1
|
Chen WQ, Yin MM, Song PJ, He XH, Liu Y, Jiang FL. Thermodynamics, Kinetics and Mechanisms of Noncompetitive Allosteric Inhibition of Chymotrypsin by Dihydrolipoic Acid-Coated Gold Nanoclusters. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6447-6457. [PMID: 32460493 DOI: 10.1021/acs.langmuir.0c00699] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Enzymes are an important class of biomacromolecules which catalyze many metabolic processes in living systems. Nanomaterials can be synthesized with tailored sizes as well as desired surface modifications, thus acting as promising enzyme regulators. Fluorescent gold nanoclusters (AuNCs) are a representative class of ultrasmall nanoparticles (USNPs) with sizes of ∼2 nm, smaller than most of proteins including enzymes. In this work, we chose α-chymotrypsin (ChT) and AuNCs as the model system. Activity assays and inhibition kinetics studies showed that dihydrolipoic acid (DHLA)-coated AuNCs (DHLA-AuNCs) had a high inhibitory potency (IC50 = 3.4 μM) and high inhibitory efficacy (>80%) on ChT activity through noncompetitive inhibition mechanism. In distinct contrast, glutathione (GSH)-coated AuNCs (GSH-AuNCs) had no significant inhibition effects. Fluorescence spectroscopy, agarose gel electrophoresis and circular dichroism (CD) spectroscopy were conducted to explore the underlying mechanisms. A two-step interaction model was proposed. First, both DHLA-AuNCs and GSH-AuNCs might be bound to the positively charged sites of ChT through electrostatic forces. Second, further hydrophobic interactions occurred between three tyrosine residues of ChT and the hydrophobic carbon chain of DHLA, leading to a significant structural change thus to deactivate ChT on the allosteric site. On the contrary, no such interactions occurred with GSH of zwitterionic characteristic, which explained no inhibitory effect of GSH-AuNCs on ChT. To the best of our knowledge, this is the first example of the allosteric inhibition of ChT by nano regulators. These findings provide a fundamental basis for the design and development of nano regulators.
Collapse
Affiliation(s)
- Wen-Qi Chen
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Miao-Miao Yin
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Peng-Jun Song
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Xiao-Hang He
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yi Liu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
- Hubei Province Key Laboratory for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
- Guangxi Key Laboratory of Natural Polymer Chemistry, College of Chemistry and Materials Science, Nanning Normal University, Nanning 530001, P. R. China
| | - Feng-Lei Jiang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
2
|
Arooj M, Thangapandian S, John S, Hwang S, Park JK, Lee KW. Computational Studies of Novel Chymase Inhibitors Against Cardiovascular and Allergic Diseases: Mechanism and Inhibition. Chem Biol Drug Des 2012; 80:862-75. [DOI: 10.1111/cbdd.12006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Saavedra CJ, Boto A, Hernández R, Miranda JI, Aizpurua JM. Conformation and Chiral Effects in α,β,α-Tripeptides. J Org Chem 2012; 77:5907-13. [DOI: 10.1021/jo300892u] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Carlos J. Saavedra
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico
Francisco Sánchez 3, 38206 La Laguna, Tenerife, Spain
| | - Alicia Boto
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico
Francisco Sánchez 3, 38206 La Laguna, Tenerife, Spain
| | - Rosendo Hernández
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico
Francisco Sánchez 3, 38206 La Laguna, Tenerife, Spain
| | - José Ignacio Miranda
- Departamento de Química Orgánica I, Jose Mari Korta R&D Center, Universidad del País Vasco UPV/EHU, Avda. Tolosa-72, 20018 San Sebastian, Spain
| | - Jesus M. Aizpurua
- Departamento de Química Orgánica I, Jose Mari Korta R&D Center, Universidad del País Vasco UPV/EHU, Avda. Tolosa-72, 20018 San Sebastian, Spain
| |
Collapse
|
4
|
Arooj M, Thangapandian S, John S, Hwang S, Park JK, Lee KW. 3D QSAR pharmacophore modeling, in silico screening, and density functional theory (DFT) approaches for identification of human chymase inhibitors. Int J Mol Sci 2011; 12:9236-64. [PMID: 22272131 PMCID: PMC3257128 DOI: 10.3390/ijms12129236] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 11/18/2011] [Accepted: 11/23/2011] [Indexed: 11/18/2022] Open
Abstract
Human chymase is a very important target for the treatment of cardiovascular diseases. Using a series of theoretical methods like pharmacophore modeling, database screening, molecular docking and Density Functional Theory (DFT) calculations, an investigation for identification of novel chymase inhibitors, and to specify the key factors crucial for the binding and interaction between chymase and inhibitors is performed. A highly correlating (r = 0.942) pharmacophore model (Hypo1) with two hydrogen bond acceptors, and three hydrophobic aromatic features is generated. After successfully validating "Hypo1", it is further applied in database screening. Hit compounds are subjected to various drug-like filtrations and molecular docking studies. Finally, three structurally diverse compounds with high GOLD fitness scores and interactions with key active site amino acids are identified as potent chymase hits. Moreover, DFT study is performed which confirms very clear trends between electronic properties and inhibitory activity (IC(50)) data thus successfully validating "Hypo1" by DFT method. Therefore, this research exertion can be helpful in the development of new potent hits for chymase. In addition, the combinational use of docking, orbital energies and molecular electrostatic potential analysis is also demonstrated as a good endeavor to gain an insight into the interaction between chymase and inhibitors.
Collapse
Affiliation(s)
- Mahreen Arooj
- Division of Applied Life Science (BK21 Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science(RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Gazwa-dong, Jinju 660-701, Korea; E-Mails: (M.A.); (S.T.); (S.J.); (S.H.)
| | - Sundarapandian Thangapandian
- Division of Applied Life Science (BK21 Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science(RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Gazwa-dong, Jinju 660-701, Korea; E-Mails: (M.A.); (S.T.); (S.J.); (S.H.)
| | - Shalini John
- Division of Applied Life Science (BK21 Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science(RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Gazwa-dong, Jinju 660-701, Korea; E-Mails: (M.A.); (S.T.); (S.J.); (S.H.)
| | - Swan Hwang
- Division of Applied Life Science (BK21 Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science(RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Gazwa-dong, Jinju 660-701, Korea; E-Mails: (M.A.); (S.T.); (S.J.); (S.H.)
| | - Jong Keun Park
- Department of Chemistry Education, Research Institute of Natural Science (RINS), Educational Research Institute, Gyeongsang National University, Jinju 660-701, Korea; E-Mail:
| | - Keun Woo Lee
- Division of Applied Life Science (BK21 Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science(RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Gazwa-dong, Jinju 660-701, Korea; E-Mails: (M.A.); (S.T.); (S.J.); (S.H.)
| |
Collapse
|
5
|
Rice K, Spencer J. Inhibitors of human mast cell serine proteases and potential therapeutic applications. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.9.11.1537] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Maryanoff BE. Inhibitors of Serine Proteases as Potential Therapeutic Agents: The Road from Thrombin to Tryptase to Cathepsin G†. J Med Chem 2004; 47:769-87. [PMID: 14761180 DOI: 10.1021/jm030493t] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bruce E Maryanoff
- Drug Discovery, Johnson & Johnson Pharmaceutical Research & Development, Spring House, Pennsylvania 19477-0776, USA.
| |
Collapse
|
7
|
Pochet L, Dieu M, Frédérick R, Murray AM, Kempen I, Pirotte B, Masereel B. Investigation of the inhibition mechanism of coumarins on chymotrypsin by mass spectrometry. Tetrahedron 2003. [DOI: 10.1016/s0040-4020(03)00660-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Lou R, VanAlstine M, Sun X, Wentland MP. Preparation of N-hydroxysuccinimido esters via palladium-catalyzed carbonylation of aryl triflates and halides. Tetrahedron Lett 2003. [DOI: 10.1016/s0040-4039(03)00337-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Greco MN, Hawkins MJ, Powell ET, Almond HR, Corcoran TW, de Garavilla L, Kauffman JA, Recacha R, Chattopadhyay D, Andrade-Gordon P, Maryanoff BE. Nonpeptide inhibitors of cathepsin G: optimization of a novel beta-ketophosphonic acid lead by structure-based drug design. J Am Chem Soc 2002; 124:3810-1. [PMID: 11942800 DOI: 10.1021/ja017506h] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The serine protease cathepsin G (EC 3.4.21.20; Cat G), which is stored in the azurophilic granules of neutrophils (polymorphonuclear leukocytes) and released on degranulation, has been implicated in various pathological conditions associated with inflammation. By employing high-throughput screening, we identified beta-ketophosphonic acid 1 as a moderate inhibitor of Cat G (IC(50) = 4.1 microM). We were fortunate to obtain a cocrystal of 1 with Cat G and solve its structure by X-ray crystallography (3.5 A). Structural details from the X-ray analysis of 1.Cat G served as a platform for optimization of this lead compound by structure-based drug design. With the aid of molecular modeling, substituents were attached to the 3-position of the 2-naphthyl ring of 1, which occupies the S1 pocket of Cat G, to provide an extension into the hydrophobic S3 region. Thus, we arrived at analogue 7 with an 80-fold potency improvement over 1 (IC(50) = 53 nM). From these results, it is evident that the beta-ketophosphonic acid unit can form the basis for a novel class of serine protease inhibitors.
Collapse
Affiliation(s)
- Michael N Greco
- Johnson & Johnson Pharmaceutical Research & Development, Spring House, Pennsylvania 19477-0776, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hayashi Y, Iijima K, Katada J, Kiso Y. Structure-activity relationship studies of chloromethyl ketone derivatives for selective human chymase inhibitors. Bioorg Med Chem Lett 2000; 10:199-201. [PMID: 10698435 DOI: 10.1016/s0960-894x(99)00659-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Based on the SAR study of a classical chloromethyl ketone derivative, Z-PheCH2Cl 1, a series of compounds were synthesized. Among all the derivatives, compound 21 was found to be a potent human chymase inhibitor with no inhibitory activity against human leukocyte cathepsin G.
Collapse
Affiliation(s)
- Y Hayashi
- Department of Medicinal Chemistry, Kyoto Pharmaceutical University, Japan
| | | | | | | |
Collapse
|