1
|
Gou W, Dai P, Wang M, Wang Y, Ma N, Zhou X, Xu Y, Zhang L, Li C. Synthesis of Diverse Ureas from Amines and CO 2 at Atmospheric Pressure and Room Temperature. J Org Chem 2024; 89:12498-12507. [PMID: 39180140 DOI: 10.1021/acs.joc.4c01474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
A metal-free method is developed to perform the synthesis of urea derivatives utilizing CO2 as the C1 building block at atmospheric pressure and room temperature. In addition to diverse symmetric and dissymmetric ureas, benzimidazolones and quinazolinone can also be easily prepared using this protocol. Most importantly, the gram-scale preparation of fungicide pencycuron and antipsychotic drug pimavanserin proceeded smoothly under the mild conditions.
Collapse
Affiliation(s)
- Wenchang Gou
- School of Pharmaceutical Sciences, Guizhou Medical University, 550004 Guiyang, People's Republic of China
| | - Pinli Dai
- School of Pharmaceutical Sciences, Guizhou Medical University, 550004 Guiyang, People's Republic of China
| | - Mei Wang
- School of Pharmaceutical Sciences, Guizhou Medical University, 550004 Guiyang, People's Republic of China
| | - Yunhuan Wang
- School of Pharmaceutical Sciences, Guizhou Medical University, 550004 Guiyang, People's Republic of China
| | - Nana Ma
- School of Pharmaceutical Sciences, Guizhou Medical University, 550004 Guiyang, People's Republic of China
| | - Xuan Zhou
- School of Pharmaceutical Sciences, Guizhou Medical University, 550004 Guiyang, People's Republic of China
| | - Yingjian Xu
- GoldenKeys High-tech Materials Co., Ltd., Guian New Area, Guizhou 550025, People's Republic of China
| | - Lin Zhang
- School of Pharmaceutical Sciences, Guizhou Medical University, 550004 Guiyang, People's Republic of China
| | - Chun Li
- School of Pharmaceutical Sciences, Guizhou Medical University, 550004 Guiyang, People's Republic of China
| |
Collapse
|
2
|
Fitzgerald P, Dixit A, Zhang C, Mobley DL, Paegel BM. Building Block-Centric Approach to DNA-Encoded Library Design. J Chem Inf Model 2024; 64:4661-4672. [PMID: 38860710 PMCID: PMC11200258 DOI: 10.1021/acs.jcim.4c00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
DNA-encoded library technology grants access to nearly infinite opportunities to explore the chemical structure space for drug discovery. Successful navigation depends on the design and synthesis of libraries with appropriate physicochemical properties (PCPs) and structural diversity while aligning with practical considerations. To this end, we analyze combinatorial library design constraints including the number of chemistry cycles, bond construction strategies, and building block (BB) class selection in pursuit of ideal library designs. We compare two-cycle library designs (amino acid + carboxylic acid, primary amine + carboxylic acid) in the context of PCPs and chemical space coverage, given different BB selection strategies and constraints. We find that broad availability of amines and acids is essential for enabling the widest exploration of chemical space. Surprisingly, cost is not a driving factor, and virtually, the same chemical space can be explored with "budget" BBs.
Collapse
Affiliation(s)
- Patrick
R. Fitzgerald
- Skaggs
Doctoral Program in the Chemical and Biological Sciences, Scripps Research, La Jolla, California 92037, United States
| | - Anjali Dixit
- Department
of Pharmaceutical Sciences, University of
California, Irvine, California 92697, United States
| | - Chris Zhang
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | - David L. Mobley
- Department
of Pharmaceutical Sciences, University of
California, Irvine, California 92697, United States
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | - Brian M. Paegel
- Department
of Pharmaceutical Sciences, University of
California, Irvine, California 92697, United States
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
3
|
Wu Z, Chen S, Wang Y, Li F, Xu H, Li M, Zeng Y, Wu Z, Gao Y. Current perspectives and trend of computer-aided drug design: a review and bibliometric analysis. Int J Surg 2024; 110:3848-3878. [PMID: 38502850 PMCID: PMC11175770 DOI: 10.1097/js9.0000000000001289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/22/2024] [Indexed: 03/21/2024]
Abstract
AIM Computer-aided drug design (CADD) is a drug design technique for computing ligand-receptor interactions and is involved in various stages of drug development. To better grasp the frontiers and hotspots of CADD, we conducted a review analysis through bibliometrics. METHODS A systematic review of studies published between 2000 and 20 July 2023 was conducted following the PRISMA guidelines. Literature on CADD was selected from the Web of Science Core Collection. General information, publications, output trends, countries/regions, institutions, journals, keywords, and influential authors were visually analyzed using software such as Excel, VOSviewer, RStudio, and CiteSpace. RESULTS A total of 2031 publications were included. These publications primarily originated from 99 countries or regions led by the U.S. and China. Among the contributors, MacKerell AD had the highest number of articles and the greatest influence. The Journal of Medicinal Chemistry was the most cited journal, whereas the Journal of Chemical Information and Modeling had the highest number of publications. CONCLUSIONS Influential authors in the field were identified. Current research shows active collaboration between countries, institutions, and companies. CADD technologies such as homology modeling, pharmacophore modeling, quantitative conformational relationships, molecular docking, molecular dynamics simulation, binding free energy prediction, and high-throughput virtual screening can effectively improve the efficiency of new drug discovery. Artificial intelligence-assisted drug design and screening based on CADD represent key topics that will influence future development. Furthermore, this paper will be helpful in better understanding the frontiers and hotspots of CADD.
Collapse
Affiliation(s)
- Zhenhui Wu
- School of Pharmacy, Jiangxi University of Chinese Medicine
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang
- Beijing Institute of Radiation Medicine, Academy of Military Sciences, Beijing, People’s Republic of China
| | - Shupeng Chen
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang
| | - Yihao Wang
- Beijing Institute of Radiation Medicine, Academy of Military Sciences, Beijing, People’s Republic of China
| | - Fangyang Li
- Beijing Institute of Radiation Medicine, Academy of Military Sciences, Beijing, People’s Republic of China
| | - Huanhua Xu
- School of Pharmacy, Jiangxi University of Chinese Medicine
| | - Maoxing Li
- Beijing Institute of Radiation Medicine, Academy of Military Sciences, Beijing, People’s Republic of China
| | - Yingjian Zeng
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang
| | - Zhenfeng Wu
- School of Pharmacy, Jiangxi University of Chinese Medicine
| | - Yue Gao
- School of Pharmacy, Jiangxi University of Chinese Medicine
- Beijing Institute of Radiation Medicine, Academy of Military Sciences, Beijing, People’s Republic of China
| |
Collapse
|
4
|
Xie M, Wang J, Wu S, Yan S, He Y. Microgels for bioprinting: recent advancements and challenges. Biomater Sci 2024; 12:1950-1964. [PMID: 38258987 DOI: 10.1039/d3bm01733h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Microgels have become a popular and powerful structural unit in the bioprinting field due to their advanced properties, ranging from the tiny size and well-connected hydrogel (nutrient) network to special rheological properties. Different microgels can be fabricated by a variety of fabrication methods including bulk crushing, auxiliary dripping, multiphase emulsion, and lithography technology. Traditionally, microgels can encapsulate specific cells and are used for in vitro disease models and in vivo organ regeneration. Furthermore, microgels can serve as a drug carrier to realize controlled release of drug molecules. Apart from being used as an independent application unit, recently, these microgels are widely applied as a specific bioink component in 3D bioprinting for in situ tissue repair or building special 3D structures. In this review, we introduce different methods used to generate microgels and the microgel-based bioink for bioprinting. Besides, the further tendency of microgel development in future is introduced and predicted to provide guidance for related researchers in exploring more effective ways to fabricate microgels and more potential bioprinting application cases as multifunctional bioink components.
Collapse
Affiliation(s)
- Mingjun Xie
- Plastic and Reconstructive Surgery Center, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China, 310014.
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of Materials Processing and Mold, Zhengzhou University, Zhengzhou, 450002, China.
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ji Wang
- Plastic and Reconstructive Surgery Center, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China, 310014.
| | - Sufan Wu
- Plastic and Reconstructive Surgery Center, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China, 310014.
| | - Sheng Yan
- Plastic and Reconstructive Surgery Center, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China, 310014.
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of Materials Processing and Mold, Zhengzhou University, Zhengzhou, 450002, China.
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
5
|
Bege M, Borbás A. The Design, Synthesis and Mechanism of Action of Paxlovid, a Protease Inhibitor Drug Combination for the Treatment of COVID-19. Pharmaceutics 2024; 16:217. [PMID: 38399271 PMCID: PMC10891713 DOI: 10.3390/pharmaceutics16020217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has presented an enormous challenge to health care systems and medicine. As a result of global research efforts aimed at preventing and effectively treating SARS-CoV-2 infection, vaccines with fundamentally new mechanisms of action and some small-molecule antiviral drugs targeting key proteins in the viral cycle have been developed. The most effective small-molecule drug approved to date for the treatment of COVID-19 is PaxlovidTM, which is a combination of two protease inhibitors, nirmatrelvir and ritonavir. Nirmatrelvir is a reversible covalent peptidomimetic inhibitor of the main protease (Mpro) of SARS-CoV-2, which enzyme plays a crucial role in viral reproduction. In this combination, ritonavir serves as a pharmacokinetic enhancer, it irreversibly inhibits the cytochrome CYP3A4 enzyme responsible for the rapid metabolism of nirmatrelvir, thereby increasing the half-life and bioavailability of nirmatrelvir. In this tutorial review, we summarize the development and pharmaceutical chemistry aspects of Paxlovid, covering the evolution of protease inhibitors, the warhead design, synthesis and the mechanism of action of nirmatrelvir, as well as the synthesis of ritonavir and its CYP3A4 inhibition mechanism. The efficacy of Paxlovid to novel virus mutants is also overviewed.
Collapse
Affiliation(s)
- Miklós Bege
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary;
- HUN-REN-DE Molecular Recognition and Interaction Research Group, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary;
- HUN-REN-DE Molecular Recognition and Interaction Research Group, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- National Laboratory of Virology, University of Pécs, Ifjúság útja 20, 7624 Pécs, Hungary
| |
Collapse
|
6
|
Choi K. The Structure-property Relationships of Clinically Approved Protease Inhibitors. Curr Med Chem 2024; 31:1441-1463. [PMID: 37031455 DOI: 10.2174/0929867330666230409232655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/17/2023] [Accepted: 02/24/2023] [Indexed: 04/11/2023]
Abstract
BACKGROUND Proteases play important roles in the regulation of many physiological processes, and protease inhibitors have become one of the important drug classes. Especially because the development of protease inhibitors often starts from a substrate- based peptidomimetic strategy, many of the initial lead compounds suffer from pharmacokinetic liabilities. OBJECTIVE To reduce drug attrition rates, drug metabolism and pharmacokinetics studies are fully integrated into modern drug discovery research, and the structure-property relationship illustrates how the modification of the chemical structure influences the pharmacokinetic and toxicological properties of drug compounds. Understanding the structure- property relationships of clinically approved protease inhibitor drugs and their analogues could provide useful information on the lead-to-candidate optimization strategies. METHODS About 70 inhibitors against human or pathogenic viral proteases have been approved until the end of 2021. In this review, 17 inhibitors are chosen for the structure- property relationship analysis because detailed pharmacological and/or physicochemical data have been disclosed in the medicinal chemistry literature for these inhibitors and their close analogues. RESULTS The compiled data are analyzed primarily focusing on the pharmacokinetic or toxicological deficiencies found in lead compounds and the structural modification strategies used to generate candidate compounds. CONCLUSION The structure-property relationships hereby summarized how the overall druglike properties could be successfully improved by modifying the structure of protease inhibitors. These specific examples are expected to serve as useful references and guidance for developing new protease inhibitor drugs in the future.
Collapse
Affiliation(s)
- Kihang Choi
- Department of Chemistry, Korea University, Seoul, 02841, Korea (ROK)
| |
Collapse
|
7
|
Ren P, Li S, Wang S, Zhang X, Bai F. Computer-Aided Prediction of the Interactions of Viral Proteases with Antiviral Drugs: Antiviral Potential of Broad-Spectrum Drugs. Molecules 2023; 29:225. [PMID: 38202808 PMCID: PMC10780089 DOI: 10.3390/molecules29010225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Human society is facing the threat of various viruses. Proteases are promising targets for the treatment of viral infections. In this study, we collected and profiled 170 protease sequences from 125 viruses that infect humans. Approximately 73 of them are viral 3-chymotrypsin-like proteases (3CLpro), and 11 are pepsin-like aspartic proteases (PAPs). Their sequences, structures, and substrate characteristics were carefully analyzed to identify their conserved nature for proposing a pan-3CLpro or pan-PAPs inhibitor design strategy. To achieve this, we used computational prediction and modeling methods to predict the binding complex structures for those 73 3CLpro with 4 protease inhibitors of SARS-CoV-2 and 11 protease inhibitors of HCV. Similarly, the complex structures for the 11 viral PAPs with 9 protease inhibitors of HIV were also obtained. The binding affinities between these compounds and proteins were also evaluated to assess their pan-protease inhibition via MM-GBSA. Based on the drugs targeting viral 3CLpro and PAPs, repositioning of the active compounds identified several potential uses for these drug molecules. As a result, Compounds 1-2, modified based on the structures of Ray1216 and Asunaprevir, indicate potential inhibition of DENV protease according to our computational simulation results. These studies offer ideas and insights for future research in the design of broad-spectrum antiviral drugs.
Collapse
Affiliation(s)
- Pengxuan Ren
- School of Life Science and Technology, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; (P.R.); (S.L.); (S.W.)
| | - Shiwei Li
- School of Life Science and Technology, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; (P.R.); (S.L.); (S.W.)
| | - Shihang Wang
- School of Life Science and Technology, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; (P.R.); (S.L.); (S.W.)
| | - Xianglei Zhang
- School of Life Science and Technology, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; (P.R.); (S.L.); (S.W.)
| | - Fang Bai
- School of Life Science and Technology, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; (P.R.); (S.L.); (S.W.)
- School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| |
Collapse
|
8
|
Xiao Z, Lin H, Drake HF, Diaz J, Zhou HC, Pellois JP. Investigating the Cell Entry Mechanism, Disassembly, and Toxicity of the Nanocage PCC-1: Insights into Its Potential as a Drug Delivery Vehicle. J Am Chem Soc 2023; 145:27690-27701. [PMID: 38069810 PMCID: PMC10863074 DOI: 10.1021/jacs.3c09918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023]
Abstract
The porous coordination cage PCC-1 represents a new platform potentially useful for the cellular delivery of drugs with poor cell permeability and solubility. PCC-1 is a metal-organic polyhedron constructed from zinc metal ions and organic ligands through coordination bonds. PCC-1 possesses an internal cavity that is suitable for drug encapsulation. To better understand the biocompatibility of PCC-1 with human cells, the cell entry mechanism, disassembly, and toxicity of the nanocage were investigated. PCC-1 localizes in the nuclei and cytoplasm within minutes upon incubation with cells, independent of endocytosis and cargo, suggesting direct plasma membrane translocation of the nanocage carrying its guest in its internal cavity. Furthermore, the rates of cell entry correlate to extracellular concentrations, indicating that PCC-1 is likely diffusing passively through the membrane despite its relatively large size. Once inside cells, PCC-1 disintegrates into zinc metal ions and ligands over a period of several hours, each component being cleared from cells within 1 day. PCC-1 is relatively safe for cells at low micromolar concentrations but becomes inhibitory to cell proliferation and toxic above a concentration or incubation time threshold. However, cells surviving these conditions can return to homeostasis 3-5 days after exposure. Overall, these findings demonstrate that PCC-1 enters live cells by crossing biological membranes spontaneously. This should prove useful to deliver drugs that lack this capacity on their own, provided that the dosage and exposure time are controlled to avoid toxicity.
Collapse
Affiliation(s)
- Zhifeng Xiao
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Hengyu Lin
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Hannah F. Drake
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Joshua Diaz
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Hong-Cai Zhou
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Jean-Philippe Pellois
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
9
|
Harun-Ur-Rashid M, Jahan I, Foyez T, Imran AB. Bio-Inspired Nanomaterials for Micro/Nanodevices: A New Era in Biomedical Applications. MICROMACHINES 2023; 14:1786. [PMID: 37763949 PMCID: PMC10536921 DOI: 10.3390/mi14091786] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023]
Abstract
Exploring bio-inspired nanomaterials (BINMs) and incorporating them into micro/nanodevices represent a significant development in biomedical applications. Nanomaterials, engineered to imitate biological structures and processes, exhibit distinctive attributes such as exceptional biocompatibility, multifunctionality, and unparalleled versatility. The utilization of BINMs demonstrates significant potential in diverse domains of biomedical micro/nanodevices, encompassing biosensors, targeted drug delivery systems, and advanced tissue engineering constructs. This article thoroughly examines the development and distinctive attributes of various BINMs, including those originating from proteins, DNA, and biomimetic polymers. Significant attention is directed toward incorporating these entities into micro/nanodevices and the subsequent biomedical ramifications that arise. This review explores biomimicry's structure-function correlations. Synthesis mosaics include bioprocesses, biomolecules, and natural structures. These nanomaterials' interfaces use biomimetic functionalization and geometric adaptations, transforming drug delivery, nanobiosensing, bio-inspired organ-on-chip systems, cancer-on-chip models, wound healing dressing mats, and antimicrobial surfaces. It provides an in-depth analysis of the existing challenges and proposes prospective strategies to improve the efficiency, performance, and reliability of these devices. Furthermore, this study offers a forward-thinking viewpoint highlighting potential avenues for future exploration and advancement. The objective is to effectively utilize and maximize the application of BINMs in the progression of biomedical micro/nanodevices, thereby propelling this rapidly developing field toward its promising future.
Collapse
Affiliation(s)
- Mohammad Harun-Ur-Rashid
- Department of Chemistry, International University of Business Agriculture and Technology, Dhaka 1230, Bangladesh;
| | - Israt Jahan
- Department of Cell Physiology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan;
| | - Tahmina Foyez
- Department of Pharmacy, United International University, Dhaka 1212, Bangladesh;
| | - Abu Bin Imran
- Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| |
Collapse
|
10
|
Ghosh M, Raghav S, Ghosh P, Maity S, Mohela K, Jain D. Structural analysis of novel drug targets for mitigation of Pseudomonas aeruginosa biofilms. FEMS Microbiol Rev 2023; 47:fuad054. [PMID: 37771093 DOI: 10.1093/femsre/fuad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 09/30/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen responsible for acute and chronic, hard to treat infections. Persistence of P. aeruginosa is due to its ability to develop into biofilms, which are sessile bacterial communities adhered to substratum and encapsulated in layers of self-produced exopolysaccharides. These biofilms provide enhanced protection from the host immune system and resilience towards antibiotics, which poses a challenge for treatment. Various strategies have been expended for combating biofilms, which involve inhibiting biofilm formation or promoting their dispersal. The current remediation approaches offer some hope for clinical usage, however, treatment and eradication of preformed biofilms is still a challenge. Thus, identifying novel targets and understanding the detailed mechanism of biofilm regulation becomes imperative. Structure-based drug discovery (SBDD) provides a powerful tool that exploits the knowledge of atomic resolution details of the targets to search for high affinity ligands. This review describes the available structural information on the putative target protein structures that can be utilized for high throughput in silico drug discovery against P. aeruginosa biofilms. Integrating available structural information on the target proteins in readily accessible format will accelerate the process of drug discovery.
Collapse
Affiliation(s)
- Moumita Ghosh
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| | - Shikha Raghav
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| | - Puja Ghosh
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| | - Swagatam Maity
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| | - Kavery Mohela
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| | - Deepti Jain
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| |
Collapse
|
11
|
Wu J, Meng F, Ran D, Song Y, Dang Y, Lai F, Yang L, Deng M, Song Y, Zhu J. The Metabolism and Immune Environment in Diffuse Large B-Cell Lymphoma. Metabolites 2023; 13:734. [PMID: 37367892 DOI: 10.3390/metabo13060734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
Cells utilize different metabolic processes to maintain their growth and differentiation. Tumor cells have made some metabolic changes to protect themselves from malnutrition. These metabolic alterations affect the tumor microenvironment and macroenvironment. Developing drugs targeting these metabolic alterations could be a good direction. In this review, we briefly introduce metabolic changes/regulations of the tumor macroenvironment and microenvironment and summarize potential drugs targeting the metabolism in diffuse large B-cell lymphoma.
Collapse
Affiliation(s)
- Jianbo Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing 100142, China
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, China
| | - Fuqing Meng
- School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
| | - Danyang Ran
- School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
| | - Yalong Song
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Yunkun Dang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Fan Lai
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Longyan Yang
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China
| | - Mi Deng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing 100142, China
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, China
- School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
| | - Yuqin Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jun Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
12
|
Farkaš B, Minneci M, Misevicius M, Rozas I. A Tale of Two Proteases: M Pro and TMPRSS2 as Targets for COVID-19 Therapies. Pharmaceuticals (Basel) 2023; 16:834. [PMID: 37375781 PMCID: PMC10301481 DOI: 10.3390/ph16060834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Considering the importance of the 2019 outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) resulting in the coronavirus disease 2019 (COVID-19) pandemic, an overview of two proteases that play an important role in the infection by SARS-CoV-2, the main protease of SARS-CoV-2 (MPro) and the host transmembrane protease serine 2 (TMPRSS2), is presented in this review. After summarising the viral replication cycle to identify the relevance of these proteases, the therapeutic agents already approved are presented. Then, this review discusses some of the most recently reported inhibitors first for the viral MPro and next for the host TMPRSS2 explaining the mechanism of action of each protease. Afterward, some computational approaches to design novel MPro and TMPRSS2 inhibitors are presented, also describing the corresponding crystallographic structures reported so far. Finally, a brief discussion on a few reports found some dual-action inhibitors for both proteases is given. This review provides an overview of two proteases of different origins (viral and human host) that have become important targets for the development of antiviral agents to treat COVID-19.
Collapse
Affiliation(s)
| | | | | | - Isabel Rozas
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, D02 R590 Dublin, Ireland; (B.F.); (M.M.); (M.M.)
| |
Collapse
|
13
|
Dimitrova YN, Gutierrez JA, Huard K. It's ok to be outnumbered - sub-stoichiometric modulation of homomeric protein complexes. RSC Med Chem 2023; 14:22-46. [PMID: 36760737 PMCID: PMC9890894 DOI: 10.1039/d2md00212d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
An arsenal of molecular tools with increasingly diversified mechanisms of action is being developed by the scientific community to enable biological interrogation and pharmaceutical modulation of targets and pathways of ever increasing complexity. While most small molecules interact with the target of interest in a 1 : 1 relationship, a noteworthy number of recent examples were reported to bind in a sub-stoichiometric manner to a homomeric protein complex. This approach requires molecular understanding of the physiologically relevant protein assemblies and in-depth characterization of the compound's mechanism of action. The recent literature examples summarized here were selected to illustrate methods used to identify and characterize molecules with such mechanisms. The concept of one small molecule targeting a homomeric protein assembly is not new but the subject deserves renewed inspection in light of emerging technologies and increasingly diverse target biology, to ensure relevant in vitro systems are used and valuable compounds with potentially novel sub-stoichiometric mechanisms of action aren't overlooked.
Collapse
Affiliation(s)
| | | | - Kim Huard
- Genentech 1 DNA Way South San Francisco CA 94080 USA
| |
Collapse
|
14
|
Kumar S, Kumar GS, Maitra SS, Malý P, Bharadwaj S, Sharma P, Dwivedi VD. Viral informatics: bioinformatics-based solution for managing viral infections. Brief Bioinform 2022; 23:6659740. [PMID: 35947964 DOI: 10.1093/bib/bbac326] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/26/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Several new viral infections have emerged in the human population and establishing as global pandemics. With advancements in translation research, the scientific community has developed potential therapeutics to eradicate or control certain viral infections, such as smallpox and polio, responsible for billions of disabilities and deaths in the past. Unfortunately, some viral infections, such as dengue virus (DENV) and human immunodeficiency virus-1 (HIV-1), are still prevailing due to a lack of specific therapeutics, while new pathogenic viral strains or variants are emerging because of high genetic recombination or cross-species transmission. Consequently, to combat the emerging viral infections, bioinformatics-based potential strategies have been developed for viral characterization and developing new effective therapeutics for their eradication or management. This review attempts to provide a single platform for the available wide range of bioinformatics-based approaches, including bioinformatics methods for the identification and management of emerging or evolved viral strains, genome analysis concerning the pathogenicity and epidemiological analysis, computational methods for designing the viral therapeutics, and consolidated information in the form of databases against the known pathogenic viruses. This enriched review of the generally applicable viral informatics approaches aims to provide an overview of available resources capable of carrying out the desired task and may be utilized to expand additional strategies to improve the quality of translation viral informatics research.
Collapse
Affiliation(s)
- Sanjay Kumar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.,Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India
| | - Geethu S Kumar
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh, India.,Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India
| | | | - Petr Malý
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences v.v.i., BIOCEV Research Center, Vestec, Czech Republic
| | - Shiv Bharadwaj
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences v.v.i., BIOCEV Research Center, Vestec, Czech Republic
| | - Pradeep Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Vivek Dhar Dwivedi
- Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India.,Institute of Advanced Materials, IAAM, 59053 Ulrika, Sweden
| |
Collapse
|
15
|
Martins V, Fazal L, Oganesian A, Shah A, Stow J, Walton H, Wilsher N. A commentary on the use of pharmacoenhancers in the pharmaceutical industry and the implication for DMPK drug discovery strategies. Xenobiotica 2022; 52:786-796. [PMID: 36537234 DOI: 10.1080/00498254.2022.2130838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Paxlovid, a drug combining nirmatrelvir and ritonavir, was designed for the treatment of COVID-19 and its rapid development has led to emergency use approval by the FDA to reduce the impact of COVID-19 infection on patients.In order to overcome potentially suboptimal therapeutic exposures, nirmatrelvir is dosed in combination with ritonavir to boost the pharmacokinetics of the active product.Here we consider examples of drugs co-administered with pharmacoenhancers.Pharmacoenhancers have been adopted for multiple purposes such as ensuring therapeutic exposure of the active product, reducing formation of toxic metabolites, changing the route of administration, and increasing the cost-effectiveness of a therapy.We weigh the benefits and risks of this approach, examining the impact of technology developments on drug design and how enhanced integration between cross-discipline teams can improve the outcome of drug discovery.
Collapse
|
16
|
Advances on Greener Asymmetric Synthesis of Antiviral Drugs via Organocatalysis. Pharmaceuticals (Basel) 2021; 14:ph14111125. [PMID: 34832907 PMCID: PMC8625736 DOI: 10.3390/ph14111125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/01/2021] [Indexed: 12/16/2022] Open
Abstract
Viral infections cause many severe human diseases, being responsible for remarkably high mortality rates. In this sense, both the academy and the pharmaceutical industry are continuously searching for new compounds with antiviral activity, and in addition, face the challenge of developing greener and more efficient methods to synthesize these compounds. This becomes even more important with drugs possessing stereogenic centers as highly enantioselective processes are required. In this minireview, the advances achieved to improve synthetic routes efficiency and sustainability of important commercially antiviral chiral drugs are discussed, highlighting the use of organocatalytic methods.
Collapse
|
17
|
The evolution of commercial drug delivery technologies. Nat Biomed Eng 2021; 5:951-967. [PMID: 33795852 DOI: 10.1038/s41551-021-00698-w] [Citation(s) in RCA: 498] [Impact Index Per Article: 166.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 02/11/2021] [Indexed: 02/07/2023]
Abstract
Drug delivery technologies have enabled the development of many pharmaceutical products that improve patient health by enhancing the delivery of a therapeutic to its target site, minimizing off-target accumulation and facilitating patient compliance. As therapeutic modalities expanded beyond small molecules to include nucleic acids, peptides, proteins and antibodies, drug delivery technologies were adapted to address the challenges that emerged. In this Review Article, we discuss seminal approaches that led to the development of successful therapeutic products involving small molecules and macromolecules, identify three drug delivery paradigms that form the basis of contemporary drug delivery and discuss how they have aided the initial clinical successes of each class of therapeutic. We also outline how the paradigms will contribute to the delivery of live-cell therapies.
Collapse
|
18
|
Soulele K, Karampelas T, Tamvakopoulos C, Macheras P. Enhancement of Docetaxel Absorption Using Ritonavir in an Oral Milk-Based Formulation. Pharm Res 2021; 38:1419-1428. [PMID: 34382143 DOI: 10.1007/s11095-021-03085-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The current study aimed to develop a novel milk-based formulation of docetaxel, a sparingly soluble antineoplastic agent, administered so far exclusively by the intravenous route and evaluate its oral bioavailability. METHODS Pre-formulation studies included the determination of docetaxel solubility in water-alcohol mixtures as well as short-term content uniformity experiments of the final formulation. The pharmacokinetic (PK) performance of the developed milk-based formulations was further evaluated in vivo in mice using ritonavir, a potent P-glycoprotein inhibitor, as an absorption enhancer of docetaxel and the marketed intravenous docetaxel formulation, Taxotere®, as a control. RESULTS In vivo PK results in mice showed that all the administered oral docetaxel formulations had limited absorption in the absence of ritonavir. On the contrary, ritonavir co-administration given as pre-treatment significantly enhanced oral bioavailability of both the marketed and milk-based docetaxel formulations; an even more marked increase in drug exposure was observed when ritonavir was incorporated within the docetaxel milk-based formulation. The fixed-dose combination also showed a more prolonged absorption of the drug compared to separate administrations. CONCLUSIONS The current study provides insights for the discovery of a novel milk-based formulation that could potentially serve as an alternative, non-toxic and patient-friendly carrier for an acceptable docetaxel oral chemotherapy.
Collapse
Affiliation(s)
- K Soulele
- Laboratory of Biopharmaceutics - Pharmacokinetics, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - T Karampelas
- Division of Pharmacology-Pharmacotechnology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - C Tamvakopoulos
- Division of Pharmacology-Pharmacotechnology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - P Macheras
- Laboratory of Biopharmaceutics - Pharmacokinetics, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece. .,PharmaInformatics Unit, ATHENA Research Center, Artemidos 6 & Epidavrou , 15125, Marousi, Athens, Greece.
| |
Collapse
|
19
|
Benali O, Zebida M, Maschke U. Synthesis and inhibition corrosion effect of two thiazole derivatives for carbon steel in 1 M HCl. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Sabe VT, Ntombela T, Jhamba LA, Maguire GEM, Govender T, Naicker T, Kruger HG. Current trends in computer aided drug design and a highlight of drugs discovered via computational techniques: A review. Eur J Med Chem 2021; 224:113705. [PMID: 34303871 DOI: 10.1016/j.ejmech.2021.113705] [Citation(s) in RCA: 203] [Impact Index Per Article: 67.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 12/30/2022]
Abstract
Computer-aided drug design (CADD) is one of the pivotal approaches to contemporary pre-clinical drug discovery, and various computational techniques and software programs are typically used in combination, in a bid to achieve the desired outcome. Several approved drugs have been developed with the aid of CADD. On SciFinder®, we evaluated more than 600 publications through systematic searching and refining, using the terms, virtual screening; software methods; computational studies and publication year, in order to obtain data concerning particular aspects of CADD. The primary focus of this review was on the databases screened, virtual screening and/or molecular docking software program used. Furthermore, we evaluated the studies that subsequently performed molecular dynamics (MD) simulations and we reviewed the software programs applied, the application of density functional theory (DFT) calculations and experimental assays. To represent the latest trends, the most recent data obtained was between 2015 and 2020, consequently the most frequently employed techniques and software programs were recorded. Among these, the ZINC database was the most widely preferred with an average use of 31.2%. Structure-based virtual screening (SBVS) was the most prominently used type of virtual screening and it accounted for an average of 57.6%, with AutoDock being the preferred virtual screening/molecular docking program with 41.8% usage. Following the screening process, 38.5% of the studies performed MD simulations to complement the virtual screening and GROMACS with 39.3% usage, was the popular MD software program. Among the computational techniques, DFT was the least applied whereby it only accounts for 0.02% average use. An average of 36.5% of the studies included reports on experimental evaluations following virtual screening. Ultimately, since the inception and application of CADD in pre-clinical drug discovery, more than 70 approved drugs have been discovered, and this number is steadily increasing over time.
Collapse
Affiliation(s)
- Victor T Sabe
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa.
| | - Thandokuhle Ntombela
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa.
| | - Lindiwe A Jhamba
- HIV Pathogenesis Program, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Glenn E M Maguire
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa; School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Thavendran Govender
- Faculty of Science and Agriculture, Department of Chemistry, University of Zululand, KwaDlangezwa, 3886, South Africa
| | - Tricia Naicker
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa.
| |
Collapse
|
21
|
Kundu S, Sarkar D. Synthetic Attempts Towards Eminent Anti-Viral Candidates of SARS-CoV. Mini Rev Med Chem 2021; 22:232-247. [PMID: 34254915 DOI: 10.2174/1389557521666210712205655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/14/2021] [Accepted: 06/06/2021] [Indexed: 11/22/2022]
Abstract
Severe Acute Respiratory Syndrome (SARS) aka SARS-CoV spread over southern China for the first time in 2002-2003 and history repeated again since last year and take away more than two million people so far. On March 11, 2020 COVID-19 outbreak was officially declared as pandemic by World Health Organization (WHO). Entire world united to fight back against this ultimate destruction. Around 90 vaccines are featured against SARS-CoV-2 and more than 300 active clinical trials are underway by several groups and individuals. So far, no drugs are currently approved that completely eliminates the deadly corona virus. The promising SARS-CoV-2 anti-viral drugs are favipiravir, remdesivir, lopinavir, ribavirin and avifavir. In this review, we have discussed the synthetic approaches elaborately made so far by different groups and chemical companies all around the world towards top three convincing anti-viral drugs against SARS-CoV-2 which are favipiravir, remdesivir and lopinavir.
Collapse
Affiliation(s)
- Subhradip Kundu
- Organic Synthesis and Molecular Engineering Lab, Department of Chemistry, National Institute of Technology, Rourkela, India
| | - Debayan Sarkar
- Organic Synthesis and Molecular Engineering Lab, Department of Chemistry, National Institute of Technology, Rourkela, India
| |
Collapse
|
22
|
Paul SS, Biswas G. Repurposed Antiviral Drugs for the Treatment of COVID-19: Syntheses, Mechanism of Infection and Clinical Trials. Mini Rev Med Chem 2021; 21:1123-1143. [PMID: 33355053 DOI: 10.2174/1389557521666201222145842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 11/22/2022]
Abstract
COVID-19 is a public health emergency of international concern. Although considerable knowledge has been acquired with time about the viral mechanism of infection and mode of replication, yet no specific drugs or vaccines have been discovered against SARS-CoV-2 to date. There are few small molecule antiviral drugs like Remdesivir and Favipiravir, which have shown promising results in different advanced stages of clinical trials. Chloroquinine, Hydroxychloroquine, and Lopinavir- Ritonavir combination, although initially were hypothesized to be effective against SARSCoV- 2, are now discontinued from the solidarity clinical trials. This review provides a brief description of their chemical syntheses along with their mode of action, and clinical trial results available on Google and in different peer-reviewed journals till 24th October 2020.
Collapse
Affiliation(s)
| | - Goutam Biswas
- Department of Chemistry, Cooch Behar Panchanan Barma University, Panchanan Nagar, Cooch Behar 736101, India
| |
Collapse
|
23
|
Das K, Sarkar K, Maji B. Manganese-Catalyzed Anti-Markovnikov Hydroamination of Allyl Alcohols via Hydrogen-Borrowing Catalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01199] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kuhali Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Koushik Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| |
Collapse
|
24
|
Wu B, Chen H, Gao M, Gong X, Hu L. Synthesis of 1,3-Aminoalcohols and Spirocyclic Azetidines via Tandem Hydroxymethylation and Aminomethylation Reaction of β-Keto Phosphonates with N-Nosyl- O-(2-bromoethyl)hydroxylamine. Org Lett 2021; 23:4152-4157. [PMID: 33999643 DOI: 10.1021/acs.orglett.1c01091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An unprecedented tandem α-hydroxymethylation and α-aminomethylation reaction of aromatic cyclic β-keto phosphonates with N-nosyl-O-(2-bromoethyl)hydroxylamine in the presence of DBU base has been developed, affording a range of 1,3-aminoalcohols in good yields. The resultant products could be flexibly transformed into the spirocyclic and bispirocyclic azetidines via one step of Mitsunobu reaction. Mechanistic study revealed that hydroxylamine in situ generated the formaldehyde and nosylamide, which in turn triggered the sequential Horner-Wadsworth-Emmons, Michael, and aldol reactions.
Collapse
Affiliation(s)
- Binyu Wu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Hongbing Chen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Min Gao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Xiangnan Gong
- Analytical and Testing Center, Chongqing University, Chongqing 401331, China
| | - Lin Hu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| |
Collapse
|
25
|
Bajad NG, Rayala S, Gutti G, Sharma A, Singh M, Kumar A, Singh SK. Systematic review on role of structure based drug design (SBDD) in the identification of anti-viral leads against SARS-Cov-2. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100026. [PMID: 34870145 PMCID: PMC8120892 DOI: 10.1016/j.crphar.2021.100026] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/26/2022] Open
Abstract
The outbreak of existing public health distress is threatening the entire world with emergence and rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The novel coronavirus disease 2019 (COVID-19) is mild in most people. However, in some elderly people with co-morbid conditions, it may progress to pneumonia, acute respiratory distress syndrome (ARDS) and multi organ dysfunction leading to death. COVID-19 has caused global panic in the healthcare sector and has become one of the biggest threats to the global economy. Drug discovery researchers are expected to contribute rapidly than ever before. The complete genome sequence of coronavirus had been reported barely a month after the identification of first patient. Potential drug targets to combat and treat the coronavirus infection have also been explored. The iterative structure-based drug design (SBDD) approach could significantly contribute towards the discovery of new drug like molecules for the treatment of COVID-19. The existing antivirals and experiences gained from SARS and MERS outbreaks may pave way for identification of potential drug molecules using the approach. SBDD has gained momentum as the essential tool for faster and costeffective lead discovery of antivirals in the past. The discovery of FDA approved human immunodeficiency virus type 1 (HIV-1) inhibitors represent the foremost success of SBDD. This systematic review provides an overview of the novel coronavirus, its pathology of replication, role of structure based drug design, available drug targets and recent advances in in-silico drug discovery for the prevention of COVID-19. SARSCoV- 2 main protease, RNA dependent RNA polymerase (RdRp) and spike (S) protein are the potential targets, which are currently explored for the drug development.
Collapse
Affiliation(s)
- Nilesh Gajanan Bajad
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Swetha Rayala
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Gopichand Gutti
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Anjali Sharma
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Meenakshi Singh
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Ashok Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Sushil Kumar Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| |
Collapse
|
26
|
Han J, Konno H, Sato T, Soloshonok VA, Izawa K. Tailor-made amino acids in the design of small-molecule blockbuster drugs. Eur J Med Chem 2021; 220:113448. [PMID: 33906050 DOI: 10.1016/j.ejmech.2021.113448] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
The role of amino acids (AAs) in modern health industry is well-appreciated. Residues of individual AAs, or their chemical modifications, such as diamines and amino alcohols, are frequently found in the structures of modern pharmaceuticals. The goal of this review article, is to emphasize that, currently, tailor-made AAs serve as key structural features in many most successful pharmaceuticals, so-called blockbuster drugs. In the present article, we profile 14 small-molecule drugs, underscoring the breadth of structural variety of AAs applications in numerous therapeutic areas. For each compound, we provide spectrum of biological activity, medicinal chemistry discovery, and synthetic approaches.
Collapse
Affiliation(s)
- Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Hiroyuki Konno
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata, 992-8510, Japan
| | - Tatsunori Sato
- Hamari Chemicals Ltd., 1-19-40, Nankokita, Suminoe-ku, Osaka, 559-0034, Japan
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018, San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, Plaza Bizkaia, 48013, Bilbao, Spain.
| | - Kunisuke Izawa
- Hamari Chemicals Ltd., 1-19-40, Nankokita, Suminoe-ku, Osaka, 559-0034, Japan.
| |
Collapse
|
27
|
Identification of Novel SARS-CoV-2 Inhibitors: A Structure-Based Virtual Screening Approach. J CHEM-NY 2021. [DOI: 10.1155/2021/1901484] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The recent outbreak of the coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) in the last few months raised global health concern. Previous research described that remdesivir and ritonavir can be used as effective drugs against COVID-19. In this study, we applied the structure-based virtual screening (SBVS) on the high similar remdesivir- and ritonavir-approved drugs, selected from the DrugBank database as well as on a series of ritonavir derivatives, selected from the literature. The aim was to provide new potent SARS-CoV-2 main protease (Mpro) inhibitors with high stability. The analysis was performed using AutoDock VINA implicated in the PyRx 0.8 tool. Based on the ligand binding energy, 20 compounds were selected and then analyzed by AutoDock tools. Among the 20 compounds, 3 compounds were selected as high-potent anti-COVID-19.
Collapse
|
28
|
Tyagi R, Bulman CA, Cho-Ngwa F, Fischer C, Marcellino C, Arkin MR, McKerrow JH, McNamara CW, Mahoney M, Tricoche N, Jawahar S, Janetka JW, Lustigman S, Sakanari J, Mitreva M. An Integrated Approach to Identify New Anti-Filarial Leads to Treat River Blindness, a Neglected Tropical Disease. Pathogens 2021; 10:71. [PMID: 33466870 PMCID: PMC7830784 DOI: 10.3390/pathogens10010071] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 11/17/2022] Open
Abstract
Filarial worms cause multiple debilitating diseases in millions of people worldwide, including river blindness. Currently available drugs reduce transmission by killing larvae (microfilariae), but there are no effective cures targeting the adult parasites (macrofilaricides) which survive and reproduce in the host for very long periods. To identify effective macrofilaricides, we carried out phenotypic screening of a library of 2121 approved drugs for clinical use against adult Brugia pahangi and prioritized the hits for further studies by integrating those results with a computational prioritization of drugs and associated targets. This resulted in the identification of 18 hits with anti-macrofilaricidal activity, of which two classes, azoles and aspartic protease inhibitors, were further expanded upon. Follow up screening against Onchocerca spp. (adult Onchocerca ochengi and pre-adult O. volvulus) confirmed activity for 13 drugs (the majority having IC50 < 10 μM), and a counter screen of a subset against L. loa microfilariae showed the potential to identify selective drugs that prevent adverse events when co-infected individuals are treated. Stage specific activity was also observed. Many of these drugs are amenable to structural optimization, and also have known canonical targets, making them promising candidates for further optimization that can lead to identifying and characterizing novel anti-macrofilarial drugs.
Collapse
Affiliation(s)
- Rahul Tyagi
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, 4523 Clayton Ave., St. Louis, MO 63110, USA;
| | - Christina A. Bulman
- Department of Pharmaceutical Chemistry, University of California San Francisco, 1700 4th Street, San Francisco, CA 94158, USA; (C.A.B.); (C.F.); (M.R.A.)
| | - Fidelis Cho-Ngwa
- ANDI Centre of Excellence for Onchocerciasis Drug Research, Biotechnology Unit, Faculty of Science, University of Buea, Buea CM-00237, Cameroon;
| | - Chelsea Fischer
- Department of Pharmaceutical Chemistry, University of California San Francisco, 1700 4th Street, San Francisco, CA 94158, USA; (C.A.B.); (C.F.); (M.R.A.)
| | - Chris Marcellino
- Division of Neurocritical Care and Hospital Neurology, Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA;
| | - Michelle R. Arkin
- Department of Pharmaceutical Chemistry, University of California San Francisco, 1700 4th Street, San Francisco, CA 94158, USA; (C.A.B.); (C.F.); (M.R.A.)
| | - James H. McKerrow
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA 92093, USA;
| | - Case W. McNamara
- Calibr, a Division of The Scripps Research Institute, 11119 Torrey Pines Road, La Jolla, CA 92037, USA;
| | - Matthew Mahoney
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA; (M.M.); (J.W.J.)
| | - Nancy Tricoche
- Lindsley F. Kimball Research Institute, New York City, NY 10065, USA; (N.T.); (S.J.); (S.L.)
| | - Shabnam Jawahar
- Lindsley F. Kimball Research Institute, New York City, NY 10065, USA; (N.T.); (S.J.); (S.L.)
| | - James W. Janetka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA; (M.M.); (J.W.J.)
| | - Sara Lustigman
- Lindsley F. Kimball Research Institute, New York City, NY 10065, USA; (N.T.); (S.J.); (S.L.)
| | - Judy Sakanari
- Department of Pharmaceutical Chemistry, University of California San Francisco, 1700 4th Street, San Francisco, CA 94158, USA; (C.A.B.); (C.F.); (M.R.A.)
| | - Makedonka Mitreva
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, 4523 Clayton Ave., St. Louis, MO 63110, USA;
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Ave., St. Louis, MO 63108, USA
| |
Collapse
|
29
|
Mena-Rejón G, Pérez-Navarro Y, Torres-Romero JC, Vázquez-Carrillo L, Carballo RM, Arreola R, Herrera-España Á, Arana-Argáez V, Quijano-Quiñones R, Fernández-Sánchez JM, Alvarez-Sánchez ME. Antitrichomonal activity and docking analysis of thiazole derivatives as TvMP50 protease inhibitors. Parasitol Res 2020; 120:233-241. [PMID: 33073325 DOI: 10.1007/s00436-020-06931-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/11/2020] [Indexed: 11/28/2022]
Abstract
Trichomoniasis, caused by the protozoan Trichomonas vaginalis, is the most prevalent non-viral sexually transmitted infection that affects over 170 million people worldwide. The only type of drug recommended for the therapeutic control of trichomoniasis is the 5-nitroimidazoles, although there have been reports of some undesirable side effects and clinical resistance. Hence, the need for the search for new tricomonicidal agents is necessary. In a previous work, we demonstrated that two 2-amino-4-aryl thiazole derivatives (ATZ-1 and ATZ-2) possess a portent antigiardial effect. In the current paper, we investigated the in vitro antitrichomonal activity of these thiazole compounds. Both ATZ-1 and ATZ-2 reduced the viability and growth of parasites in a dose-dependent manner, with an IC50 value of 0.15 μg/mL and 0.18 μg/mL, respectively. Furthermore, both thiazole compounds were able to decrease the proteolytic activity in T. vaginalis trophozoites compared with untreated parasites. Interestingly, a full proteolytic inhibition profile was observed in the 50-kDa region which was associated with the decreased expression of the gene that codes for the trichomonad protease TvMP50. The docking simulations predicted strong interactions of the thiazole compounds in the TvMP50 protease's active site, suggesting a possible role as protease inhibitors. Our results demonstrate the potential of 2-amino-4-aryl thiazole derivatives as trichomonicidal compounds and could be, mechanistically, involved in the inhibition of key trichomonad proteases.
Collapse
Affiliation(s)
- Gonzalo Mena-Rejón
- Facultad de Química, Universidad Autónoma de Yucatán (UADY), Calle 43 S/N entre calle 96 y calle 40, Colonia Inalámbrica, C.P. 97069, Mérida, Yucatán, México
| | - Yussel Pérez-Navarro
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo # 290, Col. Del Valle, CP 03100, México City, México
| | - Julio César Torres-Romero
- Facultad de Química, Universidad Autónoma de Yucatán (UADY), Calle 43 S/N entre calle 96 y calle 40, Colonia Inalámbrica, C.P. 97069, Mérida, Yucatán, México
| | - Laura Vázquez-Carrillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo # 290, Col. Del Valle, CP 03100, México City, México
| | - Rubén M Carballo
- Facultad de Química, Universidad Autónoma de Yucatán (UADY), Calle 43 S/N entre calle 96 y calle 40, Colonia Inalámbrica, C.P. 97069, Mérida, Yucatán, México
| | - Rodrigo Arreola
- Psychiatric Genetics Department, Clinical Research Branch, National Institute of Psychiatry, Ramón de la Fuente, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370, México City, DF, México
| | - Ángel Herrera-España
- Facultad de Química, Universidad Autónoma de Yucatán (UADY), Calle 43 S/N entre calle 96 y calle 40, Colonia Inalámbrica, C.P. 97069, Mérida, Yucatán, México
| | - Victor Arana-Argáez
- Facultad de Química, Universidad Autónoma de Yucatán (UADY), Calle 43 S/N entre calle 96 y calle 40, Colonia Inalámbrica, C.P. 97069, Mérida, Yucatán, México
| | - Ramiro Quijano-Quiñones
- Facultad de Química, Universidad Autónoma de Yucatán (UADY), Calle 43 S/N entre calle 96 y calle 40, Colonia Inalámbrica, C.P. 97069, Mérida, Yucatán, México
| | - Jose Manuel Fernández-Sánchez
- División de Ingeniería en Gestión Empresarial, Tecnológico de Estudios Superiores de Ecatepec, Avenida Tecnológico S/N, Colonia Valle de Anahuac, Ecatepec de Morelos, Estado de México, Mexico
| | - María Elizbeth Alvarez-Sánchez
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo # 290, Col. Del Valle, CP 03100, México City, México.
| |
Collapse
|
30
|
Jayasudha J, Balachandran V, Narayana B. Molecular Docking, Spectroscopic, and Computational Studies of 2-{3-(4-Chlorophenyl)-5-[4-(Propan-2-yl) Phenyl]-4, 5-Dihydro-1H-Pyrazol-1-yl}-1, 3-Thiazol-4(5H)-One. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1830810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- J. Jayasudha
- Centre for Research – Department of Physics, Arignar Anna Government Arts College, Musiri (Affiliated by Bharathidasan University), Tiruchirappalli, Tamil Nadu, India
| | - V. Balachandran
- Centre for Research – Department of Physics, Arignar Anna Government Arts College, Musiri (Affiliated by Bharathidasan University), Tiruchirappalli, Tamil Nadu, India
| | - B. Narayana
- Deparment of Chemistry, Mangalore University, Mangalagangoti, India
| |
Collapse
|
31
|
Senger MR, Evangelista TCS, Dantas RF, Santana MVDS, Gonçalves LCS, de Souza Neto LR, Ferreira SB, Silva-Junior FP. COVID-19: molecular targets, drug repurposing and new avenues for drug discovery. Mem Inst Oswaldo Cruz 2020; 115:e200254. [PMID: 33027420 PMCID: PMC7534958 DOI: 10.1590/0074-02760200254] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/01/2020] [Indexed: 01/18/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly contagious infection that may break the healthcare system of several countries. Here, we aimed at presenting a critical view of ongoing drug repurposing efforts for COVID-19 as well as discussing opportunities for development of new treatments based on current knowledge of the mechanism of infection and potential targets within. Finally, we also discuss patent protection issues, cost effectiveness and scalability of synthetic routes for some of the most studied repurposing candidates since these are key aspects to meet global demand for COVID-19 treatment.
Collapse
Affiliation(s)
- Mario Roberto Senger
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório
de Bioquímica Experimental e Computacional de Fármacos, Rio de Janeiro, RJ,
Brasil
| | - Tereza Cristina Santos Evangelista
- Universidade Federal do Rio de Janeiro, Instituto de Química,
Laboratório de Síntese Orgânica e Prospecção Biológica, Rio de Janeiro, RJ,
Brasil
| | - Rafael Ferreira Dantas
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório
de Bioquímica Experimental e Computacional de Fármacos, Rio de Janeiro, RJ,
Brasil
| | - Marcos Vinicius da Silva Santana
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório
de Bioquímica Experimental e Computacional de Fármacos, Rio de Janeiro, RJ,
Brasil
| | - Luiz Carlos Saramago Gonçalves
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório
de Bioquímica Experimental e Computacional de Fármacos, Rio de Janeiro, RJ,
Brasil
| | - Lauro Ribeiro de Souza Neto
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório
de Bioquímica Experimental e Computacional de Fármacos, Rio de Janeiro, RJ,
Brasil
| | - Sabrina Baptista Ferreira
- Universidade Federal do Rio de Janeiro, Instituto de Química,
Laboratório de Síntese Orgânica e Prospecção Biológica, Rio de Janeiro, RJ,
Brasil
| | - Floriano Paes Silva-Junior
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório
de Bioquímica Experimental e Computacional de Fármacos, Rio de Janeiro, RJ,
Brasil
| |
Collapse
|
32
|
Ju M, Zerull EE, Roberts JM, Huang M, Guzei IA, Schomaker JM. Silver-Catalyzed Enantioselective Propargylic C-H Bond Amination through Rational Ligand Design. J Am Chem Soc 2020; 142:12930-12936. [PMID: 32659081 PMCID: PMC8294079 DOI: 10.1021/jacs.0c05726] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Asymmetric C-H amination via nitrene transfer is a powerful tool to prepare enantioenriched amine precursors from abundant C-H bonds. Herein, we report a regio- and enantioselective synthesis of γ-alkynyl γ-aminoalcohols via a silver-catalyzed propargylic C-H amination. The protocol was enabled by a new bis(oxazoline) (BOX) ligand designed via a rapid structure-activity relationship (SAR) analysis. The method utilizes accessible carbamate esters bearing γ-propargylic C-H bonds and furnishes versatile products in good yields and excellent enantioselectivity (90-99% ee). The putative Ag-nitrene is proposed to undergo enantiodetermining hydrogen-atom transfer (HAT) during the C-H amination event. Density functional theory calculations shed insight into the origin of enantioselectivity in the HAT step.
Collapse
Affiliation(s)
- Minsoo Ju
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Emily E. Zerull
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Jessica M. Roberts
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Minxue Huang
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Ilia A. Guzei
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Jennifer M. Schomaker
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| |
Collapse
|
33
|
Hardy M, Wright BA, Bachman JL, Boit TB, Haley HMS, Knapp RR, Lusi RF, Okada T, Tona V, Garg NK, Sarpong R. Treating a Global Health Crisis with a Dose of Synthetic Chemistry. ACS CENTRAL SCIENCE 2020; 6:1017-1030. [PMID: 32719821 PMCID: PMC7336722 DOI: 10.1021/acscentsci.0c00637] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The SARS-CoV-2 pandemic has prompted scientists from many disciplines to work collaboratively toward an effective response. As academic synthetic chemists, we examine how best to contribute to this ongoing effort.
Collapse
Affiliation(s)
- Melissa
A. Hardy
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Brandon A. Wright
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - J. Logan Bachman
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095, United States
| | - Timothy B. Boit
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095, United States
| | - Hannah M. S. Haley
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Rachel R. Knapp
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095, United States
| | - Robert F. Lusi
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Taku Okada
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Veronica Tona
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095, United States
| | - Neil K. Garg
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095, United States
| | - Richmond Sarpong
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
34
|
A novel metal-free synthesis of thiazole-substituted α-hydroxy carbonyl compounds and 2-alkenylthiazoles from thiazole N-oxides and olefins. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.05.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
35
|
Rauf A, Kashif MK, Saeed BA, Al-Masoudi NA, Hameed S. Synthesis, anti-HIV activity, molecular modeling study and QSAR of new designed 2-(2-arylidenehydrazinyl)-4-arylthiazoles. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.07.113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Voshavar C. Protease Inhibitors for the Treatment of HIV/AIDS: Recent Advances and Future Challenges. Curr Top Med Chem 2019; 19:1571-1598. [PMID: 31237209 DOI: 10.2174/1568026619666190619115243] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/22/2019] [Accepted: 05/27/2019] [Indexed: 02/07/2023]
Abstract
Acquired Immunodeficiency Syndrome (AIDS) is a chronic disease characterized by multiple life-threatening illnesses caused by a retro-virus, Human Immunodeficiency Virus (HIV). HIV infection slowly destroys the immune system and increases the risk of various other infections and diseases. Although, there is no immediate cure for HIV infection/AIDS, several drugs targeting various cruxes of HIV infection are used to slow down the progress of the disease and to boost the immune system. One of the key therapeutic strategies is Highly Active Antiretroviral Therapy (HAART) or ' AIDS cocktail' in a general sense, which is a customized combination of anti-retroviral drugs designed to combat the HIV infection. Since HAART's inception in 1995, this treatment was found to be effective in improving the life expectancy of HIV patients over two decades. Among various classes of HAART treatment regimen, Protease Inhibitors (PIs) are known to be widely used as a major component and found to be effective in treating HIV infection/AIDS. For the past several years, a variety of protease inhibitors have been reported. This review outlines the drug design strategies of PIs, chemical and pharmacological characteristics of some mechanism-based inhibitors, summarizes the recent developments in small molecule based drug discovery with HIV protease as a drug target. Further discussed are the pharmacology, PI drug resistance on HIV PR, adverse effects of HIV PIs and challenges/impediments in the successful application of HIV PIs as an important class of drugs in HAART regimen for the effective treatment of AIDS.
Collapse
Affiliation(s)
- Chandrashekhar Voshavar
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States
| |
Collapse
|
37
|
Abstract
Asymmetric synthesis of γ-amino alcohols from unprotected allylic alcohols by a copper-catalyzed hydroamination strategy has been developed. Using easily accessible starting materials, a range of chiral 1,3-amino alcohols were prepared with excellent regio- and enantioselectivity. Further, this protocol provided an efficient one-step method for the enantioselective synthesis of γ-amino alcohols in an intermolecular manner.
Collapse
Affiliation(s)
- Saki Ichikawa
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
| | - Stephen L. Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
| |
Collapse
|
38
|
Pan S, Wu B, Hu J, Xu R, Jiang M, Zeng X, Zhong G. Palladium-Catalyzed Allylic Substitution Reaction of Benzothiazolylacetamide with Allylic Alcohols in Water. J Org Chem 2019; 84:10111-10119. [PMID: 31343177 DOI: 10.1021/acs.joc.9b01313] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An efficient tetrakis(triphenylphosphine)palladium- and Brønsted acid catalyzed allylic substitution reaction of benzothiazolylacetamide with allylic alcohols in water has been developed, and the corresponding allylated products were afforded in good to excellent (up to 99%) yields with high regioselectivities. This straightforward protocol exhibits good functional group tolerance and scalability.
Collapse
Affiliation(s)
- Shulei Pan
- College of Materials, Chemistry and Chemical Engineering , Hangzhou Normal University , Hangzhou 311121 , China
| | - Binqiang Wu
- College of Materials, Chemistry and Chemical Engineering , Hangzhou Normal University , Hangzhou 311121 , China
| | - Jinjin Hu
- College of Materials, Chemistry and Chemical Engineering , Hangzhou Normal University , Hangzhou 311121 , China
| | - Ruigang Xu
- College of Materials, Chemistry and Chemical Engineering , Hangzhou Normal University , Hangzhou 311121 , China
| | - Min Jiang
- College of Materials, Chemistry and Chemical Engineering , Hangzhou Normal University , Hangzhou 311121 , China
| | - Xiaofei Zeng
- College of Materials, Chemistry and Chemical Engineering , Hangzhou Normal University , Hangzhou 311121 , China
| | - Guofu Zhong
- College of Materials, Chemistry and Chemical Engineering , Hangzhou Normal University , Hangzhou 311121 , China
| |
Collapse
|
39
|
Affiliation(s)
- Kuntal Chatterjee
- Institut für Optik und Atomare Physik, TU Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| | - Otto Dopfer
- Institut für Optik und Atomare Physik, TU Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| |
Collapse
|
40
|
Sun S, Jia Q, Zhang Z. Applications of amide isosteres in medicinal chemistry. Bioorg Med Chem Lett 2019; 29:2535-2550. [PMID: 31377035 DOI: 10.1016/j.bmcl.2019.07.033] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 12/18/2022]
Abstract
Isosteric replacement of amide groups is a classic practice in medicinal chemistry. This digest highlights the applications of most commonly employed amide isosteres in drug design aiming at improving potency and selectivity, optimizing physicochemical and pharmacokinetic properties, eliminating or modifying toxicophores, as well as providing novel intellectual property of lead compounds.
Collapse
Affiliation(s)
- Shaoyi Sun
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada.
| | - Qi Jia
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Zaihui Zhang
- Signalchem Lifesciences Corp., 110-13210, Vanier Place, Richmond, BC V6V 2J2, Canada
| |
Collapse
|
41
|
Ma R, Young J, Promontorio R, Dannheim FM, Pattillo CC, White MC. Synthesis of anti-1,3 Amino Alcohol Motifs via Pd(II)/SOX Catalysis with the Capacity for Stereodivergence. J Am Chem Soc 2019; 141:9468-9473. [PMID: 31140795 DOI: 10.1021/jacs.9b02690] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the development of a Pd(II)/(±)-MeO-SOX/2,5-dimethylbenzoquinone system that enables unprecedented access to anti-1,3 amino alcohol motifs in good yields (33 substrates, avg. 66% isolated yield, >20:1 dr) and high selectivities (avg. 10:1 dr). Switching ligands to (±)-CF3-SOX with the use of a less bulky quinone oxidant, the kinetic syn-1,3 amino alcohol motif can be accessed in comparable yields and selectivities. Advantages of the stereodivergent nature of this reaction are seen in the synthesis of anti- and syn-1,3 amino alcohol vitamin D3 analogue intermediates in half the steps and higher overall yield relative to previous routes. Additionally, all eight possible stereoisomers of a chiral diamino alcohol core are generated from two amino acids. Mechanistic studies reveal that the anti-isomer is furnished through concurrent Pd(II)(SOX) catalyzed C-H amination and Pd(0)(SOX) catalyzed isomerization cycles.
Collapse
Affiliation(s)
- Rulin Ma
- Roger Adams Laboratory, Department of Chemistry , University of Illinois , Urbana , Illinois 61801 , United States
| | - Jonathon Young
- Roger Adams Laboratory, Department of Chemistry , University of Illinois , Urbana , Illinois 61801 , United States
| | - Rossella Promontorio
- Roger Adams Laboratory, Department of Chemistry , University of Illinois , Urbana , Illinois 61801 , United States
| | - Friederike M Dannheim
- Roger Adams Laboratory, Department of Chemistry , University of Illinois , Urbana , Illinois 61801 , United States
| | - Christopher C Pattillo
- Roger Adams Laboratory, Department of Chemistry , University of Illinois , Urbana , Illinois 61801 , United States
| | - M Christina White
- Roger Adams Laboratory, Department of Chemistry , University of Illinois , Urbana , Illinois 61801 , United States
| |
Collapse
|
42
|
Chatterjee K, Dopfer O. Unraveling the protonation site of oxazole and solvation with hydrophobic ligands by infrared photodissociation spectroscopy. Phys Chem Chem Phys 2019; 21:15157-15166. [DOI: 10.1039/c9cp02787d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Infrared spectroscopy reveals exclusive N-protonation of the oxazole ring and bifurcated or linear hydrogen bonding with hydrophobic N2and Ar ligands.
Collapse
Affiliation(s)
| | - Otto Dopfer
- Institut für Optik und Atomare Physik
- TU Berlin
- 10623 Berlin
- Germany
| |
Collapse
|
43
|
Athanasiou C, Cournia Z. From Computers to Bedside: Computational Chemistry Contributing to FDA Approval. BIOMOLECULAR SIMULATIONS IN STRUCTURE-BASED DRUG DISCOVERY 2018. [DOI: 10.1002/9783527806836.ch7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Christina Athanasiou
- Biomedical Research Foundation; Academy of Athens; 4 Soranou Ephessiou 11527 Athens Greece
| | - Zoe Cournia
- Biomedical Research Foundation; Academy of Athens; 4 Soranou Ephessiou 11527 Athens Greece
| |
Collapse
|
44
|
Yang Q, Zhao F, Zhang N, Liu M, Hu H, Zhang J, Zhou S. Mild dynamic kinetic resolution of amines by coupled visible-light photoredox and enzyme catalysis. Chem Commun (Camb) 2018; 54:14065-14068. [PMID: 30420981 DOI: 10.1039/c8cc07990k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we described photoenzymatic dynamic kinetic resolution (DKR) of amines under mild conditions. The racemization of amines via a photoredox-mediated hydrogen atom transfer (HAT) protocol in conjunction with an enzyme catalyst to achieve the DKR of amines allows a variety of primary amines to be converted into a single enantiomer in high yield and with excellent enantioselectivity. Notably, this protocol can also be extended to 1,4-diamine derivatives with high levels of diastereo- and enantioselectivity.
Collapse
Affiliation(s)
- Qiong Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, CCNU-uOttawa Joint Research Centre, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China.
| | | | | | | | | | | | | |
Collapse
|
45
|
Affiliation(s)
- Jiawei Liu
- Department of Chemistry, Center for Excellence in Molecular Synthesis, Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 20237, People’s Republic of China
| | - Hongqing Yao
- Department of Chemistry, Center for Excellence in Molecular Synthesis, Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 20237, People’s Republic of China
| | - Chuan Wang
- Department of Chemistry, Center for Excellence in Molecular Synthesis, Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 20237, People’s Republic of China
| |
Collapse
|
46
|
Qiao J, Zhao C, Liu J, Du Y. Design and synthesis of selenazole-substituted ritonavir analogs. Bioorg Med Chem Lett 2018; 28:2379-2381. [DOI: 10.1016/j.bmcl.2018.06.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/01/2018] [Accepted: 06/14/2018] [Indexed: 11/25/2022]
|
47
|
Heteropolyacid anchored on SBA-15 functionalized with 2-aminoethyl dihydrogen phosphate: a novel and highly efficient catalyst for one-pot, three-component synthesis of trisubstituted 1,3-thiazoles. RESEARCH ON CHEMICAL INTERMEDIATES 2017. [DOI: 10.1007/s11164-017-3240-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
48
|
Experimental and theoretical investigation of new furan and thiophene derivatives containing oxazole, isoxazole, or isothiazole subunits. Struct Chem 2016. [DOI: 10.1007/s11224-016-0863-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
49
|
Gazal S, Gupta P, Gunturu SR, Isherwood M, Voss ME. Application of Isayama–Mukaiyama cobalt catalyzed hydroperoxysilylation for the preparation of ritonavir hydroperoxide. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.10.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
50
|
O'Donoghue AJ, Ivry SL, Chaudhury C, Hostetter DR, Hanahan D, Craik CS. Procathepsin E is highly abundant but minimally active in pancreatic ductal adenocarcinoma tumors. Biol Chem 2016; 397:871-81. [PMID: 27149201 PMCID: PMC5712230 DOI: 10.1515/hsz-2016-0138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/20/2016] [Indexed: 12/31/2022]
Abstract
The cathepsin family of lysosomal proteases is increasingly being recognized for their altered expression in cancer and role in facilitating tumor progression. The aspartyl protease cathepsin E is overexpressed in several cancers and has been investigated as a biomarker for pancreatic ductal adenocarcinoma (PDAC). Here we show that cathepsin E expression in mouse PDAC tumors is increased by more than 400-fold when compared to healthy pancreatic tissue. Cathepsin E accumulates over the course of disease progression and accounts for more than 3% of the tumor protein in mice with end-stage disease. Through immunoblot analysis we determined that only procathepsin E exists in mouse PDAC tumors and cell lines derived from these tumors. By decreasing the pH, this procathepsion E is converted to the mature form, resulting in an increase in proteolytic activity. Although active site inhibitors can bind procathepsin E, treatment of PDAC mice with the aspartyl protease inhibitor ritonavir did not decrease tumor burden. Lastly, we used multiplex substrate profiling by mass spectrometry to identify two synthetic peptides that are hydrolyzed by procathepsin E near neutral pH. This work represents a comprehensive analysis of procathepsin E in PDAC and could facilitate the development of improved biomarkers for disease detection.
Collapse
|