YE, Escamilla-Ayala A, Munck S, Van Den Bosch L, De Borggraeve WM, Ismalaj E. Lighting Up the Plasma Membrane: Development and Applications of Fluorescent Ligands for Transmembrane Proteins. Chemistry 2021; 27:8605-8641. [PMID: 33733502 DOI: 10.1002/chem.202100296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Indexed: 12/16/2022]
Abstract
Despite the fact that transmembrane proteins represent the main therapeutic targets for decades, complete and in-depth knowledge about their biochemical and pharmacological profiling is not fully available. In this regard, target-tailored small-molecule fluorescent ligands are a viable approach to fill in the missing pieces of the puzzle. Such tools, coupled with the ability of high-precision optical techniques to image with an unprecedented resolution at a single-molecule level, helped unraveling many of the conundrums related to plasma proteins' life-cycle and druggability. Herein, we review the recent progress made during the last two decades in fluorescent ligand design and potential applications in fluorescence microscopy of voltage-gated ion channels, ligand-gated ion channels and G-coupled protein receptors.
Collapse
Affiliation(s)
- Carlotta Borgarelli
- Department of Chemistry, Molecular Design and Synthesis, KU Leuven Campus Arenberg Celestijnenlaan 200F -, box 2404, 3001, Leuven, Belgium
| | - Yvonne E Klingl
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium.,Laboratory of Neurobiology, VIB, Center for Brain &, Disease Research, VIB-KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium
| | - Abril Escamilla-Ayala
- Center for Brain & Disease Research, & VIB BioImaging Core, VIB-KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium.,Department of Neurosciences, Leuven Brain Institute, KU Leuven, Campus Gasthuisberg O&N5 - box 602 Herestraat 49, 3000, Leuven, Belgium
| | - Sebastian Munck
- Center for Brain & Disease Research, & VIB BioImaging Core, VIB-KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium.,Department of Neurosciences, Leuven Brain Institute, KU Leuven, Campus Gasthuisberg O&N5 - box 602 Herestraat 49, 3000, Leuven, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium.,Laboratory of Neurobiology, VIB, Center for Brain &, Disease Research, VIB-KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium
| | - Wim M De Borggraeve
- Department of Chemistry, Molecular Design and Synthesis, KU Leuven Campus Arenberg Celestijnenlaan 200F -, box 2404, 3001, Leuven, Belgium
| | - Ermal Ismalaj
- Department of Chemistry, Molecular Design and Synthesis, KU Leuven Campus Arenberg Celestijnenlaan 200F -, box 2404, 3001, Leuven, Belgium
| |
Collapse
|
5
|
Lee YS, Remesic M, Ramos-Colon C, Wu Z, LaVigne J, Molnar G, Tymecka D, Misicka A, Streicher JM, Hruby VJ, Porreca F. Multifunctional Enkephalin Analogs with a New Biological Profile: MOR/DOR Agonism and KOR Antagonism. Biomedicines 2021; 9:biomedicines9060625. [PMID: 34072734 PMCID: PMC8229567 DOI: 10.3390/biomedicines9060625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 11/25/2022] Open
Abstract
In our previous studies, we developed a series of mixed MOR/DOR agonists that are enkephalin-like tetrapeptide analogs with an N-phenyl-N-piperidin-4-ylpropionamide (Ppp) moiety at the C-terminus. Further SAR study on the analogs, initiated by the findings from off-target screening, resulted in the discovery of LYS744 (6, Dmt-DNle-Gly-Phe(p-Cl)-Ppp), a multifunctional ligand with MOR/DOR agonist and KOR antagonist activity (GTPγS assay: IC50 = 52 nM, Imax = 122% cf. IC50 = 59 nM, Imax = 100% for naloxone) with nanomolar range of binding affinity (Ki = 1.3 nM cf. Ki = 2.4 nM for salvinorin A). Based on its unique biological profile, 6 is considered to possess high therapeutic potential for the treatment of chronic pain by modulating pathological KOR activation while retaining analgesic efficacy attributed to its MOR/DOR agonist activity.
Collapse
Affiliation(s)
- Yeon Sun Lee
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA; (J.L.); (G.M.); (J.M.S.); (F.P.)
- Correspondence: ; Tel.: +1-520-626-2820
| | - Michael Remesic
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA; (M.R.); (C.R.-C.); (V.J.H.)
| | - Cyf Ramos-Colon
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA; (M.R.); (C.R.-C.); (V.J.H.)
| | - Zhijun Wu
- ABC Resource, Plainsboro, NJ 08536, USA;
| | - Justin LaVigne
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA; (J.L.); (G.M.); (J.M.S.); (F.P.)
| | - Gabriella Molnar
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA; (J.L.); (G.M.); (J.M.S.); (F.P.)
| | - Dagmara Tymecka
- Faculty of Chemistry, University of Warsaw, Pasteura, PL-02-093 Warsaw, Poland; (D.T.); (A.M.)
| | - Aleksandra Misicka
- Faculty of Chemistry, University of Warsaw, Pasteura, PL-02-093 Warsaw, Poland; (D.T.); (A.M.)
| | - John M. Streicher
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA; (J.L.); (G.M.); (J.M.S.); (F.P.)
| | - Victor J. Hruby
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA; (M.R.); (C.R.-C.); (V.J.H.)
| | - Frank Porreca
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA; (J.L.); (G.M.); (J.M.S.); (F.P.)
| |
Collapse
|
6
|
Drakopoulos A, Decker M. Development and Biological Applications of Fluorescent Opioid Ligands. Chempluschem 2020; 85:1354-1364. [DOI: 10.1002/cplu.202000212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/30/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Antonios Drakopoulos
- Pharmaceutical and Medicinal ChemistryInstitute of Pharmacy and Food ChemistryJulius Maximilian University of Würzburg 97074 Würzburg Germany
| | - Michael Decker
- Pharmaceutical and Medicinal ChemistryInstitute of Pharmacy and Food ChemistryJulius Maximilian University of Würzburg 97074 Würzburg Germany
| |
Collapse
|
7
|
Stefanucci A, Dimmito MP, Molnar G, Streicher JM, Novellino E, Zengin G, Mollica A. Developing Cyclic Opioid Analogues: Fluorescently Labeled Bioconjugates of Biphalin. ACS Med Chem Lett 2020; 11:720-726. [PMID: 32435376 DOI: 10.1021/acsmedchemlett.9b00569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 01/08/2020] [Indexed: 12/15/2022] Open
Abstract
The development of bioconjugates is of pivotal importance in medicinal chemistry due to their potential applications as therapeutic agents to improve the targeting of specific diseases, decrease toxicity, or control drug release. In this work we achieved the synthesis and characterization of three novel opioid peptides fluorescently labeled, analogues of cyclic biphalin derivatives, namely 1D, 1C, and 2C. Among them, compound 1D, containing a dansyl-maleimide motif, exhibited an excellent binding affinity and functional potency for the δ-opioid receptor (DOR). 1D also demonstrated a strong fluorescence emission spectrum ranging from 300 to 700 nm. These features could be highly desirable for medical and biological applications needed for targeting the DOR, including in vivo imaging, and as a lead for the design of fluorescent probes.
Collapse
Affiliation(s)
- Azzurra Stefanucci
- Dipartimento di Farmacia, Università di Chieti-Pescara “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| | - Marilisa Pia Dimmito
- Dipartimento di Farmacia, Università di Chieti-Pescara “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| | - Gabriela Molnar
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85721, United States
| | - John M. Streicher
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85721, United States
| | - Ettore Novellino
- Dipartimento di Farmacia, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, 42250 Konya, Turkey
| | - Adriano Mollica
- Dipartimento di Farmacia, Università di Chieti-Pescara “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| |
Collapse
|
8
|
Gentzsch C, Seier K, Drakopoulos A, Jobin M, Lanoiselée Y, Koszegi Z, Maurel D, Sounier R, Hübner H, Gmeiner P, Granier S, Calebiro D, Decker M. Selective and Wash-Resistant Fluorescent Dihydrocodeinone Derivatives Allow Single-Molecule Imaging of μ-Opioid Receptor Dimerization. Angew Chem Int Ed Engl 2020; 59:5958-5964. [PMID: 31808251 PMCID: PMC7125027 DOI: 10.1002/anie.201912683] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Indexed: 12/21/2022]
Abstract
μ-Opioid receptors (μ-ORs) play a critical role in the modulation of pain and mediate the effects of the most powerful analgesic drugs. Despite extensive efforts, it remains insufficiently understood how μ-ORs produce specific effects in living cells. We developed new fluorescent ligands based on the μ-OR antagonist E-p-nitrocinnamoylamino-dihydrocodeinone (CACO), that display high affinity, long residence time and pronounced selectivity. Using these ligands, we achieved single-molecule imaging of μ-ORs on the surface of living cells at physiological expression levels. Our results reveal a high heterogeneity in the diffusion of μ-ORs, with a relevant immobile fraction. Using a pair of fluorescent ligands of different color, we provide evidence that μ-ORs interact with each other to form short-lived homodimers on the plasma membrane. This approach provides a new strategy to investigate μ-OR pharmacology at single-molecule level.
Collapse
Affiliation(s)
- Christian Gentzsch
- Pharmaceutical and Medicinal ChemistryInstitute of Pharmacy and Food ChemistryJulius Maximilian University of WürzburgAm Hubland97074WürzburgGermany
| | - Kerstin Seier
- Institute of Pharmacology and ToxicologyJulius Maximilian University of WürzburgVersbacher Strasse 997078WürzburgGermany
| | - Antonios Drakopoulos
- Pharmaceutical and Medicinal ChemistryInstitute of Pharmacy and Food ChemistryJulius Maximilian University of WürzburgAm Hubland97074WürzburgGermany
| | - Marie‐Lise Jobin
- Institute of Pharmacology and ToxicologyJulius Maximilian University of WürzburgVersbacher Strasse 997078WürzburgGermany
| | - Yann Lanoiselée
- Institute of Metabolism and Systems Research & Centre of Membrane Proteins and ReceptorsUniversity of BirminghamIBR Tower, Level 2, EdgbastonBirminghamB152TTUK
| | - Zsombor Koszegi
- Institute of Metabolism and Systems Research & Centre of Membrane Proteins and ReceptorsUniversity of BirminghamIBR Tower, Level 2, EdgbastonBirminghamB152TTUK
| | - Damien Maurel
- ARPEGE (Pharmacology Screening Interactome) platform facilityInstitut de Génomique FonctionnelleUniversité de Montpellier, CNRS, INSERM141, rue de la Cardonille34094Montpellier Cedex 05France
| | - Rémy Sounier
- Institut de Génomique FonctionnelleUniversité de Montpellier, CNRS, INSERM141, rue de la Cardonille34094Montpellier Cedex 05France
| | - Harald Hübner
- Medicinal ChemistryDepartment of Chemistry and PharmacyFriedrich-Alexander University of Erlangen-Nuremberg91058ErlangenGermany
| | - Peter Gmeiner
- Medicinal ChemistryDepartment of Chemistry and PharmacyFriedrich-Alexander University of Erlangen-Nuremberg91058ErlangenGermany
| | - Sébastien Granier
- Institut de Génomique FonctionnelleUniversité de Montpellier, CNRS, INSERM141, rue de la Cardonille34094Montpellier Cedex 05France
| | - Davide Calebiro
- Institute of Pharmacology and ToxicologyJulius Maximilian University of WürzburgVersbacher Strasse 997078WürzburgGermany
- Institute of Metabolism and Systems Research & Centre of Membrane Proteins and ReceptorsUniversity of BirminghamIBR Tower, Level 2, EdgbastonBirminghamB152TTUK
| | - Michael Decker
- Pharmaceutical and Medicinal ChemistryInstitute of Pharmacy and Food ChemistryJulius Maximilian University of WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
9
|
Drakopoulos A, Koszegi Z, Lanoiselée Y, Hübner H, Gmeiner P, Calebiro D, Decker M. Investigation of Inactive-State κ Opioid Receptor Homodimerization via Single-Molecule Microscopy Using New Antagonistic Fluorescent Probes. J Med Chem 2020; 63:3596-3609. [DOI: 10.1021/acs.jmedchem.9b02011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Antonios Drakopoulos
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, 97074 Würzburg, Germany
| | - Zsombor Koszegi
- Institute of Metabolism and Systems Research and Centre of Membrane Proteins and Receptors, College of Medical and Dental Sciences, University of Birmingham, B152TT Birmingham, U.K
| | - Yann Lanoiselée
- Institute of Metabolism and Systems Research and Centre of Membrane Proteins and Receptors, College of Medical and Dental Sciences, University of Birmingham, B152TT Birmingham, U.K
| | - Harald Hübner
- Medicinal Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Peter Gmeiner
- Medicinal Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Davide Calebiro
- Institute of Metabolism and Systems Research and Centre of Membrane Proteins and Receptors, College of Medical and Dental Sciences, University of Birmingham, B152TT Birmingham, U.K
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, 97074 Würzburg, Germany
| |
Collapse
|
10
|
Gentzsch C, Seier K, Drakopoulos A, Jobin M, Lanoiselée Y, Koszegi Z, Maurel D, Sounier R, Hübner H, Gmeiner P, Granier S, Calebiro D, Decker M. Selective and Wash‐Resistant Fluorescent Dihydrocodeinone Derivatives Allow Single‐Molecule Imaging of μ‐Opioid Receptor Dimerization. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Christian Gentzsch
- Pharmaceutical and Medicinal ChemistryInstitute of Pharmacy and Food ChemistryJulius Maximilian University of Würzburg Am Hubland 97074 Würzburg Germany
| | - Kerstin Seier
- Institute of Pharmacology and ToxicologyJulius Maximilian University of Würzburg Versbacher Strasse 9 97078 Würzburg Germany
| | - Antonios Drakopoulos
- Pharmaceutical and Medicinal ChemistryInstitute of Pharmacy and Food ChemistryJulius Maximilian University of Würzburg Am Hubland 97074 Würzburg Germany
| | - Marie‐Lise Jobin
- Institute of Pharmacology and ToxicologyJulius Maximilian University of Würzburg Versbacher Strasse 9 97078 Würzburg Germany
| | - Yann Lanoiselée
- Institute of Metabolism and Systems Research & Centre of Membrane Proteins and ReceptorsUniversity of Birmingham IBR Tower, Level 2, Edgbaston Birmingham B152TT UK
| | - Zsombor Koszegi
- Institute of Metabolism and Systems Research & Centre of Membrane Proteins and ReceptorsUniversity of Birmingham IBR Tower, Level 2, Edgbaston Birmingham B152TT UK
| | - Damien Maurel
- ARPEGE (Pharmacology Screening Interactome) platform facilityInstitut de Génomique FonctionnelleUniversité de Montpellier, CNRS, INSERM 141, rue de la Cardonille 34094 Montpellier Cedex 05 France
| | - Rémy Sounier
- Institut de Génomique FonctionnelleUniversité de Montpellier, CNRS, INSERM 141, rue de la Cardonille 34094 Montpellier Cedex 05 France
| | - Harald Hübner
- Medicinal ChemistryDepartment of Chemistry and PharmacyFriedrich-Alexander University of Erlangen-Nuremberg 91058 Erlangen Germany
| | - Peter Gmeiner
- Medicinal ChemistryDepartment of Chemistry and PharmacyFriedrich-Alexander University of Erlangen-Nuremberg 91058 Erlangen Germany
| | - Sébastien Granier
- Institut de Génomique FonctionnelleUniversité de Montpellier, CNRS, INSERM 141, rue de la Cardonille 34094 Montpellier Cedex 05 France
| | - Davide Calebiro
- Institute of Pharmacology and ToxicologyJulius Maximilian University of Würzburg Versbacher Strasse 9 97078 Würzburg Germany
- Institute of Metabolism and Systems Research & Centre of Membrane Proteins and ReceptorsUniversity of Birmingham IBR Tower, Level 2, Edgbaston Birmingham B152TT UK
| | - Michael Decker
- Pharmaceutical and Medicinal ChemistryInstitute of Pharmacy and Food ChemistryJulius Maximilian University of Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
11
|
Rojewska E, Wawrzczak-Bargiela A, Szucs E, Benyhe S, Starnowska J, Mika J, Przewlocki R, Przewlocka B. Alterations in the Activity of Spinal and Thalamic Opioid Systems in a Mice Neuropathic Pain Model. Neuroscience 2018; 390:293-302. [DOI: 10.1016/j.neuroscience.2018.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 01/29/2023]
|
12
|
Hook MA, Woller SA, Bancroft E, Aceves M, Funk MK, Hartman J, Garraway SM. Neurobiological Effects of Morphine after Spinal Cord Injury. J Neurotrauma 2016; 34:632-644. [PMID: 27762659 DOI: 10.1089/neu.2016.4507] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Opioids and non-steroidal anti-inflammatory drugs are used commonly to manage pain in the early phase of spinal cord injury (SCI). Despite its analgesic efficacy, however, our studies suggest that intrathecal morphine undermines locomotor recovery and increases lesion size in a rodent model of SCI. Similarly, intravenous (IV) morphine attenuates locomotor recovery. The current study explores whether IV morphine also increases lesion size after a spinal contusion (T12) injury and quantifies the cell types that are affected by early opioid administration. Using an experimenter-administered escalating dose of IV morphine across the first seven days post-injury, we quantified the expression of neuron, astrocyte, and microglial markers at the injury site. SCI decreased NeuN expression relative to shams. In subjects with SCI treated with IV morphine, virtually no NeuN+ cells remained across the rostral-caudal extent of the lesion. Further, whereas SCI per se increased the expression of astrocyte and microglial markers (glial fibrillary acidic protein and OX-42, respectively), morphine treatment decreased the expression of these markers. These cellular changes were accompanied by attenuation of locomotor recovery (Basso, Beattie, Bresnahan scores), decreased weight gain, and the development of opioid-induced hyperalgesia (increased tactile reactivity) in morphine-treated subjects. These data suggest that morphine use is contraindicated in the acute phase of a spinal injury. Faced with a lifetime of intractable pain, however, simply removing any effective analgesic for the management of SCI pain is not an ideal option. Instead, these data underscore the critical need for further understanding of the molecular pathways engaged by conventional medications within the pathophysiological context of an injury.
Collapse
Affiliation(s)
- Michelle A Hook
- 1 Texas A&M University Institute for Neuroscience, Texas A&M University , College Station, Texas.,2 Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center , Bryan, Texas
| | - Sarah A Woller
- 3 Department of Anesthesiology, University of California , San Diego, California
| | - Eric Bancroft
- 2 Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center , Bryan, Texas
| | - Miriam Aceves
- 1 Texas A&M University Institute for Neuroscience, Texas A&M University , College Station, Texas.,2 Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center , Bryan, Texas
| | - Mary Katherine Funk
- 2 Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center , Bryan, Texas
| | - John Hartman
- 2 Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center , Bryan, Texas
| | - Sandra M Garraway
- 4 Department of Physiology, Emory University School of Medicine , Atlanta, Georgia
| |
Collapse
|
13
|
Schembri LS, Stoddart LA, Briddon SJ, Kellam B, Canals M, Graham B, Scammells PJ. Synthesis, Biological Evaluation, and Utility of Fluorescent Ligands Targeting the μ-Opioid Receptor. J Med Chem 2015; 58:9754-67. [DOI: 10.1021/acs.jmedchem.5b01664] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | - Leigh A. Stoddart
- Cell
Signaling Research Group, School of Life Sciences, Queen’s
Medical Centre, University of Nottingham, Nottingham NG7 2UH, U.K
| | - Stephen J. Briddon
- Cell
Signaling Research Group, School of Life Sciences, Queen’s
Medical Centre, University of Nottingham, Nottingham NG7 2UH, U.K
| | - Barrie Kellam
- School
of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, U.K
| | | | | | | |
Collapse
|
14
|
Development of a high-throughput screening-compatible assay to identify inhibitors of the CK2α/CK2β interaction. Anal Biochem 2015; 468:4-14. [DOI: 10.1016/j.ab.2014.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/22/2014] [Accepted: 09/05/2014] [Indexed: 01/10/2023]
|
15
|
Mika J, Popiolek-Barczyk K, Rojewska E, Makuch W, Starowicz K, Przewlocka B. Delta-opioid receptor analgesia is independent of microglial activation in a rat model of neuropathic pain. PLoS One 2014; 9:e104420. [PMID: 25105291 PMCID: PMC4126741 DOI: 10.1371/journal.pone.0104420] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 07/09/2014] [Indexed: 12/15/2022] Open
Abstract
The analgesic effect of delta-opioid receptor (DOR) ligands in neuropathic pain is not diminished in contrast to other opioid receptor ligands, which lose their effectiveness as analgesics. In this study, we examine whether this effect is related to nerve injury-induced microglial activation. We therefore investigated the influence of minocycline-induced inhibition of microglial activation on the analgesic effects of opioid receptor agonists: morphine, DAMGO, U50,488H, DPDPE, Deltorphin II and SNC80 after chronic constriction injury (CCI) to the sciatic nerve in rats. Pre-emptive and repeated administration of minocycline (30 mg/kg, i.p.) over 7 days significantly reduced allodynia and hyperalgesia as measured on day 7 after CCI. The antiallodynic and antihyperalgesic effects of intrathecally (i.t.) administered morphine (10–20 µg), DAMGO (1–2 µg) and U50,488H (25–50 µg) were significantly potentiated in rats after minocycline, but no such changes were observed after DPDPE (10–20 µg), deltorphin II (1.5–15 µg) and SNC80 (10–20 µg) administration. Additionally, nerve injury-induced down-regulation of all types of opioid receptors in the spinal cord and dorsal root ganglia was not influenced by minocycline, which indicates that the effects of opioid ligands are dependent on other changes, presumably neuroimmune interactions. Our study of rat primary microglial cell culture using qRT-PCR, Western blotting and immunocytochemistry confirmed the presence of mu-opioid receptors (MOR) and kappa-opioid receptors (KOR), further we provide the first evidence for the lack of DOR on microglial cells. In summary, DOR analgesia is different from analgesia induced by MOR and KOR receptors because it does not dependent on injury-induced microglial activation. DOR agonists appear to be the best candidates for new drugs to treat neuropathic pain.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/administration & dosage
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/therapeutic use
- Analgesics, Opioid/administration & dosage
- Analgesics, Opioid/therapeutic use
- Animals
- Anti-Bacterial Agents/administration & dosage
- Anti-Bacterial Agents/therapeutic use
- Cells, Cultured
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/administration & dosage
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/therapeutic use
- Gene Expression Regulation/drug effects
- Male
- Microglia/cytology
- Microglia/drug effects
- Microglia/metabolism
- Minocycline/administration & dosage
- Minocycline/therapeutic use
- Morphine/administration & dosage
- Morphine/therapeutic use
- Neuralgia/drug therapy
- Rats, Wistar
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/genetics
- Receptors, Opioid, delta/metabolism
Collapse
Affiliation(s)
- Joanna Mika
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
- * E-mail: (BP); (JM)
| | | | - Ewelina Rojewska
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Wioletta Makuch
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Katarzyna Starowicz
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Barbara Przewlocka
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
- * E-mail: (BP); (JM)
| |
Collapse
|
16
|
Hutchinson MR, Shavit Y, Grace PM, Rice KC, Maier SF, Watkins LR. Exploring the neuroimmunopharmacology of opioids: an integrative review of mechanisms of central immune signaling and their implications for opioid analgesia. Pharmacol Rev 2011; 63:772-810. [PMID: 21752874 DOI: 10.1124/pr.110.004135] [Citation(s) in RCA: 291] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Vastly stimulated by the discovery of opioid receptors in the early 1970s, preclinical and clinical research was directed at the study of stereoselective neuronal actions of opioids, especially those played in their crucial analgesic role. However, during the past decade, a new appreciation of the non-neuronal actions of opioids has emerged from preclinical research, with specific appreciation for the nonclassic and nonstereoselective sites of action. Opioid activity at Toll-like receptors, newly recognized innate immune pattern recognition receptors, adds substantially to this unfolding story. It is now apparent from molecular and rodent data that these newly identified signaling events significantly modify the pharmacodynamics of opioids by eliciting proinflammatory reactivity from glia, the immunocompetent cells of the central nervous system. These central immune signaling events, including the release of cytokines and chemokines and the associated disruption of glutamate homeostasis, cause elevated neuronal excitability, which subsequently decreases opioid analgesic efficacy and leads to heightened pain states. This review will examine the current preclinical literature of opioid-induced central immune signaling mediated by classic and nonclassic opioid receptors. A unification of the preclinical pharmacology, neuroscience, and immunology of opioids now provides new insights into common mechanisms of chronic pain, naive tolerance, analgesic tolerance, opioid-induced hyperalgesia, and allodynia. Novel pharmacological targets for future drug development are discussed in the hope that disease-modifying chronic pain treatments arising from the appreciation of opioid-induced central immune signaling may become practical.
Collapse
Affiliation(s)
- Mark R Hutchinson
- Discipline of Pharmacology, School of Medical Science, University of Adelaide, South Australia, Australia, 5005.
| | | | | | | | | | | |
Collapse
|
17
|
Vázquez ME, Blanco JB, Salvadori S, Trapella C, Argazzi R, Bryant SD, Jinsmaa Y, Lazarus LH, Negri L, Giannini E, Lattanzi R, Colucci M, Balboni G. 6-N,N-dimethylamino-2,3-naphthalimide: a new environment-sensitive fluorescent probe in delta- and mu-selective opioid peptides. J Med Chem 2006; 49:3653-8. [PMID: 16759107 PMCID: PMC1994907 DOI: 10.1021/jm060343t] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new environment-sensitive fluorophore, 6-N,N-(dimethylamino)-2,3-naphthalimide (6DMN) was introduced in the delta-selective opioid peptide agonist H-Dmt-Tic-Glu-NH(2) and in the mu-selective opioid peptide agonist endomorphin-2 (H-Tyr-Pro-Phe-Phe-NH(2)). Environment-sensitive fluorophores are a special class of chromophores that generally exhibit a low quantum yield in aqueous solution but become highly fluorescent in nonpolar solvents or when bound to hydrophobic sites in proteins or membranes. New fluorescent delta-selective irreversible antagonists (H-Dmt-Tic-Glu-NH-(CH(2))(5)-CO-Dap(6DMN)-NH(2) (1) and H-Dmt-Tic-Glu-Dap(6DMN)-NH(2) (2)) were identified as potential fluorescent probes showing good properties for use in studies of distribution and internalization of delta receptors by confocal laser scanning microscopy.
Collapse
MESH Headings
- Animals
- Binding, Competitive
- Cell Line, Tumor
- Fluorescent Dyes/chemical synthesis
- Fluorescent Dyes/chemistry
- Fluorescent Dyes/pharmacology
- Guinea Pigs
- Imides/chemistry
- In Vitro Techniques
- Male
- Mice
- Muscle Contraction
- Naphthalenes/chemistry
- Naphthalimides
- Neuroblastoma
- Neuromuscular Junction/drug effects
- Neuromuscular Junction/physiology
- Oligopeptides/chemical synthesis
- Oligopeptides/chemistry
- Oligopeptides/pharmacology
- Opioid Peptides/chemical synthesis
- Opioid Peptides/chemistry
- Opioid Peptides/pharmacology
- Radioligand Assay
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- M Eugenio Vázquez
- Departamento de Química Organica y Unidad Asociada al CSIC, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Meltola NJ, Wahlroos R, Soini AE. Hydrophilic labeling reagents of dipyrrylmethene-BF2 dyes for two-photon excited fluorometry: syntheses and photophysical characterization. J Fluoresc 2005; 14:635-47. [PMID: 15617270 DOI: 10.1023/b:jofl.0000039350.94256.53] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Recently introduced bioaffinity assay technology, ArcDia TPX, is based on two-photon excited fluorescence (TPE) and it enables separation-free ultra-sensitive immunoassays from microvolumes. Here we present syntheses of novel two-photon excitable fluorescent labeling reagents which have been specially designed to be used as label molecules in the ArcDia TPX assay technique. The labeling reagents are based on dipyrrylmetheneboron difluoride (dipyrrylmethene-BF2) chromophore, which have been substituted with aryl, heteroaryl or arylalkenyl chemical groups to extend the pi-electron conjugation. These substitutions results in a series of dipyrrylmethene-BF2 fluorophores with different photophysical properties. Dipyrrylmethene-BF2 fluorophores have been further substituted with a dipeptide linker unit and finally activated as succinimidyl esters to enable specific coupling with primary amino groups. The dipeptide linker serves as a spacer arm between the label and a target, and enhances the solubility of the label in aqueous solutions. Study of the chemical and photophysical performance of the new labeling reagents is described. The new labeling reagents exhibit high fluorescence quantum yields, and molar absorption coefficients. The results show that the new labels with the hydrophilic dipeptide linker unit provide large two-photon excitation cross-sections, high fluorescence quantum efficiency and good solubility in aqueous solutions. The results suggest that the novel dipyrrylmethene-BF2 labels are highly applicable to bioaffinity assays based on two-photon excitation of fluorescence.
Collapse
Affiliation(s)
- Niko J Meltola
- Laboratory of Biophysics, Institute of Biomedicine, University of Turku, PO Box 123, 20521 Turku, Finland.
| | | | | |
Collapse
|
19
|
Houghten RA, Dooley CT, Appel JR. De novo identification of highly active fluorescent kappa opioid ligands from a rhodamine labeled tetrapeptide positional scanning library. Bioorg Med Chem Lett 2004; 14:1947-51. [PMID: 15050634 DOI: 10.1016/j.bmcl.2004.01.090] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2003] [Accepted: 01/26/2004] [Indexed: 11/22/2022]
Abstract
Highly active fluorescent compounds having kappa opioid activity were identified following the screening in a kappa-specific radioligand binding assay of a positional scanning tetrapeptide combinatorial library in which every tetrapeptide was fluorescently labeled. Lissamine rhodamine B sulfonyl chloride was coupled to the N terminal of a mixture-based tetrapeptide positional scanning library made up of over 7.3 million tetrapeptides. Upon determination of the most active mixtures for each position of the library in the kappa binding assay, individual rhodamine labeled tetrapeptides were then synthesized and tested to determine their activities. Eight individual rhodamine labeled peptides were identified that were specific for the kappa opioid receptor, having binding affinities ranging from 5-20 nM. These peptides were poor inhibitors at the mu and delta receptors (K(i)>5,000 nM). Furthermore, neither rhodamine itself nor these same tetrapeptides lacking the N-terminal rhodamine had any significant activity at the kappa receptor, indicating that both the tetrapeptide sequence and the rhodamine moiety are required for receptor binding. This study has demonstrated that novel fluorescent compounds with intrinsic activity can be identified through the use of combinatorial chemistry.
Collapse
Affiliation(s)
- Richard A Houghten
- Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego, CA 92121, USA.
| | | | | |
Collapse
|
20
|
Soini AE, Yashunsky DV, Meltola NJ, Ponomarev GV. Influence of linker unit on performance of palladium(II) coproporphyrin labelling reagent and its bioconjugates. LUMINESCENCE 2003; 18:182-92. [PMID: 12830817 DOI: 10.1002/bio.720] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this paper we describe the preparation of a series of new phosphorescent labelling reagents, based on monosubstituted palladium(II) coproporphyrin-I and the isothiocyanato reactive group. The labelling reagents differ with respect to the chemical composition of the linker unit that combines the reactive group and the porphyrin chromophore. Altogether, seven different labelling reagents are prepared. The new labelling reagents are conjugated with monoclonal mouse IgG to yield label conjugates with variable degrees of conjugation. The effect is studied of linker unit on: (a) the conjugation reaction kinetics; (b) the biological activity of the resulting IgG conjugates; and (c) the efficiency of phosphorescence emission. The results show that an increase in the length of the linker unit has a positive effect on both the reactivity of the label and the biological activity of the resulting conjugates. In addition, the results indicate that the labels with the most hydrophilic linker units exhibit the highest phosphorescence emission efficiencies.
Collapse
Affiliation(s)
- Aleksi E Soini
- Laboratory of Biophysics, Institute of Biomedicine, University of Turku, Finland.
| | | | | | | |
Collapse
|
21
|
Arttamangkul S, Alvarez-Maubecin V, Thomas G, Williams JT, Grandy DK. Binding and internalization of fluorescent opioid peptide conjugates in living cells. Mol Pharmacol 2000; 58:1570-80. [PMID: 11093798 DOI: 10.1124/mol.58.6.1570] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The dynamics of agonist-stimulated opioid receptor internalization and trafficking have been difficult to study in living cells in part because the available probes were inadequate. To overcome this obstacle, six new fluorescent opioid peptides were developed. Dermorphin (DERM), deltorphin (DELT), TIPP, and endomorphin were conjugated to BODIPY TR or Alexa Fluor 488, two fluorescent dyes with distinct hydrophobic properties. In membrane binding assays the fluorescent conjugates DERM-A488 or -BTR, DELT-A488 or -BTR, and TIPP-A488 displayed good binding affinity and selectivity for mu- and delta-opioid receptor subtypes. Furthermore, the fluorescent conjugates of dermorphin and deltorphin were biologically active as demonstrated by their ability to hyperpolarize locus coeruleus neurons (DERM-A488 or -BTR) and inhibit calcium currents in NG108-15 (DELT-A488). Both of these responses were antagonized by naloxone. In conjunction with confocal fluorescent microscopy the trafficking of these fluorescent ligands was monitored in real-time. The internalization of these ligands by mu- and delta-opioid receptors was found to be naloxone-sensitive and temperature-dependent. Interestingly, once these ligands were internalized the fluorescent puncta that formed became distributed in one of two patterns. In Chinese hamster ovary cells heterologously expressing either mu- or delta-opioid receptors the intracellular puncta were concentrated in the perinuclear region of the cell, whereas they were distributed throughout the cytoplasm in cells derived from either NG108-15 or SH-SY5Y cells. In summary, we have demonstrated that these novel, fluorescent opioid peptide conjugates permit real-time visual tracking of receptor-ligand complexes, including their internalization and trafficking, in living cells.
Collapse
Affiliation(s)
- S Arttamangkul
- Department of Physiology and Pharmacology, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | | | | | | | |
Collapse
|
22
|
Madsen BW, Beglan CL, Spivak CE. Fluorescein-labeled naloxone binding to mu opioid receptors on live Chinese hamster ovary cells using confocal fluorescent microscopy. J Neurosci Methods 2000; 97:123-31. [PMID: 10788666 DOI: 10.1016/s0165-0270(00)00175-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A general method of confocal laser scanning microscopy was used to demonstrate specific binding of fluorescein-labeled naloxone (FNAL, 10-50 nM) to stably transfected mu opioid receptors on live Chinese hamster ovary cells. Nonspecific binding was visually indistinguishable from autofluorescence in cells with intact cell membranes. Fluorescent labeling of cell perimeters, not present in control nontransfected cells, reversed in transfected cells upon washout of FNAL or following the addition of either unlabeled naloxone (25 microM) or the mu specific antagonist CTOP (1 microM). The addition of the delta and kappa specific agonists DPDPE (1 microM) and U50488 (1 microM), respectively, failed to reverse the labeling. Further evidence of specific binding was obtained from kinetic experiments, where it was observed that only transfected cells showed a time-dependent exponential change in fluorescence that permitted estimation of association and dissociation binding rate constants of (5.8+/-0.5, mean+/-S.E.M.)x10(5) M(-1) s(-1) and (3.3+/-0.6)x10(-3) s(-1), respectively and a kinetically derived dissociation constant of 5.7+/-1.4 nM. These estimates were comparable to those obtained under similar conditions in radioligand binding experiments using [3H]-naloxone.
Collapse
MESH Headings
- Animals
- Artifacts
- Binding, Competitive
- CHO Cells
- Cloning, Molecular
- Contrast Media/metabolism
- Contrast Media/pharmacology
- Cricetinae
- Fluorescein/metabolism
- Fluorescein/pharmacology
- Kinetics
- Microscopy, Confocal/methods
- Microscopy, Fluorescence/methods
- Naloxone/metabolism
- Naloxone/pharmacology
- Narcotic Antagonists/metabolism
- Narcotic Antagonists/pharmacology
- Radioligand Assay
- Receptors, Opioid, mu/analysis
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Sensitivity and Specificity
- Transfection
- Tritium
Collapse
Affiliation(s)
- B W Madsen
- Department of Pharmacology, University of Western Australia, Nedlands, Australia
| | | | | |
Collapse
|
23
|
Kshirsagar T, Nakano AH, Law PY, Elde R, Portoghese PS. NTI4F: a non-peptide fluorescent probe selective for functional delta opioid receptors. Neurosci Lett 1998; 249:83-6. [PMID: 9682822 DOI: 10.1016/s0304-3940(98)00379-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A non-peptide fluorescent probe, NTI4F, has been developed for the delta (delta) opioid receptor. The probe is a potent delta-antagonist in the mouse vas deferens (MVD) smooth muscle assay and it binds to the delta opioid receptor with high affinity (Ki = 1 nM) and selectivity. Confocal microscopy indicates that the probe binds to Madin-Darby canine kidney (MDCK) cells transfected with the delta opioid receptor. This binding can be blocked by the delta opioid receptor antagonist, naltrindole (NTI), but not by morphine or ethylketazocine (EK) which are mu (mu)- and kappa (kappa)-selective ligands. This fluorescent probe should prove useful in the study of the distribution of the delta opioid receptor.
Collapse
Affiliation(s)
- T Kshirsagar
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis 55455, USA
| | | | | | | | | |
Collapse
|
24
|
Emmerson PJ, Archer S, El-Hamouly W, Mansour A, Akil H, Medzihradsky F. Synthesis and characterization of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)-labeled fluorescent ligands for the mu opioid receptor. Biochem Pharmacol 1997; 54:1315-22. [PMID: 9393674 DOI: 10.1016/s0006-2952(97)00374-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A series of opioid ligands utilizing the 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) fluorophores 4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene++ +-3-propionic acid or 4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza- s-indacene-3-propionic acid were synthesized and characterized for their ability to act as a suitable fluorescent label for the mu opioid receptor. All compounds displaced the mu opioid receptor binding of [3H]Tyr-D-Ala-Gly-(Me)Phe-Gly-ol in monkey brain membranes with high affinity. The binding of fluorescent ligands to delta and kappa receptors was highly variable. 5,7-Dimethyl-BODIPY naltrexamine, "6-BNX," displayed subnanomolar affinities for the mu and kappa opioid receptors (Ki 0.07 and 0.43 nM, respectively) and nanomolar affinity at the delta (Ki 1.4 nM) receptor. Using fluorescence spectroscopy, the binding of 6-BNX in membranes from C6 glioma cells transfected with the cloned mu opioid receptor was investigated. In these membranes containing a high receptor density (10-80 pmol/mg protein), 6-BNX labeling was saturable, mu opioid specific, stereoselective (as determined with the isomers dextrorphan and levorphanol), and more than 90% specific. The results describe a series of newly developed fluorescent ligands for the mu opioid receptor and the use of one of these ligands as a label for the cloned mu receptor. These ligands provide a new approach for studying the structural and biophysical nature of opioid receptors.
Collapse
Affiliation(s)
- P J Emmerson
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor 48109, USA
| | | | | | | | | | | |
Collapse
|
25
|
Pechulis AD, Archer S, Wentland MP, Colasurdo AM, Bidlack JM. Arylacetamide kappa-selective opioid ligands. Bioorg Med Chem Lett 1997. [DOI: 10.1016/s0960-894x(97)00406-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Korlipara V, Ells J, Wang J, Tam S, Elde R, Portoghese P. Fluorescent N-benzylnaltrindole analogues as potential delta opioid receptor selective probes. Eur J Med Chem 1997. [DOI: 10.1016/s0223-5234(97)87545-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|