1
|
Nagatsugi F, Onizuka K. Selective Chemical Modification to the Higher-Order Structures of Nucleic Acids. CHEM REC 2023; 23:e202200194. [PMID: 36111635 DOI: 10.1002/tcr.202200194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/31/2022] [Indexed: 11/06/2022]
Abstract
DNA and RNA can adopt a variety of stable higher-order structural motifs, including G-quadruplex (G4 s), mismatches, and bulges. Many of these secondary structures are closely related to the regulation of gene expression. Therefore, the higher-order structure of nucleic acids is one of the candidate therapeutic targets, and the development of binding molecules targeting the higher-order structure of nucleic acids has been pursued vigorously. Furthermore, as one of the methodologies for detecting the higher-order structures of these nucleic acids, developing techniques for the selective chemical modification of the higher-order structures of nucleic acids is also underway. In this personal account, we focus on the following higher-order structures of nucleic acids, double-stranded DNA containing the abasic site, T-T/U-U mismatch structure, and G-quadruplex structure, and describe the development of molecules that bind to and chemically modify these structures.
Collapse
Affiliation(s)
- Fumi Nagatsugi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan
| | - Kazumitsu Onizuka
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan.,Division for the Establishment of Frontier Sciences of Organization for Advanced Studies, Tohoku University, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| |
Collapse
|
2
|
Schlosser J, Ihmels H. Ligands for Abasic Site-containing DNA and their Use as Fluorescent Probes. Curr Org Synth 2023; 20:96-113. [PMID: 35170411 DOI: 10.2174/1570179419666220216091422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022]
Abstract
Apurinic and apyrimidinic sites, also referred to as abasic or AP sites, are residues of duplex DNA in which one DNA base is removed from a Watson-Crick base pair. They are formed during the enzymatic repair of DNA and offer binding sites for a variety of guest molecules. Specifically, the AP site may bind an appropriate ligand as a substitute for the missing nucleic base, thus stabilizing the abasic site-containing DNA (AP-DNA). Notably, ligands that bind selectively to abasic sites may be employed for analytical and therapeutical purposes. As a result, there is a search for structural features that establish a strong and selective association of a given ligand with the abasic position in DNA. Against this background, this review provides an overview of the different classes of ligands for abasic site-containing DNA (AP-DNA). This review covers covalently binding substrates, namely amine and oxyamine derivatives, as well as ligands that bind to AP-DNA by noncovalent association, as represented by small heterocyclic aromatic compounds, metal-organic complexes, macrocyclic cyclophanes, and intercalator-nucleobase conjugates. As the systematic development of fluorescent probes for AP-DNA has been somewhat neglected so far, this review article contains a survey of the available reports on the fluorimetric response of the ligand upon binding to the AP-DNA. Based on these data, this compilation shall present a perspective for future developments of fluorescent probes for AP-DNA.
Collapse
Affiliation(s)
- Julika Schlosser
- Department of Chemistry and Biology, University of Siegen, Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Adolf-Reichwein-Str. 2, 57068 Siegen, Germany
| | - Heiko Ihmels
- Department of Chemistry and Biology, University of Siegen, Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Adolf-Reichwein-Str. 2, 57068 Siegen, Germany
| |
Collapse
|
3
|
Xue L, Yu D, Wang L, Sun J, Song Y, Jia Y, Wu A, Zhang B, Mi W, Fan H, Sun H. Selective Antitumor Activity and Photocytotoxicity of Glutathione-Activated Abasic Site Trapping Agents. ACS Chem Biol 2022; 17:797-803. [PMID: 35297620 DOI: 10.1021/acschembio.2c00061] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abasic (AP) sites are one of the most common DNA lesions in cells. Aldehyde-reactive alkoxyamines capture AP sites and block the activity of APE1, the enzyme responsible for initiating their repair. Blocking the APE1 repair of AP sites leads to cell death, and it is an actively investigated approach for treating cancer. However, unselective AP site capture in different cells produces side effects and limits the application of alkoxyamines in chemotherapy. Herein we take advantage of the higher glutathione (GSH) concentration in cancer cells over normal cells to develop GSH-inducible agents that selectively kill cancer cells. 2,4-Dinitrobenzenesulfonamide caged coumarin-based alkoxyamines 1 and 2 are selectively revealed by GSH to release SO2 and fluorescent coumarin-based alkoxyamines 3 and 4 that trap AP sites in cells. GSH-directed AP site trapping and SO2 release result in selective cytotoxicity (defined as IC50WI38/IC50H1299) against H1299 lung cancer cells over normal WI38 lung cells, ranging from 1.8 to 2.8 for 1 and 2. The alkylating agent methylmethanesulfonate (MMS) promotes the formation of AP sites in cells and enhances the cytotoxicity of agent 1 in a dose-dependent way. Moreover, the comet assay and γH2AX assay suggest that AP adducts form a highly toxic DNA interstrand cross-link (ICL) upon photolysis, leading to further cell death. DNA flow cytometric analysis showed that 1 promoted cell apoptosis in the early stage and induced G2/M phase cell-cycle arrest. The 2,4-dinitrobenzenesulfonamide-caged alkoxyamines exhibited selective antitumor activity and photocytotoxicity in cancer cells, illuminating their potential as GSH-directed chemotherapeutic agents.
Collapse
Affiliation(s)
- Li Xue
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, Department of Chemical Biology, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Dehao Yu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, Department of Chemical Biology, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Lingling Wang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Jing Sun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, Department of Chemical Biology, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Ying Song
- Institute of Biomedical Research, Yunnan University, Kunming 650500, P. R. China
| | - Yuanyuan Jia
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, Department of Chemical Biology, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Ang Wu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, Department of Chemical Biology, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Beibei Zhang
- Institute of Biomedical Research, Yunnan University, Kunming 650500, P. R. China
| | - Wenyi Mi
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, P. R. China
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Heli Fan
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, Department of Chemical Biology, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Huabing Sun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, Department of Chemical Biology, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, P. R. China
| |
Collapse
|
4
|
Franco Pinto J, Fillion A, Duchambon P, Bombard S, Granzhan A. Acridine-O 6-benzylguanine hybrids: Synthesis, DNA binding, MGMT inhibition and antiproliferative activity. Eur J Med Chem 2021; 227:113909. [PMID: 34731767 DOI: 10.1016/j.ejmech.2021.113909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/24/2021] [Accepted: 10/06/2021] [Indexed: 12/13/2022]
Abstract
O6-Methylguanine-DNA-methyltransferase (MGMT) is a key DNA repair enzyme involved in chemoresistance to DNA-alkylating anti-cancer drugs such as Temozolomide (TMZ) through direct repair of drug-induced O6-methylguanine residues in DNA. MGMT substrate analogues, such as O6-benzylguanine (BG), efficiently inactivate MGMT in vitro and in cells; however, these drugs failed to reach the clinic due to adverse side effects. Here, we designed hybrid drugs combining a BG residue covalently linked to a DNA-interacting moiety (6-chloro-2-methoxy-9-aminoacridine). Specifically, two series of hybrids, encompassing three compounds each, were obtained by varying the position of the attachment point of BG (N9 of guanine vs. the benzyl group) and the length and nature of the linker. UV/vis absorption and fluorescence data indicate that all six hybrids adopt an intramolecularly stacked conformation in aqueous solutions in a wide range of temperatures. All hybrids interact with double-stranded DNA, as clearly evidenced by spectrophotometric titrations, without intercalation of the acridine ring and do not induce thermal stabilization of the duplex. All hybrids, as well as the reference DNA intercalator (6-chloro-2-methoxy-9-aminoacridine 8), irreversibly inhibit MGMT in vitro with variable efficiency, comparable to that of BG. In a multidrug-resistant glioblastoma cell line T98G, benzyl-linked hybrids 7a-c and the N9-linked hybrid 19b are moderately cytotoxic (GI50 ≥ 15 μM after 96 h), while N9-linked hybrids 19a and 19c are strongly cytotoxic (GI50 = 1-2 μM), similarly to acridine 8 (GI50 = 0.6 μM). Among all compounds, hybrids 19a and 19c, similarly to BG, display synergic cytotoxic effect upon co-treatment with subtoxic doses of TMZ, with combination index (CI) values as low as 0.2-0.3. In agreement with in vitro results, compound 19a inactivates cellular MGMT but, unlike BG, does not induce significant levels of DNA damage, either alone or in combination with TMZ, as indicated by the results of γH2AX immunostaining experiments. Instead, and unlike BG, compound 19a alone induces significant apoptosis of T98G cells, which is not further increased in a combination with TMZ. These results indicate that molecular mechanisms underlying the cytotoxicity of 19a and its combination with TMZ are distinct from that of BG. The strongly synergic properties of this combination represent an interesting therapeutic opportunity in treating TMZ-resistant cancers.
Collapse
Affiliation(s)
- Jaime Franco Pinto
- CNRS UMR9187, Inserm U1196, Institut Curie, PSL Research University, 91405, Orsay, France; CNRS UMR9187, Inserm U1196, Université Paris Saclay, 91405, Orsay, France
| | - Alexandra Fillion
- CNRS UMR9187, Inserm U1196, Institut Curie, PSL Research University, 91405, Orsay, France; CNRS UMR9187, Inserm U1196, Université Paris Saclay, 91405, Orsay, France
| | - Patricia Duchambon
- CNRS UMR9187, Inserm U1196, Institut Curie, PSL Research University, 91405, Orsay, France; CNRS UMR9187, Inserm U1196, Université Paris Saclay, 91405, Orsay, France
| | - Sophie Bombard
- CNRS UMR9187, Inserm U1196, Institut Curie, PSL Research University, 91405, Orsay, France; CNRS UMR9187, Inserm U1196, Université Paris Saclay, 91405, Orsay, France.
| | - Anton Granzhan
- CNRS UMR9187, Inserm U1196, Institut Curie, PSL Research University, 91405, Orsay, France; CNRS UMR9187, Inserm U1196, Université Paris Saclay, 91405, Orsay, France.
| |
Collapse
|
5
|
Zhang X, Bai Y, Jiang Y, Wang N, Yang F, Zhan L, Huang C. Homo-FRET enhanced ratiometric fluorescence strategy for exonuclease III activity detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1489-1494. [PMID: 33690735 DOI: 10.1039/d0ay02315a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, homo-FRET (Förster resonance energy transfer between the same kind of fluorophores) takes place in a hetero-FRET (FRET between two different fluorophores) system and can effectively improve the energy transfer efficiency. Herein, a novel ratiometric fluorescence method was developed for the detection of nuclease activity. Exonuclease III (Exo III), an enzyme which has a high exodeoxyribonuclease activity for double-stranded DNA (dsDNA) in the 3' to 5' direction, was chosen as a proof of concept of this strategy. In a linear dsDNA template, the occurrence of homo-FRET in two Cy3 donors enables the highly efficient transfer of energy to the Cy5 acceptor. The ratio of fluorescence intensity between Cy3 and Cy5 (FD/FA) increases in an Exo III concentration-dependent manner, which built the foundation of Exo III quantification. This method exhibits a linear range from 0.25 to 8 U mL-1 with a detection limit of 0.17 U mL-1. Importantly, this platform also shows the potential for screening Exo III inhibitors and detecting Exo III activity in complex samples.
Collapse
Affiliation(s)
- Xu Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
6
|
Peña FJ, O’Flaherty C, Ortiz Rodríguez JM, Martín Cano FE, Gaitskell-Phillips GL, Gil MC, Ortega Ferrusola C. Redox Regulation and Oxidative Stress: The Particular Case of the Stallion Spermatozoa. Antioxidants (Basel) 2019; 8:antiox8110567. [PMID: 31752408 PMCID: PMC6912273 DOI: 10.3390/antiox8110567] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/05/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023] Open
Abstract
Redox regulation and oxidative stress have become areas of major interest in spermatology. Alteration of redox homeostasis is recognized as a significant cause of male factor infertility and is behind the damage that spermatozoa experience after freezing and thawing or conservation in a liquid state. While for a long time, oxidative stress was just considered an overproduction of reactive oxygen species, nowadays it is considered as a consequence of redox deregulation. Many essential aspects of spermatozoa functionality are redox regulated, with reversible oxidation of thiols in cysteine residues of key proteins acting as an “on–off” switch controlling sperm function. However, if deregulation occurs, these residues may experience irreversible oxidation and oxidative stress, leading to malfunction and ultimately death of the spermatozoa. Stallion spermatozoa are “professional producers” of reactive oxygen species due to their intense mitochondrial activity, and thus sophisticated systems to control redox homeostasis are also characteristic of the spermatozoa in the horse. As a result, and combined with the fact that embryos can easily be collected in this species, horses are a good model for the study of redox biology in the spermatozoa and its impact on the embryo.
Collapse
Affiliation(s)
- Fernando J. Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, 10003 Cáceres, Spain; (J.M.O.R.); (F.E.M.C.); (G.L.G.-P.); (M.C.G.); (C.O.F.)
- Correspondence: ; Tel.: +34-927-257-167
| | - Cristian O’Flaherty
- Departments of Surgery (Urology Division) and Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montréal, QC H4A 3J1, Canada;
| | - José M. Ortiz Rodríguez
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, 10003 Cáceres, Spain; (J.M.O.R.); (F.E.M.C.); (G.L.G.-P.); (M.C.G.); (C.O.F.)
| | - Francisco E. Martín Cano
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, 10003 Cáceres, Spain; (J.M.O.R.); (F.E.M.C.); (G.L.G.-P.); (M.C.G.); (C.O.F.)
| | - Gemma L. Gaitskell-Phillips
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, 10003 Cáceres, Spain; (J.M.O.R.); (F.E.M.C.); (G.L.G.-P.); (M.C.G.); (C.O.F.)
| | - María C. Gil
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, 10003 Cáceres, Spain; (J.M.O.R.); (F.E.M.C.); (G.L.G.-P.); (M.C.G.); (C.O.F.)
| | - Cristina Ortega Ferrusola
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, 10003 Cáceres, Spain; (J.M.O.R.); (F.E.M.C.); (G.L.G.-P.); (M.C.G.); (C.O.F.)
| |
Collapse
|
7
|
Peña FJ, Ortiz Rodriguez JM, Gil MC, Ortega Ferrusola C. Flow cytometry analysis of spermatozoa: Is it time for flow spermetry? Reprod Domest Anim 2018; 53 Suppl 2:37-45. [DOI: 10.1111/rda.13261] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/06/2018] [Accepted: 05/01/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Fernando J. Peña
- Laboratory of Equine Reproduction and Spermatology; University of Extremadura; Cáceres Spain
| | - Jose M. Ortiz Rodriguez
- Laboratory of Equine Reproduction and Spermatology; University of Extremadura; Cáceres Spain
| | - María C. Gil
- Laboratory of Equine Reproduction and Spermatology; University of Extremadura; Cáceres Spain
| | | |
Collapse
|
8
|
Saftić D, Ban Ž, Matić J, Tumirv LM, Piantanida I. Conjugates of Classical DNA/RNA Binder with Nucleobase: Chemical, Biochemical and Biomedical Applications. Curr Med Chem 2018; 26:5609-5624. [PMID: 29737251 DOI: 10.2174/0929867325666180508090640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/27/2018] [Accepted: 04/10/2018] [Indexed: 11/22/2022]
Abstract
Among the most intensively studied classes of small molecules (molecular weight < 650) in biomedical research are small molecules that non-covalently bind to DNA/RNA, and another intensively studied class is nucleobase derivatives. Both classes have been intensively elaborated in many books and reviews. However, conjugates consisting of DNA/RNA binder covalently linked to nucleobase are much less studied and have not been reviewed in the last two decades. Therefore, this review summarized reports on the design of classical DNA/RNA binder - nucleobase conjugates, as well as data about their interactions with various DNA or RNA targets, and even in some cases protein targets are involved. According to these data, the most important structural aspects of selective or even specific recognition between small molecule and target are proposed, and where possible related biochemical and biomedical aspects were discussed. The general conclusion is that this, rather new class of molecules showed an amazing set of recognition tools for numerous DNA or RNA targets in the last two decades, as well as few intriguing in vitro and in vivo selectivities. Several lead research lines show promising advancements toward either novel, highly selective markers or bioactive, potentially druggable molecules.
Collapse
Affiliation(s)
- Dijana Saftić
- Division of Organic Chemistry and Biochemistry, Ruder Boskovic Institute; 10002 Zagreb, Croatia
| | - Željka Ban
- Division of Organic Chemistry and Biochemistry, Ruder Boskovic Institute; 10002 Zagreb, Croatia
| | - Josipa Matić
- Division of Organic Chemistry and Biochemistry, Ruder Boskovic Institute; 10002 Zagreb, Croatia
| | - Lidija-Marija Tumirv
- Division of Organic Chemistry and Biochemistry, Ruder Boskovic Institute; 10002 Zagreb, Croatia
| | - Ivo Piantanida
- Division of Organic Chemistry and Biochemistry, Ruder Boskovic Institute; 10002 Zagreb, Croatia
| |
Collapse
|
9
|
Ma DL, Dong ZZ, Vellaisamy K, Cheung KM, Yang G, Leung CH. Luminescent Strategies for Label-Free G-Quadruplex-Based Enzyme Activity Sensing. CHEM REC 2017; 17:1135-1145. [PMID: 28467681 DOI: 10.1002/tcr.201700014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Indexed: 12/30/2022]
Abstract
By catalyzing highly specific and tightly controlled chemical reactions, enzymes are essential to maintaining normal cellular physiology. However, aberrant enzymatic activity can be linked to the pathogenesis of various diseases. Therefore, the unusual activity of particular enzymes can represent testable biomarkers for the diagnosis or screening of certain diseases. In recent years, G-quadruplex-based platforms have attracted wide attention for the monitoring of enzymatic activities. In this Personal Account, we discuss our group's works on the development of G-quadruplex-based sensing system for enzyme activities by using mainly iridium(III) complexes as luminescent label-free probes. These studies showcase the versatility of the G-quadruplex for developing assays for a variety of different enzymes.
Collapse
Affiliation(s)
- Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Zhen-Zhen Dong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | | | - Ka-Man Cheung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Guanjun Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| |
Collapse
|
10
|
Rideout MC, Liet B, Gasparutto D, Berthet N. A high-throughput screen for detection of compound-dependent phosphodiester bond cleavage at abasic sites. Anal Biochem 2016; 513:93-97. [PMID: 27594348 DOI: 10.1016/j.ab.2016.08.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 07/28/2016] [Accepted: 08/30/2016] [Indexed: 11/20/2022]
Abstract
We have employed a DNA molecular beacon with a real abasic site, namely a 2-deoxyribose, in a fluorescent high-throughput assay to identify artificial nucleases that cleave at abasic sites. We screened a 1280 compound chemical library and identified a compound that functions as an artificial nuclease. We validated a key structure-activity relationship necessary for abasic site cleavage using available analogs of the identified artificial nuclease. We also addressed the activity of the identified compound with dose titrations in the absence and presence of a source of non-specific DNA. Finally, we characterized the phosphodiester backbone cleavage at the abasic site using denaturing gel electrophoresis. This study provides a useful template for researchers seeking to rapidly identify new artificial nucleases.
Collapse
Affiliation(s)
- Marc C Rideout
- Département de Chimie Moléculaire (DCM), Laboratoire Ingénierie et Interactions BioMoléculaires (I2BM), UMR-5250, ICMG FR-2607, CNRS, Université Grenoble Alpes (UGA), 570 Rue de la Chimie, BP-53, 38041 Grenoble Cedex 9, France.
| | - Benjamin Liet
- Département de Chimie Moléculaire (DCM), Laboratoire Ingénierie et Interactions BioMoléculaires (I2BM), UMR-5250, ICMG FR-2607, CNRS, Université Grenoble Alpes (UGA), 570 Rue de la Chimie, BP-53, 38041 Grenoble Cedex 9, France
| | - Didier Gasparutto
- Institut des Nanosciences & Cryogénie (INAC), SPrAM - UMR 5819 CEA/CNRS/Université Grenoble Alpes, Commissariat à l'Energie Atomique, 17 rue des Martyrs, F-38054 Grenoble Cedex 9, France
| | - Nathalie Berthet
- Département de Chimie Moléculaire (DCM), Laboratoire Ingénierie et Interactions BioMoléculaires (I2BM), UMR-5250, ICMG FR-2607, CNRS, Université Grenoble Alpes (UGA), 570 Rue de la Chimie, BP-53, 38041 Grenoble Cedex 9, France.
| |
Collapse
|
11
|
DNA cleavage at the AP site via β-elimination mediated by the AP site-binding ligands. Bioorg Med Chem 2016; 24:910-4. [PMID: 26777298 DOI: 10.1016/j.bmc.2016.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/08/2016] [Accepted: 01/08/2016] [Indexed: 11/23/2022]
Abstract
DNA is continuously damaged by endogenous and exogenous factors such as oxidation and alkylation. In the base excision repair pathway, the damaged nucleobases are removed by DNA N-glycosylase to form the abasic sites (AP sites). The alkylating antitumor agent exhibits cytotoxicity through the formation of the AP site. Therefore blockage or modulation of the AP site repair pathway may enhance the antitumor efficacy of DNA alkylating agents. In this study, we have examined the effects of the nucleobase-polyamine conjugated ligands (G-, A-, C- and T-ligands) on the cleavage of the AP site. The G- and A-ligands cleaved DNA at the AP site by promoting β-elimination in a non-selective manner by the G-ligand, and in a selective manner for the opposing dT by the A-ligand. These results suggest that the nucleobase-polyamine conjugate ligands may have the potential for enhancement of the cytotoxicities of the AP site.
Collapse
|
12
|
Torres-Valencia JM, Motilva V, Manríquez-Torres JJ, García-Mauriño S, López-Lázaro M, Zbakh H, Calderón-Montaño JM, Gómez-Hurtado MA, Gayosso-De-Lucio JA, Cerda-García-Rojas CM, Joseph-Nathan P. Antiproliferative Activity of seco-Oxacassanes from Acacia schaffneri. Nat Prod Commun 2015. [DOI: 10.1177/1934578x1501000613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This work reports the antiproliferative activity of seco-oxacassanes 1–3, isolated from Acacia schaffneri, against human colon (HT-29), lung (A-549), and melanoma (UACC-62) cancer cell lines, as well as against their non-malignant counterparts CCD-841 CoN, MRC-5, and VH-10, respectively, using the sulforhodamine B test. While compounds 1 and 3 were inactive, 2 presented strong activity with IC50 values between 0.12 and 0.92 μg mL–1. The cytotoxicity mechanisms of 2 were investigated by cell cycle analysis and through DNA repair pathways, indicating that the compound is capable of arresting the cell cycle in the G0/G1 phase. This effect might be generated through damage to DNA by alkylation. In addition, compound 2 was able to decrease HT-29 migration.
Collapse
Affiliation(s)
- J. Martín Torres-Valencia
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Km 4.5 Carretera Pachuca-Tulancingo, Mineral de la Reforma, Hidalgo, 42184 México
| | - Virginia Motilva
- Facultad de Farmacia, Universidad de Sevilla, Profesor García González No. 2, Sevilla, 41012 Spain
| | - J. Jesús Manríquez-Torres
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Km 4.5 Carretera Pachuca-Tulancingo, Mineral de la Reforma, Hidalgo, 42184 México
| | - Sofía García-Mauriño
- Facultad de Biología, Universidad de Sevilla, Profesor García González No. 2, Sevilla, 41012 Spain
| | - Miguel López-Lázaro
- Facultad de Farmacia, Universidad de Sevilla, Profesor García González No. 2, Sevilla, 41012 Spain
| | - Hanaa Zbakh
- Facultad de Farmacia, Universidad de Sevilla, Profesor García González No. 2, Sevilla, 41012 Spain
| | - José M. Calderón-Montaño
- Facultad de Farmacia, Universidad de Sevilla, Profesor García González No. 2, Sevilla, 41012 Spain
| | - Mario A. Gómez-Hurtado
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Km 4.5 Carretera Pachuca-Tulancingo, Mineral de la Reforma, Hidalgo, 42184 México
| | - Juan A. Gayosso-De-Lucio
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Km 4.5 Carretera Pachuca-Tulancingo, Mineral de la Reforma, Hidalgo, 42184 México
| | - Carlos M. Cerda-García-Rojas
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado 14–740, México, D.F., 07000 México
| | - Pedro Joseph-Nathan
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado 14–740, México, D.F., 07000 México
| |
Collapse
|
13
|
Malina J, Scott P, Brabec V. Shape-selective recognition of DNA abasic sites by metallohelices: inhibition of human AP endonuclease 1. Nucleic Acids Res 2015; 43:5297-306. [PMID: 25940617 PMCID: PMC4477665 DOI: 10.1093/nar/gkv438] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/23/2015] [Indexed: 02/07/2023] Open
Abstract
Loss of a base in DNA leading to creation of an abasic (AP) site leaving a deoxyribose residue in the strand, is a frequent lesion that may occur spontaneously or under the action of various physical and chemical agents. Progress in the understanding of the chemistry and enzymology of abasic DNA largely relies upon the study of AP sites in synthetic duplexes. We report here on interactions of diastereomerically pure metallo-helical 'flexicate' complexes, bimetallic triple-stranded ferro-helicates [Fe2(NN-NN)3](4+) incorporating the common NN-NN bis(bidentate) helicand, with short DNA duplexes containing AP sites in different sequence contexts. The results show that the flexicates bind to AP sites in DNA duplexes in a shape-selective manner. They preferentially bind to AP sites flanked by purines on both sides and their binding is enhanced when a pyrimidine is placed in opposite orientation to the lesion. Notably, the Λ-enantiomer binds to all tested AP sites with higher affinity than the Δ-enantiomer. In addition, the binding of the flexicates to AP sites inhibits the activity of human AP endonuclease 1, which is as a valid anticancer drug target. Hence, this finding indicates the potential of utilizing well-defined metallo-helical complexes for cancer chemotherapy.
Collapse
Affiliation(s)
- Jaroslav Malina
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Peter Scott
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Viktor Brabec
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-61265 Brno, Czech Republic
| |
Collapse
|
14
|
Benner K, Bergen A, Ihmels H, Pithan PM. Selective Stabilization of Abasic Site-Containing DNA by Insertion of Sterically Demanding Biaryl Ligands. Chemistry 2014; 20:9883-7. [DOI: 10.1002/chem.201403622] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Indexed: 01/17/2023]
|
15
|
Benner K, Ihmels H, Kölsch S, Pithan PM. Targeting abasic site-containing DNA with annelated quinolizinium derivatives: the influence of size, shape and substituents. Org Biomol Chem 2014; 12:1725-34. [DOI: 10.1039/c3ob42140f] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A comparative analysis showed that the type and degree of annelation as well as methyl or chloro-substitution are relevant structural features that determine the interactions of quinolizinium derivatives with abasic site-containing DNA.
Collapse
Affiliation(s)
- Katja Benner
- University of Siegen
- Organic Chemistry II
- Siegen, Germany
| | - Heiko Ihmels
- University of Siegen
- Organic Chemistry II
- Siegen, Germany
| | - Sarah Kölsch
- University of Siegen
- Organic Chemistry II
- Siegen, Germany
| | | |
Collapse
|
16
|
He HZ, Chan WI, Mak TY, Liu LJ, Wang M, Chan DSH, Ma DL, Leung CH. Detection of 3′→5′ exonuclease activity using a metal-based luminescent switch-on probe. Methods 2013; 64:218-23. [DOI: 10.1016/j.ymeth.2013.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/02/2013] [Accepted: 08/07/2013] [Indexed: 12/22/2022] Open
|
17
|
Wu F, Sun Y, Shao Y, Xu S, Liu G, Peng J, Liu L. DNA abasic site-selective enhancement of sanguinarine fluorescence with a large emission shift. PLoS One 2012. [PMID: 23185252 PMCID: PMC3502418 DOI: 10.1371/journal.pone.0048251] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Small molecules that can specifically bind to a DNA abasic site (AP site) have received much attention due to their importance in DNA lesion identification, drug discovery, and sensor design. Herein, the AP site binding behavior of sanguinarine (SG), a natural alkaloid, was investigated. In aqueous solution, SG has a short-wavelength alkanolamine emission band and a long-wavelength iminium emission band. At pH 8.3, SG experiences a fluorescence quenching for both bands upon binding to fully matched DNAs without the AP site, while the presence of the AP site induces a strong SG binding and the observed fluorescence enhancement for the iminium band are highly dependent on the nucleobases flanking the AP site, while the alkanolamine band is always quenched. The bases opposite the AP site also exert some modifications on the SG's emission behavior. It was found that the observed quenching for DNAs with Gs and Cs flanking the AP site is most likely caused by electron transfer between the AP site-bound excited-state SG and the nearby Gs. However, the flanking As and Ts that are not easily oxidized favor the enhanced emission. This AP site-selective enhancement of SG fluorescence accompanies a band conversion in the dominate emission from the alkanolamine to iminium band thus with a large emission shift of about 170 nm. Absorption spectra, steady-state and transient-state fluorescence, DNA melting, and electrolyte experiments confirm that the AP site binding of SG occurs and the stacking interaction with the nearby base pairs is likely to prevent the converted SG iminium form from contacting with water that is thus emissive when the AP site neighbors are bases other than guanines. We expect that this fluorophore would be developed as a promising AP site binder having a large emission shift.
Collapse
Affiliation(s)
- Fei Wu
- Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang, People's Republic of China
| | - Yanwei Sun
- Chuyang Honors College, Zhejiang Normal University, Jinhua, Zhejiang, People's Republic of China
| | - Yong Shao
- Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang, People's Republic of China
- * E-mail:
| | - Shujuan Xu
- Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang, People's Republic of China
| | - Guiying Liu
- Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang, People's Republic of China
| | - Jian Peng
- Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang, People's Republic of China
| | - Lingling Liu
- Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang, People's Republic of China
| |
Collapse
|
18
|
Abe Y, Nakagawa O, Yamaguchi R, Sasaki S. Synthesis and binding properties of new selective ligands for the nucleobase opposite the AP site. Bioorg Med Chem 2012; 20:3470-9. [PMID: 22560836 DOI: 10.1016/j.bmc.2012.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 04/03/2012] [Accepted: 04/04/2012] [Indexed: 01/27/2023]
Abstract
DNA is continuously damaged by endogenous and exogenous factors such as oxidative stress or DNA alkylating agents. These damaged nucleobases are removed by DNA N-glycosylase and form apurinic/apyrimidinic sites (AP sites) as intermediates in the base excision repair (BER) pathway. AP sites are also representative DNA damages formed by spontaneous hydrolysis. The AP sites block DNA polymerase and a mismatch nucleobase is inserted opposite the AP sites by polymerization to cause acute toxicities and mutations. Thus, AP site specific compounds have attracted much attention for therapeutic and diagnostic purposes. In this study, we have developed nucleobase-polyamine conjugates as the AP site binding ligand by expecting that the nucleobase part would play a role in the specific recognition of the nucleobase opposite the AP site by the Watson-Crick base pair formation and that the polyamine part should contribute to the access of the ligand to the AP site by a non-specific interaction to the DNA phosphate backbone. The nucleobase conjugated with 3,3'-diaminodipropylamine (A-ligand, G-ligand, C-ligand, T-ligand and U-ligand) showed a specific stabilization of the duplex containing the AP site depending on the complementary combination with the nucleobase opposite the AP site; that is A-ligand to T, G-ligand to C, C-ligand to G, T- and U-ligand to A. The thermodynamic binding parameters clearly indicated that the specific stabilization is due to specific binding of the ligands to the complementary AP site. These results have suggested that the complementary base pairs of the Watson-Crick type are formed at the AP site.
Collapse
Affiliation(s)
- Yukiko Abe
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | |
Collapse
|
19
|
Wu F, Shao Y, Ma K, Cui Q, Liu G, Xu S. Simultaneous fluorescence light-up and selective multicolor nucleobase recognition based on sequence-dependent strong binding of berberine to DNA abasic site. Org Biomol Chem 2012; 10:3300-7. [DOI: 10.1039/c2ob00028h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
20
|
Xu S, Shao Y, Ma K, Cui Q, Liu G, Wu F, Li M. Fluorescence light-up recognition of DNA nucleotide based on selective abasic site binding of an excited-state intramolecular proton transfer probe. Analyst 2011; 136:4480-5. [PMID: 21946800 DOI: 10.1039/c1an15652g] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DNA single-nucleotide polymorphism (SNP) detection has attracted much attention due to mutation-related diseases. Various fluorescence methods for SNP detection have been proposed and many are already in use. However, fluorescence enhancement for signal-on SNP identification without label modification still remains a challenge. Here, we find that the abasic site (AP site) in a DNA duplex can be developed as a binding pocket favorable for the occurrence of the excited-state intramolecular proton transfer (ESIPT) of a 3-hydroxyflavone, fisetin, which is used as a proof of concept for effective SNP identification. Fisetin binding at the AP site is highly selective for target thymine or cytosine facing the AP site by observation of a drastic increase in the ESIPT emission band. In addition, the target recognition selectivity based on this ESIPT process is not affected by flanking bases of the AP site. The binding selectivity of fisetin at the AP site is also confirmed by measurements of fluorescence resonance energy transfer, emission lifetime and DNA melting. The fluorescent signal-on sensing for SNP based on this fluorophore is substantially advantageous over the previously used fluorophores such as the AP site-specific signal-off organic ligands with a similar fluorescing mechanism before and after binding to DNA with hydrogen bonding interaction. We expect that this approach will be employed to develop a practical SNP detection method by locating an AP site toward a target and employing an ESIPT probe as readout.
Collapse
Affiliation(s)
- Shujuan Xu
- Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
21
|
Ma K, Cui Q, Liu G, Wu F, Xu S, Shao Y. DNA abasic site-directed formation of fluorescent silver nanoclusters for selective nucleobase recognition. NANOTECHNOLOGY 2011; 22:305502. [PMID: 21719966 DOI: 10.1088/0957-4484/22/30/305502] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
DNA single-nucleotide polymorphism (SNP) detection has attracted much attention due to mutation related diseases. Various methods for SNP detection have been proposed and many are already in use. Here, we find that the abasic site (AP site) in the DNA duplex can be developed as a capping scaffold for the generation of fluorescent silver nanoclusters (Ag NCs). As a proof of concept, the DNA sequences from fragments near codon 177 of cancer supression gene p53 were used as a model for SNP detection by in situ formed Ag NCs. The formation of fluorescent Ag NCs in the AP site-containing DNA duplex is highly selective for cytosine facing the AP site and guanines flanking the site and can be employed in situ as readout for SNP detection. The fluorescent signal-on sensing for SNP based on this inorganic fluorophore is substantially advantageous over the previously reported signal-off responses using low-molecular-weight organic ligands. The strong dependence of fluorescent Ag NC formation on the sequences surrounding the AP site was successfully used to identify mutations in codon 177 of cancer supression gene p53. We anticipate that this approach will be employed to develop a practical SNP detection method by locating an AP site toward the midway cytosine in a target strand containing more than three consecutive cytosines.
Collapse
Affiliation(s)
- Kun Ma
- Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang, People's Republic of China
| | | | | | | | | | | |
Collapse
|
22
|
Castagnolo D, Schenone S, Botta M. Guanylated Diamines, Triamines, and Polyamines: Chemistry and Biological Properties. Chem Rev 2011; 111:5247-300. [PMID: 21657224 DOI: 10.1021/cr100423x] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Daniele Castagnolo
- Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena, via Alcide de Gasperi 2, 53100 Siena, Italy
| | - Silvia Schenone
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Genova, Viale Benedetto XV 3, I-16132 Genova, Italy
| | - Maurizio Botta
- Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena, via Alcide de Gasperi 2, 53100 Siena, Italy
| |
Collapse
|
23
|
Leung CH, Chan DSH, Man BYW, Wang CJ, Lam W, Cheng YC, Fong WF, Hsiao WWL, Ma DL. Simple and convenient G-quadruplex-based turn-on fluorescence assay for 3' → 5' exonuclease activity. Anal Chem 2011; 83:463-6. [PMID: 21114271 PMCID: PMC3021625 DOI: 10.1021/ac1025896] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A selective, oligonucleotide-based, label-free, turn-on fluorescence detection method for 3' → 5' exonuclease activity has been developed using crystal violet as a G-quadruplex-binding probe. The assay is highly simple and rapid, does not require the use of gel-based equipment or radioisotopic labeling, and is amenable to high-throughput and real-time detection. A proof-of-concept of this assay has been demonstrated for prokaryotic Exonuclease III (ExoIII) and human TREX1.
Collapse
Affiliation(s)
- Chung-Hang Leung
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Daniel Shiu-Hin Chan
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Bradley Yat-Wah Man
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Chuan-Jen Wang
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, U.S.A
| | - Wing Lam
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, U.S.A
| | - Yung-Chi Cheng
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, U.S.A
| | - Wang-Fun Fong
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Wendy Wen-Luan Hsiao
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, U.S.A
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| |
Collapse
|
24
|
Kojima N, Takebayashi T, Mikami A, Ohtsuka E, Komatsu Y. Construction of highly reactive probes for abasic site detection by introduction of an aromatic and a guanidine residue into an aminooxy group. J Am Chem Soc 2010; 131:13208-9. [PMID: 19754181 DOI: 10.1021/ja904767k] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Abasic sites (AP sites) arise from hydrolysis of glycosidic bonds of DNA that is damaged by various external and internal processes; unrepaired AP sites give rise to genetic mutations. We have constructed highly reactive AP-site-detecting probes by introducing a hydrophobic and a hydrophilic residue in an aminooxy group. Synthesized probes containing either a naphthalene or a guanidine residue conjugate effectively with AP sites. In particular, a probe containing both functional groups shows the highest reaction rate, indicating that the hydrophobic and hydrophilic interactions act cooperatively in reaction with AP sites. The guanidine residue also contributes to the solubility of the molecules in aqueous media. The biotinylated probes provide much more sensitive detection of AP sites in genomic DNA than the conventional aldehyde-reactive probe.
Collapse
Affiliation(s)
- Naoshi Kojima
- Research Institute of Genome-based Biofactory, National Institute of Advanced Industrial Science and Technology, 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan
| | | | | | | | | |
Collapse
|
25
|
Dahlmann HA, Vaidyanathan VG, Sturla SJ. Investigating the biochemical impact of DNA damage with structure-based probes: abasic sites, photodimers, alkylation adducts, and oxidative lesions. Biochemistry 2009; 48:9347-59. [PMID: 19757831 PMCID: PMC2789562 DOI: 10.1021/bi901059k] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA sustains a wide variety of damage, such as the formation of abasic sites, pyrimidine dimers, alkylation adducts, or oxidative lesions, upon exposure to UV radiation, alkylating agents, or oxidative conditions. Since these forms of damage may be acutely toxic or mutagenic and potentially carcinogenic, it is of interest to gain insight into how their structures impact biochemical processing of DNA, such as synthesis, transcription, and repair. Lesion-specific molecular probes have been used to study polymerase-mediated translesion DNA synthesis of abasic sites and TT dimers, while other probes have been developed for specifically investigating the alkylation adduct O(6)-Bn-G and the oxidative lesion 8-oxo-G. In this review, recent examples of lesion-specific molecular probes are surveyed; their specificities of incorporation opposite target lesions compared to unmodified nucleotides are discussed, and limitations of their applications under physiologically relevant conditions are assessed.
Collapse
Affiliation(s)
| | | | - Shana J. Sturla
- To whom correspondence should be addressed: ; Phone: 612-626-0496; Fax: 612-624-0139
| |
Collapse
|
26
|
Andaloussi M, Moreau E, Masurier N, Lacroix J, Gaudreault RC, Chezal JM, El Laghdach A, Canitrot D, Debiton E, Teulade JC, Chavignon O. Novel imidazo[1,2-a]naphthyridinic systems (part 1): synthesis, antiproliferative and DNA-intercalating activities. Eur J Med Chem 2008; 43:2505-17. [PMID: 18403058 DOI: 10.1016/j.ejmech.2008.02.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 01/18/2008] [Accepted: 02/08/2008] [Indexed: 11/26/2022]
Abstract
Novel imidazo[1,2-a]naphthyridinic systems 6a-15a and 6b-15b were obtained from Friedländer's reaction in imidazo[1,2-a]pyridine series. Most of the compounds were evaluated for their antitumor activity in the NCIs in vitro human tumor cell line screening panel. Among them, pentacyclic derivatives 13b and 14a exhibited in vitro activity comparable to anticancer agent such as amsacrine. Their mechanism of cytotoxicity action was unrelated to poisoning or inhibiting abilities against topo1. On the contrary, we highlighted a direct intercalation of the drugs into DNA by electrophoresis on agarose gel.
Collapse
|
27
|
Targeting Abasic Sites in DNA by Aminoalkyl-Substituted Carboxamidoacridizinium Derivatives and Acridizinium–Adenine Conjugates. European J Org Chem 2007. [DOI: 10.1002/ejoc.200700207] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
28
|
Martelli A, Jourdan M, Constant JF, Demeunynck M, Dumy P. Photoreactive threading agent that specifically binds to abasic sites in DNA. Bioorg Med Chem Lett 2005; 16:154-7. [PMID: 16213714 DOI: 10.1016/j.bmcl.2005.09.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 09/05/2005] [Accepted: 09/12/2005] [Indexed: 11/25/2022]
Abstract
We report the synthesis and study of a photoreactive nitrobenzamide containing acridine that specifically interacts at abasic site in DNA by threading intercalation and introduces under irradiation a lesion on the opposite strand at the unpaired pyrimidine.
Collapse
Affiliation(s)
- Alain Martelli
- LEDSS UMR 5616 and ICMG-FR2607, Université Joseph Fourier, BP 53, 38041 Grenoble Cédex 9, France
| | | | | | | | | |
Collapse
|
29
|
Ghirmai S, Mume E, Lundqvist H, Tolmachev V, Sjöberg S. Synthesis and radioiodination of some 9-aminoacridine derivatives for potential use in radionuclide therapy. J Labelled Comp Radiopharm 2005. [DOI: 10.1002/jlcr.960] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
Athanassopoulos CM, Garnelis T, Pantazaka E, Papaioannou D. Efficient guanylation of Nα,Nω-difunctionalized polyamines at the secondary amino functions. Tetrahedron Lett 2004. [DOI: 10.1016/j.tetlet.2004.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Tumir LM, Piantanida I, Cindri? IJ, Hrenar T, Mei? Z, ?ini? M. New permanently charged phenanthridinium-nucleobase conjugates. Interactions with nucleotides and polynucleotides and recognition of ds-polyAH+. J PHYS ORG CHEM 2003. [DOI: 10.1002/poc.680] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
32
|
Alarcon K, Demeunynck M, Lhomme J, Carrez D, Croisy A. Diaminopurine-acridine heterodimers for specific recognition of abasic site containing DNA. Influence on the biological activity of the position of the linker on the purine ring. Bioorg Med Chem Lett 2001; 11:1855-8. [PMID: 11459646 DOI: 10.1016/s0960-894x(01)00310-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Three acridine-diaminopurine heterodimers tethered by a linker containing an N,N'-substituted guanidine were prepared. The molecules differ by the site of introduction of the linker on the 2,6-diaminopurine. The interactions of the new heterodimers with abasic site containing oligonucleotide were compared, and their cytotoxicity was measured in the presence or absence of the antitumor alkylating agent BCNU.
Collapse
Affiliation(s)
- K Alarcon
- LEDSS, Chimie Bioorganique, UMR CNRS 5616, Université Joseph Fourier, BP53, 38041 cedex 9, Grenoble, France
| | | | | | | | | |
Collapse
|
33
|
Alarcon K, Demeunynck M, Lhomme J, Carrez D, Croisy A. Potentiation of BCNU cytotoxicity by molecules targeting abasic lesions in DNA. Bioorg Med Chem 2001; 9:1901-10. [PMID: 11425593 DOI: 10.1016/s0968-0896(01)00097-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We describe the synthesis, DNA binding measurements and pharmacological properties of a series of new heterodimeric molecules, in which a 2,6-diaminopurine is linked to a 9-aminoacridine chromophore. The linking chain contains a central N,N'-disubstituted guanidine, connected to the two chromophores by polymethylenic units of variable length.
Collapse
Affiliation(s)
- K Alarcon
- LEDSS, Chimie Bioorganique, UMR CNRS 5616, Université Joseph Fourier, BP53, 38041 Grenoble cedex 9, France
| | | | | | | | | |
Collapse
|
34
|
Abstract
Loss of a base in DNA, i.e., creation of an abasic site leaving a deoxyribose residue in the strand, is a frequent lesion that may occur spontaneously, or under the action of radiations and alkylating agents, or enzymatically as an intermediate in the repair of modified or abnormal bases. The abasic site lesion is mutagenic or lethal if not repaired. From a chemical point of view,the abasic site is an alkali-labile residue that leads to strand breakage through beta- and delta- elimination. Progress in the understanding of the chemistry and enzymology of abasic DNA largely relies upon the study of synthetic abasic duplexes. Several efficient synthetic methods have thus been developed to introduce the lesion (or a stable analogue) at defined position in the sequence. Physicochemical and spectroscopic examination of such duplexes, including calorimetry, melting temperature, high-field nmr and molecular modeling indicate that the lesion strongly destabilizes the duplex, although remaining in the canonical B-form with structural modifications strictly located at the site of the lesion. Probes have been developed to titrate the damage in DNA in vitro. Series of molecules have been devised to recognize specifically the abasic site, exhibiting a cleavage activity and mimicking the AP nucleases. Others have been prepared that bind strongly to the abasic site and show promise in potentiating the cytotoxic and antitumor activity of the clinically used nitrosourea (bis-chloroethylnitrosurea).
Collapse
Affiliation(s)
- J Lhomme
- LEDSS, Chimie Bioorganique, UMR CNRS 5616, Université Joseph Fourier, Grenoble Cedex 9, France.
| | | | | |
Collapse
|
35
|
Belmont P, Demeunynck M, Constant JF, Lhomme J. Synthesis and study of a new adenine-acridine tandem, inhibitor of exonuclease III. Bioorg Med Chem Lett 2000; 10:293-5. [PMID: 10698457 DOI: 10.1016/s0960-894x(99)00681-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A new heterodimer adenine-chain-acridine containing a mixed amido-guanidinium linker chain was synthesized. To achieve the synthesis a new method of introduction of aminoalkyl chain at position 9 of adenine was designed. The heterodimer interacts specifically with the abasic sites in DNA and inhibits the major base excision repair enzyme in Escherichia coli, Exonuclease III.
Collapse
Affiliation(s)
- P Belmont
- LEDSS, Chimie Bioorganique, UMR CNRS 5616, Université Joseph Fourier, Grenoble, France
| | | | | | | |
Collapse
|