1
|
Jagadeesan S, Karpagam S. Novel series of N-acyl substituted indole based piperazine, thiazole and tetrazoles as potential antibacterial, antifungal, antioxidant and cytotoxic agents, and their docking investigation as potential Mcl-1 inhibitors. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
2
|
Dong X, Tang Z, Ye L, Shi Z, Zhao Z, Li X. Stereoselective Synthesis of Dihydrofuranoindoles via the Friedel-Crafts Alkylation/Annulation Cascade Process. J Org Chem 2020; 85:11607-11617. [PMID: 32830980 DOI: 10.1021/acs.joc.0c00444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A stereoselective annulation protocol was developed to construct dihydrofuranoindoles from readily available starting materials. In the presence of a bifunctional squaramide, the Friedel-Crafts alkylation/annulation cascade process occurred smoothly to provide dihydrofuranoindoles in 26-95% isolated yields exclusively as trans-diastereomers (38-99% ee). This catalytic protocol was compatible with a range of structurally distinct hydroxyindoles bearing the hydroxyl group at different positions, providing four kinds of dihydrofuranoindoles. Moreover, gram-scale synthesis and further synthetic manipulation of the product were also demonstrated.
Collapse
Affiliation(s)
- Xiaodi Dong
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu 610041, China
| | - Zhishun Tang
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu 610041, China
| | - Ling Ye
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Zhichuan Shi
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu 610041, China
| | - Zhigang Zhao
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu 610041, China
| | - Xuefeng Li
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
3
|
Bhandari S, Kulkarni N, Sakla AP, Shankaraiah N. Lewis-acid catalyzed dehydrative [3+2] cycloaddition reaction: A facile synthetic approach to spiro-benzoindoline oxindoles. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
4
|
Li S, Li Z, Wu J. Synthesis of Benzoindolinesviaa Copper-Catalyzed Reaction of 1-Bromoethynyl-2-(cyclopropylidenemethyl)arenes withN-Allylsulfonamide. Adv Synth Catal 2012. [DOI: 10.1002/adsc.201200374] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
5
|
Fanelli F, De Benedetti PG. Update 1 of: computational modeling approaches to structure-function analysis of G protein-coupled receptors. Chem Rev 2011; 111:PR438-535. [PMID: 22165845 DOI: 10.1021/cr100437t] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Francesca Fanelli
- Dulbecco Telethon Institute, University of Modena and Reggio Emilia, via Campi 183, 41125 Modena, Italy.
| | | |
Collapse
|
6
|
Li S, Luo Y, Wu J. An Efficient Approach to Fused Indolines via a Copper(I)-Catalyzed Reaction of Sulfonyl Azide with 2-Ethynylaryl Methylenecyclopropane. Org Lett 2011; 13:3190-3. [DOI: 10.1021/ol2011067] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shaoyu Li
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China, and State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, China
| | - Yong Luo
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China, and State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, China
| | - Jie Wu
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China, and State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, China
| |
Collapse
|
7
|
Kim SK, Li Y, Abrol R, Heo J, Goddard WA. Predicted structures and dynamics for agonists and antagonists bound to serotonin 5-HT2B and 5-HT2C receptors. J Chem Inf Model 2011; 51:420-33. [PMID: 21299232 DOI: 10.1021/ci100375b] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Subtype 2 serotonin (5-hydroxytryptamine, 5-HT) receptors are major drug targets for schizophrenia, feeding disorders, perception, depression, migraines, hypertension, anxiety, hallucinogens, and gastrointestinal dysfunctions. (1) We report here the predicted structure of 5-HT2B and 5-HT2C receptors bound to highly potent and selective 5-HT2B antagonist PRX-08066 3, (pKi: 30 nM), including the key binding residues [V103 (2.53), L132 (3.29), V190 (4.60), and L347 (6.58)] determining the selectivity of binding to 5-HT2B over 5-HT2A. We also report structures of the endogenous agonist (5-HT) and a HT2B selective antagonist 2 (1-methyl-1-1,6,7,8-tetrahydro-pyrrolo[2,3-g]quinoline-5-carboxylic acid pyridine-3-ylamide). We examine the dynamics for the agonist- and antagonist-bound HT2B receptors in explicit membrane and water finding dramatically different patterns of water migration into the NPxxY motif and the binding site that correlates with the stability of ionic locks in the D(E)RY region.
Collapse
Affiliation(s)
- Soo-Kyung Kim
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | |
Collapse
|
8
|
Leifert WR. An overview on GPCRs and drug discovery: structure-based drug design and structural biology on GPCRs. Methods Mol Biol 2009; 552:51-66. [PMID: 19513641 PMCID: PMC7122359 DOI: 10.1007/978-1-60327-317-6_4] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
G protein-coupled receptors (GPCRs) represent 50-60% of the current drug targets. There is no doubt that this family of membrane proteins plays a crucial role in drug discovery today. Classically, a number of drugs based on GPCRs have been developed for such different indications as cardiovascular, metabolic, neurodegenerative, psychiatric, and oncologic diseases. Owing to the restricted structural information on GPCRs, only limited exploration of structure-based drug design has been possible. Much effort has been dedicated to structural biology on GPCRs and very recently an X-ray structure of the beta2-adrenergic receptor was obtained. This breakthrough will certainly increase the efforts in structural biology on GPCRs and furthermore speed up and facilitate the drug discovery process.
Collapse
|
9
|
Zefirova ON, Zefirov NS. Physiologically active compounds interacting with serotonin (5-hydroxytryptamine) receptors. RUSSIAN CHEMICAL REVIEWS 2007. [DOI: 10.1070/rc2001v070n04abeh000654] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Fanelli F, De Benedetti PG. Computational Modeling Approaches to Structure−Function Analysis of G Protein-Coupled Receptors. Chem Rev 2005; 105:3297-351. [PMID: 16159154 DOI: 10.1021/cr000095n] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Francesca Fanelli
- Dulbecco Telethon Institute and Department of Chemistry, University of Modena and Reggio Emilia, via Campi 183, 41100 Modena, Italy.
| | | |
Collapse
|
11
|
Bowlby MR, Chanda P, Edris W, Hinson J, Jow F, Katz AH, Kennedy J, Krishnamurthy G, Pitts K, Ryan K, Zhang H, Greenblatt L. Identification and characterization of small molecule modulators of KChIP/Kv4 function. Bioorg Med Chem 2005; 13:6112-9. [PMID: 16081294 DOI: 10.1016/j.bmc.2005.06.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Revised: 06/10/2005] [Accepted: 06/13/2005] [Indexed: 12/01/2022]
Abstract
Potassium channels and their associated subunits are important contributors to electrical excitability in many cell types. In this study, a yeast two-hybrid assay was used to identify inhibitors such as a diaryl-urea compound (CL-888) that binds to and modulates the formation of the Kv4/KChIP complex. CL-888 altered the apparent affinity of KChIP1 to Kv4.3-N in a Biacore assay, but did not dissociate the two proteins in size-exclusion chromatography experiments. Kv4.2/KChIP1 current amplitude and kinetics were altered with compound exposure, supporting the hypothesis of a compound-induced conformational change in the protein complex. Fluorescence spectroscopy of a unique tryptophan residue in KChIP1 was consistent with compound binding to the protein. Molecular modeling using the KChIP1 crystal structure indicates that compound binding may occur in a small tryptophan-containing binding pocket located on the hydrophilic side of the protein.
Collapse
Affiliation(s)
- Mark R Bowlby
- Discovery Neuroscience, Wyeth Research, CN 8000, Princeton, NJ 08543-8000, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Buznikov GA, Peterson RE, Nikitina LA, Bezuglov VV, Lauder JM. The Pre-nervous Serotonergic System of Developing Sea Urchin Embryos and Larvae: Pharmacologic and Immunocytochemical Evidence. Neurochem Res 2005; 30:825-37. [PMID: 16187217 DOI: 10.1007/s11064-005-6876-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2005] [Indexed: 10/25/2022]
Abstract
Forty serotonin-related neurochemicals were tested on embryos and larvae of Lytechinus variegatus and other sea urchin species. Some of these substances (agonists of 5-HT1 receptors, antagonists of 5-HT2, 5-HT3 or 5-HT4 receptors, and inhibitors of the serotonin transporter, SERT) perturbed post-blastulation development, eliciting changes in embryonic/larval phenotypes typical for each class of receptor ligand. These developmental malformations were prevented completely or partially by serotonin (5-HT) or 5-HT analogs (5-HTQ, AA-5-HT), providing evidence for the putative localization of cellular targets. Immunoreactive 5-HT, 5-HT receptors and SERT were found in pre-nervous embryos and larvae of both L. variegatus and Strongylocentrotus droebachiensis. During gastrulation, these components of the serotonergic system were localized to the archenteron (primary gut), mesenchyme-like cells, and often the apical ectoderm. These results provide evidence that pre-nervous 5-HT may regulate early events of sea urchin embryogenesis, mediated by 5-HT receptors or the 5-HT transporter.
Collapse
Affiliation(s)
- Gennady A Buznikov
- Department of Cell and Developmental Biology, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7090, USA.
| | | | | | | | | |
Collapse
|
13
|
|
14
|
Bös M, Stadler H, Wichmann J, Jenck F, Martin JR, Moreau JL, Sleight AJ. Syntheses ofO-Methylasparvenone-Derived Serotonin-Receptor Antagonists. Helv Chim Acta 2004. [DOI: 10.1002/hlca.19980810306] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Bhasin N, Kernick E, Luo X, Seidel HE, Weiss ER, Lauder JM. Differential regulation of chondrogenic differentiation by the serotonin2B receptor and retinoic acid in the embryonic mouse hindlimb. Dev Dyn 2004; 230:201-9. [PMID: 15162499 DOI: 10.1002/dvdy.20038] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Retinoic acid (RA) synthesizing and metabolizing enzymes are coordinately expressed with serotonin 2B (5-HT2B) receptors at sites of epithelial-mesenchymal (E-M) interaction in the mouse embryo (Bhasin et al., 1999). The promoter of the 5-HT2B receptor contains potential RA response element (RAREs) as well as an AP-2 site. Because both retinoid and serotonergic signaling have been implicated in the regulation of chondrogenic differentiation, the present study investigated whether these signals may work together to regulate this morphogenetic process in hindlimb bud micromass cultures. Results indicate that 5-HT promotes [35S]sulfate incorporation (chondrogenic differentiation) by activation of 5-HT2B receptors, which use the mitogen activated protein kinase (p42 MAPK) signal transduction pathway, whereas RA dose-dependently inhibits sulfate incorporation and promotes expression of RARbeta, which could lead to inhibition of p38 MAPK. No evidence was found to support the possibility that RA negatively regulates expression of 5-HT2B receptors. Taken together, these results suggest that 5-HT and RA may act as opposing signals to regulate chondrogenic differentiation in the developing hindlimb, possibly mediated by different MAPK signal transduction pathways.
Collapse
Affiliation(s)
- N Bhasin
- Department of Cell and Developmental Biology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7090, USA
| | | | | | | | | | | |
Collapse
|
16
|
Bissantz C. Conformational Changes of G Protein‐Coupled Receptors During Their Activation by Agonist Binding. J Recept Signal Transduct Res 2003; 23:123-53. [PMID: 14626443 DOI: 10.1081/rrs-120025192] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The superfamily of G protein-coupled receptors (GPCRs) is the largest and most diverse group of transmembrane proteins involved in signal transduction. Many of the over 1000 human GPCRs represent important pharmaceutical targets. However, despite high interest in this receptor family, no high-resolution structure of a human GPCR has been resolved yet. This is mainly due to difficulties in obtaining large quantities of pure and active protein. Until now, only a high-resolution x-ray structure of an inactive state of bovine rhodopsin is available. Since no structure of an active state has been solved, information of the GPCR activation process can be gained only by biophysical techniques. In this review, we first describe what is known about the ground state of GPCRs to then address questions about the nature of the conformational changes taking place during receptor activation and the mechanism controlling the transition from the resting to the active state. Finally, we will also address the question to what extent information about the three-dimensional GPCR structure can be included into pharmaceutical drug design programs.
Collapse
Affiliation(s)
- Caterina Bissantz
- Molecular Structure and Design, Pharmaceuticals Division, F. Hoffmann-La Roche Ltd., Basel, Switzerland.
| |
Collapse
|
17
|
Brea J, Rodrigo J, Carrieri A, Sanz F, Cadavid MI, Enguix MJ, Villazón M, Mengod G, Caro Y, Masaguer CF, Raviña E, Centeno NB, Carotti A, Loza MI. New serotonin 5-HT(2A), 5-HT(2B), and 5-HT(2C) receptor antagonists: synthesis, pharmacology, 3D-QSAR, and molecular modeling of (aminoalkyl)benzo and heterocycloalkanones. J Med Chem 2002; 45:54-71. [PMID: 11754579 DOI: 10.1021/jm011014y] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of 52 conformationally constrained butyrophenones have been synthesized and pharmacologically tested as antagonists at 5-HT(2A), 5-HT(2B), and 5-HT(2C) serotonin receptors, useful for dissecting the role of each 5-HT(2) subtype in pathophysiology. These compounds were also a consistent set for the identification of structural features relevant to receptor recognition and subtype discrimination. Six compounds were found highly active (pK(i) > 8.76) and selective at the 5-HT(2A) receptor vs 5-HT(2B) and/or 5-HT(2C) receptors. Piperidine fragments confer high affinity at the 5-HT(2A) receptor subtype, with benzofuranone- and thiotetralonepiperidine as the most selective derivatives over 5-HT(2C) and 5-HT(2B) receptors, respectively; K(i) (2A/2C) and/or K(B) (2A/2B) ratios greater than 100 were obtained. Compounds showing a more pronounced selectivity at 5-HT(2A)/5-HT(2C) than at 5-HT(2A)/5-HT(2B) bear 6-fluorobenzisoxazolyl- and p-fluorobenzoylpiperidine moieties containing one methylene bridging the basic piperidine to the alkanone moiety. An ethylene bridge between the alkanone and the amino moieties led to ligands with higher affinities for the 5-HT(2B) receptor. Significant selectivity at the 5-HT(2B) receptor vs 5-HT(2C) was observed with 1-1[(1-oxo-1,2,3,4-tetrahydro-3-naphthyl)methyl]-4-[3-(p-fluorobenzoyl)propyl]piperazine (more than 100-fold higher). Although piperidine fragments also confer higher affinity at 5-HT(2C) receptors, only piperazine-containing ligands were selective over 5-HT(2A). Moderate selectivity was observed at 5-HT(2C) vs 5-HT(2B) (10-fold) with some compounds bearing a 4-[3-(6-fluorobenzisoxazolyl)]piperidine moiety in its structure. Molecular determinants for antagonists acting at 5-HT(2A) receptors were identified by 3D-QSAR (GRID-GOLPE) studies. Docking simulations at 5-HT(2A) and 5-HT(2C) receptors suggest a binding site for the studied type of antagonists (between transmembrane helices 2, 3, and 7) different to that of the natural agonist serotonin (between 3, 5, and 6).
Collapse
MESH Headings
- Animals
- Aorta/metabolism
- Butyrophenones/chemical synthesis
- Butyrophenones/chemistry
- Butyrophenones/pharmacology
- CHO Cells
- Cricetinae
- Cycloparaffins/chemical synthesis
- Cycloparaffins/chemistry
- Cycloparaffins/pharmacology
- Frontal Lobe/metabolism
- Heterocyclic Compounds/chemical synthesis
- Heterocyclic Compounds/chemistry
- Heterocyclic Compounds/pharmacology
- Humans
- In Vitro Techniques
- Ligands
- Male
- Models, Molecular
- Muscle, Smooth, Vascular/metabolism
- Quantitative Structure-Activity Relationship
- Rats
- Rats, Sprague-Dawley
- Receptor, Serotonin, 5-HT2A
- Receptor, Serotonin, 5-HT2B
- Receptor, Serotonin, 5-HT2C
- Receptors, Serotonin/drug effects
- Serotonin Antagonists/chemical synthesis
- Serotonin Antagonists/chemistry
- Serotonin Antagonists/pharmacology
- Stomach/drug effects
- Stomach/physiology
Collapse
Affiliation(s)
- José Brea
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Liao D, Basarab GS, Gatenby AA, Valent B, Jordan DB. Structures of trihydroxynaphthalene reductase-fungicide complexes: implications for structure-based design and catalysis. Structure 2001; 9:19-27. [PMID: 11342131 DOI: 10.1016/s0969-2126(00)00548-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Trihydroxynaphthalene reductase catalyzes two intermediate steps in the fungal melanin biosynthetic pathway. The enzyme, a typical short-chain dehydrogenase, is the biochemical target of three commercial fungicides. The fungicides bind preferentially to the NADPH form of the enzyme. RESULTS Three X-ray structures of the Magnaporthe grisea enzyme complexed with NADPH and two commercial and one experimental fungicide were determined at 1.7 A (pyroquilon), 2.0 A (2,3-dihydro-4-nitro-1H-inden-1-one, 1), and 2.1 A (phthalide) resolutions. The chemically distinct inhibitors occupy similar space within the enzyme's active site. The three inhibitors share hydrogen bonds with the side chain hydroxyls of Ser-164 and Tyr-178 via a carbonyl oxygen (pyroquilon and 1) or via a carbonyl oxygen and a ring oxygen (phthalide). Active site residues occupy similar positions among the three structures. A buried water molecule that is hydrogen bonded to the NZ nitrogen of Lys-182 in each of the three structures likely serves to stabilize the cationic form of the residue for participation in catalysis. CONCLUSIONS The pro S hydrogen of NADPH (which is transferred as a hydride to the enzyme's naphthol substrates) is directed toward the carbonyl carbon of the inhibitors that mimic an intermediate along the reaction coordinate. Modeling tetrahydroxynaphthalene and trihydroxynaphthalene in the active site shows steric and electrostatic repulsion between the extra hydroxyl oxygen of the former substrate and the sulfur atom of Met-283 (the C-terminal residue), which accounts, in part, for the 4-fold greater substrate specificity for trihydroxynaphthalene over tetrahydroxynaphthalene.
Collapse
Affiliation(s)
- D Liao
- DuPont Central Research and Development Experimental Station, Wilmington, DE 19880, USA.
| | | | | | | | | |
Collapse
|
19
|
Bromidge SM, Dabbs S, Davies DT, Davies S, Duckworth DM, Forbes IT, Gaster LM, Ham P, Jones GE, King FD, Mulholland KR, Saunders DV, Wyman PA, Blaney FE, Clarke SE, Blackburn TP, Holland V, Kennett GA, Lightowler S, Middlemiss DN, Trail B, Riley GJ, Wood MD. Biarylcarbamoylindolines are novel and selective 5-HT(2C) receptor inverse agonists: identification of 5-methyl-1-[[2-[(2-methyl-3-pyridyl)oxy]- 5-pyridyl]carbamoyl]-6-trifluoromethylindoline (SB-243213) as a potential antidepressant/anxiolytic agent. J Med Chem 2000; 43:1123-34. [PMID: 10737744 DOI: 10.1021/jm990388c] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The evolution, synthesis, and biological activity of a novel series of 5-HT(2C) receptor inverse agonists are reported. Biarylcarbamoylindolines have been identified with excellent 5-HT(2C) affinity and selectivity over 5-HT(2A) receptors. In addition, (pyridyloxypyridyl)carbamoylindolines have been discovered with additional selectivity over the closely related 5-HT(2B) receptor. Compounds from this series are inverse agonists at the human cloned 5-HT(2C) receptor, completely abolishing basal activity in a functional assay. The new series have reduced P450 inhibitory liability compared to a previously described series of 1-(3-pyridylcarbamoyl)indolines (Bromidge et al. J. Med. Chem. 1998, 41, 1598) from which they evolved. Compounds from this series showed excellent oral activity in a rat mCPP hypolocomotion model and in animal models of anxiety. On the basis of their favorable biological profile, 32 (SB-228357) and 40 (SB-243213) have been selected for further evaluation to determine their therapeutic potential for the treatment of CNS disorders such as depression and anxiety.
Collapse
Affiliation(s)
- S M Bromidge
- SmithKline Beecham Pharmaceuticals, Discovery Research, New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Bromidge SM, Dabbs S, Davies DT, Davies S, Duckworth DM, Forbes IT, Gadre A, Ham P, Jones GE, King FD, Saunders DV, Thewlis KM, Vyas D, Blackburn TP, Holland V, Kennett GA, Riley GJ, Wood MD. Model studies on a synthetically facile series of N-substituted phenyl-N'-pyridin-3-yl ureas leading to 1-(3-pyridylcarbamoyl) indolines that are potent and selective 5-HT(2C/2B) receptor antagonists. Bioorg Med Chem 1999; 7:2767-73. [PMID: 10658582 DOI: 10.1016/s0968-0896(99)00228-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A model series of 5-HT2C antagonists have been prepared by rapid parallel synthesis. These N-substituted phenyl-N'-pyridin-3-yl ureas were found to have a range of 5-HT2C receptor affinities and selectivities over the closely related 5-HT2A receptor. Extrapolation of simple SAR, derived from this set of compounds, to the more active but synthetically more complex 1-(3-pyridylcarbamoyl)indoline series allowed us to target optimal substitution patterns and identify potent and selective 5-HT(2C/2B) antagonists.
Collapse
Affiliation(s)
- S M Bromidge
- SmithKline Beecham Pharmaceuticals Discovery Research, New Frontiers Science Park, Harlow, Essex, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Joule JA. Chapter 3 Nucleophilic substitution of C-hydrogen on the five-membered ring of indoles. A CRITICAL REVIEW OF THE 1998 LITERATURE PRECEDED BY TWO CHAPTERS ON CURRENT HETEROCYCLIC TOPICS 1999. [DOI: 10.1016/s0959-6380(99)80005-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Bromidge SM, Dabbs S, Davies DT, Duckworth DM, Forbes IT, Ham P, Jones GE, King FD, Saunders DV, Starr S, Thewlis KM, Wyman PA, Blaney FE, Naylor CB, Bailey F, Blackburn TP, Holland V, Kennett GA, Riley GJ, Wood MD. Novel and selective 5-HT2C/2B receptor antagonists as potential anxiolytic agents: synthesis, quantitative structure-activity relationships, and molecular modeling of substituted 1-(3-pyridylcarbamoyl)indolines. J Med Chem 1998; 41:1598-612. [PMID: 9572885 DOI: 10.1021/jm970741j] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The synthesis, biological activity, and molecular modeling of a novel series of substituted 1-(3-pyridylcarbamoyl)indolines are reported. These compounds are isosteres of the previously published indole urea 1 (SB-206553) and illustrate the use of aromatic disubstitution as a replacement for fused five-membered rings in the context of 5-HT2C/2B receptor antagonists. By targeting a region of space previously identified as sterically allowed at the 5-HT2C receptor but disallowed at the 5-HT2A receptor, we have identified a number of compounds which are the most potent and selective 5-HT2C/2B receptor antagonists yet reported. 46 (SB-221284) was selected on the basis of its overall biological profile for further evaluation as a novel, potential nonsedating anxiolytic agent. A CoMFA analysis of these compounds produced a model with good predictive value and in addition good qualitative agreement with both our 5-HT2C receptor model and our proposed binding mode for this class of ligands within that model.
Collapse
MESH Headings
- Animals
- Anti-Anxiety Agents/chemical synthesis
- Anti-Anxiety Agents/chemistry
- Anti-Anxiety Agents/metabolism
- Anti-Anxiety Agents/pharmacology
- Conditioning, Operant/drug effects
- Conflict, Psychological
- Indoles/chemical synthesis
- Indoles/chemistry
- Indoles/metabolism
- Indoles/pharmacology
- Male
- Models, Molecular
- Motor Activity/drug effects
- Pyridines/chemical synthesis
- Pyridines/chemistry
- Pyridines/metabolism
- Pyridines/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptor, Serotonin, 5-HT2B
- Receptor, Serotonin, 5-HT2C
- Receptors, Serotonin/drug effects
- Receptors, Serotonin/metabolism
- Serotonin Antagonists/chemical synthesis
- Serotonin Antagonists/chemistry
- Serotonin Antagonists/metabolism
- Serotonin Antagonists/pharmacology
- Social Behavior
- Structure-Activity Relationship
Collapse
Affiliation(s)
- S M Bromidge
- SmithKline Beecham Pharmaceuticals, Discovery Research, New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW, England
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Gaster LM, Blaney FE, Davies S, Duckworth DM, Ham P, Jenkins S, Jennings AJ, Joiner GF, King FD, Mulholland KR, Wyman PA, Hagan JJ, Hatcher J, Jones BJ, Middlemiss DN, Price GW, Riley G, Roberts C, Routledge C, Selkirk J, Slade PD. The selective 5-HT1B receptor inverse agonist 1'-methyl-5-[[2'-methyl-4'-(5-methyl-1,2, 4-oxadiazol-3-yl)biphenyl-4-yl]carbonyl]-2,3,6,7-tetrahydro- spiro[furo[2,3-f]indole-3,4'-piperidine] (SB-224289) potently blocks terminal 5-HT autoreceptor function both in vitro and in vivo. J Med Chem 1998; 41:1218-35. [PMID: 9548813 DOI: 10.1021/jm970457s] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
5-HT1 receptors are members of the G-protein-coupled receptor superfamily and are negatively linked to adenylyl cyclase activity. The human 5-HT1B and 5-HT1D receptors (previously known as 5-HT1Dbeta and 5-HT1Dalpha, respectively), although encoded by two distinct genes, are structurally very similar. Pharmacologically, these two receptors have been differentiated using nonselective chemical tools such as ketanserin and ritanserin, but the absence of truly selective agents has meant that the precise function of the 5-HT1B and 5-HT1D receptors has not been defined. In this paper we describe how, using computational chemistry models as a guide, the nonselective 5-HT1B/5-HT1D receptor antagonist 4 was structurally modified to produce the selective 5-HT1B receptor inverse agonist 5, 1'-methyl-5-[[2'-methyl-4'-(5-methyl-1,2, 4-oxadiazol-3-yl)biphenyl-4-yl]carbonyl]-2,3,6, 7-tetrahydrospiro[furo[2,3-f]indole-3,4'-piperidine] (SB-224289). This compound is a potent antagonist of terminal 5-HT autoreceptor function both in vitro and in vivo.
Collapse
Affiliation(s)
- L M Gaster
- SmithKline Beecham Pharmaceuticals, Discovery Research, New Frontiers Science Park (North), Third Avenue, Harlow, Essex CM19 5AW, England
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Latest Developments in Serotonin Receptor Modulation. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1998. [DOI: 10.1016/s0065-7743(08)61068-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
25
|
Bromidge SM, Duckworth M, Forbes IT, Ham P, King FD, Thewlis KM, Blaney FE, Naylor CB, Blackburn TP, Kennett GA, Wood MD, Clarke SE. 6-Chloro-5-methyl-1-[[2-[(2-methyl-3-pyridyl)oxy]-5-pyridyl]carbamoyl]- indoline (SB-242084): the first selective and brain penetrant 5-HT2C receptor antagonist. J Med Chem 1997; 40:3494-6. [PMID: 9357513 DOI: 10.1021/jm970424c] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- S M Bromidge
- SmithKline Beecham Pharmaceuticals, Discovery Research, Harlow, Essex, England
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|