1
|
Andrade-Pavón D, Gómez-García O, Villa-Tanaca L. Review and Current Perspectives on DNA Topoisomerase I and II Enzymes of Fungi as Study Models for the Development of New Antifungal Drugs. J Fungi (Basel) 2024; 10:629. [PMID: 39330389 PMCID: PMC11432948 DOI: 10.3390/jof10090629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/25/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
Fungal infections represent a growing public health problem, mainly stemming from two phenomena. Firstly, certain diseases (e.g., AIDS and COVID-19) have emerged that weaken the immune system, leaving patients susceptible to opportunistic pathogens. Secondly, an increasing number of pathogenic fungi are developing multi-drug resistance. Consequently, there is a need for new antifungal drugs with novel therapeutic targets, such as type I and II DNA topoisomerase enzymes of fungal organisms. This contribution summarizes the available information in the literature on the biology, topology, structural characteristics, and genes of topoisomerase (Topo) I and II enzymes in humans, two other mammals, and 29 fungi (including Basidiomycetes and Ascomycetes). The evidence of these enzymes as alternative targets for antifungal therapy is presented, as is a broad spectrum of Topo I and II inhibitors. Research has revealed the genes responsible for encoding the Topo I and II enzymes of fungal organisms and the amino acid residues and nucleotide residues at the active sites of the enzymes that are involved in the binding mode of topoisomerase inhibitors. Such residues are highly conserved. According to molecular docking studies, antifungal Topo I and II inhibitors have good affinity for the active site of the respective enzymes. The evidence presented in the current review supports the proposal of the suitability of Topo I and II enzymes as molecular targets for new antifungal drugs, which may be used in the future in combined therapies for the treatment of infections caused by fungal organisms.
Collapse
Affiliation(s)
- Dulce Andrade-Pavón
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala. Col. Sto. Tomás, Ciudad de México 11340, Mexico;
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399, Nueva Industrial Vallejo, Gustavo A. Madero, Ciudad de México 07738, Mexico
| | - Omar Gómez-García
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala. Col. Sto. Tomás, Ciudad de México 11340, Mexico
| | - Lourdes Villa-Tanaca
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala. Col. Sto. Tomás, Ciudad de México 11340, Mexico;
| |
Collapse
|
2
|
Chen Z, Liu M, Wang N, Xiao W, Shi J. Unleashing the Potential of Camptothecin: Exploring Innovative Strategies for Structural Modification and Therapeutic Advancements. J Med Chem 2024; 67:3244-3273. [PMID: 38421819 DOI: 10.1021/acs.jmedchem.3c02115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Camptothecin (CPT) is a potent anti-cancer agent targeting topoisomerase I (TOP1). However, CPT has poor pharmacokinetic properties, causes toxicities, and leads to drug resistance, which limit its clinical use. In this paper, to review the current state of CPT research. We first briefly explain CPT's TOP1 inhibition mechanism and the key hurdles in CPT drug development. Then we examine strategies to overcome CPT's limitations through structural modifications and advanced delivery systems. Though modifications alone seem insufficient to fully enhance CPT's therapeutic potential, structure-activity relationship analysis provides insights to guide optimization of CPT analogs. In comparison, advanced delivery systems integrating controlled release, imaging capabilities, and combination therapies via stimulus-responsive linkers and targeting moieties show great promise for improving CPT's pharmacological profile. Looking forward, multifaceted approaches combining selective CPT derivatives with advanced delivery systems, informed by emerging biological insights, hold promise for fully unleashing CPT's anti-cancer potential.
Collapse
Affiliation(s)
- Zheng Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Maoyu Liu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Ningyu Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Wenjing Xiao
- Department of Pharmacy, The General Hospital of Western Theater Command of PLA, Chengdu 610083, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
3
|
Zhan JL, Zhu L, Bai JN, Liu JB, Zhang SH, Xie YQ, Hu BM, Wang Y, Han WJ. Transition metal-free [3 + 3] annulation of cyclopropanols with β-enamine esters to assemble nicotinate derivatives. Org Biomol Chem 2023; 21:8984-8988. [PMID: 37937487 DOI: 10.1039/d3ob01662e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
A metal-free and efficient approach for the synthesis of structurally important nicotinates through 4-HO-TEMPO-mediated [3 + 3] annulation of cyclopropanols with β-enamine esters is presented. This protocol features high atom efficiency, green waste, simple operation and broad substrate scope. Moreover, the experiments of gram-scale synthesis and recovery of oxidants make this strategy more sustainable and practical.
Collapse
Affiliation(s)
- Jun-Long Zhan
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Lin Zhu
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, Anyang, 455000, P. R. China
| | - Jia-Nan Bai
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
| | - Jian-Bo Liu
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
| | - Shi-Han Zhang
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
| | - Yao-Qiang Xie
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
| | - Bo-Mei Hu
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, Anyang, 455000, P. R. China
| | - Yang Wang
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
| | - Wen-Jun Han
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
- Henan Engineering Research Center of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, P. R. China
| |
Collapse
|
4
|
Shrestha A, Hwang SY, Kunwar S, Man Kadayat T, Park S, Liu Y, Jo H, Sheen N, Seo M, Lee ES, Kwon Y. Di-indenopyridines as topoisomerase II-selective anticancer agents: Design, synthesis, and structure-activity relationships. Bioorg Med Chem 2023; 91:117403. [PMID: 37418826 DOI: 10.1016/j.bmc.2023.117403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/09/2023]
Abstract
Topoisomerases are key molecular enzymes responsible for altering DNA topology, thus they have long been considered as attractive targets for novel chemotherapeutic agents. Topoisomerase type II (Topo II) catalytic inhibitors embrace a fresh perspective meant to get beyond drawbacks caused by topo II poisons, such as cardiotoxicity and secondary malignancies. Based on previously reported 5H-indeno[1,2-b]pyridines, here we presented new twenty-three hybrid di-indenopyridines along with their topo I/IIα inhibitory and antiproliferative activity. Most of the prepared 11-phenyl-diindenopyridines showed negligible topo I inhibitory activity, showing selectivity over topo II. Among the series, we finally selected compound 17, which displayed 100 % topo IIα inhibition at 20 μM concentration and comparable antiproliferative activity against the tested cell lines. Through competitive EtBr displacement assay, cleavable complex assay, and comet assay, compound 17 was finally determined as a non-intercalative catalytic topo IIα inhibitor. The findings in this study highlight the significance of phenolic, halophenyl, thienyl, and furyl groups at the 4-position of the indane ring in the design and synthesis of di-indenopyridines as potent catalytic topo IIα inhibitors with remarkable anticancer effects.
Collapse
Affiliation(s)
- Aarajana Shrestha
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea; Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY 40508, USA
| | - Soo-Yeon Hwang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Surendra Kunwar
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Tara Man Kadayat
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea; Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY 40508, USA
| | - Seojeong Park
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Yi Liu
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Hyunji Jo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Naeun Sheen
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Minjung Seo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Eung-Seok Lee
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Youngjoo Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea.
| |
Collapse
|
5
|
Cui XY, Ye ZT, Wu HH, Ji CG, Zhou F, Zhou J. Au(I)-Catalyzed Formal Intermolecular Carbene Insertion into Vinylic C(sp 2)–H Bonds and Allylic C(sp 3)–H Bonds. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Xiao-Yuan Cui
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, and Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, Shanghai 200062, China
| | - Zhong-Tian Ye
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, and Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, Shanghai 200062, China
| | - Hai-Hong Wu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, and Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, Shanghai 200062, China
| | - Chang-Ge Ji
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, and Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, Shanghai 200062, China
| | - Feng Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, and Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, Shanghai 200062, China
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, and Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, Shanghai 200062, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, China
| |
Collapse
|
6
|
Bocian W, Naumczuk B, Urbanowicz M, Sitkowski J, Bierczyńska-Krzysik A, Bednarek E, Wiktorska K, Milczarek M, Kozerski L. The Mode of SN38 Derivatives Interacting with Nicked DNA Mimics Biological Targeting of Topo I Poisons. Int J Mol Sci 2021; 22:ijms22147471. [PMID: 34299090 PMCID: PMC8303725 DOI: 10.3390/ijms22147471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022] Open
Abstract
The compounds 7-ethyl-9-(N-methylamino)methyl-10-hydroxycamptothecin (2) and 7-ethyl-9-(N-morpholino)methyl-10-hydroxycamptothecin (3) are potential topoisomerase I poisons. Moreover, they were shown to have favorable anti-neoplastic effects on several tumor cell lines. Due to these properties, the compounds are being considered for advancement to the preclinical development stage. To gain better insights into the molecular mechanism with the biological target, here, we conducted an investigation into their interactions with model nicked DNA (1) using different techniques. In this work, we observed the complexity of the mechanism of action of the compounds 2 and 3, in addition to their decomposition products: compound 4 and SN38. Using DOSY experiments, evidence of the formation of strongly bonded molecular complexes of SN38 derivatives with DNA duplexes was provided. The molecular modeling based on cross-peaks from the NOESY spectrum also allowed us to assign the geometry of a molecular complex of DNA with compound 2. Confirmation of the alkylation reaction of both compounds was obtained using MALDI–MS. Additionally, in the case of 3, alkylation was confirmed in the recording of cross-peaks in the 1H/13C HSQC spectrum of 13C-enriched compound 3. In this work, we showed that the studied compounds—parent compounds 2 and 3, and their potential metabolite 4 and SN38—interact inside the nick of 1, either forming the molecular complex or alkylating the DNA nitrogen bases. In order to confirm the influence of the studied compounds on the topoisomerase I relaxation activity of supercoiled DNA, the test was performed based upon the measurement of the fluorescence of DNA stain which can differentiate between supercoiled and relaxed DNA. The presented results confirmed that studied SN38 derivatives effectively block DNA relaxation mediated by Topo I, which means that they stop the machinery of Topo I activity.
Collapse
Affiliation(s)
- Wojciech Bocian
- National Medicines Institute, 00-725 Warsaw, Poland; (W.B.); (M.U.); (J.S.); (E.B.); (K.W.); (M.M.); (L.K.)
| | - Beata Naumczuk
- National Medicines Institute, 00-725 Warsaw, Poland; (W.B.); (M.U.); (J.S.); (E.B.); (K.W.); (M.M.); (L.K.)
- Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-8514371 (ext. 318)
| | - Magdalena Urbanowicz
- National Medicines Institute, 00-725 Warsaw, Poland; (W.B.); (M.U.); (J.S.); (E.B.); (K.W.); (M.M.); (L.K.)
| | - Jerzy Sitkowski
- National Medicines Institute, 00-725 Warsaw, Poland; (W.B.); (M.U.); (J.S.); (E.B.); (K.W.); (M.M.); (L.K.)
| | | | - Elżbieta Bednarek
- National Medicines Institute, 00-725 Warsaw, Poland; (W.B.); (M.U.); (J.S.); (E.B.); (K.W.); (M.M.); (L.K.)
| | - Katarzyna Wiktorska
- National Medicines Institute, 00-725 Warsaw, Poland; (W.B.); (M.U.); (J.S.); (E.B.); (K.W.); (M.M.); (L.K.)
| | - Małgorzata Milczarek
- National Medicines Institute, 00-725 Warsaw, Poland; (W.B.); (M.U.); (J.S.); (E.B.); (K.W.); (M.M.); (L.K.)
| | - Lech Kozerski
- National Medicines Institute, 00-725 Warsaw, Poland; (W.B.); (M.U.); (J.S.); (E.B.); (K.W.); (M.M.); (L.K.)
- Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| |
Collapse
|
7
|
Xu Q, Deng H, Li X, Quan ZS. Application of Amino Acids in the Structural Modification of Natural Products: A Review. Front Chem 2021; 9:650569. [PMID: 33996749 PMCID: PMC8118163 DOI: 10.3389/fchem.2021.650569] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/02/2021] [Indexed: 01/11/2023] Open
Abstract
Natural products and their derivatives are important sources for drug discovery; however, they usually have poor solubility and low activity and require structural modification. Amino acids are highly soluble in water and have a wide range of activities. The introduction of amino acids into natural products is expected to improve the performance of these products and minimize their adverse effects. Therefore, this review summarizes the application of amino acids in the structural modification of natural products and provides a theoretical basis for the structural modification of natural products in the future. The articles were divided into six types based on the backbone structures of the natural products, and the related applications of amino acids in the structural modification of natural products were discussed in detail.
Collapse
Affiliation(s)
- Qian Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Hao Deng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Xiaoting Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
- Department of Pharmaceutical Analysis, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| |
Collapse
|
8
|
Baglini E, Salerno S, Barresi E, Robello M, Da Settimo F, Taliani S, Marini AM. Multiple Topoisomerase I (TopoI), Topoisomerase II (TopoII) and Tyrosyl-DNA Phosphodiesterase (TDP) inhibitors in the development of anticancer drugs. Eur J Pharm Sci 2021; 156:105594. [DOI: 10.1016/j.ejps.2020.105594] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 02/08/2023]
|
9
|
Xiang C, Wu X, Zhao Z, Feng X, Bai X, Liu X, Zhao J, Takeda S, Qing Y. Nonhomologous end joining and homologous recombination involved in luteolin-induced DNA damage in DT40 cells. Toxicol In Vitro 2020; 65:104825. [PMID: 32169435 DOI: 10.1016/j.tiv.2020.104825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/08/2020] [Accepted: 03/08/2020] [Indexed: 02/05/2023]
Abstract
Luteolin (3',4',5,7-tetrahydroxyflavone), a naturally occurring flavonoid, has been shown to have anticancer activity in many types of cancer cell lines. The anticancer capacity of luteolin may be related to its ability to induce DNA double-strand breaks (DSBs). Here, we used DT40 cells to determine whether nonhomologous end joining (NHEJ) and homologous recombination (HR) are involved in the repair mechanism of luteolin-induced DNA damage. Cells defective in Ku70 (an enzyme associated with NHEJ) or Rad54 (an enzyme essential for HR) were hypersensitive and presented more apoptosis in response to luteolin. Moreover, the sensitivity and apoptosis of Ku70-/- and Rad54-/- cells were associated with increased DNA damage when the numbers of γ-H2AX foci and chromosomal aberrations (CAs) were compared with those from WT cells. Additionally, after treatment with luteolin, Ku70-/- cells presented more Top2 covalent cleavage complexes (Top2cc). These results indicated that luteolin induced DSBs in DT40 cells and demonstrated that both NHEJ and HR participated in the repair of luteolin-induced DSBs, which might be related to the inhibition of topoisomerases. These results imply that simultaneous inhibition of NHEJ and HR with luteolin treatment would provide a powerful protocol in cancer chemotherapy.
Collapse
Affiliation(s)
- Cuifang Xiang
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Xiaohua Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zilu Zhao
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoyu Feng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Xin Bai
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Xin Liu
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Jingxia Zhao
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yong Qing
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
10
|
Deletions associated with stabilization of the Top1 cleavage complex in yeast are products of the nonhomologous end-joining pathway. Proc Natl Acad Sci U S A 2019; 116:22683-22691. [PMID: 31636207 PMCID: PMC6842612 DOI: 10.1073/pnas.1914081116] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Topoisomerase I (Top1) resolves supercoils by nicking one DNA strand and facilitating religation after torsional stress has been relieved. During its reaction cycle, Top1 forms a covalent cleavage complex (Top1cc) with the nicked DNA, and this intermediate can be converted into a toxic double-strand break (DSB) during DNA replication. We previously reported that Top1cc trapping in yeast increases DSB-independent, short deletions at tandemly repeated sequences. In the current study, we report a type of DSB-dependent mutation associated with Top1cc stabilization: large deletions (median size, ∼100 bp) with little or no homology at deletion junctions. Genetic analyses demonstrated that Top1cc-dependent large deletions are products of the nonhomologous end-joining (NHEJ) pathway and require Top1cc removal from DNA ends. Furthermore, these events accumulated in quiescent cells, suggesting that the causative DSBs may arise outside the context of replication. We propose a model in which the ends of different, Top1-associated DSBs are joined via NHEJ, which results in deletion of the intervening sequence. These findings have important implications for understanding the mutagenic effects of chemotherapeutic drugs that stabilize the Top1cc.
Collapse
|
11
|
|
12
|
Song ZL, Yang GZ, Li JC, Liu YQ, Yang CJ, Goto M, Zhang ZJ, Morris-Natschke SL, Liu H, Lee KH. Design and synthesis of novel 7-[( N-substituted-thioureidopiperazinyl)-methyl]-camptothecin derivatives as potential cytotoxic agents. Nat Prod Res 2019; 34:2022-2029. [PMID: 30784310 DOI: 10.1080/14786419.2019.1573231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
As part of continuing our research on diverse C-7 derivatives of camptothecin (CPT), 16 CPT derivatives bearing piperazinyl-thiourea chemical scaffold and different substituent groups have been designed, synthesized and evaluated in vitro for cytotoxicity against five tumor cell lines (A-549, MDA-MB-231, MCF-7, KB and KBvin). As a result, all the synthesized compounds showed promising in vitro cytotoxic activity against the five tumor cell lines tested, and were more potent than irinotecan. Importantly, compounds 13 g (IC50 = 0.514 μM) and 13o (IC50 = 0.275 μM) possessed similar or better antiproliferative activity against the multidrug-resistant (MDR) KBvin subline than that of topotecan (IC50 = 0.511 μM) and merit further development as anticancer candidates for clinical trail. With these results in hand, we have a reason to conclude that incorporating piperazinyl-thiourea motifs into position-7 of camptothecin confers well cytotoxic activity against cancer cell lines, probably resulting in new anticancer drugs.
Collapse
Affiliation(s)
- Zi-Long Song
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Guan-Zhou Yang
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Jun-Cai Li
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Chen-Jie Yang
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Masuo Goto
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Susan L Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Hua Liu
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA.,Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, Taiwan
| |
Collapse
|
13
|
Cinelli MA. Topoisomerase 1B poisons: Over a half-century of drug leads, clinical candidates, and serendipitous discoveries. Med Res Rev 2018; 39:1294-1337. [PMID: 30456874 DOI: 10.1002/med.21546] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 12/17/2022]
Abstract
Topoisomerases are DNA processing enzymes that relieve supercoiling (torsional strain) in DNA, are necessary for normal cellular division, and act by nicking (and then religating) DNA strands. Type 1B topoisomerase (Top1) is overexpressed in certain tumors, and the enzyme has been extensively investigated as a target for cancer chemotherapy. Various chemical agents can act as "poisons" of the enzyme's religation step, leading to Top1-DNA lesions, DNA breakage, and eventual cellular death. In this review, agents that poison Top1 (and have thus been investigated for their anticancer properties) are surveyed, including natural products (such as camptothecins and indolocarbazoles), semisynthetic camptothecin and luotonin derivatives, and synthetic compounds (such as benzonaphthyridines, aromathecins, and indenoisoquinolines), as well as targeted therapies and conjugates. Top1 has also been investigated as a therapeutic target in certain viral and parasitic infections, as well as autoimmune, inflammatory, and neurological disorders, and a summary of literature describing alternative indications is also provided. This review should provide both a reference for the medicinal chemist and potentially offer clues to aid in the development of new Top1 poisons.
Collapse
Affiliation(s)
- Maris A Cinelli
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
14
|
Arepalli SK, Lee C, Sim S, Lee K, Jo H, Jun KY, Kwon Y, Kang JS, Jung JK, Lee H. Development of 13H-benzo[f]chromeno[4,3-b][1,7]naphthyridines and their salts as potent cytotoxic agents and topoisomerase I/IIα inhibitors. Bioorg Med Chem 2018; 26:5181-5193. [PMID: 30253887 DOI: 10.1016/j.bmc.2018.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/27/2018] [Accepted: 09/17/2018] [Indexed: 10/28/2022]
Abstract
A novel series of 35 angularly fused pentacyclic 13H-benzo[f]chromeno[4,3-b][1,7]naphthyridines and 13H-benzo[f]chromeno[4,3-b][1,7]naphthyridin-5-ium chlorides were designed and synthesized. Their cytotoxic activities were investigated against six human cancer cell lines (NCIH23, HCT15, NUGC-3, ACHN, PC-3, and MDA-MB-231). Among all screened compounds; 28, 30, 34, 35, 46, 48, 52, and 53 compounds exhibited potent cytotoxic activities against all tested human cancer cell lines. Further, these potent lead cytotoxic agents were evaluated against human Topoisomerase I and IIα inhibition. Among them, the compound 48 exhibited dual Topoisomerase I and IIα inhibition especially at 20 μM concentrations the compound 48 exhibited 1.25 times more potent Topoisomerase IIα inhibitory activity (38.3%) than the reference drug etoposide (30.6%). The compound 52 also exhibited excellent (88.4%) topoisomerase I inhibition than the reference drug camptothecin (66.7%) at 100 μM concentrations. Molecular docking studies of the compounds 48 and 52 with topo I discovered that they both intercalated into the DNA single-strand cleavage site where the compound 48 have van der Waals interactions with residues Arg364, Pro431, and Asn722 whilst the compound 52 have with Arg364, Thr718, and Asn722 residues. Both the compounds 48 and 52 have π-π stacking interactions with the stacked DNA bases. The docking studies of the compound 48 with topo IIα explored that it was bound to the topo IIα DNA cleavage site where etoposide was situated. The benzo[f]chromeno[4,3-b][1,7]naphthyridine ring of the compound 48 was stacked between the DNA bases of the cleavage site with π-π stacking interactions and there were no hydrogen bond interactions with topo IIα.
Collapse
Affiliation(s)
| | - Chaerim Lee
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, Republic of Korea
| | - Seongrak Sim
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, Republic of Korea
| | - Kiho Lee
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Hyunji Jo
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kyu-Yeon Jun
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Youngjoo Kwon
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jong-Soon Kang
- Korea Research Institute of Bioscience and Biotechnology, Chungbuk 28116, Republic of Korea
| | - Jae-Kyung Jung
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, Republic of Korea
| | - Heesoon Lee
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, Republic of Korea.
| |
Collapse
|
15
|
Shrestha A, Park S, Shin S, Man Kadayat T, Bist G, Katila P, Kwon Y, Lee ES. Design, synthesis, biological evaluation, structure-activity relationship study, and mode of action of 2-phenol-4,6-dichlorophenyl-pyridines. Bioorg Chem 2018; 79:1-18. [DOI: 10.1016/j.bioorg.2018.03.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/21/2018] [Accepted: 03/31/2018] [Indexed: 01/03/2023]
|
16
|
Lazareva NF, Baryshok VP, Lazarev IM. Silicon-containing analogs of camptothecin as anticancer agents. Arch Pharm (Weinheim) 2017; 351. [PMID: 29239010 DOI: 10.1002/ardp.201700297] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 12/17/2022]
Abstract
The plant pentacyclic alkaloid camptothecin and its structural analogs were extensively studied. These compounds are interesting due to the antitumor activity associated with their ability to inhibit topoisomerase I in tumor cells. During the last decades of the 20th century, a large number of the silicon-containing camptothecins (silatecans) were synthesized. 7-tert-Butyldimethylsilyl-10-hydroxy-camptothecin (DB-67 or AR-67) has enhanced lipophilicity and demonstrates a antitumor activity superior to its carbon analog. To date, certain silatecans are under clinical trials and their ultimate role in cancer therapy appears promising. In this review, we present chemical methodologies for the synthesis of silicon-containing camptothecins, their chemical properties, biological activity, and results of clinical trials.
Collapse
Affiliation(s)
- Nataliya F Lazareva
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russian Federation
| | - Viktor P Baryshok
- Irkutsk National Research Technical University, Irkutsk, Russian Federation
| | - Igor M Lazarev
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russian Federation
| |
Collapse
|
17
|
Yang CJ, Song ZL, Goto M, Liu YQ, Hsieh KY, Morris-Natschke SL, Zhao YL, Zhang JX, Lee KH. Design, synthesis, and cytotoxic activity of novel 7-substituted camptothecin derivatives incorporating piperazinyl-sulfonylamidine moieties. Bioorg Med Chem Lett 2017; 27:3959-3962. [PMID: 28789891 DOI: 10.1016/j.bmcl.2017.07.078] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/26/2017] [Accepted: 07/28/2017] [Indexed: 11/28/2022]
Abstract
In our continuing search for camptothecin (CPT)-derived antitumor drugs, novel 7-substituted CPT derivatives incorporating piperazinyl-sulfonylamidine moieties were designed, synthesized and evaluated for cytotoxicity against five tumor cell lines (A-549, MDA-MB-231, MCF-7, KB, and KB-VIN). All of the derivatives showed promising in vitro cytotoxic activity against the tested tumor cell lines, and were more potent than irinotecan. Remarkably, most of the compounds exhibited comparable cytotoxicity against the multidrug-resistant (MDR) KB-VIN and parental KB tumor cell lines, while irinotecan lost activity completely against KB-VIN. Especially, compounds 13r and 13p (IC50 0.38 and 0.85μM, respectively) displayed the greatest cytotoxicity against the MDR KB-VIN cell line and merit further development into preclinical and clinical drug candidates for treating cancer, including MDR phenotype.
Collapse
Affiliation(s)
- Cheng-Jie Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Zi-Long Song
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Masuo Goto
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China.
| | - Kan-Yen Hsieh
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Susan L Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Yong-Long Zhao
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Jun-Xiang Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, United States; Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, Taiwan.
| |
Collapse
|
18
|
Bist G, Park S, Song C, Thapa Magar TB, Shrestha A, Kwon Y, Lee ES. Dihydroxylated 2,6-diphenyl-4-chlorophenylpyridines: Topoisomerase I and IIα dual inhibitors with DNA non-intercalative catalytic activity. Eur J Med Chem 2017; 133:69-84. [DOI: 10.1016/j.ejmech.2017.03.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 01/10/2023]
|
19
|
Zhu GX, Cheng PL, Goto M, Zhang N, Morris-Natschke SL, Hsieh KY, Yang GZ, Yang QR, Liu YQ, Chen HL, Zhang XS, Lee KH. Design, synthesis and potent cytotoxic activity of novel 7-(N-[(substituted-sulfonyl)piperazinyl]-methyl)-camptothecin derivatives. Bioorg Med Chem Lett 2017; 27:1750-1753. [PMID: 28285912 PMCID: PMC5512430 DOI: 10.1016/j.bmcl.2017.02.066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 02/22/2017] [Accepted: 02/26/2017] [Indexed: 11/24/2022]
Abstract
In an effort to discover potent camptothecin-derived antitumor agents, novel camptothecin analogues with sulfonylpiperazinyl motifs at position-7 were designed and synthesized. They were evaluated for in vitro cytotoxicity with the sulforhodamine-B (SRB) method in five types of human tumor cell lines, A-549, MDA-MB-231, KB, KB-VIN and MCF-7. With IC50 values in the low μM to nM level, most of the new analogues showed greater cytotoxicity activity than the reference compounds irinotecan and topotecan. Furthermore, compounds 12l (IC50, 1.2nM) and 12k (IC50, 20.2nM) displayed the highest cytotoxicity against the multidrug-resistant (MDR) KB-VIN cell line and merit further development as preclinical drug candidates for treating cancer, including MDR phenotype. Our study suggested that integration of sulfonylpiperazinyl motifs into position-7 of camptothecin is an effective strategy for discovering new potent cytotoxic camptothecin derivatives.
Collapse
Affiliation(s)
- Gao-Xiang Zhu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Pi-Le Cheng
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Masuo Goto
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Na Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Susan L Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Kan-Yen Hsieh
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Guan-Zhou Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Qian-Ru Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China.
| | - Hai-Le Chen
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Xiao-Shuai Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, United States; Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, Taiwan.
| |
Collapse
|
20
|
Mulholland K, Wu C. Computational Study of Anticancer Drug Resistance Caused by 10 Topisomerase I Mutations, Including 7 Camptothecin Analogs and Lucanthone. J Chem Inf Model 2016; 56:1872-83. [PMID: 27564845 DOI: 10.1021/acs.jcim.6b00317] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Although Camptothecin and its analogs as Topoisomerase I poisons can effectively treat cancers, serious drug resistance has been identified for this class of drugs. Recent computational studies have indicated that the mutations near the active binding site of the drug can significantly weaken the drug binding and cause drug resistance. However, only Topotecan and three mutations have been previously analyzed. Here we present a comprehensive binding study of 10 Topoisomerase I mutants (N722S, N722A, D533G, D533N, G503S, G717V, T729A, F361S, G363C, and R364H) and 8 poisons including 7 Camptothecin analogs as well as a new generation Topoisomerase I drug, Lucanthone. Utilizing Glide docking followed by MMGBSA calculations, we determined the binding energy for each complex. We examine the relative binding energy changes with reference to the wild type, which are linked to the degree of drug resistance. On this set of mutant complexes, Topotecan and Camptothecin showed much smaller binding energies than a set of new Camptothecin derivatives (Lurtotecan, SN38, Gimatecan, Exatecan, and Belotecan) currently under clinical trials. We observed that Lucanthone exhibited comparable results to Topotecan and Camptothecin, indicating that it may serve as a promising candidate for future studies as a Topoisomerase I poison. Our docked results on Topotecan were also validated by a set of molecular dynamics simulations. In addition to a good agreement on the MMGBSA binding energy change, our simulation data also shows there is larger conformation fluctuation upon the mutations. These results may be utilized to further advancements of Topoisomerase I drugs that are resistant to mutations.
Collapse
Affiliation(s)
- Kelly Mulholland
- College of Science and Mathematics, Rowan University , Glassboro, New Jersey 08028, United States
| | - Chun Wu
- College of Science and Mathematics, Rowan University , Glassboro, New Jersey 08028, United States
| |
Collapse
|
21
|
Wan JP, Jing Y, Hu C, Sheng S. Metal-Free Synthesis of Fully Substituted Pyridines via Ring Construction Based on the Domino Reactions of Enaminones and Aldehydes. J Org Chem 2016; 81:6826-31. [PMID: 27367181 DOI: 10.1021/acs.joc.6b01149] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An unprecedented domino reaction involving primary enaminones/enaminoesters and aldehydes has been developed for the synthesis of fully substituted pyridines. The construction of the products has been accomplished via the cascade generation of two C-C and one C-N bond by simply using TfOH as a promoter.
Collapse
Affiliation(s)
- Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University , Nanchang 330022, P. R. China
| | - Yanfeng Jing
- College of Chemistry and Chemical Engineering, Jiangxi Normal University , Nanchang 330022, P. R. China
| | - Changfeng Hu
- College of Basic Medical Sciences, Zhejiang Chinese Medical University , Hangzhou, Zhejiang 310053, P. R. China
| | - Shouri Sheng
- College of Chemistry and Chemical Engineering, Jiangxi Normal University , Nanchang 330022, P. R. China
| |
Collapse
|
22
|
Xu Y, Her C. Inhibition of Topoisomerase (DNA) I (TOP1): DNA Damage Repair and Anticancer Therapy. Biomolecules 2015; 5:1652-70. [PMID: 26287259 PMCID: PMC4598769 DOI: 10.3390/biom5031652] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 07/14/2015] [Indexed: 12/31/2022] Open
Abstract
Most chemotherapy regimens contain at least one DNA-damaging agent that preferentially affects the growth of cancer cells. This strategy takes advantage of the differences in cell proliferation between normal and cancer cells. Chemotherapeutic drugs are usually designed to target rapid-dividing cells because sustained proliferation is a common feature of cancer [1,2]. Rapid DNA replication is essential for highly proliferative cells, thus blocking of DNA replication will create numerous mutations and/or chromosome rearrangements—ultimately triggering cell death [3]. Along these lines, DNA topoisomerase inhibitors are of great interest because they help to maintain strand breaks generated by topoisomerases during replication. In this article, we discuss the characteristics of topoisomerase (DNA) I (TOP1) and its inhibitors, as well as the underlying DNA repair pathways and the use of TOP1 inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Yang Xu
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Mail Drop 64-7520, Pullman, WA 99164, USA.
| | - Chengtao Her
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Mail Drop 64-7520, Pullman, WA 99164, USA.
| |
Collapse
|
23
|
Ataei S, Yilmaz S, Ertan-Bolelli T, Yildiz I. Generated 3D-common feature hypotheses using the HipHop method for developing new topoisomerase I inhibitors. Arch Pharm (Weinheim) 2015; 348:498-507. [PMID: 25914208 DOI: 10.1002/ardp.201500045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 03/15/2015] [Accepted: 03/20/2015] [Indexed: 12/19/2022]
Abstract
The continued interest in designing novel topoisomerase I (Topo I) inhibitors and the lack of adequate ligand-based computer-aided drug discovery efforts combined with the drawbacks of structure-based design prompted us to explore the possibility of developing ligand-based three-dimensional (3D) pharmacophore(s). This approach avoids the pitfalls of structure-based techniques because it only focuses on common features among known ligands; furthermore, the pharmacophore model can be used as 3D search queries to discover new Topo I inhibitory scaffolds. In this article, we employed the HipHop module using Discovery Studio to construct plausible binding hypotheses for clinically used Topo I inhibitors, such as camptothecin, topotecan, belotecan, and SN-38, which is an active metabolite of irinotecan. The docked pose of topotecan was selected as a reference compound. The first hypothesis (Hypo 01) among the obtained 10 hypotheses was chosen for further analysis. Hypo 01 had six features, which were two hydrogen-bond acceptors, one hydrogen-bond donor, one hydrophob aromatic and one hydrophob aliphatic, and one ring aromatic. Our obtained hypothesis was checked by using some of the aromathecin derivatives which were published for their Topo I inhibitory potency. Moreover, five structures were found to be possible anti-Topo I compounds from the DruglikeDiverse database. From this research, it can be suggested that our model could be useful for further studies in order to design new potent Topo I-targeting antitumor drugs.
Collapse
Affiliation(s)
- Sanaz Ataei
- Biotechnology Institute, Ankara University, Tandogan-Ankara, Turkey
| | - Serap Yilmaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Turkey
| | - Tugba Ertan-Bolelli
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Turkey
| | - Ilkay Yildiz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Turkey
| |
Collapse
|
24
|
Lei J, Chen Y, Feng X, Jin J, Gu J. Electrostatic potentials of camptothecin and its analogues. Theor Chem Acc 2014. [DOI: 10.1007/s00214-014-1542-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Zhao XB, Goto M, Song ZL, Morris-Natschke SL, Zhao Y, Wu D, Yang L, Li SG, Liu YQ, Zhu GX, Wu XB, Lee KH. Design and synthesis of new 7-(N-substituted-methyl)-camptothecin derivatives as potent cytotoxic agents. Bioorg Med Chem Lett 2014; 24:3850-3. [PMID: 25008456 DOI: 10.1016/j.bmcl.2014.06.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 06/17/2014] [Accepted: 06/19/2014] [Indexed: 11/30/2022]
Abstract
A series of novel 7-(N-substituted-methyl)-camptothecin derivatives was designed, synthesized, and evaluated for in vitro cytotoxicity against four human tumor cell lines, A-549, MDA-MB-231, KB, and KBvin. All of the derivatives showed promising in vitro cytotoxic activity against the tested tumor cell lines, with IC50 values ranging from 0.0023 to 1.11 μM, and were as or more potent than topotecan. Compounds 9d, 9e, and 9r exhibited the highest antiproliferative activity among all prepared derivatives. Furthermore, all of the compounds were more potent than paclitaxel against the multidrug-resistant (MDR) KBvin subline. With a concise efficient synthesis and potent cytotoxic profiles, especially significant activity towards KBvin, compounds 9d, 9e, and 9r merit further development as a new generation of camptothecin-derived anticancer clinical trial candidates.
Collapse
Affiliation(s)
- Xiao-Bo Zhao
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Masuo Goto
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Zi-Long Song
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Susan L Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Yu Zhao
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Dan Wu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Liu Yang
- Environmental and Municipal Engineering School, Lanzhou Jiaotong University, Lanzhou 730000, PR China
| | - Shu-Gang Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China.
| | - Gao-Xiang Zhu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Xiao-Bing Wu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, United States; Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, Taiwan.
| |
Collapse
|
26
|
Wang L, Huang Y, Zhang J, Tong L, Chen Y, Lu W, Huang Q. Suzuki coupling based synthesis and in vitro cytotoxic evaluation of 7-heteroaryl-substituted camptothecin analogs. Bioorg Med Chem Lett 2014; 24:1597-9. [DOI: 10.1016/j.bmcl.2014.01.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/15/2014] [Accepted: 01/20/2014] [Indexed: 10/25/2022]
|
27
|
Dezhenkova LG, Tsvetkov VB, Shtil AA. Topoisomerase I and II inhibitors: chemical structure, mechanisms of action and role in cancer chemotherapy. RUSSIAN CHEMICAL REVIEWS 2014. [DOI: 10.1070/rc2014v083n01abeh004363] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Wang L, Yuan W, Zhang J, Tong L, Luo Y, Chen Y, Lu W, Huang Q. Synthesis of 7-Triazole-substituted Camptothecin via Click Chemistry and Evaluation of in vitro Antitumor Activity. CHINESE J CHEM 2013. [DOI: 10.1002/cjoc.201300703] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
Huang Q, Wang L, Lu W. Evolution in medicinal chemistry of E-ring-modified Camptothecin analogs as anticancer agents. Eur J Med Chem 2013; 63:746-57. [DOI: 10.1016/j.ejmech.2013.01.058] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 01/13/2013] [Accepted: 01/16/2013] [Indexed: 12/24/2022]
|
30
|
Design and one-pot synthesis of new 7-acyl camptothecin derivatives as potent cytotoxic agents. Bioorg Med Chem Lett 2012; 22:7659-61. [DOI: 10.1016/j.bmcl.2012.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 09/24/2012] [Accepted: 10/01/2012] [Indexed: 11/20/2022]
|
31
|
Zhu L, Zhang X, Lei N, Liu W, Miao Z, Zhuang C, Sheng C, Guo W, Dong G, Yao J, Cheng P, Zhang W. Synthesis and biological evaluation of 7-alkenyl homocamptothecins as potent topoisomerase I inhibitors. Chem Biodivers 2012; 9:1084-94. [PMID: 22700227 DOI: 10.1002/cbdv.201100195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Homocamptothecin (hCPT) is a camptothecin (CPT) derivative with a seven-membered β-hydroxylactone E ring, which shows higher lactone stability and improves topoisomerase I (Topo I) inhibition activity. In an attempt to improve the antitumor activity of homocamptothecins, a series of 7-alkenyl-homocamptothecin derivatives was designed and synthesized based on a semisynthetic route starting from CPT. Most of the synthesized compounds exhibit higher cytotoxic activities on the A-549 tumor cell line than topotecan (TPT). Some compounds such as 2a and 2o show a broad in vitro antitumor spectrum and exhibit superior Topo I-inhibition activity.
Collapse
Affiliation(s)
- Lingjian Zhu
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, P. R. China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Synthesis and preliminary bioevaluation of novel E-ring modified acetal analog of camptothecin as cytotoxic agents. Eur J Med Chem 2012; 56:1-9. [DOI: 10.1016/j.ejmech.2012.07.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 07/27/2012] [Accepted: 07/31/2012] [Indexed: 11/17/2022]
|
33
|
Nagarapu L, Gaikwad HK, Bantu R, Manikonda SR, Ganesh Kumar C, Pombala S. Lewis acid-assisted olefin cross-metathesis reaction: an efficient approach for the synthesis of glycosidic-pyrroloquinolinone based novel building blocks of camptothecin and evaluation of their antitumor activity. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2012.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
34
|
Synthesis and antitumor activity of 10-arylcamptothecin derivatives. Bioorg Med Chem Lett 2011; 21:2071-4. [DOI: 10.1016/j.bmcl.2011.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 02/01/2011] [Accepted: 02/02/2011] [Indexed: 11/23/2022]
|
35
|
Liu W, Zhu L, Guo W, Zhuang C, Zhang Y, Sheng C, Cheng P, Yao J, Wang W, Dong G, Wang S, Miao Z, Zhang W. Synthesis and biological evaluation of novel 7-acyl homocamptothecins as Topoisomerase I inhibitors. Eur J Med Chem 2011; 46:2408-14. [PMID: 21463912 DOI: 10.1016/j.ejmech.2011.03.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 03/07/2011] [Accepted: 03/13/2011] [Indexed: 11/18/2022]
Abstract
A series of novel 7-acyl derivatives of homocamptothecin (hCPT) were designed and synthesized with the purpose to improve antitumor activity of hCPT, via Minisci free-radical reaction from 10-methoxyhomocamptothecin. All the compounds were evaluated for in vitro cytotoxicity against three cancer cell lines (A549, MDA-MB-435 and HCT116). For MDA-MB-435 cell line, compounds, 6a, 6b, 6k and all of 7-alkylcabonyl homocamptothecin derivatives showed higher in vitro inhibitory activities than topotecan (TPT). Furthermore, compounds 6d, 6e, and 6k showed highly potent inhibitory activities with the IC50 values from less than 1 nM to 2.2 nM. In Topoisomerase I (Topo I)-induced DNA cleavage assay, compounds 6a, 6d, and 6k, as compared to CPT, revealed higher Topo I inhibitory activity.
Collapse
Affiliation(s)
- Wenfeng Liu
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Mikulski D, Szeląg M, Molski M. Quantum-chemical study of interactions of trans-resveratrol with guanine-thymine dinucleotide and DNA-nucleobases. J Mol Model 2011; 17:3085-102. [PMID: 21360171 DOI: 10.1007/s00894-011-0999-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 01/28/2011] [Indexed: 11/28/2022]
Abstract
Trans-resveratrol, a natural phytoalexin present in red wine and grapes, has gained considerable attention because of its antiproliferative, chemopreventive and proapoptotic activity against human cancer cells. The accurate quantum-chemical computations based on the density functional theory (DFT) and ab initio second-order Møller-Plesset perturbation method (MP2) have been performed for the first time to study interactions of trans-resveratrol with guanine-thymine dinucleotide and DNA-derived nitrogenous bases: adenine, guanine, cytosine and thymine in vacuum and water medium. This compound is found to show high affinity to nitrogenous bases and guanine-thymine dinucleotide. The electrostatic interactions from intermolecular hydrogen bonding increase the stability of complexes studied. In particular, significantly strong hydrogen bonds between 4'-H atom of trans-resveratrol and imidazole nitrogen as well as carbonyl oxygen atoms of nucleobases studied stabilize these systems. The stabilization energies computed reveal that the negatively charged trans-resveratrol-dinucleotide complex is more energetically stable in water medium than in vacuum. MP2 method gives more reliable and significantly high values of stabilization energy of trans-resveratrol-dinucleotide, trans-resveratrol-guanine and trans-resveratrol-thymine complexes than B3LYP exchange-correlation functional because it takes into account London dispersion energy. According to the results, in the presence of trans-resveratrol the 3'-5' phosphodiester bond in dinucleotide can be cleaved and the proton from 4'-OH group of trans-resveratrol migrates to the 3'-O atom of dinucleotide. It is concluded that trans-resveratrol is able to break the DNA strand. Hence, the findings obtained help understand antiproliferative and anticancer properties of this polyphenol.
Collapse
Affiliation(s)
- Damian Mikulski
- Department of Theoretical Chemistry, Faculty of Chemistry, A. Mickiewicz University ul, Grunwaldzka 6, 60-780 Poznań, Poland.
| | | | | |
Collapse
|
37
|
Shah A, Diculescu VC, Qureshi R, Oliveira-Brett AM. Electrochemical reduction mechanism of camptothecin at glassy carbon electrode. Bioelectrochemistry 2010; 79:173-8. [DOI: 10.1016/j.bioelechem.2010.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 03/02/2010] [Accepted: 03/08/2010] [Indexed: 10/19/2022]
|
38
|
Cinelli MA, Morrell AE, Dexheimer TS, Agama K, Agrawal S, Pommier Y, Cushman M. The structure-activity relationships of A-ring-substituted aromathecin topoisomerase I inhibitors strongly support a camptothecin-like binding mode. Bioorg Med Chem 2010; 18:5535-52. [PMID: 20630766 PMCID: PMC2911012 DOI: 10.1016/j.bmc.2010.06.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 06/11/2010] [Accepted: 06/14/2010] [Indexed: 10/19/2022]
Abstract
Aromathecins are inhibitors of human topoisomerase I (Top1). These compounds are composites of several heteroaromatic systems, namely the camptothecins and indenoisoquinolines, and they possess notable Top1 inhibition and cytotoxicity when substituted at position 14. The SAR of these compounds overlaps with indenoisoquinolines, suggesting that they may intercalate into the Top1-DNA complex similarly. Nonetheless, the proposed binding mode for aromathecins is purely hypothetical, as an X-ray structure is unavailable. In the present communication, we have synthesized eight novel series of A-ring-substituted (positions 1-3) aromathecins, through a simple, modular route, as part of a comprehensive SAR study. Certain groups (such as 2,3-ethylenedioxy) moderately improve Top1 inhibition, and, often, antiproliferative activity, whereas other groups (2,3-dimethoxy and 3-substituents) attenuate bioactivity. Strikingly, these trends are very similar to those previously observed for the A-ring of camptothecins, and this considerable SAR overlap lends further support (in the absence of crystallographic data) to the hypothesis that aromathecins bind in the Top1 cleavage complex as interfacial inhibitors in a 'camptothecin-like' pose.
Collapse
Affiliation(s)
- Maris A. Cinelli
- Department of Medicinal Chemistry and Molecular Pharmacology, School of Pharmacy and Pharmaceutical Sciences, and the Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Andrew E. Morrell
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4255, USA
| | - Thomas S. Dexheimer
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4255, USA
| | - Keli Agama
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4255, USA
| | - Surbhi Agrawal
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4255, USA
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4255, USA
| | - Mark Cushman
- Department of Medicinal Chemistry and Molecular Pharmacology, School of Pharmacy and Pharmaceutical Sciences, and the Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
39
|
Trifluoromethyl-promoted homocamptothecins: Synthesis and biological activity. Eur J Med Chem 2010; 45:2726-32. [DOI: 10.1016/j.ejmech.2010.02.051] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 02/21/2010] [Accepted: 02/22/2010] [Indexed: 11/22/2022]
|
40
|
Synthesis, topoisomerase I and II inhibitory activity, cytotoxicity, and structure–activity relationship study of hydroxylated 2,4-diphenyl-6-aryl pyridines. Bioorg Med Chem 2010; 18:3066-77. [DOI: 10.1016/j.bmc.2010.03.051] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 03/17/2010] [Accepted: 03/18/2010] [Indexed: 11/23/2022]
|
41
|
Hosseini M, Ostad N, Parivar K, Ghahremani MH. Neurodegenerative, with expression ATF-2 by p38 in cortical neurons. Neurol Res 2009; 32:215-20. [PMID: 19909561 DOI: 10.1179/174313209x382304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
DNA damage, as an important initiator of neuronal cell death, has been implicated in numerous neurodegenerative conditions. We previously delineated several pathways that control embryonic cortical neuronal cell death evoked by the DNA-damaging agent, camptothecin. The topisomerase-1 inhibitor, camptothecin, has been shown to induce cortical neuronal cell death in a reproducible and synchronistic manner. Primary embryonic neuronal cell culture cortical neurons were prepared. In the study, the survival % of neurons in camptothecin P38 group, after 6 hours (85%), 24 hours (64%) and 48 hours (50%), compared to camptothecin ATF-2 and P38 group after 4 hours (97 and 95%), have been significantly lower, and the expression % of neurons in camptothecin P38 group , after 6 hours (20%), 24 hours (40%) and 48 hours (55%), compared to camptothecin ATF-2 and P38 group after 4 hours (5 and 3%) have been significant lower (p<0.05). The expression % of neurons in camptothecin P38 group, after 24 hours (40%), compared to camptothecin ATF-2 group after 24hours (30%), have been significant lower (p<0.05). This study revealed that camptothecin induces P38 expression and P38 in embryonic cortical neurons to determine the importance of the P38 pathway in neuronal death following DNA damage, and P38 is induce phosphorylation of ATF-2 in embryonic cortical neurons following DNA damage.
Collapse
Affiliation(s)
- M Hosseini
- Department of Science, Islamshahr Branch, Islamic Azad University, Tehran, Iran
| | | | | | | |
Collapse
|
42
|
Abstract
Keloids are distinguished by substantial deposition of collagen in the dermis, resulting in an imbalanced production and aggregation of extra cellular matrix. This study was undertaken to evaluate the effects of the topoisomerase I inhibitor camptothecin (CPT) on collagen synthesis in the activated dermal fibroblasts from healthy donors and patients with keloid. The fibroblasts were cultured in the presence or absence of CPT. Cellular toxicity assay was determined by MTT analysis. The expression of type I collagen and type III collagen was studied both at the transcriptional and post-transcriptional levels, using conventional quantitative real-time reverse transcription PCR and Western blotting. Results showed that there was predominantly a clear and dose-dependent decrease in the synthesis of collagen 1, not collagen 3, in keloid fibroblasts without significantly cellular toxicity. The CPT had an activity on the regulation of the ratio of type I/III collagen in the metabolism of keloid fibroblasts by inhibiting the secretion of type I collagen. The data suggest that the inhibitory effect of CPT, a topoisomerase I inhibitor, on collagen synthesis may be an effective treatment for limiting fibrosis in keloid patients.
Collapse
|
43
|
7-Cycloalkylcamptothecin derivatives: Preparation and biological evaluation. Bioorg Med Chem Lett 2009; 19:4107-9. [DOI: 10.1016/j.bmcl.2009.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 05/26/2009] [Accepted: 06/02/2009] [Indexed: 11/22/2022]
|
44
|
Xiao F, Xue Y, Luo Y, Zhang B, Lu W, Yang B. Synthesis and cytotoxic activity of 7-alkynyl camptothecin derivatives. CHINESE CHEM LETT 2009. [DOI: 10.1016/j.cclet.2008.12.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Samor C, Guerrini A, Varchi G, Beretta GL, Fontana G, Bombardelli E, Carenini N, Zunino F, Bertucci C, Fiori J, Battaglia A. The Role of Polyamine Architecture on the Pharmacological Activity of Open Lactone Camptothecin−Polyamine Conjugates. Bioconjug Chem 2008; 19:2270-9. [DOI: 10.1021/bc800033r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Cristian Samor
- Istituto CNR per la Sintesi Organica e Fotoreattività “I.S.O.F.”, Area della Ricerca di Bologna, Via Gobetti 101, 40129 Bologna, Italy, Dipartimento di Oncologia Sperimentale e Laboratori, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milano, Italy, Indena SPA, viale Ortles 12, 20139 Milano, Italy, and Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Andrea Guerrini
- Istituto CNR per la Sintesi Organica e Fotoreattività “I.S.O.F.”, Area della Ricerca di Bologna, Via Gobetti 101, 40129 Bologna, Italy, Dipartimento di Oncologia Sperimentale e Laboratori, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milano, Italy, Indena SPA, viale Ortles 12, 20139 Milano, Italy, and Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Greta Varchi
- Istituto CNR per la Sintesi Organica e Fotoreattività “I.S.O.F.”, Area della Ricerca di Bologna, Via Gobetti 101, 40129 Bologna, Italy, Dipartimento di Oncologia Sperimentale e Laboratori, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milano, Italy, Indena SPA, viale Ortles 12, 20139 Milano, Italy, and Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Giovanni Luca Beretta
- Istituto CNR per la Sintesi Organica e Fotoreattività “I.S.O.F.”, Area della Ricerca di Bologna, Via Gobetti 101, 40129 Bologna, Italy, Dipartimento di Oncologia Sperimentale e Laboratori, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milano, Italy, Indena SPA, viale Ortles 12, 20139 Milano, Italy, and Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Gabriele Fontana
- Istituto CNR per la Sintesi Organica e Fotoreattività “I.S.O.F.”, Area della Ricerca di Bologna, Via Gobetti 101, 40129 Bologna, Italy, Dipartimento di Oncologia Sperimentale e Laboratori, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milano, Italy, Indena SPA, viale Ortles 12, 20139 Milano, Italy, and Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Ezio Bombardelli
- Istituto CNR per la Sintesi Organica e Fotoreattività “I.S.O.F.”, Area della Ricerca di Bologna, Via Gobetti 101, 40129 Bologna, Italy, Dipartimento di Oncologia Sperimentale e Laboratori, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milano, Italy, Indena SPA, viale Ortles 12, 20139 Milano, Italy, and Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Nives Carenini
- Istituto CNR per la Sintesi Organica e Fotoreattività “I.S.O.F.”, Area della Ricerca di Bologna, Via Gobetti 101, 40129 Bologna, Italy, Dipartimento di Oncologia Sperimentale e Laboratori, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milano, Italy, Indena SPA, viale Ortles 12, 20139 Milano, Italy, and Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Franco Zunino
- Istituto CNR per la Sintesi Organica e Fotoreattività “I.S.O.F.”, Area della Ricerca di Bologna, Via Gobetti 101, 40129 Bologna, Italy, Dipartimento di Oncologia Sperimentale e Laboratori, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milano, Italy, Indena SPA, viale Ortles 12, 20139 Milano, Italy, and Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Carlo Bertucci
- Istituto CNR per la Sintesi Organica e Fotoreattività “I.S.O.F.”, Area della Ricerca di Bologna, Via Gobetti 101, 40129 Bologna, Italy, Dipartimento di Oncologia Sperimentale e Laboratori, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milano, Italy, Indena SPA, viale Ortles 12, 20139 Milano, Italy, and Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Jessica Fiori
- Istituto CNR per la Sintesi Organica e Fotoreattività “I.S.O.F.”, Area della Ricerca di Bologna, Via Gobetti 101, 40129 Bologna, Italy, Dipartimento di Oncologia Sperimentale e Laboratori, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milano, Italy, Indena SPA, viale Ortles 12, 20139 Milano, Italy, and Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Arturo Battaglia
- Istituto CNR per la Sintesi Organica e Fotoreattività “I.S.O.F.”, Area della Ricerca di Bologna, Via Gobetti 101, 40129 Bologna, Italy, Dipartimento di Oncologia Sperimentale e Laboratori, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milano, Italy, Indena SPA, viale Ortles 12, 20139 Milano, Italy, and Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| |
Collapse
|
46
|
Novel hexacyclic camptothecin derivatives. Part 1: Synthesis and cytotoxicity of camptothecins with an A-ring fused 1,3-oxazine ring. Bioorg Med Chem Lett 2008; 18:4095-7. [DOI: 10.1016/j.bmcl.2008.05.103] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 05/01/2008] [Accepted: 05/24/2008] [Indexed: 11/19/2022]
|
47
|
Bocian W, Kawecki R, Bednarek E, Sitkowski J, Williamson MP, Hansen PE, Kozerski L. Binding of topotecan to a nicked DNA oligomer in solution. Chemistry 2008; 14:2788-94. [PMID: 18214879 DOI: 10.1002/chem.200700732] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Topotecan (TPT) is in clinical use as an antitumor agent. It acts by binding to the covalent complex formed between nicked DNA and topoisomerase I, and inserts itself into the single-strand nick, thereby inhibiting the religation of the nick and acting as a poison. A crystal structure analysis of the ternary complex has shown how the drug binds (B. L. Staker, K. Hjerrild, M. D. Feese, C. A. Behnke, A. B. Burgin, L. Stewart, Proc. Natl. Acad. Sci. U.S.A., 2002, 99, 15 387-15 392), but has left a number of unanswered questions. Herein, we use NMR spectroscopy and molecular modeling to show that the solution structure of a complex of TPT with nicked natural DNA is similar, but not identical to the crystal conformation, and that other geometries are of very low population. We also show that the lactone form of TPT binds approximately 40 times more strongly than the ring-opened carboxylate.
Collapse
Affiliation(s)
- W Bocian
- National Medicines Institute, 00-725 Warszawa, Chełmska 30/34, Poland
| | | | | | | | | | | | | |
Collapse
|
48
|
Samorì C, Guerrini A, Varchi G, Zunino F, Beretta GL, Femoni C, Bombardelli E, Fontana G, Battaglia A. Thiocamptothecin. J Med Chem 2008; 51:3040-4. [DOI: 10.1021/jm8001982] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Cristian Samorì
- Laboratory of Chemistry Istituto I.S.O.F.—Consiglio Nazionale delle Ricerche (CNR) Via P. Gobetti, 101, 40129-Bologna, Italy, Fondazione IRCCS Istituto Nazionale Tumori Via Venezian 1, 20133 Milano, Italy, Dipartimento di Chimica Inorganica, Facoltà di Chimica Industriale, Università degli Studi di Bologna V.le Risorgimento, 4 40100 Bologna, Italy, Indena S.p.A—Milano Viale Ortles 12, 20139-Milano, Italy
| | - Andrea Guerrini
- Laboratory of Chemistry Istituto I.S.O.F.—Consiglio Nazionale delle Ricerche (CNR) Via P. Gobetti, 101, 40129-Bologna, Italy, Fondazione IRCCS Istituto Nazionale Tumori Via Venezian 1, 20133 Milano, Italy, Dipartimento di Chimica Inorganica, Facoltà di Chimica Industriale, Università degli Studi di Bologna V.le Risorgimento, 4 40100 Bologna, Italy, Indena S.p.A—Milano Viale Ortles 12, 20139-Milano, Italy
| | - Greta Varchi
- Laboratory of Chemistry Istituto I.S.O.F.—Consiglio Nazionale delle Ricerche (CNR) Via P. Gobetti, 101, 40129-Bologna, Italy, Fondazione IRCCS Istituto Nazionale Tumori Via Venezian 1, 20133 Milano, Italy, Dipartimento di Chimica Inorganica, Facoltà di Chimica Industriale, Università degli Studi di Bologna V.le Risorgimento, 4 40100 Bologna, Italy, Indena S.p.A—Milano Viale Ortles 12, 20139-Milano, Italy
| | - Franco Zunino
- Laboratory of Chemistry Istituto I.S.O.F.—Consiglio Nazionale delle Ricerche (CNR) Via P. Gobetti, 101, 40129-Bologna, Italy, Fondazione IRCCS Istituto Nazionale Tumori Via Venezian 1, 20133 Milano, Italy, Dipartimento di Chimica Inorganica, Facoltà di Chimica Industriale, Università degli Studi di Bologna V.le Risorgimento, 4 40100 Bologna, Italy, Indena S.p.A—Milano Viale Ortles 12, 20139-Milano, Italy
| | - Giovanni Luca Beretta
- Laboratory of Chemistry Istituto I.S.O.F.—Consiglio Nazionale delle Ricerche (CNR) Via P. Gobetti, 101, 40129-Bologna, Italy, Fondazione IRCCS Istituto Nazionale Tumori Via Venezian 1, 20133 Milano, Italy, Dipartimento di Chimica Inorganica, Facoltà di Chimica Industriale, Università degli Studi di Bologna V.le Risorgimento, 4 40100 Bologna, Italy, Indena S.p.A—Milano Viale Ortles 12, 20139-Milano, Italy
| | - Cristina Femoni
- Laboratory of Chemistry Istituto I.S.O.F.—Consiglio Nazionale delle Ricerche (CNR) Via P. Gobetti, 101, 40129-Bologna, Italy, Fondazione IRCCS Istituto Nazionale Tumori Via Venezian 1, 20133 Milano, Italy, Dipartimento di Chimica Inorganica, Facoltà di Chimica Industriale, Università degli Studi di Bologna V.le Risorgimento, 4 40100 Bologna, Italy, Indena S.p.A—Milano Viale Ortles 12, 20139-Milano, Italy
| | - Ezio Bombardelli
- Laboratory of Chemistry Istituto I.S.O.F.—Consiglio Nazionale delle Ricerche (CNR) Via P. Gobetti, 101, 40129-Bologna, Italy, Fondazione IRCCS Istituto Nazionale Tumori Via Venezian 1, 20133 Milano, Italy, Dipartimento di Chimica Inorganica, Facoltà di Chimica Industriale, Università degli Studi di Bologna V.le Risorgimento, 4 40100 Bologna, Italy, Indena S.p.A—Milano Viale Ortles 12, 20139-Milano, Italy
| | - Gabriele Fontana
- Laboratory of Chemistry Istituto I.S.O.F.—Consiglio Nazionale delle Ricerche (CNR) Via P. Gobetti, 101, 40129-Bologna, Italy, Fondazione IRCCS Istituto Nazionale Tumori Via Venezian 1, 20133 Milano, Italy, Dipartimento di Chimica Inorganica, Facoltà di Chimica Industriale, Università degli Studi di Bologna V.le Risorgimento, 4 40100 Bologna, Italy, Indena S.p.A—Milano Viale Ortles 12, 20139-Milano, Italy
| | - Arturo Battaglia
- Laboratory of Chemistry Istituto I.S.O.F.—Consiglio Nazionale delle Ricerche (CNR) Via P. Gobetti, 101, 40129-Bologna, Italy, Fondazione IRCCS Istituto Nazionale Tumori Via Venezian 1, 20133 Milano, Italy, Dipartimento di Chimica Inorganica, Facoltà di Chimica Industriale, Università degli Studi di Bologna V.le Risorgimento, 4 40100 Bologna, Italy, Indena S.p.A—Milano Viale Ortles 12, 20139-Milano, Italy
| |
Collapse
|
49
|
Choi I, Kim C, Choi S. Binding mode analysis of topoisomerase inhibitors, 6-arylamino-7-chloro-quinazoline-5,8-diones, within the cleavable complex of human topoisomerase I and DNA. Arch Pharm Res 2008; 30:1526-35. [PMID: 18254239 DOI: 10.1007/bf02977321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of 6-arylamino-7-chloro-quinazoline-5,8-diones have been evaluated as novel human topoisomerase I (TOP1) inhibitors based on the antitumor activity of 1,4-naphthoquinone. Besides their in vitro cytotoxicity, their ability to inhibit human TOP1-DNA in vitro was tested with human TOP1 and a supercoiled (Form I) plasmid substrate DNA (Park et al., 2004). Using the flexible docking program, QXP, we have developed ternary complex models by docking camptothecin and ten 6-arylamino-7-chloro-quinazoline-5,8-dione analogs into the X-ray crystal structure of the human TOP1-DNA binary complex. The compound binding modes substantiated their potential inhibitory activities against TOP1 in the relaxation assay. Compounds whose templates the 6-arylamino-7-chloro-quinazoline-5,8-dione moiety intercalated between the -1 and +1 base pairs of the scissile strand showed good inhibitory activities. The template of compounds with poor inhibitory activities intercalated between the DNA base pairs of the nonscissile strand. The interaction of the compounds and the human TOP1-DNA binary complex were stabilized by an array of hydrogen bonds and hydrophobic interactions with the TOP1 residues, DNA bases, and water molecules. Docking results from the QXP program suggested potential binding modes of each non-CPT type compound in the human TOP1-DNA cleavable complex, which could provide a rational basis for future TOP1 inhibitor development.
Collapse
Affiliation(s)
- Inhee Choi
- College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | | | | |
Collapse
|
50
|
Lansiaux A, Léonce S, Kraus-Berthier L, Bal-Mahieu C, Mazinghien R, Didier S, David-Cordonnier MH, Hautefaye P, Lavielle G, Bailly C, Hickman JA, Pierré A. Novel stable camptothecin derivatives replacing the E-ring lactone by a ketone function are potent inhibitors of topoisomerase I and promising antitumor drugs. Mol Pharmacol 2007; 72:311-9. [PMID: 17494837 DOI: 10.1124/mol.107.034637] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The E-ring lactone is the Achilles' heel of camptothecin derivatives: although it is considered necessary for the inhibition of the enzyme topoisomerase I (topo1), the opening of the lactone into a carboxylate abolishes the generation of topo1-mediated DNA breaks. S38809 is a novel camptothecin analog with a stable 5-membered E-ring ketone; therefore, it lacks the lactone function. DNA relaxation and cleavage assays revealed that S38809 functions as a typical topo1 poison by stimulating DNA cleavage at T downward arrow G sites. The activity was strongly dependent on the stereochemistry of the C-7 carbon atom that bears the hydroxy group. S38809 proved to be a potent cytotoxic agent, with a mean IC50 of 5.4 nM versus 11.6 nM for topotecan and 3.3 nM for SN38 (the active metabolite of irinotecan) on a panel of 31 human tumor cell lines. The cytotoxicity of S38809 and its ability to stabilize cleavable complexes was considerably reduced in camptothecin-resistant cells that express a mutated topo1, confirming that topo1 is its primary target. Cell death induced by topo1 poisoning requires the conversion of DNA single-strand breaks into double-strand breaks that can be detected by the formation of phosphorylated histone H2AX. In HCT116 cells, topotecan, SN38, and S38809 induced histone H2AX phosphorylation in S phase of the cell cycle, with S38809 being as potent as SN38 and 5-fold more potent than topotecan. In vivo, S38809 showed a marked antitumor activity against HCT116 xenografts. These findings open a new route for improving the pharmacological properties of camptothecin derivatives.
Collapse
Affiliation(s)
- Amélie Lansiaux
- Institut National de la Santé et de la Recherche Médicale U837, Université de Lille 2, Facultéde Médecine, Institut de Médecine Prédictive et Recherche Thérapeutique, Lille, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|