1
|
Gomes AR, Pires AS, Roleira FMF, Tavares-da-Silva EJ. The Structural Diversity and Biological Activity of Steroid Oximes. Molecules 2023; 28:1690. [PMID: 36838678 PMCID: PMC9967121 DOI: 10.3390/molecules28041690] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Steroids and their derivatives have been the subject of extensive research among investigators due to their wide range of pharmacological properties, in which steroidal oximes are included. Oximes are a chemical group with the general formula R1R2C=N-OH and they exist as colorless crystals and are poorly soluble in water. Oximes can be easily obtained through the condensation of aldehydes or ketones with various amine derivatives, making them a very interesting chemical group in medicinal chemistry for the design of drugs as potential treatments for several diseases. In this review, we will focus on the different biological activities displayed by steroidal oximes such as anticancer, anti-inflammatory, antibacterial, antifungal and antiviral, among others, as well as their respective mechanisms of action. An overview of the chemistry of oximes will also be reported, and several steroidal oximes that are in clinical trials or already used as drugs are described. An extensive literature search was performed on three main databases-PubMed, Web of Science, and Google Scholar.
Collapse
Affiliation(s)
- Ana R. Gomes
- Univ Coimbra, CIEPQPF, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal
| | - Ana S. Pires
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Praceta Professor Mota Pinto, 3004-561 Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Rua Larga, 3004-504 Coimbra, Portugal
| | - Fernanda M. F. Roleira
- Univ Coimbra, CIEPQPF, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal
| | - Elisiário J. Tavares-da-Silva
- Univ Coimbra, CIEPQPF, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal
| |
Collapse
|
2
|
Jurášek M, Řehulka J, Hrubá L, Ivanová A, Gurská S, Mokshyna O, Trousil P, Huml L, Polishchuk P, Hajdúch M, Drašar PB, Džubák P. Triazole-based estradiol dimers prepared via CuAAC from 17α-ethinyl estradiol with five-atom linkers causing G2/M arrest and tubulin inhibition. Bioorg Chem 2023; 131:106334. [PMID: 36592487 DOI: 10.1016/j.bioorg.2022.106334] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Microtubule dynamic is exceptionally sensitive to modulation by small-molecule ligands. Our previous work presented the preparation of microtubule-targeting estradiol dimer (ED) with anticancer activity. In the present study, we explore the effect of selected linkers on the biological activity of the dimer. The linkers were designed as five-atom chains with carbon, nitrogen or oxygen in their centre. In addition, the central nitrogen was modified by a benzyl group with hydroxy or methoxy substituents and one derivative possessed an extended linker length. Thirteen new dimers were subjected to cytotoxicity assay and cell cycle profiling. Dimers containing linker with benzyl moiety substituted with one or more methoxy groups and longer branched ones were found inactive, whereas other structures had comparable efficacy as the original ED (e.g. D1 with IC50 = 1.53 µM). Cell cycle analysis and immunofluorescence proved the interference of dimers with microtubule assembly and mitosis. The proposed in silico model and calculated binding free energy by the MM-PBSA method were closely correlated with in vitro tubulin assembly assay.
Collapse
Affiliation(s)
- Michal Jurášek
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Jiří Řehulka
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital in Olomouc, Hněvotínská 1333/5, 779 00 Olomouc, Czech Republic
| | - Lenka Hrubá
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital in Olomouc, Hněvotínská 1333/5, 779 00 Olomouc, Czech Republic
| | - Aleksandra Ivanová
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital in Olomouc, Hněvotínská 1333/5, 779 00 Olomouc, Czech Republic
| | - Soňa Gurská
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital in Olomouc, Hněvotínská 1333/5, 779 00 Olomouc, Czech Republic
| | - Olena Mokshyna
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital in Olomouc, Hněvotínská 1333/5, 779 00 Olomouc, Czech Republic
| | - Pavel Trousil
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Lukáš Huml
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Pavel Polishchuk
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital in Olomouc, Hněvotínská 1333/5, 779 00 Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital in Olomouc, Hněvotínská 1333/5, 779 00 Olomouc, Czech Republic
| | - Pavel B Drašar
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Petr Džubák
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital in Olomouc, Hněvotínská 1333/5, 779 00 Olomouc, Czech Republic.
| |
Collapse
|
3
|
Hargrave SD, Joubert AM, Potter BVL, Dohle W, Marais S, Mercier AE. Cell Fate following Irradiation of MDA-MB-231 and MCF-7 Breast Cancer Cells Pre-Exposed to the Tetrahydroisoquinoline Sulfamate Microtubule Disruptor STX3451. Molecules 2022; 27:3819. [PMID: 35744942 PMCID: PMC9228122 DOI: 10.3390/molecules27123819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
A tetrahydroisoquinoline (THIQ) core is able to mimic the A and B rings of 2-methoxyestradiol (2ME2), an endogenous estrogen metabolite that demonstrates promising anticancer properties primarily by disrupting microtubule dynamic instability parameters, but has very poor pharmaceutical properties that can be improved by sulfamoylation. The non-steroidal THIQ-based microtubule disruptor 2-(3-bromo-4,5-dimethoxybenzyl)-7-methoxy-6-sulfamoyloxy-1,2,3,4-tetrahydroisoquinoline (STX3451), with enhanced pharmacokinetic and pharmacodynamic profiles, was explored for the first time in radiation biology. We investigated whether 24 h pre-treatment with STX3451 could pre-sensitize MCF-7 and MDA-MB-231 breast cancer cells to radiation. This regimen showed a clear increase in cytotoxicity compared to the individual modalities, results that were contiguous in spectrophotometric analysis, flow cytometric quantification of apoptosis induction, clonogenic studies and microscopy techniques. Drug pre-treatment increased radiation-induced DNA damage, with statistically more double-strand (ds) DNA breaks demonstrated. The latter could be due to the induction of a radiation-sensitive metaphase block or the increased levels of reactive oxygen species, both evident after compound exposure. STX3451 pre-exposure may also delay DNA repair mechanisms, as the DNA damage response element ataxia telangiectasia mutated (ATM) was depressed. These in vitro findings may translate into in vivo models, with the ultimate aim of reducing both radiation and drug doses for maximal clinical effect with minimal adverse effects.
Collapse
Affiliation(s)
- Scott D. Hargrave
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (S.D.H.); (A.M.J.); (S.M.)
| | - Anna M. Joubert
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (S.D.H.); (A.M.J.); (S.M.)
| | - Barry V. L. Potter
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK; (B.V.L.P.); (W.D.)
| | - Wolfgang Dohle
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK; (B.V.L.P.); (W.D.)
| | - Sumari Marais
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (S.D.H.); (A.M.J.); (S.M.)
| | - Anne E. Mercier
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (S.D.H.); (A.M.J.); (S.M.)
| |
Collapse
|
4
|
Luo Y, Hu M, Ge J, Li B, He L. Rh-Catalyzed Oxidation and Trifluoroethoxylation of N-Aryl-pyrrolidin-2-ones : A Domino Approach for the Synthesis of N-Aryl-5-(2,2,2-trifluoroethoxy)-1,5- dihydro-2H-pyrrol-2-ones. Org Chem Front 2022. [DOI: 10.1039/d1qo01319j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of trifluoroethoxylated dihydropyrrolidones via rhodium-catalyzed oxidation and trifluoroethoxylation of pyrrolidones is presented in this paper. This process realized trifluoroethoxylation of non-activated sp3 C-H by domino approach for the...
Collapse
|
5
|
New Estrone Oxime Derivatives: Synthesis, Cytotoxic Evaluation and Docking Studies. Molecules 2021; 26:molecules26092687. [PMID: 34064380 PMCID: PMC8125528 DOI: 10.3390/molecules26092687] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/28/2021] [Accepted: 05/01/2021] [Indexed: 01/09/2023] Open
Abstract
The interest in the introduction of the oxime group in molecules aiming to improve their biological effects is increasing. This work aimed to develop new steroidal oximes of the estrane series with potential antitumor interest. For this, several oximes were synthesized by reaction of hydroxylamine with the 17-ketone of estrone derivatives. Then, their cytotoxicity was evaluated in six cell lines. An estrogenicity assay, a cell cycle distribution analysis and a fluorescence microscopy study with Hoechst 3358 staining were performed with the most promising compound. In addition, molecular docking studies against estrogen receptor α, steroid sulfatase, 17β-hydroxysteroid dehydrogenase type 1 and β-tubulin were also accomplished. The 2-nitroestrone oxime showed higher cytotoxicity than the parent compound on MCF-7 cancer cells. Furthermore, the oximes bearing halogen groups in A-ring evidenced selectivity for HepaRG cells. Remarkably, the Δ9,11-estrone oxime was the most cytotoxic and arrested LNCaP cells in the G2/M phase. Fluorescence microscopy studies showed the presence of condensed DNA typical of prophase and condensed and fragmented nuclei characteristic of apoptosis. However, this oxime promoted the proliferation of T47-D cells. Interestingly, molecular docking studies estimated a strong interaction between Δ9,11-estrone oxime and estrogen receptor α and β-tubulin, which may account for the described effects.
Collapse
|
6
|
Stéphan E, Dousset M, Foy N, Jaouen G. Access to new Steroids via a (1,2) Wittig Rearrangement. JOURNAL OF CHEMICAL RESEARCH 2019. [DOI: 10.3184/030823402103170547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Novel steroids are obtained by reaction of 9,11-dehydro-dibenzylestradiol and dibenzylestradiol with phenyllithium in THF at room temperature.
Collapse
Affiliation(s)
- Elie Stéphan
- Laboratoire de chimie organométallique – Ecole Nationale Supérieure de Chimie et CNRS, 11, rue Pierre et Marie Curie, 75 005 Paris, France
| | - Magali Dousset
- Laboratoire de chimie organométallique – Ecole Nationale Supérieure de Chimie et CNRS, 11, rue Pierre et Marie Curie, 75 005 Paris, France
| | - Nicolas Foy
- Laboratoire de chimie organométallique – Ecole Nationale Supérieure de Chimie et CNRS, 11, rue Pierre et Marie Curie, 75 005 Paris, France
| | - Gérard Jaouen
- Laboratoire de chimie organométallique – Ecole Nationale Supérieure de Chimie et CNRS, 11, rue Pierre et Marie Curie, 75 005 Paris, France
| |
Collapse
|
7
|
Design, Synthesis, Anticancer Evaluation and Molecular Modeling of Novel Estrogen Derivatives. Molecules 2019; 24:molecules24030416. [PMID: 30678347 PMCID: PMC6385123 DOI: 10.3390/molecules24030416] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 12/17/2022] Open
Abstract
A series of estrone derivatives 3–8 was designed and synthesized using estrone arylmethylenes 2a,b as starting materials and their structures were confirmed by different spectral data and elemental analyses. All the newly synthesized compounds exhibited potent in vitro and in vivo cytotoxic activities against breast cancer cell lines. In addition, all compounds were subjected to in vitro and in vivo inhibition assays for EGFR and VEGFR-2 kinases as well as p53 ubiquitination activity to obtain more details about their mechanism of action. Based on the promising results, a molecular docking study was investigated for the most representative compound 5a against the two targets, EGFR and VEGFR-2 kinases, to assess its binding affinity, hoping to rationalize and obtain potent anticancer agents in the future.
Collapse
|
8
|
Pethő B, Novák Z. Synthesis of Aryl‐ and Heteroaryl‐Trifluoroethyl Ethers: Aims, Challenges and New Methodologies. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800414] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Bálint Pethő
- Preparative Research LaboratoryEgis Pharmaceuticals Plc. Keresztúri st. 30-38., H-1106 Budapest Hungary
| | - Zoltán Novák
- ELTE “Lendület” Catalysis and Organic Synthesis Research Group, Institute of ChemistryEötvös University, Faculty of Science, Pázmány Péter stny. 1/A H-1117 Budapest Hungary
| |
Collapse
|
9
|
Sinka I, Kiss A, Mernyák E, Wölfling J, Schneider G, Ocsovszki I, Kuo CY, Wang HC, Zupkó I. Antiproliferative and antimetastatic properties of 3-benzyloxy-16-hydroxymethylene-estradiol analogs against breast cancer cell lines. Eur J Pharm Sci 2018; 123:362-370. [PMID: 30010030 DOI: 10.1016/j.ejps.2018.07.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/22/2018] [Accepted: 07/12/2018] [Indexed: 12/23/2022]
Abstract
Despite emerging new therapeutic opportunities, cancer is still a major health problem and a leading cause of death worldwide. Breast tumors are the most frequently diagnosed female malignancies, and the triple-negative subtype is associated with poorer prognosis and lower survival rates than other breast cancer types. The aims of the present study were to determine the anticancer potency of a set of C-3 and C-16 modified estradiol-derivatives against a panel of breast cancer cell lines, and to characterize the mechanism of action of two selected compounds (1 and 5) against the MDA-MB-231 triple-negative breast cancer cell line. Growth-inhibitory properties were investigated by an MTT-assay. Cell cycle analysis by flow cytometry has revealed G1 phase accumulation and indicated the proapoptotic effect of 1 and 5 through the elevation of the apoptotic subG1 phase on MDA-MB-231 cells after 24 h treatment. The antimetastatic activities of these compounds were examined by wound healing and Boyden chamber assays, and both compounds were shown to significantly inhibit the migration and invasion of MDA-MB-231 cells at sub-antiproliferative concentrations. Gelatin zymography assay has indicated that matrix metalloproteinase-2 and -9 are not involved in the antimetastatic action of the molecules. Western blot analysis was performed with 24 h incubation to examine the possible changes in the level of focal adhesion kinase (FAK), and both compounds were found to inhibit the phosphorylation of FAK in a concentration-dependent manner in MDA-MB-231 cells. The results of this study demonstrate that C-3 and C-16 modified estradiol derivatives are potent antiproliferative and antimetastatic compounds against a triple-negative breast cancer cell line with a mechanism of action involving the inhibition of FAK, a novel anticancer therapeutic target. Therefore, these findings can be utilized in the development of promising anticancer agents with steroid skeleton.
Collapse
Affiliation(s)
- Izabella Sinka
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Szeged, Hungary
| | - Anita Kiss
- Department of Organic Chemistry, University of Szeged, Szeged, Hungary
| | - Erzsébet Mernyák
- Department of Organic Chemistry, University of Szeged, Szeged, Hungary
| | - János Wölfling
- Department of Organic Chemistry, University of Szeged, Szeged, Hungary
| | - Gyula Schneider
- Department of Organic Chemistry, University of Szeged, Szeged, Hungary
| | - Imre Ocsovszki
- Department of Biochemistry, University of Szeged, Szeged, Hungary
| | - Ching-Ying Kuo
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Hui-Chun Wang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - István Zupkó
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Szeged, Hungary; Interdisciplinary Centre for Natural Products, University of Szeged, Szeged, Hungary.
| |
Collapse
|
10
|
Shi X, Wang Z, Xu F, Lu X, Yao H, Wu D, Sun S, Nie R, Gao S, Li P, Xia L, Zhang Z, Wang C. Design, synthesis and antiproliferative effect of 17β-amide derivatives of 2-methoxyestradiol and their studies on pharmacokinetics. Steroids 2017; 128:6-14. [PMID: 29031938 DOI: 10.1016/j.steroids.2017.09.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/29/2017] [Accepted: 09/25/2017] [Indexed: 01/01/2023]
Abstract
A series of 17β-amide-2-methoxyestradiol compounds were synthesized with an aim to enhance the antiproliferative effect of 2-methoxyestradiol. The antiproliferative activity of 2-methoxyestradiol analogs against human cancer cells was investigated. 2-methoxy-3-benzyloxy-17β-chloroacetamide-1,3,5(10)-triene (5e) and 2-methoxy-3-hydroxy-17β-butyramide-1,3,5(10)-triene (6c) had comparable or better antitumor activity than 2-methoxyestradiol. The elimination half-life of 6c (t1/2β=240.93min) is ten times longer than 2-ME and the area under the curve was seven times (AUC0-tmin=2068.20±315.74μgmL-1min) higher than 2-ME, respectively. Whereas 5e had similar pharmacokinetic behavior with 2-ME (t1/2β=22.28min) with a t1/2β of 29.5 min. 6c had higher blood concentration, longer actuation duration and better suppression rate against S180 mouse ascites tumor than 2-methoxyestradiol.
Collapse
Affiliation(s)
- Xiufang Shi
- School of Pharmaceutical Sciences, and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, China
| | - Zhihao Wang
- School of Pharmaceutical Sciences, and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, China
| | - Feng Xu
- School of Pharmaceutical Sciences, and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, China
| | - Xiang Lu
- School of Pharmaceutical Sciences, and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, China
| | - Haifeng Yao
- School of Pharmaceutical Sciences, and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, China; Pharmaceutical Department, The People's Hospital of Chizhou, 3 Baiya Road, Chizhou, Anhui 247000, China
| | - Dandan Wu
- School of Pharmaceutical Sciences, and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, China; Pharmaceutical Department, Affiliated Hospital of Binzhou Medical College, 661 Yellow River 2nd Road, Binzhou, Shandong 256600, China
| | - Shuaijun Sun
- School of Pharmaceutical Sciences, and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, China; Department of Pharmacy, Zhengzhou Central Hospital Affiliated to Zhengzhou University, 195 Tongbai Road, Zhengzhou 450053, Henan, China
| | - Ruifang Nie
- School of Pharmaceutical Sciences, and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, China
| | - Shuo Gao
- School of Pharmaceutical Sciences, and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, China
| | - Panpan Li
- School of Pharmaceutical Sciences, and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, China
| | - Liwen Xia
- School of Pharmaceutical Sciences, and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, China.
| | - Cong Wang
- School of Pharmaceutical Sciences, and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, China.
| |
Collapse
|
11
|
Synthesis and in vitro investigation of potential antiproliferative monosaccharide–d-secoestrone bioconjugates. Bioorg Med Chem Lett 2017; 27:1938-1942. [DOI: 10.1016/j.bmcl.2017.03.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/11/2017] [Accepted: 03/14/2017] [Indexed: 01/16/2023]
|
12
|
Bodnár B, Mernyák E, Wölfling J, Schneider G, Herman BE, Szécsi M, Sinka I, Zupkó I, Kupihár Z, Kovács L. Synthesis and Biological Evaluation of Triazolyl 13α-Estrone-Nucleoside Bioconjugates. Molecules 2016; 21:molecules21091212. [PMID: 27626395 PMCID: PMC6273310 DOI: 10.3390/molecules21091212] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/02/2016] [Accepted: 09/06/2016] [Indexed: 02/03/2023] Open
Abstract
2′-Deoxynucleoside conjugates of 13α-estrone were synthesized by applying the copper-catalyzed alkyne–azide click reaction (CuAAC). For the introduction of the azido group the 5′-position of the nucleosides and a propargyl ether functional group on the 3-hydroxy group of 13α-estrone were chosen. The best yields were realized in our hands when the 3′-hydroxy groups of the nucleosides were protected by acetyl groups and the 5′-hydroxy groups were modified by the tosyl–azide exchange method. The commonly used conditions for click reaction between the protected-5′-azidonucleosides and the steroid alkyne was slightly modified by using 1.5 equivalent of Cu(I) catalyst. All the prepared conjugates were evaluated in vitro by means of MTT assays for antiproliferative activity against a panel of human adherent cell lines (HeLa, MCF-7 and A2780) and the potential inhibitory activity of the new conjugates on human 17β-hydroxysteroid dehydrogenase 1 (17β-HSD1) was investigated via in vitro radiosubstrate incubation. Some protected conjugates displayed moderate antiproliferative properties against a panel of human adherent cancer cell lines (the protected cytidine conjugate proved to be the most potent with IC50 value of 9 μM). The thymidine conjugate displayed considerable 17β-HSD1 inhibitory activity (IC50 = 19 μM).
Collapse
Affiliation(s)
- Brigitta Bodnár
- Department of Medicinal Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| | - Erzsébet Mernyák
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| | - János Wölfling
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| | - Gyula Schneider
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| | - Bianka Edina Herman
- 1st Department of Medicine, University of Szeged, Korányi fasor 8-10, H-6720 Szeged, Hungary.
| | - Mihály Szécsi
- 1st Department of Medicine, University of Szeged, Korányi fasor 8-10, H-6720 Szeged, Hungary.
| | - Izabella Sinka
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary.
| | - István Zupkó
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary.
| | - Zoltán Kupihár
- Department of Medicinal Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| | - Lajos Kovács
- Department of Medicinal Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| |
Collapse
|
13
|
Kumar BS, Raghuvanshi DS, Hasanain M, Alam S, Sarkar J, Mitra K, Khan F, Negi AS. Recent Advances in chemistry and pharmacology of 2-methoxyestradiol: An anticancer investigational drug. Steroids 2016; 110:9-34. [PMID: 27020471 DOI: 10.1016/j.steroids.2016.03.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 02/13/2016] [Accepted: 03/22/2016] [Indexed: 01/29/2023]
Abstract
2-Methoxyestradiol (2ME2), an estrogen hormone metabolite is a potential cancer chemotherapeutic agent. Presently, it is an investigational drug under various phases of clinical trials alone or in combination therapy. Its anticancer activity has been attributed to its antitubulin, antiangiogenic, pro-apoptotic and ROS induction properties. This anticancer drug candidate has been explored extensively in last twenty years for its detailed chemistry and pharmacology. Present review is an update of its chemistry and biological activity. It also extends an assessment of potential of 2ME2 and its analogues as possible anticancer drug in future.
Collapse
Affiliation(s)
- B Sathish Kumar
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, P.O. CIMAP, Lucknow 226015, India
| | - Dushyant Singh Raghuvanshi
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, P.O. CIMAP, Lucknow 226015, India
| | - Mohammad Hasanain
- CSIR-Central Drug Research Institute (CSIR-CDRI), B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Sarfaraz Alam
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, P.O. CIMAP, Lucknow 226015, India
| | - Jayanta Sarkar
- CSIR-Central Drug Research Institute (CSIR-CDRI), B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Kalyan Mitra
- CSIR-Central Drug Research Institute (CSIR-CDRI), B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Feroz Khan
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, P.O. CIMAP, Lucknow 226015, India
| | - Arvind S Negi
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, P.O. CIMAP, Lucknow 226015, India.
| |
Collapse
|
14
|
Zefirov NA, Zefirova ON. 2-Methoxyestradiol and its analogs. Synthesis and structure—antiproliferative activity relationship. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2015. [DOI: 10.1134/s1070428015090018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Mernyák E, Kovács I, Minorics R, Sere P, Czégány D, Sinka I, Wölfling J, Schneider G, Újfaludi Z, Boros I, Ocsovszki I, Varga M, Zupkó I. Synthesis of trans-16-triazolyl-13α-methyl-17-estradiol diastereomers and the effects of structural modifications on their in vitro antiproliferative activities. J Steroid Biochem Mol Biol 2015; 150:123-34. [PMID: 25845933 DOI: 10.1016/j.jsbmb.2015.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/27/2015] [Accepted: 04/01/2015] [Indexed: 01/06/2023]
Abstract
Novel 16-triazoles in the 13α-estrone series were synthesized via Cu(I)-catalyzed azide-alkyne cycloaddition of the two diastereomeric (on C-16 and on C-17) 16-azido-13α-estra-1,3,5(10)-trien-17-ol 3-benzyl ethers with substituted phenylacetylenes. The new heterocyclic derivatives were evaluated in vitro by means of MTT assays for antiproliferative activity against a panel of human adherent cancer cell lines (HeLa, MCF-7, A431, A2780, T47D, MDA-MB-231 and MDA-MB-361). The inversion of the configurations at C-16 and C-17 selectively affected the growth-inhibitory properties of the tested compounds. The 16β,17α isomers generally proved to be potent on all cell lines, with IC50 values comparable to those of the reference agent cisplatin. Change of the substitution pattern of the phenyl group of the acetylene led to great differences in antiproliferative properties. Exclusively the p-phenyl-substituted triazoles exerted high cytostatic effects. One of the most potent compounds activated caspase-3 and caspase-9 without influencing caspase-8, confirming the induction of apoptosis via the intrinsic pathway.
Collapse
Affiliation(s)
- Erzsébet Mernyák
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| | - Ida Kovács
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6., H-6720 Szeged, Hungary
| | - Renáta Minorics
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6., H-6720 Szeged, Hungary
| | - Péter Sere
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Dóra Czégány
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Izabella Sinka
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6., H-6720 Szeged, Hungary
| | - János Wölfling
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Gyula Schneider
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Zsuzsanna Újfaludi
- Department of Biochemistry and Molecular Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Imre Boros
- Department of Biochemistry and Molecular Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Imre Ocsovszki
- Department of Biochemistry, University of Szeged, Dóm tér 9, H-6720 Szeged, Hungary
| | - Mónika Varga
- Cereal Research Non-Profit Ltd., P.O. Box 391, H-6701 Szeged, Hungary
| | - István Zupkó
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6., H-6720 Szeged, Hungary.
| |
Collapse
|
16
|
Zefirova ON, Glazkova YS, Nurieva EV, Zefirov NA, Mamaeva AV, Wobith B, Zefirov NS, Kuznetsov SA. Synthesis and biological testing of tubuloclustin analogs containing alicyclic groups and 2-methoxyestradiol moiety. Russ Chem Bull 2015. [DOI: 10.1007/s11172-014-0559-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Nenajdenko VG, Muzalevskiy VM, Shastin AV. Polyfluorinated ethanes as versatile fluorinated C2-building blocks for organic synthesis. Chem Rev 2015; 115:973-1050. [PMID: 25594605 DOI: 10.1021/cr500465n] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Valentine G Nenajdenko
- Department of Chemistry, Moscow State University , Leninskie Gory, Moscow 119992, Russia
| | | | | |
Collapse
|
18
|
Mernyák E, Fiser G, Szabó J, Bodnár B, Schneider G, Kovács I, Ocsovszki I, Zupkó I, Wölfling J. Synthesis and in vitro antiproliferative evaluation of d-secooxime derivatives of 13β- and 13α-estrone. Steroids 2014; 89:47-55. [PMID: 25150017 DOI: 10.1016/j.steroids.2014.08.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/08/2014] [Accepted: 08/06/2014] [Indexed: 12/17/2022]
Abstract
d-Secooximes were synthesized from the d-secoaldehydes in the 13β- and 13α-estrone series. The oximes were modified at three sites in the molecule: the oxime function was transformed into an oxime ether, oxime ester or nitrile group, the propenyl side-chain was saturated and the 3-benzyl ether was removed in order to obtain a phenolic hydroxy function. Triazoles were formed via Cu(I)-catalysed azide-alkyne cycloaddition (CuAAC) from 3-(prop-2-yniloxy)-d-secooximes and benzyl azides. All the products were evaluated in vitro by means of MTT assays for antiproliferative activity against a panel of human adherent cell lines (HeLa, MCF-7, A2780 and A431). Some of them exhibited activities with submicromolar IC50 values, better than that of the reference agent cisplatin. The structural modifications led to significant differences in the cytostatic properties. Flow cytometry indicated that one of the most potent agents resulted in a cell cycle blockade.
Collapse
Affiliation(s)
- Erzsébet Mernyák
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| | - Gabriella Fiser
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Johanna Szabó
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Brigitta Bodnár
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Gyula Schneider
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Ida Kovács
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Imre Ocsovszki
- Department of Biochemistry, University of Szeged, Dóm tér 9, H-6720 Szeged, Hungary
| | - István Zupkó
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - János Wölfling
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| |
Collapse
|
19
|
Mernyák E, Szabó J, Bacsa I, Huber J, Schneider G, Minorics R, Bózsity N, Zupkó I, Varga M, Bikádi Z, Hazai E, Wölfling J. Syntheses and antiproliferative effects of D-homo- and D-secoestrones. Steroids 2014; 87:128-36. [PMID: 24928727 DOI: 10.1016/j.steroids.2014.05.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/13/2014] [Accepted: 05/25/2014] [Indexed: 11/18/2022]
Abstract
Substituted and/or heterocyclic d-homoestrone derivatives were synthetized via the intramolecular cyclization of a δ-alkenyl-d-secoaldehyde, -d-secoalcohol or -d-secocarboxylic acid of estrone 3-benzyl ether. The d-secoalcohol was modified at three sites in the molecule. The in vitro antiproliferative activities of the new d-homo- and d-secoestrone derivatives were determined on HeLa, MCF-7, A431 and A2780 cells through use of MTT assay. d-Homoalcohols 3 and 5 displayed cell line-selective cytostatic effects against ovarian and cervical cell lines, respectively. Two d-secoestrones (6 and 12c) proved to be effective, with IC50 values comparable with those of the reference agent cisplatin. A selected compound (6) was tested by tubulin polymerization assay and its cancer specificity was additionally determined by using noncancerous human fibroblast cells.
Collapse
Affiliation(s)
- Erzsébet Mernyák
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| | - Johanna Szabó
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Ildikó Bacsa
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Judit Huber
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Gyula Schneider
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Renáta Minorics
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Noémi Bózsity
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - István Zupkó
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Mónika Varga
- Cereal Research Non-Profit LTD, P.O. Box 391, H-6701 Szeged, Hungary
| | - Zsolt Bikádi
- Virtua Drug Ltd, Csalogány u. 4C, H-1015 Budapest, Hungary
| | - Eszter Hazai
- Virtua Drug Ltd, Csalogány u. 4C, H-1015 Budapest, Hungary
| | - János Wölfling
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| |
Collapse
|
20
|
Leese MP, Jourdan FL, Major MR, Dohle W, Hamel E, Ferrandis E, Fiore A, Kasprzyk PG, Potter BVL. Tetrahydroisoquinolinone-based steroidomimetic and chimeric microtubule disruptors. ChemMedChem 2014; 9:85-108, 1. [PMID: 24124095 PMCID: PMC3877212 DOI: 10.1002/cmdc.201300261] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Indexed: 12/20/2022]
Abstract
A structure-activity relationship (SAR) translation strategy was used for the discovery of tetrahydroisoquinoline (THIQ)-based steroidomimetic and chimeric microtubule disruptors based upon a steroidal starting point. A steroid A,B-ring-mimicking THIQ core was connected to methoxyaryl D-ring ring mimics through methylene, carbonyl and sulfonyl linkers to afford a number of steroidomimetic hits (e.g., 7-methoxy-2-(3- methoxybenzyl)-6-sulfamoyloxy-1,2,3,4-tetrahydroisoquinoline (20 c) GI₅₀=2.1 μM). Optimisation and control experiments demonstrate the complementary SAR of this series and the steroid derivatives that inspired its design. Linkage of the THIQ-based A,B-mimic with the trimethoxyaryl motif prevalent in colchicine site binding microtubule disruptors delivered a series of chimeric molecules whose activity (GI₅₀=40 nM) surpasses that of the parent steroid derivatives. Validation of this strategy was obtained from the excellent oral activity of 7-methoxy-6-sulfamoyloxy-2-(3,4,5-trimethoxybenzyl)-1,2,3,4-tetrahydroisoquinoline relative to a benchmark steroidal bis- sulfamate in an in vivo model of multiple myeloma.
Collapse
Affiliation(s)
- Mathew P. Leese
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY (UK)
| | - Fabrice L. Jourdan
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY (UK)
| | - Meriel R. Major
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY (UK)
| | - Wolfgang Dohle
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY (UK)
| | - Ernest Hamel
- Treatment and Diagnosis, National Cancer Institute, Frederick, MD 21702 (USA)
| | - Eric Ferrandis
- Institut de Recherche Henri Beaufour, 91966 Les Ulis Cedex (France)
| | - Ann Fiore
- IPSEN, 27 Maple St, Milford, MA (USA)
| | | | - Barry V. L. Potter
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY (UK)
| |
Collapse
|
21
|
Kopel LC, Ahmed MS, Halaweish FT. Synthesis of novel estrone analogs by incorporation of thiophenols via conjugate addition to an enone side chain. Steroids 2013; 78:1119-25. [PMID: 23899492 DOI: 10.1016/j.steroids.2013.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/09/2013] [Accepted: 07/18/2013] [Indexed: 12/24/2022]
Abstract
Functionalized estrogen analogs have received interest due to their unique and differing biological activity compared to their parent compounds. The synthesis of a new class of 3-methoxyestrone analogs functionalized at the C17 position possessing both alkyl and aryl substituted α,β-unsaturated ketones is described, along with their thiophenol conjugate addition products.
Collapse
Affiliation(s)
- Lucas C Kopel
- Department of Chemistry & Biochemistry, South Dakota State University, Brookings, SD, USA
| | | | | |
Collapse
|
22
|
Gupta A, Kumar BS, Negi AS. Current status on development of steroids as anticancer agents. J Steroid Biochem Mol Biol 2013; 137:242-70. [PMID: 23727548 DOI: 10.1016/j.jsbmb.2013.05.011] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 04/25/2013] [Accepted: 05/19/2013] [Indexed: 01/13/2023]
Abstract
Steroids are important biodynamic agents. Their affinities for various nuclear receptors have been an interesting feature to utilize them for drug development particularly for receptor mediated diseases. Steroid biochemistry and its crucial role in human physiology, has attained importance among the researchers. Recent years have seen an extensive focus on modification of steroids. The rational modifications of perhydrocyclopentanophenanthrene nucleus of steroids have yielded several important anticancer lead molecules. Exemestane, SR16157, fulvestrant and 2-methoxyestradiol are some of the successful leads emerged on steroidal pharmacophores. The present review is an update on some of the steroidal leads obtained during past 25 years. Various steroid based enzyme inhibitors, antiestrogens, cytotoxic conjugates and steroidal cytotoxic molecules of natural as well as synthetic origin have been highlighted. This article is part of a Special Issue entitled "Synthesis and biological testing of steroid derivatives as inhibitors".
Collapse
Affiliation(s)
- Atul Gupta
- Medicinal Chemistry Department, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, Lucknow 226015, U.P., India
| | | | | |
Collapse
|
23
|
Lu Y, Chen J, Xiao M, Li W, Miller DD. An overview of tubulin inhibitors that interact with the colchicine binding site. Pharm Res 2012; 29:2943-71. [PMID: 22814904 DOI: 10.1007/s11095-012-0828-z] [Citation(s) in RCA: 551] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 07/05/2012] [Indexed: 12/13/2022]
Abstract
Tubulin dynamics is a promising target for new chemotherapeutic agents. The colchicine binding site is one of the most important pockets for potential tubulin polymerization destabilizers. Colchicine binding site inhibitors (CBSI) exert their biological effects by inhibiting tubulin assembly and suppressing microtubule formation. A large number of molecules interacting with the colchicine binding site have been designed and synthesized with significant structural diversity. CBSIs have been modified as to chemical structure as well as pharmacokinetic properties, and tested in order to find a highly potent, low toxicity agent for treatment of cancers. CBSIs are believed to act by a common mechanism via binding to the colchicine site on tubulin. The present review is a synopsis of compounds that have been reported in the past decade that have provided an increase in our understanding of the actions of CBSIs.
Collapse
Affiliation(s)
- Yan Lu
- Department of Pharmaceutical Sciences, Health Science Center, University of Tennessee, 847 Monroe Ave, Memphis, TN 38163, USA
| | | | | | | | | |
Collapse
|
24
|
Panchapakesan G, Dhayalan V, Dhatchana Moorthy N, Saranya N, Mohanakrishnan AK. Synthesis of 2-substituted 17β-hydroxy/17-methylene estratrienes and their in vitro cytotoxicity in human cancer cell cultures. Steroids 2011; 76:1491-504. [PMID: 21872616 DOI: 10.1016/j.steroids.2011.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 08/08/2011] [Accepted: 08/11/2011] [Indexed: 11/23/2022]
Abstract
Synthesis of various types of 2-(alkylaminomethyl) and 2-(aroyl) 17β-estradiol analogs are reported. The synthesis of similar types of 2-substituted 17-methylene estratriene analogs was also achieved. Synthesis of chalcone derivatives of 17β-estradiol and 17-methylene estratriene were also realized. All these 2-substituted estratrienes were tested for their antiproliferative activity by using four different cell lines from colon, lung, glioma and breast cancers. Among the various 2-substituted estratrienes, the compounds 10d, 14a-h and 17e were found to have in vitro antiproliferative activity comparable to that of parent analogs 1-4. Comparison of the SAR pattern of these 2-susbtituted estratriene derivatives confirmed that relatively, 17-methylene estratrienes are more active than that of 17β-estradiol analogs.
Collapse
Affiliation(s)
- Ganapathy Panchapakesan
- Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
| | | | | | | | | |
Collapse
|
25
|
Verenich S, Gerk PM. Therapeutic promises of 2-methoxyestradiol and its drug disposition challenges. Mol Pharm 2010; 7:2030-9. [PMID: 20831190 DOI: 10.1021/mp100190f] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
2-Methoxyestradiol (2MeO-E2) is an endogenous metabolite of estrogen which was initially considered to be inactive. During the last few decades it has been shown that 2MeO-E2 is a promising anticancer drug. In vitro experiments have demonstrated that it has several anticancer activities, and potential to alleviate hypertension, glomerulosclerosis, hypercholesterolemia, and other disorders. However, due to its low solubility and extensive glucuronidation, to achieve effective concentrations large doses of 2MeO-E2 would be required. Clinical studies reflected very high inter- and intrapatient variability and oral bioavailability of 1 to 2%. Thus, this review paper highlights the origin of this compound, its therapeutic promises, and possible mechanisms of action. It also discusses the pharmacokinetic properties of 2MeO-E2 as well as current developments to overcome low drug solubility and its extensive first pass metabolism.
Collapse
Affiliation(s)
- Svetlana Verenich
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, PO Box 980533, Richmond, Virginia 23298-0581, USA
| | | |
Collapse
|
26
|
Reaction of HCFC-133a (CF3CH2C1) or HFC-134a (CF3CH2F) with alcohols or phenols in DMSO in the presence of KOH. CHINESE J CHEM 2010. [DOI: 10.1002/cjoc.20010191219] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
Möller G, Deluca D, Gege C, Rosinus A, Kowalik D, Peters O, Droescher P, Elger W, Adamski J, Hillisch A. Structure-based design, synthesis and in vitro characterization of potent 17β-hydroxysteroid dehydrogenase type 1 inhibitors based on 2-substitutions of estrone and D-homo-estrone. Bioorg Med Chem Lett 2009; 19:6740-4. [DOI: 10.1016/j.bmcl.2009.09.113] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 09/27/2009] [Accepted: 09/29/2009] [Indexed: 11/25/2022]
|
28
|
Structure elucidation by synthesis of four metabolites of the antitumor drug ENMD-1198 detected in human plasma samples. Tetrahedron 2009. [DOI: 10.1016/j.tet.2009.10.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Suwandi LS, Agoston GE, Shah JH, Hanson AD, Zhan XH, Lavallee TM, Treston AM. Synthesis and antitumor activities of 3-modified 2-methoxyestradiol analogs. Bioorg Med Chem Lett 2009; 19:6459-62. [PMID: 19782568 DOI: 10.1016/j.bmcl.2009.09.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 09/02/2009] [Accepted: 09/04/2009] [Indexed: 10/20/2022]
Abstract
The syntheses of 2-methoxyestradiol analogs with modifications at the 3-position are described. The analogs were assessed for their antiproliferative, antiangiogenic, and estrogenic activities. Several lead substituents were identified with similar or improved antitumor activities and reduced metabolic liability compared to 2-methoxyestradiol.
Collapse
Affiliation(s)
- Lita S Suwandi
- EntreMed, Inc., 9640 Medical Center Drive, Rockville, MD 20850, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Synthesis of 2- and 17-substituted estrone analogs and their antiproliferative structure-activity relationships compared to 2-methoxyestradiol. Bioorg Med Chem 2009; 17:7344-52. [PMID: 19762246 DOI: 10.1016/j.bmc.2009.08.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 08/17/2009] [Indexed: 11/22/2022]
Abstract
A novel series of 17-modified and 2,17-modified analogs of 2-methoxyestradiol (2ME2) were synthesized and characterized. These analogs were designed to retain or potentiate the biological activities of 2ME2 and have diminished metabolic liability. The analogs were evaluated for antiproliferative activity against MDA-MB-231 breast tumor cells, antiangiogenic activity in HUVEC, and estrogenic activity on MCF-7 cell proliferation. Several analogs were evaluated for metabolic stability in human liver microsomes and in vivo in a rat cassette dosing model. This study lead to several 17-modified analogs of 2ME2 that have similar or improved antiproliferative and antiangiogenic activity, lack estrogenic properties and have improved metabolic stability compared to 2ME2.
Collapse
|
31
|
Mun J, Wang Y, Voll RJ, Escuin-Borras D, Giannakakou P, Goodman MM. Syntheses and biological activities of novel 2-methoxyestradiol analogs, 2-fluoroethoxyestradiol and 2-fluoropropanoxyestradiol, and a radiosynthesis of 2-[(18)F]fluoroethoxyestradiol for positron emission tomography. Nucl Med Biol 2008; 35:615-22. [PMID: 18589306 DOI: 10.1016/j.nucmedbio.2008.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 03/31/2008] [Accepted: 04/01/2008] [Indexed: 10/21/2022]
Abstract
INTRODUCTION 2-Methoxyestradiol (2ME2) is an endogenous metabolite of the human hormone, estrogen, which has been shown to possess anti-tumor activity. 2-Fluoroethoxyestradiol (2FEE2) and 2-fluoropropanoxyestradiol (2FPE2), novel analogs of 2-methoxyestradiol, were designed and synthesized to be utilized as F-18 radiotracers for positron emission tomography (PET), with which the bio-distribution and intratumoral accumulations of 2ME2 could be measured in vivo for potential translation to human use. METHODS 2FEE2 and 2FPE2 were synthesized from 3,17beta-estradiol in five steps respectively. Drug-induced microtubule depolymerization, antiproliferative activity against human cancer cell lines and HIF-1alpha down-regulation by 2FEE2 and 2FPE2 were investigated to examine whether these molecules possess similar anti-tumor activities as 2-methoxyestradiol. 2-[(18)F]Fluoroethoxyestradiol was synthesized for PET. RESULTS Novel 2ME2 analogs, 2FEE2 and 2FPE2, were synthesized in 29% and 22% overall yield, respectively. 2FEE2 and 2FPE2 showed microtubule depolymerization and cytotoxicities against the human ovarian carcinoma cell line, 1A9, and the human glioma cell line, LN229. HIF-1alpha was down-regulated by 2FEE2 and 2FPE2 under hypoxic conditions. 2FEE2 was chosen as an F-18 radiotracer candidate, since it showed stronger antiproliferative activity than 2ME2 and 2FPE2. 2-[(18)F]Fluoroethoxyestradiol (2[(18)F]FEE2) was prepared in 8.3% decay-corrected yield in 90 min, based on a production of H[(18)F]F with more than 98% radiochemical purity. CONCLUSIONS 2FEE2 and 2FPE2 showed similar activity as 2ME2. 2[(18)F]FEE2 was synthesized to be utilized as a PET radiotracer to measure the biological efficacy of 2ME2 and its analogs in vivo.
Collapse
Affiliation(s)
- Jiyoung Mun
- Department of Radiology, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
32
|
LaVallee TM, Burke PA, Swartz GM, Hamel E, Agoston GE, Shah J, Suwandi L, Hanson AD, Fogler WE, Sidor CF, Treston AM. Significant antitumor activity in vivo following treatment with the microtubule agent ENMD-1198. Mol Cancer Ther 2008; 7:1472-82. [PMID: 18566218 DOI: 10.1158/1535-7163.mct-08-0107] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Clinical studies using the microtubule-targeting agent 2-methoxyestradiol (2ME2; Panzem) in cancer patients show that treatment is associated with clinical benefit, including prolonged stable disease, complete and partial responses, and an excellent safety profile. Studies have shown that 2ME2 is metabolized by conjugation at positions 3 and 17 and oxidation at position 17. To define structure-activity relationships for these positions of 2ME2 and to generate metabolically stable analogues with improved anti-tubulin properties, a series of analogues was generated and three lead analogues were selected, ENMD-1198, ENMD-1200, and ENMD-1237. These molecules showed improved metabolic stability with >65% remaining after 2-h incubation with hepatocytes. Pharmacokinetic studies showed that oral administration of the compounds resulted in increased plasma levels compared with 2ME2. All three analogues bind the colchicine binding site of tubulin, induce G(2)-M cell cycle arrest and apoptosis, and reduce hypoxia-inducible factor-1alpha levels. ENMD-1198 and ENMD-1200 showed improved in vitro antiproliferative activities. Significant reductions in tumor volumes compared with vehicle-treated mice were observed in an orthotopic breast carcinoma (MDA-MB-231) xenograft model following daily oral treatment with all compounds (ANOVA, P < 0.05). Significantly improved median survival time was observed with ENMD-1198 and ENMD-1237 (200 mg/kg/d) in a Lewis lung carcinoma metastatic model (P < 0.05). In both tumor models, the high-dose group of ENMD-1198 showed antitumor activity equivalent to that of cyclophosphamide. ENMD-1198 was selected as the lead molecule in this analogue series and is currently in a phase I clinical trial in patients with refractory solid tumors.
Collapse
|
33
|
Fukui M, Zhu BT. Mechanism of 2-methoxyestradiol-induced apoptosis and growth arrest in human breast cancer cells. Mol Carcinog 2008; 48:66-78. [DOI: 10.1002/mc.20458] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Leese MP, Jourdan FL, Gaukroger K, Mahon MF, Newman SP, Foster PA, Stengel C, Regis-Lydi S, Ferrandis E, Di Fiore A, De Simone G, Supuran CT, Purohit A, Reed MJ, Potter BVL. Structure-activity relationships of C-17 cyano-substituted estratrienes as anticancer agents. J Med Chem 2008; 51:1295-308. [PMID: 18260615 DOI: 10.1021/jm701319c] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis, SAR, and preclinical evaluation of 17-cyanated 2-substituted estra-1,3,5(10)-trienes as anticancer agents are discussed. 2-Methoxy-17beta-cyanomethylestra-1,3,5(10)-trien-3-ol ( 14), but not the related 2-ethyl derivative 7, and the related 3- O-sulfamates 8 and 15 display potent antiproliferative effects (MCF-7 GI 50 300, 60 and 70 nM, respectively) against human cancer cells in vitro. Investigation of the SAR reveals that a sterically unhindered hydrogen bond acceptor attached to C-17 is most likely key to the enhanced activity. Compound 8 displayed significant in vitro antiangiogenic activity, and its ability to act as a microtubule disruptor was confirmed. Inhibitory activity of the sulfamate derivatives against steroid sulfatase and carbonic anhydrase II (hCAII) was also observed, and the interaction between 15 and hCAII was investigated by protein crystallography. The potential of these multimechanism anticancer agents was confirmed in vivo, with promising activity observed for both 14 and 15 in an athymic nude mouse MDA-MB-231 human breast cancer xenograft model.
Collapse
Affiliation(s)
- Mathew P Leese
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Agoston GE, Shah JH, Lavallee TM, Zhan X, Pribluda VS, Treston AM. Synthesis and structure-activity relationships of 16-modified analogs of 2-methoxyestradiol. Bioorg Med Chem 2007; 15:7524-37. [PMID: 17910916 DOI: 10.1016/j.bmc.2007.09.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 09/10/2007] [Accepted: 09/10/2007] [Indexed: 10/22/2022]
Abstract
A series of 16-modified 2-methoxyestradiol analogs were synthesized and evaluated for antiproliferative activity toward HUVEC and MDA-MB-231 cells, and for susceptibility to conjugation. In addition, the estrogenicity of these analogs was accessed by measuring cell proliferation of the estrogen-dependent cell line MCF7 in response to compound treatment. It was observed that antiproliferative activity dropped as the size of the 16 substituent increased. Selected analogs tested in glucuronidation assays had similar rates of clearance to 2-methoxyestradiol, but had enhanced clearance in sulfonate conjugation assays.
Collapse
Affiliation(s)
- Gregory E Agoston
- EntreMed, Inc., Discovery Research Department, 9640 Medical Center Drive, Rockville, MD 20850, USA
| | | | | | | | | | | |
Collapse
|
36
|
Bubert C, Leese MP, Mahon MF, Ferrandis E, Regis-Lydi S, Kasprzyk PG, Newman SP, Ho YT, Purohit A, Reed MJ, Potter BVL. 3,17-disubstituted 2-alkylestra-1,3,5(10)-trien-3-ol derivatives: synthesis, in vitro and in vivo anticancer activity. J Med Chem 2007; 50:4431-43. [PMID: 17696419 DOI: 10.1021/jm070405v] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Estradiol-3,17-O,O-bis-sulfamates inhibit steroid sulfatase (STS), carbonic anhydrase (CA), and, when substituted at C-2, cancer cell proliferation and angiogenesis. C-2 Substitution and 17-sulfamate replacement of the estradiol-3,17-O,O-bis-sulfamates were explored with efficient and practical syntheses developed. Evaluation against human cancer cell lines revealed the 2-methyl derivative 27 (DU145 GI(50) = 0.38 microM) as the most active novel bis-sulfamate, while 2-ethyl-17-carbamate derivative 52 (GI(50) = 0.22 microM) proved most active of its series (cf. 2-ethylestradiol-3,17-O,O-bis-sulfamate 4 GI(50) = 0.21 microM). Larger C-2 substituents were deleterious to activity. 2-Methoxy-17-carbamate 50 was studied by X-ray crystallography and was surprisingly 13-fold weaker as an STS inhibitor compared to parent bis-sulfamate 3. The potential of 4 as an orally dosed anti-tumor agent is confirmed using breast and prostate cancer xenografts. In the MDA-MB-231 model, dramatic reduction in tumor growth or regression was observed, with effects sustained after cessation of treatment. 3-O-Sulfamoylated 2-alkylestradiol-17-O-carbamates and sulfamates have considerable potential as anticancer agents.
Collapse
Affiliation(s)
- Christian Bubert
- Medicinal Chemistry, Department of Pharmacy and Pharmacology & Sterix Ltd., University of Bath, Bath BA2 7AY, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Gui Y, Yin H, He JY, Yang SH, Walsh MP, Zheng XL. Endoreduplication of human smooth muscle cells induced by 2-methoxyestradiol: a role for cyclin-dependent kinase 2. Am J Physiol Heart Circ Physiol 2007; 292:H1313-20. [PMID: 17056669 DOI: 10.1152/ajpheart.00867.2006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Endoreduplication has been suggested to contribute to the development of hypertrophy of smooth muscle cells (SMCs) in hypertension. However, endoreduplication in vascular SMCs and the underlying molecular mechanisms are not clear. Treatment of human SMCs with 10 μM 2-methoxyestradiol (2-ME) for 24 h induces accumulation of cells with ≥4N DNA content, and some polyploid/aneuploid cells actively synthesize their DNA, suggesting the occurrence of endoreduplication. In addition, 2-ME treatment upregulates the expression of cyclin-dependent kinase 2 (Cdk2). The present study was designed to characterize endoreduplication of human SMCs and explore the potential roles of Cdk2 in endoreduplication induced by 2-ME. Treatment with 2-ME (10 μM) for 2–4 days not only caused increases in >4N cells and their reentry into S phase but also induced overduplication of chromosomes. Furthermore, 2-ME increased the kinase activity of Cdk2 and its interaction with cyclin E. Inducible overexpression of dominant-negative Cdk2 in human SMCs inhibited both DNA synthesis of >4N cells and the accumulation of >4N cells induced by 2-ME. We conclude that 2-ME induces endoreduplication of human SMCs and Cdk2 plays an important role in endoreduplication in response to 2-ME.
Collapse
Affiliation(s)
- Yu Gui
- Smooth Muscle Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, Univ of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
38
|
Leese MP, Leblond B, Smith A, Newman SP, Di Fiore A, De Simone G, Supuran CT, Purohit A, Reed MJ, Potter BVL. 2-substituted estradiol bis-sulfamates, multitargeted antitumor agents: synthesis, in vitro SAR, protein crystallography, and in vivo activity. J Med Chem 2007; 49:7683-96. [PMID: 17181151 DOI: 10.1021/jm060705x] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The anticancer activities and SARs of estradiol-17-O-sulfamates and estradiol 3,17-O,O-bis-sulfamates (E2bisMATEs) as steroid sulfatase (STS) inhibitors and antiproliferative agents are discussed. Estradiol 3,17-O,O-bis-sulfamates 20 and 21, in contrast to the 17-O-monosulfamate 11, proved to be excellent STS inhibitors. 2-Substituted E2bisMATEs 21 and 23 additionally exhibited potent antiproliferative activity with mean graph midpoint values of 18-87 nM in the NCI 60-cell-line panel. 21 Exhibited antiangiogenic in vitro and in vivo activity in an early-stage Lewis lung model, and 23 dosed p.o. caused marked growth inhibition in a nude mouse xenograft tumor model. Modeling studies suggest that the E2bisMATEs and 2-MeOE2 share a common mode of binding to tubulin, though COMPARE analysis of activity profiles was negative. 21 was cocrystallized with carbonic anhydrase II, and X-ray crystallography revealed unexpected coordination of the 17-O-sulfamate of 21 to the active site zinc and a probable additional lower affinity binding site. 2-Substituted E2bisMATEs are attractive candidates for further development as multitargeted anticancer agents.
Collapse
Affiliation(s)
- Mathew P Leese
- Medicinal Chemistry, Department of Pharmacy and Pharmacology & Sterix Ltd., University of Bath, Bath BA2 7AY, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Damljanovic I, Vukicevic M, Vukicevic RD. Electrochemical A-Ring Bromination of Estrogens. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2007. [DOI: 10.1246/bcsj.80.407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
40
|
Cadot C, Laplante Y, Kamal F, Luu-The V, Poirier D. C6-(N,N-butyl-methyl-heptanamide) derivatives of estrone and estradiol as inhibitors of type 1 17β-hydroxysteroid dehydrogenase: Chemical synthesis and biological evaluation. Bioorg Med Chem 2007; 15:714-26. [PMID: 17110114 DOI: 10.1016/j.bmc.2006.10.055] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 10/24/2006] [Accepted: 10/25/2006] [Indexed: 12/01/2022]
Abstract
A series of estrone and estradiol derivatives having an N-butyl,methyl heptanamide side chain at C6-position were synthesized, tested as inhibitors of type 1 17beta-HSD and assessed for their possible estrogenic activity. A better type 1 17beta-HSD inhibition was obtained for the 6beta-side chain orientation over 6alpha; the C17-alcohols are more potent inhibitors than the corresponding ketones; introducing a 2-methoxy group decreased the inhibitory potency; and the replacement of a C-S bond by a C-C bond in the C6beta-side chain is not detrimental to inhibition. Interestingly, the new inhibitors were also found less estrogenic than the lead compound in two breast cancer cell lines, T-47D and MCF-7.
Collapse
Affiliation(s)
- Christine Cadot
- Oncology and Molecular Endocrinology Research Center, CHUQ-Pavillon CHUL and Université Laval, Québec, Canada
| | | | | | | | | |
Collapse
|
41
|
Ho A, Kim YE, Lee H, Cyrus K, Baek SH, Kim KB. SAR studies of 2-methoxyestradiol and development of its analogs as probes of anti-tumor mechanisms. Bioorg Med Chem Lett 2006; 16:3383-7. [PMID: 16650989 DOI: 10.1016/j.bmcl.2006.04.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 04/05/2006] [Accepted: 04/05/2006] [Indexed: 11/20/2022]
Abstract
The major estrogen metabolite 2-methoxyestradiol (2ME) has been shown to target tumor cells without severe side effects and is currently being evaluated in clinical trials for several types of cancer. Despite its promise for use in clinical setting, the mechanism(s) by which 2ME exerts its anti-tumor activity is not clearly defined at this time. Employing organic chemistry tools, we synthesized 2ME analogs with which 2ME affinity column was prepared, enabling us to detect a protein that selectively interacts with 2ME. This 2ME analog will be useful as a probe to identify the biological target(s) of 2ME and study their functions in tumor cells.
Collapse
Affiliation(s)
- Abby Ho
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, USA
| | | | | | | | | | | |
Collapse
|
42
|
Leese MP, Hejaz HAM, Mahon MF, Newman SP, Purohit A, Reed MJ, Potter BVL. A-ring-substituted estrogen-3-O-sulfamates: potent multitargeted anticancer agents. J Med Chem 2005; 48:5243-56. [PMID: 16078843 DOI: 10.1021/jm050066a] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Efficient and flexible syntheses of 2-substituted estrone, estradiol and their 3-O-sulfamate (EMATE) derivatives have been developed using directed ortho-lithiation methodology. 2-Substituted EMATEs display a similar antiproliferative activity profile to the corresponding estradiols against a range of human cancer cell lines. 2-Methoxy (3, 4), 2-methylsulfanyl (20, 21) and 2-ethyl EMATEs (32, 33) proved the most active compounds with 2-ethylestradiol-3-O-sulfamate (33), displaying a mean activity over the NCI 55 cell line panel 80-fold greater than the established anticancer agent 2-methoxyestradiol (2). 2-Ethylestradiol-3-O-sulfamate (33) was also an effective inhibitor of angiogenesis using three in vitro markers, and various 2-substituted EMATEs also proved to be inhibitors of steroid sulfatase (STS), a therapeutic target for the treatment of hormone-dependent breast cancer. The potential of this novel class of multimechanism anticancer agents was confirmed in vivo with good activity observed in the NCI hollow fiber assay and in a MDA-MB-435 xenograft mouse model.
Collapse
Affiliation(s)
- Mathew P Leese
- Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, U.K
| | | | | | | | | | | | | |
Collapse
|
43
|
Nguyen TL, McGrath C, Hermone AR, Burnett JC, Zaharevitz DW, Day BW, Wipf P, Hamel E, Gussio R. A common pharmacophore for a diverse set of colchicine site inhibitors using a structure-based approach. J Med Chem 2005; 48:6107-16. [PMID: 16162011 DOI: 10.1021/jm050502t] [Citation(s) in RCA: 226] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Modulating the structure and function of tubulin and microtubules is an important route to anticancer therapeutics, and therefore, small molecules that bind to tubulin and cause mitotic arrest are of immense interest. A large number of synthetic and natural compounds with diverse structures have been shown to bind at the colchicine site, one of the major binding sites on tubulin, and inhibit tubulin assembly. Using the recently determined X-ray structure of the tubulin:colchicinoid complex as the template, we employed docking studies to determine the binding modes of a set of structurally diverse colchicine site inhibitors. These binding models were subsequently used to construct a comprehensive, structure-based pharmacophore that in combination with molecular dynamics simulations confirms and extends our understanding of binding interactions at the colchicine site.
Collapse
Affiliation(s)
- Tam Luong Nguyen
- Target Structure-Based Drug Discovery Group, Developmental Therapeutics Program, National Cancer Institute, Frederick, Maryland 21702, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Liu ZJ, Lee WJ, Zhu BT. Selective insensitivity of ZR-75-1 human breast cancer cells to 2-methoxyestradiol: evidence for type II 17beta-hydroxysteroid dehydrogenase as the underlying cause. Cancer Res 2005; 65:5802-11. [PMID: 15994956 DOI: 10.1158/0008-5472.can-04-3714] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
2-Methoxyestradiol (2-MeO-E2), a nonpolar endogenous metabolite of 17beta-estradiol, has strong antiproliferative, apoptotic, and antiangiogenic actions. Among the four human breast cancer cell lines tested (MCF-7, T-47D, ZR-75-1, and MDA-MB-435s), the ZR-75-1 cells were selectively insensitive to the antiproliferative actions of 2-MeO-E2, although these cells had a similar sensitivity as other cell lines to several other anticancer agents (5-fluorouracil, mitomycin C, doxorubicin, colchicine, vinorelbine, and paclitaxel). Mechanistically, this insensitivity is largely attributable to the presence of high levels of a steroid-selective metabolizing enzyme, the type II 17beta-hydroxysteroid dehydrogenase (17beta-HSD), in the ZR-75-1 cells, which rapidly converts 2-MeO-E2 to the inactive 2-methoxyestrone, but this enzyme does not metabolically inactivate other nonsteroidal anticancer agents. The type II 17beta-HSD-mediated conversion of 2-MeO-E2 to 2-methoxyestrone in ZR-75-1 cells followed the first-order kinetics, with a very short half-life (approximately 2 hours). In comparison, the T-47D, MCF-7, and MDA-MB-435s human breast cancer cells, which were highly sensitive to 2-MeO-E2, had very low or undetectable catalytic activity for the conversion of 2-MeO-E2 to 2-methoxyestrone. Reverse transcription-PCR analysis of the mRNA levels of three known oxidative 17beta-HSD isozymes (types II, IV, and VIII) revealed that only the type II isozyme was selectively expressed in the ZR-75-1 cells, whereas the other two isozymes were expressed in all four cell lines. Taken together, our results showed, for the first time, that the high levels of type II 17beta-HSD present in ZR-75-1 cells were largely responsible for the facile conversion of 2-MeO-E2 to 2-methoxyestrone and also for the selective insensitivity to the antiproliferative actions of 2-MeO-E2.
Collapse
Affiliation(s)
- Zhi-Jian Liu
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, USA
| | | | | |
Collapse
|
45
|
Sutherland TE, Schuliga M, Harris T, Eckhardt BL, Anderson RL, Quan L, Stewart AG. 2-methoxyestradiol is an estrogen receptor agonist that supports tumor growth in murine xenograft models of breast cancer. Clin Cancer Res 2005; 11:1722-32. [PMID: 15755993 DOI: 10.1158/1078-0432.ccr-04-1789] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE 2-Methoxyestradiol (2MEO) is being developed as a novel antitumor agent based on its antiangiogenic activity, tumor cell cytotoxicity, and apparent lack of toxicity. However, pharmacologic concentrations of 2MEO bind to estrogen receptors (ER). We have therefore examined the ER activity of 2MEO. EXPERIMENTAL DESIGN Estrogenic actions of 2MEO were evaluated by changes in gene expression of the ER-positive (MCF7) breast tumor cell line and, in vivo, estrogenicity was assessed in breast tumor xenograft models and by measuring endocrine responses in uterus and liver. RESULTS In the ER-positive breast tumor cell line (MCF7), microarray experiments revealed that 269 of 279 changes in gene expression common to 2MEO and estradiol were prevented by the ER antagonist, ICI 182,780. Changes in the expression of selected genes and their sensitivity to inhibition by ICI 182,780 were confirmed by quantitative reverse transcription-PCR measurement. Activation of ER in MCF7 cells by 2MEO was further confirmed by stimulation of an estrogen response element-dependent reporter gene that was blocked by ICI 182,780 (1 micromol/L). Doses of 2MEO (15-150 mg/kg) that had no antitumor efficacy in either nu/nu BALB/c or severe combined immunodeficient mice bearing ER-negative MDA-MB-435 tumors had uterotropic and hepatic estrogen-like actions. In female nu/nu BALB/c mice inoculated with the estrogen-dependent MCF7 tumor cells, 2MEO (50 mg/kg/d) supported tumor growth. CONCLUSIONS Tumor growth enhancement by 2MEO at doses generating serum levels (100-500 nmol/L) that have estrogenic activity suggests that a conservative approach to the further clinical evaluation of this agent should be adopted and that its evaluation in breast cancer is inappropriate.
Collapse
Affiliation(s)
- Tara E Sutherland
- Department of Pharmacology, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | | | |
Collapse
|
46
|
Leese MP, Leblond B, Newman SP, Purohit A, Reed MJ, Potter BVL. Anti-cancer activities of novel D-ring modified 2-substituted estrogen-3-O-sulfamates. J Steroid Biochem Mol Biol 2005; 94:239-51. [PMID: 15862971 DOI: 10.1016/j.jsbmb.2005.01.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Sulfamoylated derivatives of the endogenous estrogen metabolite 2-methoxyestradiol (2-MeOE2 (7)), such as 2-methoxy-3-O-sulfamoyl estrone (2-MeOEMATE (1)), display greatly enhanced activity against the proliferation of human cancer cells and inhibit steroid sulphatase (STS), another current oncology target. We explore here the effects of steroidal D-ring modification on the activity of such 2-substituted estrogen-3-O-sulfamates in respect of inhibition of tumour cell proliferation and steroid sulphatase. The novel 17-deoxy analogues of 2-MeOEMATE and the related 2-ethyl and 2-methylsulfanyl compounds showed greatly reduced inhibition of MCF-7 proliferation. Introduction of a 17alpha-benzyl substituent to such 2-substituted estrogen sulfamates also proved deleterious to anti-proliferative activity but could, in one case, enhance STS inhibition with respect to the parent substituted estrone sulfamate. In contrast, selected 17-oxime derivatives of 2-MeOEMATE displayed an enhanced anti-proliferative activity. These results illustrate that enhanced in vitro anti-cancer activity can be achieved in the 2-substituted estrogen sulfamate series and highlight, in particular, the importance of potential hydrogen bonding effects around the steroidal D-ring in the activity of these molecules. The SAR parameters established herein will assist the future design of anti-proliferative and anti-endocrine agents as potential therapeutics for both hormone dependent and independent cancers.
Collapse
Affiliation(s)
- Mathew P Leese
- Medicinal Chemistry, Department of Pharmacy and Pharmacology and Sterix Ltd., University of Bath, Claverton Down, Bath BA2 7AY, UK
| | | | | | | | | | | |
Collapse
|
47
|
Han GZ, Liu ZJ, Shimoi K, Zhu BT. Synergism between the Anticancer Actions of 2-Methoxyestradiol and Microtubule-Disrupting Agents in Human Breast Cancer. Cancer Res 2005. [DOI: 10.1158/0008-5472.387.65.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
2-Methoxyestradiol (2-MeO-E2), a well-known nonpolar endogenous metabolite of 17β-estradiol, has strong antiproliferative, apoptotic, and antiangiogenic actions in vitro and in vivo at pharmacologic concentrations. We determined in the present study whether 2-MeO-E2 can enhance the anticancer actions of paclitaxel or vinorelbine (two commonly used microtubule-disrupting agents) in several human breast cancer cell lines, including the estrogen receptor–positive MCF-7 and T-47D cells and the receptor-negative MDA-MB-435s and MDA-MB-231 cells. 2-MeO-E2 in combination with paclitaxel or vinorelbine exhibited a synergistic anticancer effect in these human breast cancer cells in vitro, and this synergistic effect was more pronounced when each of the drugs was used at relatively low concentrations. Additional experiments using female athymic BALB/c nu/nu mice showed that p.o. administration of 2-MeO-E2 at 30 mg/kg body weight, once a week for 6 weeks, markedly enhanced the activity of paclitaxel or vinorelbine against the growth of the estrogen receptor–negative MDA-MB-231 human breast cancer xenografts in these animals. By contrast, combination of 2-MeO-E2 with 5-fluorouracil only had a partial additive effect against the growth of these cell lines in culture, and no synergistic effect was observed. Interestingly, when doxorubicin was used in combination with 2-MeO-E2, the antiproliferative effect of 2-MeO-E2 was somewhat antagonized by doxorubicin when it was present at high concentrations. Our results showed that 2-MeO-E2 at nontoxic or subtoxic doses selectively enhanced the effects of certain microtubule-disrupting agents (such as paclitaxel and vinorelbine) against the growth of the receptor-negative human breast cancer cells in culture and also in athymic nude mice.
Collapse
Affiliation(s)
- Gui-Zhen Han
- 1Department of Basic Pharmaceutical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina and
| | - Zhi-Jian Liu
- 1Department of Basic Pharmaceutical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina and
| | - Kayoko Shimoi
- 2Institute for Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | - Bao Ting Zhu
- 1Department of Basic Pharmaceutical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina and
| |
Collapse
|
48
|
Edsall AB, Mohanakrishnan AK, Yang D, Fanwick PE, Hamel E, Hanson AD, Agoston GE, Cushman M. Effects of altering the electronics of 2-methoxyestradiol on cell proliferation, on cytotoxicity in human cancer cell cultures, and on tubulin polymerization. J Med Chem 2004; 47:5126-39. [PMID: 15456256 DOI: 10.1021/jm049647a] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of new analogues of 2-methoxyestradiol (1) were synthesized to further elucidate the relationships between structure and activity. The compounds were designed to diminish the potential for metabolic deactivation at positions 2 and 17 and were analyzed as inhibitors of tubulin polymerization and for cytotoxicity. 17alpha-methyl-beta-estradiol (30), 2-propynyl-17alpha-methylestradiol (39), 2-ethoxy-17-(1'-methylene)estra-1,3,5(10)-triene-3-ol (50) and 2-ethoxy-17alpha-methylestradiol (51) showed similar or greater tubulin polymerization inhibition than 2-methoxyestradiol (1) and contained moieties that are expected to inhibit deactivating metabolic processes. All of the compounds tested were cytotoxic in the panel of 55 human cancer cell cultures, and generally, the derivatives that displayed the most activity against tubulin were also the most cytotoxic.
Collapse
Affiliation(s)
- Allison B Edsall
- Department of Medicinal Chemistry and Molecular Pharmacology, School of Pharmacy and Pharmacal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Liu ZJ, Zhu BT. Concentration-dependent mitogenic and antiproliferative actions of 2-methoxyestradiol in estrogen receptor-positive human breast cancer cells. J Steroid Biochem Mol Biol 2004; 88:265-75. [PMID: 15120420 DOI: 10.1016/j.jsbmb.2003.12.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2003] [Accepted: 12/13/2003] [Indexed: 11/28/2022]
Abstract
We compared in this study the effects of 2-methoxyestradiol (2-MeO-E(2)) on the growth of two estrogen receptor (ER)-negative human breast cancer cell lines (MDA-MB-231 and MDA-MB-435s) and two ER-positive human breast cancer cell lines (MCF-7 and T-47D). 2-MeO-E(2) exerted a concentration-dependent antiproliferative action in the ER-negative MDA-MB-231 and MDA-MB-435s cells. The presence or absence of exogenous 17beta-estradiol (E(2)) in the culture medium did not affect the potency and efficacy of 2-MeO-E(2)'s antiproliferative action in these ER-negative cells. When the ER-positive MCF-7 and T-47D cells were cultured in a medium supplemented with 10nM of exogenous E(2), 2-MeO-E(2) at 750 nM to 2 microM concentrations exerted a similar antiproliferative effect. However, when the ER-positive cell lines were cultured in the absence of exogenous E(2), 2-MeO-E(2) at relatively low concentrations (10-750 nM) had a moderate mitogenic effect, with its apparent efficacy 75-80% of that of E(2). This mitogenic effect of 2-MeO-E(2) was ER-mediated and largely attributable to 2-MeO-E(2)'s residual estrogenic activity on the basis of our following findings: (i) its effect was only manifested in the ER-positive cells but not in the ER-negative cells; (ii) its effect in the ER-positive cells was partially or fully abolished when exogenous E(2) was concomitantly present in the culture medium; (iii) 2-MeO-E(2) retained 1-2% of E(2)'s binding affinity for the human ERalpha and ERbeta, and its mitogenic effect was inhibited in a concentration-dependent manner by ICI-182,780, a pure ER antagonist; and (iv) its effect was not due to its metabolic conversion to 2-hydroxyestradiol. Our timely findings are of importance to the on-going clinical trials designed to evaluate 2-MeO-E(2)'s effectiveness for the treatment of different types (ER-positive or ER-negative) of human breast cancer. This knowledge will improve the design of clinical trials as well as the interpretation of clinical outcomes when 2-MeO-E(2) is used as a single agent therapy or as part of a combination therapy for human breast cancer.
Collapse
Affiliation(s)
- Zhi-Jian Liu
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | | |
Collapse
|
50
|
Prinz H, Ishii Y, Hirano T, Stoiber T, Camacho Gomez JA, Schmidt P, Düssmann H, Burger AM, Prehn JHM, Günther EG, Unger E, Umezawa K. Novel benzylidene-9(10H)-anthracenones as highly active antimicrotubule agents. Synthesis, antiproliferative activity, and inhibition of tubulin polymerization. J Med Chem 2003; 46:3382-94. [PMID: 12852768 DOI: 10.1021/jm0307685] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel series of 10-benzylidene-9(10H)-anthracenones and 10-(phenylmethyl)-9(10H)-anthracenones were synthesized and evaluated for antiproliferative activity in an assay based on K562 leukemia cells. The 3-hydroxy-4-methoxybenzylidene analogue 9h was found to be the most active compound (IC(50) K562: 20 nM). Structure-activity relationships are also considered. The highly active compound 9h and the 2,4-dimethoxy-3-hydroxybenzylidene analogue 9l were tested against five tumor cell lines using the XTT assay, including multidrug resistant phenotypes. Induction of cell death in a variety of tumor cell lines was determined in a monolayer assay using propidium iodide. Noteworthy, all compounds within the series induced elongations in K562 cells similar to vinblastine-treated cells. The effect of the lead compound 9h on K562 cell growth was associated with cell cycle arrest in G2/M. Concentrations for 50% KB/HeLa cells arrested in G2/M after treatment with 9h and 9l were determined and found to be in the range of 0.2 microM. Additionally, we monitored the dose dependent caspase-3-like protease activity in K562 cells and MCF-7/Casp-3 cells treated with 9h, indicating induction of apoptosis. Western blotting analysis demonstrated that 9h caused a shift in tubulin concentration from the polymerized state found in the cell pellet to the unpolymerized state found in the cell supernatant. Seven compounds strongly inhibited tubulin polymerization with activities higher or comparable to those of the reference compounds such as colchicine, podophyllotoxin, and nocodazole. In general, the antiproliferative activity correlated with inhibition of tubulin polymerization. The most active compounds strongly displaced [(3)H]colchicine from its binding site in the tubulin, yielding IC(50) values 3- to 4-fold lower than that of colchicine. The novel benzylidene-9(10H)-anthracenones described in the present study constitute an interesting group of highly active and easily accessible antimitotic agents that inhibit tubulin polymerization.
Collapse
Affiliation(s)
- Helge Prinz
- Institute of Pharmaceutical and Medicinal Chemistry, Westphalian Wilhelms-University, Hittorfstrasse 58-62, D-48149 Münster, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|