1
|
Gomes MAGB, Bauduin A, Le Roux C, Fouinneteau R, Berthe W, Berchel M, Couthon H, Jaffrès PA. Synthesis of ether lipids: natural compounds and analogues. Beilstein J Org Chem 2023; 19:1299-1369. [PMID: 37701305 PMCID: PMC10494250 DOI: 10.3762/bjoc.19.96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/17/2023] [Indexed: 09/14/2023] Open
Abstract
Ether lipids are compounds present in many living organisms including humans that feature an ether bond linkage at the sn-1 position of the glycerol. This class of lipids features singular structural roles and biological functions. Alkyl ether lipids and alkenyl ether lipids (also identified as plasmalogens) correspond to the two sub-classes of naturally occurring ether lipids. In 1979 the discovery of the structure of the platelet-activating factor (PAF) that belongs to the alkyl ether class of lipids increased the interest in these bioactive lipids and further promoted the synthesis of non-natural ether lipids that was initiated in the late 60's with the development of edelfosine (an anticancer drug). More recently, ohmline, a glyco glycero ether lipid that modulates selectively SK3 ion channels and reduces in vivo the occurrence of bone metastases, and other glyco glycero ether also identified as GAEL (glycosylated antitumor ether lipids) that exhibit promising anticancer properties renew the interest in this class of compounds. Indeed, ether lipid represent a new and promising class of compounds featuring the capacity to modulate selectively the activity of some membrane proteins or, for other compounds, feature antiproliferative properties via an original mechanism of action. The increasing interest in studying ether lipids for fundamental and applied researches invited to review the methodologies developed to prepare ether lipids. In this review we focus on the synthetic method used for the preparation of alkyl ether lipids either naturally occurring ether lipids (e.g., PAF) or synthetic derivatives that were developed to study their biological properties. The synthesis of neutral or charged ether lipids are reported with the aim to assemble in this review the most frequently used methodologies to prepare this specific class of compounds.
Collapse
Affiliation(s)
| | - Alicia Bauduin
- Univ. Brest, CNRS, CEMCA UMR 6521, 6 Avenue Victor Le Gorgeu, 29238 Brest, France
| | - Chloé Le Roux
- Univ. Brest, CNRS, CEMCA UMR 6521, 6 Avenue Victor Le Gorgeu, 29238 Brest, France
| | - Romain Fouinneteau
- Univ. Brest, CNRS, CEMCA UMR 6521, 6 Avenue Victor Le Gorgeu, 29238 Brest, France
| | - Wilfried Berthe
- Univ. Brest, CNRS, CEMCA UMR 6521, 6 Avenue Victor Le Gorgeu, 29238 Brest, France
| | - Mathieu Berchel
- Univ. Brest, CNRS, CEMCA UMR 6521, 6 Avenue Victor Le Gorgeu, 29238 Brest, France
| | - Hélène Couthon
- Univ. Brest, CNRS, CEMCA UMR 6521, 6 Avenue Victor Le Gorgeu, 29238 Brest, France
| | - Paul-Alain Jaffrès
- Univ. Brest, CNRS, CEMCA UMR 6521, 6 Avenue Victor Le Gorgeu, 29238 Brest, France
| |
Collapse
|
2
|
Pinchuk AN, Rampy MA, Longino MA, Durkee BY, Counsell RE, Weichert JP. Effect of Polar Head Group Modifications on the Tumor Retention of Phospholipid Ether Analogs: Role of the Quaternary Nitrogen. Pharmaceutics 2023; 15:pharmaceutics15010171. [PMID: 36678801 PMCID: PMC9865954 DOI: 10.3390/pharmaceutics15010171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/05/2023] Open
Abstract
We have previously described the remarkable capacity of radioiodinated alkyl phospholipids to be sequestered and retained by a variety of tumors in vivo. We have already established the influence of certain structural parameters of iodinated alkyl phospholipids on tumor avidity, such as stereochemistry at the sn-2 carbon of alkylglycerol phosphocholines, meta-or para-position of iodine in the aromatic ring of phenylalkyl phosphocholines, and the length of the alkyl chain in alkyl phospholipids. In order to determine the additional structural requirements for tumor uptake and retention, three new radioiodinated alkylphospholipid analogs, 2-4, were synthesized as potential tumor imaging agents. Polar head groups were modified to determine structure-tumor avidity relationships. The trimethylammonio group in 1 was substituted with a hydrogen atom in 2, an ammonio group in 3 and a tertiary butyl group in 4. All analogs were separately labeled with iodine-125 or iodine-124 and administered to Walker 256 tumor-bearing rats or human PC-3 tumor-bearing SCID mice, respectively. Tumor uptake was assessed by gamma-camera scintigraphy (for [I-125]-labeled compounds) and high-resolution micro-PET scanning (for [I-124]-labeled compounds). It was found that structural modifications in the polar head group of alkyl phospholipids strongly influenced the tumor uptake and tissue distribution of these compounds in tumor-bearing animals. Phosphoethanolamine analog 3 (NM401) displayed a very slight accumulation in tumor as compared with phosphocholine analog 1 (NM346). Analogs 2 (NM400) and 4 (NM402) lacking the positively charged nitrogen atom failed to display any tumor uptake and localized primarily in the liver. This study provided important insights regarding structural requirements for tumor uptake and retention. Replacement of the quaternary nitrogen in the alkyl phospholipid head group with non-polar substituents resulted in loss of tumor avidity.
Collapse
Affiliation(s)
- Anatoly N. Pinchuk
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave., WIMR, Madison, WI 53705, USA
- Correspondence:
| | - Mark A. Rampy
- Department of Pharmacology, The University of Michigan Medical School, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Marc A. Longino
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave., WIMR, Madison, WI 53705, USA
| | - Ben Y. Durkee
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave., WIMR, Madison, WI 53705, USA
| | - Raymond E. Counsell
- Department of Pharmacology, The University of Michigan Medical School, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Jamey P. Weichert
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave., WIMR, Madison, WI 53705, USA
| |
Collapse
|
3
|
Affiliation(s)
- Karen R. Winters
- Department of Chemistry and Biochemistry Texas Christian University TCU Box 298860 Fort Worth TX 76129 USA
| | - Chloe Ricke
- Department of Chemistry and Biochemistry Texas Christian University TCU Box 298860 Fort Worth TX 76129 USA
| | - Jean‐Luc Montchamp
- Department of Chemistry and Biochemistry Texas Christian University TCU Box 298860 Fort Worth TX 76129 USA
| |
Collapse
|
4
|
Maffucci T, Falasca M. Inositol Polyphosphate-Based Compounds as Inhibitors of Phosphoinositide 3-Kinase-Dependent Signaling. Int J Mol Sci 2020; 21:E7198. [PMID: 33003448 PMCID: PMC7582811 DOI: 10.3390/ijms21197198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
Signaling pathways regulated by the phosphoinositide 3-kinase (PI3K) enzymes have a well-established role in cancer development and progression. Over the past 30 years, the therapeutic potential of targeting this pathway has been well recognized, and this has led to the development of a multitude of drugs, some of which have progressed into clinical trials, with few of them currently approved for use in specific cancer settings. While many inhibitors compete with ATP, hence preventing the catalytic activity of the kinases directly, a deep understanding of the mechanisms of PI3K-dependent activation of its downstream effectors led to the development of additional strategies to prevent the initiation of this signaling pathway. This review summarizes previously published studies that led to the identification of inositol polyphosphates as promising parent molecules to design novel inhibitors of PI3K-dependent signals. We focus our attention on the inhibition of protein-membrane interactions mediated by binding of pleckstrin homology domains and phosphoinositides that we proposed 20 years ago as a novel therapeutic strategy.
Collapse
Affiliation(s)
- Tania Maffucci
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Marco Falasca
- Metabolic Signalling Group, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
5
|
Gradziel CS, Jordan PA, Jewel D, Dufort FJ, Miller SJ, Chiles TC, Roberts MF. d-3-Deoxy-dioctanoylphosphatidylinositol induces cytotoxicity in human MCF-7 breast cancer cells via a mechanism that involves downregulation of the D-type cyclin-retinoblastoma pathway. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1861:1808-1815. [PMID: 27600289 PMCID: PMC5115159 DOI: 10.1016/j.bbalip.2016.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 08/24/2016] [Accepted: 09/01/2016] [Indexed: 11/29/2022]
Abstract
Phosphatidylinositol analogs (PIAs) were originally designed to bind competitively to the Akt PH domain and prevent membrane translocation and activation. d-3-Deoxy-dioctanoylphosphatidylinositol (d-3-deoxy-diC8PI), but not compounds with altered inositol stereochemistry (e.g., l-3-deoxy-diC8PI and l-3,5-dideoxy-diC8PI), is cytotoxic. However, high resolution NMR field cycling relaxometry shows that both cytotoxic and non-toxic PIAs bind to the Akt1 PH domain at the site occupied by the cytotoxic alkylphospholipid perifosine. This suggests that another mechanism for cytotoxicity must account for the difference in efficacy of the synthetic short-chain PIAs. In MCF-7 breast cancer cells, with little constitutively active Akt, d-3-deoxy-diC8PI (but not l-compounds) decreases viability concomitant with increased cleavage of PARP and caspase 9, indicative of apoptosis. d-3-Deoxy-diC8PI also induces a decrease in endogenous levels of cyclins D1 and D3 and blocks downstream retinoblastoma protein phosphorylation. siRNA-mediated depletion of cyclin D1, but not cyclin D3, reduces MCF-7 cell proliferation. Thus, growth arrest and cytotoxicity induced by the soluble d-3-deoxy-diC8PI occur by a mechanism that involves downregulation of the D-type cyclin-pRb pathway independent of its interaction with Akt. This ability to downregulate D-type cyclins contributes, at least in part, to the anti-proliferative activity of d-3-deoxy-diC8PI and may be a common feature of other cytotoxic phospholipids.
Collapse
Affiliation(s)
- Cheryl S Gradziel
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA.
| | - Peter A Jordan
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520, USA.
| | - Delilah Jewel
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA.
| | - Fay J Dufort
- Department of Biology, Higgins Hall, 140 Commonwealth Avenue, Boston College, Chestnut Hill, MA, USA.
| | - Scott J Miller
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520, USA.
| | - Thomas C Chiles
- Department of Biology, Higgins Hall, 140 Commonwealth Avenue, Boston College, Chestnut Hill, MA, USA.
| | - Mary F Roberts
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA.
| |
Collapse
|
6
|
Chang YC, Weng CM, Shaikh T, Hong FE. Magnesium Halide-promoted Ring-opening Reaction of Cyclic Ether in the Presence of Phosphine Halide. J CHIN CHEM SOC-TAIP 2015. [DOI: 10.1002/jccs.201500154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Yadav M, Raghupathy R, Saikam V, Dara S, Singh PP, Sawant SD, Mayor S, Vishwakarma RA. Synthesis of non-hydrolysable mimics of glycosylphosphatidylinositol (GPI) anchors. Org Biomol Chem 2014; 12:1163-72. [DOI: 10.1039/c3ob42116c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Inositol based non-viral vectors for transgene expression in human cervical carcinoma and hepatoma cell lines. Biomaterials 2013; 35:2039-50. [PMID: 24314555 DOI: 10.1016/j.biomaterials.2013.11.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 11/13/2013] [Indexed: 01/08/2023]
Abstract
Myo-Inositol (INO) is a biomolecule with crucial functions in many aspects. In this study, hyperbranched copolymers for gene delivery were synthesized based on inositol and low molecular weight polyethylenimine. The capacity of INO-PEIs to load plasmid DNA and their biocompatibility was demonstrated. A tumor target ligand, folic acid (FA), which was widely used for drug delivery systems, was subsequently conjugated to INO-PEIs and resulted in INO-PEI-FA copolymers. The polymers were then evaluated on their activity to mediate transgene expression in mammalian cell lines. As indicated, INO-PEIs were able to mediate efficient transgene expression, which was particularly noticeable in carcinoma cell line HeLa. INO-PEI-FA further improved the efficiency in HepG2. Distribution of INO-PEI-FA polymers in non-carcinoma NIH 3T3 and carcinoma HeLa cell lines was discussed.
Collapse
|
9
|
Gao Q, Lei T, Ye F. Therapeutic targeting of EGFR-activated metabolic pathways in glioblastoma. Expert Opin Investig Drugs 2013; 22:1023-40. [PMID: 23731170 DOI: 10.1517/13543784.2013.806484] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The highly divergent histological heterogeneities, aggressive invasion and extremely poor response to treatment make glioblastoma (GBM) one of the most lethal and difficult cancers in humans. Among key elements driving its behavior is epidermal growth factor receptor (EGFR), however, neither traditional therapy including neurosurgery, radiation, temozolomide, nor targeted EGFR therapeutics in clinic has generated promising results to date. Strategies are now focusing on blocking the downstream EGFR-activated metabolic pathways and the key phosphorylated kinases. AREAS COVERED Here, we review two major EGFR-activated downstream metabolic pathways including the PI3K/AKT/mTOR and RAS/RAF/MAPK pathways and their key phosphorylated kinase alterations in GBMs. This review also discusses potential pharmacological progress from bench work to clinical trials in order to evaluate specific inhibitors as well as therapeutics targeting PI3K and RAS signaling pathways. EXPERT OPINION Several factors impede clinical progress in targeting GBM, including the high rates of acquired resistance, heterogeneity within and across the tumors, complexity of signaling pathways and difficulty in traversing the blood-brain barrier (BBB). Substantial insight into genetic and molecular pathways and strategies to better tap the potential of these agents include rational combinatorial regimens and molecular phenotype-based patient enrichment, each of which will undoubtedly generate new therapeutic approaches to combat these devastating disabilities in the near future.
Collapse
Affiliation(s)
- Qinglei Gao
- Huazhong University of Science and Technology, Tongji Hospital, Tongji Medical College, Cancer Biology Research Center, wuhan, China
| | | | | |
Collapse
|
10
|
Song F, Zhang J, Cui Q, Wang T, Chen W, Li L, Xi Z. Synthesis and antitumour activity of inositol phosphonate analogues. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2011.12.085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
11
|
Song F, Zhang J, Zhao Y, Chen W, Li L, Xi Z. Synthesis and antitumor activity of inositol phosphotriester analogues. Org Biomol Chem 2012; 10:3642-54. [DOI: 10.1039/c2ob00031h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
12
|
Meuillet EJ. Novel inhibitors of AKT: assessment of a different approach targeting the pleckstrin homology domain. Curr Med Chem 2011; 18:2727-42. [PMID: 21649580 DOI: 10.2174/092986711796011292] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 05/13/2011] [Indexed: 12/21/2022]
Abstract
Protein kinase B/AKT plays a central role in cancer. The serine/threonine kinase is overexpressed or constitutively active in many cancers and has been validated as a therapeutic target for cancer treatment. However, targeting the kinase activity has revealed itself to be a challenge due to non-selectivity of the compounds towards other kinases. This review summarizes other approaches scientists have developed to inhibit the activity and function of AKT. They consist in targeting the pleckstrin homology (PH) domain of AKT. Indeed, upon the generation of 3-phosphorylated phosphatidylinositol phosphates (PI3Ps) by PI3-kinase (PI3K), AKT translocates from the cytosol to the plasma membrane and binds to the PI3Ps via its PH domain. Thus, several analogs of PI3Ps (PI Analogs or PIAs), alkylphospholipids (APLs), such as edelfosine or inositol phophates (IPs) have been described that inhibit the binding of the PH domain to PI3Ps. Recent allostertic inhibitors and small molecules that do not bind the kinase domain but affect the kinase activity of AKT, presumably by interacting with the PH domain, have been also identified. Finally, several drug screening studies spawned novel chemical scaffolds that bind the PH domain of AKT. Together, these approaches have been more or less sucessfull in vitro and to some extent translated in preclinical studies. Several of these new AKT PH domain inhibitors exhibit promising anti-tumor activity in mouse models and some of them show synergy with ionizing radiation and chemotherapy. Early clinical trials have started and results will attest to the validity and efficacy of such approaches in the near future.
Collapse
Affiliation(s)
- E J Meuillet
- Department of Nutritional Sciences, The University of Arizona, Tucson, Arizona, USA.
| |
Collapse
|
13
|
Mattmann ME, Stoops SL, Lindsley CW. Inhibition of Akt with small molecules and biologics: historical perspective and current status of the patent landscape. Expert Opin Ther Pat 2011; 21:1309-38. [PMID: 21635152 DOI: 10.1517/13543776.2011.587959] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Akt plays a pivotal role in cell survival and proliferation through a number of downstream effectors; unregulated activation of the PI3K/PTEN/Akt pathway is a prominent feature of many human cancers. Akt is considered an attractive target for cancer therapy by the inhibition of Akt alone or in combination with standard cancer chemotherapeutics. Both preclinical animal studies and clinical trials in humans have validated Akt as an important target of cancer drug discovery. AREA COVERED A historical perspective of Akt inhibitors, including PI analogs, ATP-competitive and allosteric Akt inhibitors, along with other inhibitory mechanisms are reviewed in this paper with a focus on issued patents, patent applications and a summary of clinical trial updates since the last review in 2007. EXPERT OPINION A vast diversity of inhibitors of Akt, both small molecule and biologic, have been developed in the past 5 years, with over a dozen in various phases of clinical development, and several displaying efficacy in humans. While it is not yet clear which mechanism of Akt inhibition will be optimal in humans, or which Akt isoforms to inhibit, or whether a small molecule or biologic agent will be best, data to all of these points will be available in the near future.
Collapse
Affiliation(s)
- Margrith E Mattmann
- Vanderbilt University, Vanderbilt Medical Center, Vanderbilt Program in Drug Discovery, Department of Pharmacology , Department of Chemistry , Nashville, TN 37232 , USA
| | | | | |
Collapse
|
14
|
Jiang JK, Shen M, Thomas CJ, Boxer MB. Chiral kinase inhibitors. Curr Top Med Chem 2011; 11:800-9. [PMID: 21291394 PMCID: PMC3220195 DOI: 10.2174/156802611795165052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 06/15/2010] [Indexed: 01/06/2023]
Abstract
Small molecule kinase inhibitors are important tools for studying cellular signaling pathways, phenotypes and are, occasionally, useful clinical agents. With stereochemistry pervasive throughout the molecules of life it is no surprise that a single stereocenter can bestow a ligand with distinct binding affinities to various protein targets. While the majority of small molecule kinase inhibitors reported to date are achiral, a number of asymmetric compounds show great utility as tools for probing kinase-associated biomolecular events as well as promising therapeutic leads. The mechanism by which chirality is introduced varies but includes screening of chiral libraries, incorporation of chiral centers during optimization efforts and the rational installation of a chiral moiety as guided by structural and modeling efforts. Here we discuss several advanced chiral small molecule kinase inhibitors where stereochemistry plays an important role in terms of potency and selectivity.
Collapse
Affiliation(s)
- Jian-kang Jiang
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, USA
| | - Min Shen
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, USA
| | - Craig J. Thomas
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, USA
| | - Mathew B. Boxer
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, USA
| |
Collapse
|
15
|
Wang YK, Chen W, Blair D, Pu M, Xu Y, Miller SJ, Redfield AG, Chiles TC, Roberts MF. Insights into the structural specificity of the cytotoxicity of 3-deoxyphosphatidylinositols. J Am Chem Soc 2008; 130:7746-55. [PMID: 18498165 DOI: 10.1021/ja710348r] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
D-3-deoxyphosphatidylinositol (D-3-deoxy-PI) derivatives have cytotoxic activity against various human cancer cell lines. These phosphatidylinositols have a potentially wide array of targets in the phosphatidylinositol-3-kinase (PI3K)/Akt signaling network. To explore the specificity of these types of molecules, we have synthesized D-3-deoxydioctanoylphosphatidylinositol (D-3-deoxy-diC8PI), D-3,5-dideoxy-diC8PI, and D-3-deoxy-diC8PI-5-phosphate and their enantiomers, characterized their aggregate formation by novel high-resolution field cycling (31)P NMR, and examined their susceptibility to phospholipase C (PLC), their effects on the catalytic activities of PI3K and PTEN against diC8PI and diC8PI-3-phosphate substrates, respectively, and their ability to induce the death of U937 human leukemic monocyte lymphoma cells. Of these molecules, only D-3-deoxy-diC8PI was able to promote cell death; it did so with a median inhibitory concentration of 40 microM, which is much less than the critical micelle concentration of 0.4 mM. Under these conditions, little inhibition of PI3K or PTEN was observed in assays of recombinant enzymes, although the complete series of deoxy-PI compounds did provide insights into ligand binding by PTEN. D-3-deoxy-diC8PI was a poor substrate and not an inhibitor of the PLC enzymes. The in vivo results are consistent with the current thought that the PI analogue acts on Akt1, since the transcription initiation factor eIF4e, which is a downstream signaling target of the PI3K/Akt pathway, exhibited reduced phosphorylation on Ser209. Phosphorylation of Akt1 on Ser473 but not Thr308 was reduced. Since the potent cytotoxicity for U937 cells was completely lost when L-3-deoxy-diC8PI was used as well as when the hydroxyl group at the inositol C5 in D-3-deoxy-diC8PI was modified (by either replacing this group with a hydrogen or phosphorylating it), both the chirality of the phosphatidylinositol moiety and the hydroxyl group at C5 are major determinants of the binding of 3-deoxy-PI to its target in cells.
Collapse
Affiliation(s)
- Yanling K Wang
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
|
18
|
Mollinedo F. Antitumour ether lipids: proapoptotic agents with multiple therapeutic indications. Expert Opin Ther Pat 2007. [DOI: 10.1517/13543776.17.4.385] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Abrunhosa-Thomas I, Sellers CE, Montchamp JL. Alkylation of H-phosphinate esters under basic conditions. J Org Chem 2007; 72:2851-6. [PMID: 17352490 PMCID: PMC2525801 DOI: 10.1021/jo062436o] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient and general procedure was developed for the direct alkylation of H-phosphinate esters with LHMDS at low temperature. The simplicity of the reaction allows the use of various H-phosphinate esters and takes place with a wide range of electrophiles. The approach can be employed to access some GABA analogues or precursors to GABA analogues. The isolated yields are moderate to good. This is the first report of an alkylation with a secondary iodide or a primary chloride.
Collapse
Affiliation(s)
| | - Claire E. Sellers
- Department of Chemistry, TCU Box 298860, Texas Christian University, Fort, Worth, Texas 76129
| | - Jean-Luc Montchamp
- Department of Chemistry, TCU Box 298860, Texas Christian University, Fort, Worth, Texas 76129
| |
Collapse
|
20
|
Qian L, Xu Y, Simper T, Jiang G, Aoki J, Umezu-Goto M, Arai H, Yu S, Mills GB, Tsukahara R, Makarova N, Fujiwara Y, Tigyi G, Prestwich GD. Phosphorothioate analogues of alkyl lysophosphatidic acid as LPA3 receptor-selective agonists. ChemMedChem 2006; 1:376-83. [PMID: 16892372 DOI: 10.1002/cmdc.200500042] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The metabolically stabilized LPA analogue 1-oleoyl-2-O-methyl-rac-glycerophosphorothioate (OMPT) was recently shown to be a potent subtype-selective agonist for LPA3, a G-protein-coupled receptor (GPCR) in the endothelial differentiation gene (EDG) family. Further stabilization was achieved by replacing the sn-1 O-acyl group with an O-alkyl ether. A new synthetic route for the enantiospecific synthesis of the resulting alkyl LPA phosphorothioate analogues is described. The pharmacological properties of the alkyl OMPT analogues were characterized for subtype-specific agonist activity using Ca2+-mobilization assays in RH7777 cells expressing the individual EDG family LPA receptors. Alkyl OMPT analogues induced cell migration in cancer cells mediated through LPA1. Alkyl OMPT analogues also activated Ca2+ release through LPA2 activation but with less potency than sn-1-oleoyl LPA. In contrast, alkyl OMPT analogues were potent LPA3 agonists. The alkyl OMPTs 1 and 3 induced cell proliferation at submicromolar concentrations in 10T 1/2 fibroblasts. Interestingly, the absolute configuration of the sn-2 methoxy group of the alkyl OMPT analogues was not recognized by any of the LPA receptors in the EDG family. By using a reporter gene assay for the LPA-activated nuclear transcription factor PPARgamma, we demonstrated that phosphorothioate diesters have agonist activity that is independent of their ligand properties at the LPA-activated GPCRs. The availability of new alkyl LPA analogues expands the scope of structure-activity studies and will further refine the molecular nature of ligand-receptor interactions for this class of GPCRs.
Collapse
Affiliation(s)
- Lian Qian
- Department of Medicinal Chemistry, The University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, Utah 84108-1257, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Gills JJ, Dennis PA. The development of phosphatidylinositol ether lipid analogues as inhibitors of the serine/threonine kinase, Akt. Expert Opin Investig Drugs 2005; 13:787-97. [PMID: 15212619 DOI: 10.1517/13543784.13.7.787] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The serine/threonine kinase Akt is a component of the phosphatidylinositol 3'-kinase/Akt signal transduction pathway that is activated by receptor tyrosine kinases, activated Ras and integrins. As Akt regulates many processes crucial to carcinogenesis, and Akt activation has been observed in human cancers, intense efforts are underway to develop Akt inhibitors as cancer therapeutics. Towards this aim, phosphatidylinositol ether lipid analogues (PIAs), which are structurally similar to the products of phosphatidylinositol 3'-kinase, have been synthesised. PIAs inhibit Akt translocation, phosphorylation and kinase activity. Furthermore, they selectively induce apoptosis in cancer cell lines that depend on Akt for survival. This review will trace the development of PIAs, cover the biological activities of PIAs and discuss future steps and challenges in their development.
Collapse
Affiliation(s)
- Joell J Gills
- Cancer Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20889, USA
| | | |
Collapse
|
22
|
Palladium-catalyzed phosphorus–carbon bond formation: cross-coupling reactions of alkyl phosphinates with aryl, heteroaryl, alkenyl, benzylic, and allylic halides and triflates. Tetrahedron 2005. [DOI: 10.1016/j.tet.2005.03.107] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Drees BE, Mills GB, Rommel C, Prestwich GD. Therapeutic potential of phosphoinositide 3-kinase inhibitors. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.14.5.703] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
24
|
Phosphatidylinositol analogues that block the activation of Akt for the treatment of cancer. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.14.9.1379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
25
|
Affiliation(s)
- J E Dancey
- Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD, USA
| |
Collapse
|
26
|
Resolution of synthetically useful myo-inositol derivatives using the chiral auxiliary O-acetylmandelic acid. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.tetasy.2004.11.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Schedler DJA, Baker DC. Fluorinated cyclitols as useful biological probes of phosphatidylinositol metabolism. Carbohydr Res 2004; 339:1585-95. [PMID: 15183732 DOI: 10.1016/j.carres.2004.03.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2003] [Accepted: 03/31/2004] [Indexed: 10/26/2022]
Abstract
A number of deoxyfluoro cyclitols have been synthesized and evaluated as probes of the phosphatidylinositol pathway (PtdIns pathway), most notably 5-deoxy-5-fluoro-myo-inositol, which is incorporated into the pathway at about 25% the level of myo-inositol itself. Unfortunately, none of the cyclitols have proved effective in limiting cell proliferation, as the cells are able to 'synthesize around' the fraudulent cyclitols using natural myo-inositol as substrate. Inhibitors for 3-phosphatidylinositol kinase, which has importance in a number of pathological conditions, including cancer, have been intensively investigated. 3-Deoxy-3-fluoro-myo-inositol is incorporated into the PtdIns pathway; however, only related phosphatidyl derivatives, for example, a methyl ether derivative of the 3-deoxy inositol, showed significant antiproliferative activity. Synthesis of the deoxyfluoro analogues most often has been accomplished by DAST fluoro-de-hydroxylation of the appropriate cyclitol, generally leading to products of inversion.
Collapse
Affiliation(s)
- David J A Schedler
- Department of Chemistry, Birmingham-Southern College, Birmingham, AL 35254, USA
| | | |
Collapse
|
28
|
Sureshan KM, Watanabe Y. An efficient route to optically active inositol derivatives via the resolution of myo-inositol 1,3,5-orthoformate: a short synthesis of d-myo-inositol-4-phosphate. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/j.tetasy.2004.02.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
|
30
|
West KA, Castillo SS, Dennis PA. Activation of the PI3K/Akt pathway and chemotherapeutic resistance. Drug Resist Updat 2002; 5:234-48. [PMID: 12531180 DOI: 10.1016/s1368-7646(02)00120-6] [Citation(s) in RCA: 444] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The resistance of many types of cancer to conventional chemotherapies is a major factor undermining successful cancer treatment. In this review, the role of a signal transduction pathway comprised of the lipid kinase, phosphatidylinositol 3-kinase (PI3K), and the serine/threonine kinase, Akt (or PKB), in chemotherapeutic resistance will be explored. Activation of this pathway plays a pivotal role in essential cellular functions such as survival, proliferation, migration and differentiation that underlie the biology of human cancer. Akt activation also contributes to tumorigenesis and tumor metastasis, and as shown most recently, resistance to chemotherapy. Modulating Akt activity is now a commonly observed endpoint of chemotherapy administration or administration of chemopreventive agents. Studies performed in vitro and in vivo combining small molecule inhibitors of the PI3K/Akt pathway with standard chemotherapy have been successful in attenuating chemotherapeutic resistance. As a result, small molecules designed to specifically target Akt and other components of the pathway are now being developed for clinical use as single agents and in combination with chemotherapy to overcome therapeutic resistance. Specifically inhibiting Akt activity may be a valid approach to treat cancer and increase the efficacy of chemotherapy.
Collapse
Affiliation(s)
- Kip A West
- Cancer Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Building 8, Room 5101, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| | | | | |
Collapse
|
31
|
Synthesis and biological activity of 3-hydroxy(phosphono)methyl-bearing phosphatidylinositol ether lipid analogues. Tetrahedron Lett 2002. [DOI: 10.1016/s0040-4039(02)00354-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Ravikumar K, Farquhar D. Facile selective cleavage of a myo-inositol trans-isopropylidene acetal in the presence of a cis-isopropylidene acetal. Tetrahedron Lett 2002. [DOI: 10.1016/s0040-4039(01)02382-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
33
|
Pettegrew JW, Panchalingam K, Hamilton RL, McClure RJ. Brain membrane phospholipid alterations in Alzheimer's disease. Neurochem Res 2001; 26:771-82. [PMID: 11565608 DOI: 10.1023/a:1011603916962] [Citation(s) in RCA: 219] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Studies have demonstrated alterations in brain membrane phospholipid metabolite levels in Alzheimer's disease (AD). The changes in phospholipid metabolite levels correlate with neuropathological hallmarks of the disease and measures of cognitive decline. This 31P nuclear magnetic resonance (NMR) study of Folch extracts of autopsy material reveals significant reductions in AD brain levels of phosphatidylethanolamine (PtdEtn) and phosphatidylinositol (PtdIns), and elevations in sphingomyelin (SPH) and the plasmalogen derivative of PtdEtn. In the superior temporal gyrus, there were additional reductions in the levels of diphosphatidylglycerol (DPG) and phosphatidic acid (PtdA). The findings are present in 3/3 as well as 3/4 and 4/4 apolipoprotein E (apoE) genotypes. The AD findings do not appear to reflect non-specific neurodegeneration or the presence of gliosis. The present findings could possibly contribute to an abnormal membrane repair in AD brains which ultimately results in synaptic loss and the aggregation of A beta peptide.
Collapse
Affiliation(s)
- J W Pettegrew
- Department of Psychiatry. School of Medicine, University of Pittsburgh, Pennsylvania, USA.
| | | | | | | |
Collapse
|
34
|
He J, Cheung AP, Wang E, Fang K, Liu P. High-performance liquid chromatographic analysis for a non-chromophore-containing phosphatidyl inositol analog, 1-[(1-O-octadecyl-2-O-methyl-sn-glycero)-phospho]-1D-3-deoxy-myo-inositol, using indirect UV detection. J Chromatogr A 2001; 913:355-63. [PMID: 11355833 DOI: 10.1016/s0021-9673(01)00603-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Phosphatidylinositide-3-kinase (PI3 kinase) is an important constituent of growth factor regulation. It is also involved in oncogene signaling pathways. An ether-containing phosphatidyl inositol(PI) analog, OMDPI, 1-[(1-O-octadecyl-2-O-methyl-sn-glycero)-phospho]-1D-3-deoxy-myo-inositol, is a potent inhibitor of this pathway and may be clinically useful in the treatment of a variety of neoplasms. OMDPI is currently being investigated as an anti-tumor agent by the National Cancer Institute, NIH. OMDPI, a non-chromophore-containing PI analog, is not directly adaptable to the commonly used UV detection of HPLC. This paper reports the development and validation of an HPLC assay for OMDPI based on indirect UV detection, in which a UV-absorbing ion-pair reagent (the probe), protriptyline, is added to the mobile phase to induce a signal for the compound. The method is sensitive (limit of detection <5 microl of 1 microg/ml or 5 ng), precise (R.S.D.<2.5%), linear (r2=0.9995) and accurate (error<0.7%). It is superior to refractive index detection and evaporative light scattering detection in either sensitivity or linearity and does not require special equipment.
Collapse
Affiliation(s)
- J He
- SRI International, Menlo Park, CA 94025-3493, USA.
| | | | | | | | | |
Collapse
|
35
|
Pettegrew JW, Panchalingam K, Levine J, McClure RJ, Gershon S, Yao JK. Chronic myo-inositol increases rat brain phosphatidylethanolamine plasmalogen. Biol Psychiatry 2001; 49:444-53. [PMID: 11274656 DOI: 10.1016/s0006-3223(00)00953-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Oral myo-inositol (12--18 g/day) has shown beneficial effect in placebo-controlled studies of major depression, panic disorder, and obsessive compulsive disorder, and preliminary data suggest it also may be effective in bipolar depression. Evidence linking antidepressant activity to membrane phospholipid alterations suggested the examination of acute and chronic myo-inositol effects on rat brain membrane phospholipid metabolism. METHODS With both (31)P nuclear magnetic resonance (NMR) and quantitative high-performance thin-layer chromatography (HPTLC; hydrolysis) methods, rat brain phospholipid levels were measured after acute (n = 20, each group) and chronic myo-inositol administration (n = 10, each group). With (31)P NMR, we measured myo-inositol rat brain levels after acute and chronic myo-inositol administration. RESULTS Brain myo-inositol increased by 17% after acute myo-inositol administration and by 5% after chronic administration, as compared with the control groups. Chronic myo-inositol administration increased brain phosphatidylethanolamine (PtdEtn) plasmalogen by 10% and decreased brain PtdEtn by 5%, thus increasing the ratio PtdEtn plasmalogen (PtdEtn-Plas)/PtdEtn by 15%. Phosphatidylethanolamine plasmalogen levels quantified by (31)P NMR and HPTLC were highly correlated. The validity and reliability of the (31)P NMR method for phospholipid analysis were demonstrated with phospholipid standards. CONCLUSIONS The observed alteration in the PtdEtn-Plas/PtdEtn ratio could provide insights into the therapeutic effect of myo-inositol in affective disorders.
Collapse
Affiliation(s)
- J W Pettegrew
- Neurophysics Laboratory, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | |
Collapse
|
36
|
Hu Y, Meuillet EJ, Berggren M, Powis G, Kozikowski AP. 3-Deoxy-3-substituted-D-myo-inositol imidazolyl ether lipid phosphates and carbonate as inhibitors of the phosphatidylinositol 3-kinase pathway and cancer cell growth. Bioorg Med Chem Lett 2001; 11:173-6. [PMID: 11206452 DOI: 10.1016/s0960-894x(00)00640-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
3-Modified D-myo-inositol imidazolyl ether lipid phosphates and a carbonate were synthesized and evaluated as inhibitors of P13-K and Akt. These data are presented along with IC50 values for the inhibition of the growth of three cancer cell lines.
Collapse
Affiliation(s)
- Y Hu
- Department of Neurology, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | | | | | |
Collapse
|
37
|
Abstract
Monosubstituted phosphinic acids are esterified with orthosilicates in excellent yields. Phosphinylidene-containing acids react selectively under these conditions, while disubstituted phosphinic acids and phosphonic acids remain unchanged. One-pot procedures are also described for the preparation of phosphinate esters from an alcohol. This novel method provides a convenient and general alternative to more commonly employed conditions such as diazomethane or carbodiimide.
Collapse
|
38
|
Synthesis and Akt inhibitory properties of a 1d-3,4-dideoxyphosphatidylinositol ether lipid. Tetrahedron Lett 2000. [DOI: 10.1016/s0040-4039(00)01186-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Hu Y, Qiao L, Wang S, Rong SB, Meuillet EJ, Berggren M, Gallegos A, Powis G, Kozikowski AP. 3-(Hydroxymethyl)-bearing phosphatidylinositol ether lipid analogues and carbonate surrogates block PI3-K, Akt, and cancer cell growth. J Med Chem 2000; 43:3045-51. [PMID: 10956212 DOI: 10.1021/jm000117y] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phosphatidylinositol 3-kinase (PI3-K) phosphorylates the 3-position of phosphatidylinositol to give rise to three signaling phospholipids. Binding of the pleckstrin homology (PH) domain of Akt to membrane PI(3)P's causes the translocation of Akt to the plasma membrane bringing it into contact with membrane-bound Akt kinase (PDK1 and 2), which phosphorylates and activates Akt. Akt inhibits apoptosis by phosphorylating Bad, thus promoting its binding to and blockade of the activity of the cell survival factor Bcl-x. Herein we present the synthesis and biological activity of several novel phosphatidylinositol analogues and demonstrate the ability of the carbonate group to function as a surrogate for the phosphate moiety. Due to a combination of their PI3-K and Akt inhibitory activities, the PI analogues 2, 3, and 5 proved to be good inhibitors of the growth of various cancer cell lines with IC(50) values in the 1-10 microM range. The enhanced Akt inhibitory activity of the axial hydroxymethyl-bearing analogue 5 compared to its equatorial counterpart 6 is rationalized based upon postulated differences in the H-bonding patterns of these compounds in complex with a homology modeling generated structure of the PH domain of Akt. This work represents the first attempt to examine the effects of 3-modified PI analogues on these two crucial cell signaling proteins, PI3-K and Akt, in an effort to better understand their cell growth inhibitory properties.
Collapse
Affiliation(s)
- Y Hu
- Drug Discovery Program, Department of Neurology, Georgetown University Medical Center, 3970 Reservoir Road NW, Washington, D.C. 20007, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
da Silva AD, Benicio AAA, Gero SD. Enantioselective synthesis of some 6-deoxy-halodeoxy inositol derivatives. Tetrahedron Lett 1999. [DOI: 10.1016/s0040-4039(99)01307-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|