1
|
Zaręba P, Łątka K, Mazur G, Gryzło B, Pasieka A, Godyń J, Panek D, Skrzypczak-Wiercioch A, Höfner GC, Latacz G, Maj M, Espargaró A, Sabaté R, Jóźwiak K, Wanner KT, Sałat K, Malawska B, Kulig K, Bajda M. Discovery of novel multifunctional ligands targeting GABA transporters, butyrylcholinesterase, β-secretase, and amyloid β aggregation as potential treatment of Alzheimer's disease. Eur J Med Chem 2023; 261:115832. [PMID: 37837674 DOI: 10.1016/j.ejmech.2023.115832] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/12/2023] [Accepted: 09/23/2023] [Indexed: 10/16/2023]
Abstract
Alzheimer's disease (AD) is a global health problem in the medical sector that will increase over time. The limited treatment of AD leads to the search for a new clinical candidate. Considering the multifactorial nature of AD, a strategy targeting number of regulatory proteins involved in the development of the disease is an effective approach. Here, we present a discovery of new multi-target-directed ligands (MTDLs), purposely designed as GABA transporter (GAT) inhibitors, that successfully provide the inhibitory activity against butyrylcholinesterase (BuChE), β-secretase (BACE1), amyloid β aggregation and calcium channel blockade activity. The selected GAT inhibitors, 19c and 22a - N-benzylamide derivatives of 4-aminobutyric acid, displayed the most prominent multifunctional profile. Compound 19c (mGAT1 IC50 = 10 μM, mGAT4 IC50 = 12 μM and BuChE IC50 = 559 nM) possessed the highest hBACE1 and Aβ40 aggregation inhibitory activity (IC50 = 1.57 μM and 99 % at 10 μM, respectively). Additionally, it showed a decrease in both the elongation and nucleation constants of the amyloid aggregation process. In contrast compound 22a represented the highest activity and a mixed-type of eqBuChE inhibition (IC50 = 173 nM) with hBACE1 (IC50 = 9.42 μM), Aβ aggregation (79 % at 10 μM) and mGATs (mGAT1 IC50 = 30 μM, mGAT4 IC50 = 25 μM) inhibitory activity. Performed molecular docking studies described the mode of interactions with GATs and enzymatic targets. In ADMET in vitro studies both compounds showed acceptable metabolic stability and low neurotoxicity. Successfully, compounds 19c and 22a at the dose of 30 mg/kg possessed statistically significant antiamnesic properties in a mouse model of amnesia caused by scopolamine and assessed in the novel object recognition (NOR) task or the passive avoidance (PA) task.
Collapse
Affiliation(s)
- Paula Zaręba
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Kamil Łątka
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Gabriela Mazur
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Beata Gryzło
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Anna Pasieka
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Justyna Godyń
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Dawid Panek
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Anna Skrzypczak-Wiercioch
- Department of Animal Anatomy and Preclinical Sciences, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Kraków, Mickiewicz 24/28 St., 30-059, Kraków, Poland
| | - Georg C Höfner
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München Butenandtstr., 5-13, 81377, Munich, Germany
| | - Gniewomir Latacz
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Maciej Maj
- Department of Biopharmacy, Medical University of Lublin, W. Chodzki 4a St., 20-093, Lublin, Poland
| | - Alba Espargaró
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, Av Joan XXIII 27-31, 08028, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Av Joan XXIII, S/N, 08028, Barcelona, Spain
| | - Raimon Sabaté
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, Av Joan XXIII 27-31, 08028, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Av Joan XXIII, S/N, 08028, Barcelona, Spain
| | - Krzysztof Jóźwiak
- Department of Biopharmacy, Medical University of Lublin, W. Chodzki 4a St., 20-093, Lublin, Poland
| | - Klaus T Wanner
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München Butenandtstr., 5-13, 81377, Munich, Germany
| | - Kinga Sałat
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Barbara Malawska
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Katarzyna Kulig
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Marek Bajda
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland.
| |
Collapse
|
2
|
Lomov DA, Abramyants MG, Zaporozhets OO, Pekhtereva TM. Alternative Synthesis of the Alkaloid Guvacine and Its Derivatives. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022060057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Singh K, Kumar P, Bhatia R, Mehta V, Kumar B, Akhtar MJ. Nipecotic acid as potential lead molecule for the development of GABA uptake inhibitors; structural insights and design strategies. Eur J Med Chem 2022; 234:114269. [DOI: 10.1016/j.ejmech.2022.114269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/05/2022] [Accepted: 03/05/2022] [Indexed: 11/04/2022]
|
4
|
Matulevičiūtė G, Arbačiauskienė E, Kleizienė N, Kederienė V, Ragaitė G, Dagilienė M, Bieliauskas A, Milišiūnaitė V, Sløk FA, Šačkus A. Synthesis and Characterization of Novel Methyl (3)5-( N-Boc-piperidinyl)-1 H-pyrazole-4-carboxylates. Molecules 2021; 26:molecules26133808. [PMID: 34206593 PMCID: PMC8270337 DOI: 10.3390/molecules26133808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/13/2021] [Accepted: 06/19/2021] [Indexed: 11/16/2022] Open
Abstract
Series of methyl 3- and 5-(N-Boc-piperidinyl)-1H-pyrazole-4-carboxylates were developed and regioselectively synthesized as novel heterocyclic amino acids in their N-Boc protected ester form for achiral and chiral building blocks. In the first stage of the synthesis, piperidine-4-carboxylic and (R)- and (S)-piperidine-3-carboxylic acids were converted to the corresponding β-keto esters, which were then treated with N,N-dimethylformamide dimethyl acetal. The subsequent reaction of β-enamine diketones with various N-mono-substituted hydrazines afforded the target 5-(N-Boc-piperidinyl)-1H-pyrazole-4-carboxylates as major products, and tautomeric NH-pyrazoles prepared from hydrazine hydrate were further N-alkylated with alkyl halides to give 3-(N-Boc-piperidinyl)-1H-pyrazole-4-carboxylates. The structures of the novel heterocyclic compounds were confirmed by 1H-, 13C-, and 15N-NMR spectroscopy and HRMS investigation.
Collapse
Affiliation(s)
- Gita Matulevičiūtė
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania; (G.M.); (N.K.); (G.R.); (M.D.); (A.B.); (V.M.)
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania;
| | - Eglė Arbačiauskienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania;
- Correspondence: (E.A.); (A.Š.); Tel.: +370-37-451-401 (A.Š.)
| | - Neringa Kleizienė
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania; (G.M.); (N.K.); (G.R.); (M.D.); (A.B.); (V.M.)
| | - Vilija Kederienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania;
| | - Greta Ragaitė
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania; (G.M.); (N.K.); (G.R.); (M.D.); (A.B.); (V.M.)
| | - Miglė Dagilienė
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania; (G.M.); (N.K.); (G.R.); (M.D.); (A.B.); (V.M.)
| | - Aurimas Bieliauskas
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania; (G.M.); (N.K.); (G.R.); (M.D.); (A.B.); (V.M.)
| | - Vaida Milišiūnaitė
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania; (G.M.); (N.K.); (G.R.); (M.D.); (A.B.); (V.M.)
| | - Frank A. Sløk
- Vipergen ApS, Gammel Kongevej 23A, V DK-1610 Copenhagen, Denmark;
| | - Algirdas Šačkus
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania; (G.M.); (N.K.); (G.R.); (M.D.); (A.B.); (V.M.)
- Correspondence: (E.A.); (A.Š.); Tel.: +370-37-451-401 (A.Š.)
| |
Collapse
|
5
|
Zaręba P, Sałat K, Höfner GC, Łątka K, Bajda M, Latacz G, Kotniewicz K, Rapacz A, Podkowa A, Maj M, Jóźwiak K, Filipek B, Wanner KT, Malawska B, Kulig K. Development of tricyclic N-benzyl-4-hydroxybutanamide derivatives as inhibitors of GABA transporters mGAT1-4 with anticonvulsant, antinociceptive, and antidepressant activity. Eur J Med Chem 2021; 221:113512. [PMID: 34015586 DOI: 10.1016/j.ejmech.2021.113512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 01/04/2023]
Abstract
γ-Aminobutyric acid (GABA) neurotransmission has a significant impact on the proper functioning of the central nervous system. Numerous studies have indicated that inhibitors of the GABA transporters mGAT1-4 offer a promising strategy for the treatment of several neurological disorders, including epilepsy, neuropathic pain, and depression. Following our previous results, herein, we report the synthesis, biological evaluation, and structure-activity relationship studies supported by molecular docking and molecular dynamics of a new series of N-benzyl-4-hydroxybutanamide derivatives regarding their inhibitory potency toward mGAT1-4. This study allowed us to identify compound 23a (N-benzyl-4-hydroxybutanamide bearing a dibenzocycloheptatriene moiety), a nonselective GAT inhibitor with a slight preference toward mGAT4 (pIC50 = 5.02 ± 0.11), and compound 24e (4-hydroxy-N-[(4-methylphenyl)-methyl]butanamide bearing a dibenzocycloheptadiene moiety) with relatively high inhibitory activity toward mGAT2 (pIC50 = 5.34 ± 0.09). In a set of in vivo experiments, compound 24e successively showed predominant anticonvulsant activity and antinociception in the formalin model of tonic pain. In contrast, compound 23a showed significant antidepressant-like properties in mice. These results were consistent with the available literature data, which indicates that, apart from seizure control, GABAergic neurotransmission is also involved in the pathophysiology of several psychiatric diseases, however alternative mechanisms underlying this action cannot be excluded. Finally, it is worth noting that the selected compounds showed unimpaired locomotor skills that have been indicated to give reliable results in behavioral assays.
Collapse
Affiliation(s)
- Paula Zaręba
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St, 30-688, Kraków, Poland.
| | - Kinga Sałat
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St, 30-688, Kraków, Poland
| | - Georg C Höfner
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München Butenandtstr, 5-13, 81377, Munich, Germany
| | - Kamil Łątka
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St, 30-688, Kraków, Poland
| | - Marek Bajda
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St, 30-688, Kraków, Poland
| | - Gniewomir Latacz
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St, 30-688, Kraków, Poland
| | - Krzysztof Kotniewicz
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St, 30-688, Kraków, Poland
| | - Anna Rapacz
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St, 30-688, Kraków, Poland
| | - Adrian Podkowa
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St, 30-688, Kraków, Poland
| | - Maciej Maj
- Department of Biopharmacy, Medical University of Lublin, ul. W. Chodzki 4a, 20-093, Lublin, Poland
| | - Krzysztof Jóźwiak
- Department of Biopharmacy, Medical University of Lublin, ul. W. Chodzki 4a, 20-093, Lublin, Poland
| | - Barbara Filipek
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St, 30-688, Kraków, Poland
| | - Klaus T Wanner
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München Butenandtstr, 5-13, 81377, Munich, Germany
| | - Barbara Malawska
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St, 30-688, Kraków, Poland
| | - Katarzyna Kulig
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St, 30-688, Kraków, Poland
| |
Collapse
|
6
|
Synthesis and biological evaluation of novel N-substituted nipecotic acid derivatives with tricyclic cage structures in the lipophilic domain as GABA uptake inhibitors. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02647-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractA new class of GABA reuptake inhibitors with sterically demanding, highly rigid tricyclic cage structures as the lipophilic domain was synthesized and investigated in regard to their biological activity at the murine GABA transporters (mGAT1–mGAT4). The construction of these compounds, consisting of nipecotic acid, a symmetric tricyclic amine, and a plain hydrocarbon linker connecting the two subunits via their amino nitrogens, was accomplished via reductive amination of a nipecotic acid derivative with an N-alkyl substituent displaying a terminal aldehyde function with tricyclic secondary amines. The target compounds varied with regard to spacer length, the bridge size of one of the bridges, and the substituents of the tricyclic skeleton to study the impact of these changes on their potency. Among the tested compounds nipecotic acid ethyl ester derivates with phenyl residues attached to the cage subunit showed reasonable inhibitory potency and subtype selectivity in favor of mGAT3 and mGAT4, respectively.
Collapse
|
7
|
Łątka K, Jończyk J, Bajda M. γ-Aminobutyric acid transporters as relevant biological target: Their function, structure, inhibitors and role in the therapy of different diseases. Int J Biol Macromol 2020; 158:S0141-8130(20)32987-1. [PMID: 32360967 DOI: 10.1016/j.ijbiomac.2020.04.126] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 12/13/2022]
Abstract
γ-Aminobutyric acid (GABA) is a major inhibitory neurotransmitter in the nervous system. It plays a crucial role in many physiological processes. Upon release from the presynaptic element, it is removed from the synaptic cleft by reuptake due to the action of GABA transporters (GATs). GATs belong to a large SLC6 protein family whose characteristic feature is sodium-dependent relocation of neurotransmitters through the cell membrane. GABA transporters are characterized in many contexts, but their spatial structure is not fully known. They are divided into four types, which differ in occurrence and role. Herein, the special attention was paid to these transporting proteins. This comprehensive review presents the current knowledge about GABA transporters. Their distribution in the body, physiological functions and possible utilization in the therapy of different diseases were fully discussed. The important structural features were described based on published data, including sequence analysis, mutagenesis studies, and comparison with known SLC6 transporters for leucine (LeuT), dopamine (DAT) and serotonin (SERT). Moreover, the most important inhibitors of GABA transporters of various basic scaffolds, diverse selectivity and potency were presented.
Collapse
Affiliation(s)
- Kamil Łątka
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Physicochemical Drug Analysis, 30-688 Cracow, Medyczna 9, Poland
| | - Jakub Jończyk
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Physicochemical Drug Analysis, 30-688 Cracow, Medyczna 9, Poland
| | - Marek Bajda
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Physicochemical Drug Analysis, 30-688 Cracow, Medyczna 9, Poland.
| |
Collapse
|
8
|
Horenstein NA, Quadri M, Stokes C, Shoaib M, Papke RL. Cracking the Betel Nut: Cholinergic Activity of Areca Alkaloids and Related Compounds. Nicotine Tob Res 2020; 21:805-812. [PMID: 29059390 DOI: 10.1093/ntr/ntx187] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 09/14/2017] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The use of betel quid is the most understudied major addiction in the world. The neuropsychological activity of betel quid has been attributed to alkaloids of Areca catechu. With the goal of developing novel addiction treatments, we evaluate the muscarinic and nicotinic activity of the four major Areca alkaloids: arecoline, arecaidine, guvacoline, and guvacine and four structurally related compounds. METHODS Acetylcholine receptors were expressed in Xenopus oocytes and studied with two-electrode voltage clamp. RESULTS Both arecoline- and guvacoline-activated muscarinic acetylcholine receptors (mAChR), while only arecoline produced significant activation of nicotinic AChR (nAChR). We characterized four additional arecoline-related compounds, seeking an analog that would retain selective activity for a α4* nAChR, with diminished effects on mAChR and not be a desensitizer of α7 nAChR. We show that this profile is largely met by isoarecolone. Three additional arecoline analogs were characterized. While the quaternary dimethyl analog had a broad range of activities, including activation of mAChR and muscle-type nAChR, the methyl analog only activated a range of α4* nAChR, albeit with low potency. The ethyl analog had no detectable cholinergic activity. CONCLUSIONS Evidence indicates that α4* nAChR are at the root of nicotine addiction, and this may also be the case for betel addiction. Our characterization of isoarecolone and 1-(4-methylpiperazin-1-yl) ethanone as truly selective α4*nAChR selective partial agonists with low muscarinic activity may point toward a promising new direction for the development of drugs to treat both nicotine and betel addiction. IMPLICATIONS Nearly 600 million people use Areca nut, often with tobacco. Two of the Areca alkaloids are muscarinic acetylcholine receptor agonists, and one, arecoline, is a partial agonist for the α4* nicotinic acetylcholine receptors (nAChR) associated with tobacco addiction. The profile of arecoline activity suggested its potential to be used as a scaffold for developing new tobacco cessation drugs if analogs can be identified that retain the same nicotinic receptor selectivity without muscarinic activity. We report that isoarecolone is a selective partial agonist for α4* nAChR with minimal muscarinic activity and 1-(4-methylpiperazin-1-yl) ethanone has similar nAChR selectivity and no detectable muscarinic action.
Collapse
Affiliation(s)
| | - Marta Quadri
- Department of Chemistry, University of Florida, Gainesville, FL.,Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL
| | - Clare Stokes
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL
| | - Mohammed Shoaib
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL
| |
Collapse
|
9
|
Synthesis and biological evaluation of fluorescent GAT-ligands based on asymmetric substituted BODIPY dyes. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02521-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Li SK, Huang LL, Lv YD, Feng HD. Synthesis of γ-(Arylamino)butyric Acid Derivatives via Ring-Opening Addition of Arylamines to Cyclopropane-1,1-Dicarboxylates. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1070428019090252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Fu J, Wurzer N, Lehner V, Reiser O, Davies HML. Rh(II)-Catalyzed Monocyclopropanation of Pyrroles and Its Application to the Synthesis Pharmaceutically Relevant Compounds. Org Lett 2019; 21:6102-6106. [DOI: 10.1021/acs.orglett.9b02250] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jiantao Fu
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Nikolai Wurzer
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Verena Lehner
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Oliver Reiser
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Huw M. L. Davies
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
12
|
Zafar S, Jabeen I. GRID-independent molecular descriptor analysis and molecular docking studies to mimic the binding hypothesis of γ-aminobutyric acid transporter 1 (GAT1) inhibitors. PeerJ 2019; 7:e6283. [PMID: 30723616 PMCID: PMC6360079 DOI: 10.7717/peerj.6283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/14/2018] [Indexed: 12/13/2022] Open
Abstract
Background The γ-aminobutyric acid (GABA) transporter GAT1 is involved in GABA transport across the biological membrane in and out of the synaptic cleft. The efficiency of this Na+ coupled GABA transport is regulated by an electrochemical gradient, which is directed inward under normal conditions. However, in certain pathophysiological situations, including strong depolarization or an imbalance in ion homeostasis, the GABA influx into the cytoplasm is increased by re-uptake transport mechanism. This mechanism may lead to extra removal of extracellular GABA which results in numerous neurological disorders such as epilepsy. Thus, small molecule inhibitors of GABA re-uptake may enhance GABA activity at the synaptic clefts. Methods In the present study, various GRID-independent molecular descriptor (GRIND) models have been developed to shed light on the 3D structural features of human GAT1 (hGAT1) inhibitors using nipecotic acid and N-diarylalkenyl piperidine analogs. Further, a binding hypothesis has been developed for the selected GAT1 antagonists by molecular docking inside the binding cavity of hGAT1 homology model. Results Our results indicate that two hydrogen bond acceptors, one hydrogen bond donor and one hydrophobic region at certain distances from each other play an important role in achieving high inhibitory potency against hGAT1. Our docking results elucidate the importance of the COOH group in hGAT1 antagonists by considering substitution of the COOH group with an isoxazol ring in compound 37, which subsequently leads to a three order of magnitude decrease in biological activity of 37 (IC50 = 38 µM) as compared to compound 1 (IC50 = 0.040 µM). Discussion Our docking results are strengthened by the structure activity relationship of the data series as well as by GRIND models, thus providing a significant structural basis for understanding the binding of antagonists, which may be useful for guiding the design of hGAT1 inhibitors.
Collapse
Affiliation(s)
- Sadia Zafar
- Research Center for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), Islamabad, Federal, Pakistan
| | - Ishrat Jabeen
- Research Center for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), Islamabad, Federal, Pakistan
| |
Collapse
|
13
|
Zafar S, Jabeen I. Structure, Function, and Modulation of γ-Aminobutyric Acid Transporter 1 (GAT1) in Neurological Disorders: A Pharmacoinformatic Prospective. Front Chem 2018; 6:397. [PMID: 30255012 PMCID: PMC6141625 DOI: 10.3389/fchem.2018.00397] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 08/20/2018] [Indexed: 02/03/2023] Open
Abstract
γ-Aminobutyric acid (GABA) Transporters (GATs) belong to sodium and chloride dependent-transporter family and are widely expressed throughout the brain. Notably, GAT1 is accountable for sustaining 75% of the synaptic GABA concentration and entails its transport to the GABAA receptors to initiate the receptor-mediated inhibition of post-synaptic neurons. Imbalance in ion homeostasis has been associated with several neurological disorders related to the GABAergic system. However, inhibition of the GABA uptake by these transporters has been accepted as an effective approach to enhance GABAergic inhibitory neurotransmission in the treatment of seizures in epileptic and other neurological disorders. Here, we reviewed computational methodologies including molecular modeling, docking, and molecular dynamic simulations studies to underscore the structure and function of GAT1 in the GABAergic system. Additionally, various SAR and QSAR methodologies have been reviewed to probe the 3D structural features of inhibitors required to modulate GATs activity. Overall, present review provides an overview of crucial role of GAT1 in GABAergic system and its modulation to evade neurological disorders.
Collapse
Affiliation(s)
| | - Ishrat Jabeen
- Research Center for Modeling and Simulation, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
14
|
Design, synthesis, evaluation and molecular modeling studies of some novel N-substituted piperidine-3-carboxylic acid derivatives as potential anticonvulsants. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2141-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Pilsl LKA, Ertl T, Reiser O. Enantioselective Three-Step Synthesis of Homo-β-proline: A Donor–Acceptor Cyclopropane as Key Intermediate. Org Lett 2017; 19:2754-2757. [DOI: 10.1021/acs.orglett.7b01111] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ludwig K. A. Pilsl
- Institut für Organische
Chemie, Universität Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Thomas Ertl
- Institut für Organische
Chemie, Universität Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Oliver Reiser
- Institut für Organische
Chemie, Universität Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
| |
Collapse
|
16
|
Wellendorph P, Jacobsen J, Skovgaard-Petersen J, Jurik A, Vogensen SB, Ecker G, Schousboe A, Krogsgaard-Larsen P, Clausen RP. γ-Aminobutyric Acid and Glycine Neurotransmitter Transporters. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2017. [DOI: 10.1002/9783527679430.ch4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Petrine Wellendorph
- University of Copenhagen; Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology; Universitetsparken 2, DK-2100 Copenhagen Denmark
| | - Julie Jacobsen
- University of Copenhagen; Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology; Universitetsparken 2, DK-2100 Copenhagen Denmark
| | - Jonas Skovgaard-Petersen
- University of Copenhagen; Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology; Universitetsparken 2, DK-2100 Copenhagen Denmark
| | - Andreas Jurik
- University of Vienna; Department of Pharmaceutical Chemistry; Althanstrasse 14, A-1090 Vienna Austria
| | - Stine B. Vogensen
- University of Copenhagen; Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology; Universitetsparken 2, DK-2100 Copenhagen Denmark
| | - Gerhard Ecker
- University of Vienna; Department of Pharmaceutical Chemistry; Althanstrasse 14, A-1090 Vienna Austria
| | - Arne Schousboe
- University of Copenhagen; Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology; Universitetsparken 2, DK-2100 Copenhagen Denmark
| | - Povl Krogsgaard-Larsen
- University of Copenhagen; Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology; Universitetsparken 2, DK-2100 Copenhagen Denmark
| | - Rasmus P. Clausen
- University of Copenhagen; Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology; Universitetsparken 2, DK-2100 Copenhagen Denmark
| |
Collapse
|
17
|
Jurik A, Zdrazil B, Holy M, Stockner T, Sitte HH, Ecker GF. A binding mode hypothesis of tiagabine confirms liothyronine effect on γ-aminobutyric acid transporter 1 (GAT1). J Med Chem 2015; 58:2149-58. [PMID: 25679268 PMCID: PMC4360375 DOI: 10.1021/jm5015428] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
Elevating
GABA levels in the synaptic cleft by inhibiting its reuptake
carrier GAT1 is an established approach for the treatment of CNS disorders
like epilepsy. With the increasing availability of crystal structures
of transmembrane transporters, structure-based approaches to elucidate
the molecular basis of ligand–transporter interaction also
become feasible. Experimental data guided docking of derivatives of
the GAT1 inhibitor tiagabine into a protein homology model of GAT1
allowed derivation of a common binding mode for this class of inhibitors
that is able to account for the distinct structure–activity
relationship pattern of the data set. Translating essential binding
features into a pharmacophore model followed by in silico screening
of the DrugBank identified liothyronine as a drug potentially exerting
a similar effect on GAT1. Experimental testing further confirmed the
GAT1 inhibiting properties of this thyroid hormone.
Collapse
Affiliation(s)
- Andreas Jurik
- University of Vienna , Department of Pharmaceutical Chemistry, Division of Drug Design and Medicinal Chemistry, Althanstraße 14, 1090 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
18
|
Kempson SA, Zhou Y, Danbolt NC. The betaine/GABA transporter and betaine: roles in brain, kidney, and liver. Front Physiol 2014; 5:159. [PMID: 24795654 PMCID: PMC4006062 DOI: 10.3389/fphys.2014.00159] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/04/2014] [Indexed: 12/18/2022] Open
Abstract
The physiological roles of the betaine/GABA transporter (BGT1; slc6a12) are still being debated. BGT1 is a member of the solute carrier family 6 (the neurotransmitter, sodium symporter transporter family) and mediates cellular uptake of betaine and GABA in a sodium- and chloride-dependent process. Most of the studies of BGT1 concern its function and regulation in the kidney medulla where its role is best understood. The conditions here are hostile due to hyperosmolarity and significant concentrations of NH4Cl and urea. To withstand the hyperosmolarity, cells trigger osmotic adaptation, involving concentration of a transcriptional factor TonEBP/NFAT5 in the nucleus, and accumulate betaine and other osmolytes. Data from renal cells in culture, primarily MDCK, revealed that transcriptional regulation of BGT1 by TonEBP/NFAT5 is relatively slow. To allow more acute control of the abundance of BGT1 protein in the plasma membrane, there is also post-translation regulation of BGT1 protein trafficking which is dependent on intracellular calcium and ATP. Further, betaine may be important in liver metabolism as a methyl donor. In fact, in the mouse the liver is the organ with the highest content of BGT1. Hepatocytes express high levels of both BGT1 and the only enzyme that can metabolize betaine, namely betaine:homocysteine –S-methyltransferase (BHMT1). The BHMT1 enzyme removes a methyl group from betaine and transfers it to homocysteine, a potential risk factor for cardiovascular disease. Finally, BGT1 has been proposed to play a role in controlling brain excitability and thereby represents a target for anticonvulsive drug development. The latter hypothesis is controversial due to very low expression levels of BGT1 relative to other GABA transporters in brain, and also the primary location of BGT1 at the surface of the brain in the leptomeninges. These issues are discussed in detail.
Collapse
Affiliation(s)
- Stephen A Kempson
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine Indianapolis, IN, USA
| | - Yun Zhou
- Department of Anatomy, Centre of Molecular Biology and Neuroscience, Institute of Basic Medical Sciences, University of Oslo Oslo, Norway
| | - Niels C Danbolt
- Department of Anatomy, Centre of Molecular Biology and Neuroscience, Institute of Basic Medical Sciences, University of Oslo Oslo, Norway
| |
Collapse
|
19
|
Jurik A, Reicherstorfer R, Zdrazil B, Ecker GF. Classification of High-Activity Tiagabine Analogs by Binary QSAR Modeling. Mol Inform 2013; 32:415-419. [PMID: 23956803 PMCID: PMC3743161 DOI: 10.1002/minf.201300020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 03/28/2013] [Indexed: 12/01/2022]
Affiliation(s)
- Andreas Jurik
- University of Vienna, Department of Medicinal Chemistry Althanstraße 14, A-1090 Vienna, Austria phone/fax: +431-4277-55110/-9551
| | | | | | | |
Collapse
|
20
|
Quandt G, Höfner G, Wanner KT. Synthesis and evaluation of N-substituted nipecotic acid derivatives with an unsymmetrical bis-aromatic residue attached to a vinyl ether spacer as potential GABA uptake inhibitors. Bioorg Med Chem 2013; 21:3363-78. [PMID: 23598250 DOI: 10.1016/j.bmc.2013.02.056] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 02/13/2013] [Accepted: 02/15/2013] [Indexed: 11/18/2022]
Abstract
γ-Amino butyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian central nervous system (CNS). A malfunction of the GABAergic neurotransmission is connected to several neuronal disorders like epilepsy, Alzheimer's disease, neuropathic pain, and depression. One possibility to enhance GABA levels in the synaptic cleft is to inhibit mGAT1, one of the four known plasma membrane bound GABA transporters, which is considered the most important GABA transporter subtype, being in charge of the removal of GABA from the synaptic cleft after a neuronal impulse. Lipophilic derivatives of nipecotic acid like Tiagabine (Gabitril®), an approved drug used in add-on therapy of epilepsy, are known to inhibit uptake of mGAT1 with high subtype selectivity and affinity. We synthesized new N-substituted nipecotic acid derivatives with a vinyl ether spacer and an unsymmetrical bis-aromatic residue, which carries fluorine substituents at various positions of the aromatic ring-system. The new compounds were characterized with respect to their potency and subtype selectivity as mGAT1 inhibitors.
Collapse
Affiliation(s)
- Gabriele Quandt
- Ludwig-Maximilians-University Munich, Department Pharmacy, Center for Drug Research, Butenandtstr. 7, 81377 Munich, Germany
| | | | | |
Collapse
|
21
|
Abstract
GABA, the principal inhibitory neurotransmitter in the cerebral cortex, maintains the inhibitory tone that counterbalances neuronal excitation. The identification and subsequent development of GABA-transport inhibitors has shown the important role that GABA transporters play in the control of the CNS. To date, four GABA transporters have been cloned (GAT1-4). Compounds that inhibit GABA uptake are targets for epilepsy treatment. Currently, they are also being investigated for other possible indications such as the treatment of psychosis, general anxiety and sleep disorders, drug addiction, acute and chronic pain. These and other issues are discussed in this article.
Collapse
|
22
|
Bartoli G, Cipolletti R, Di Antonio G, Giovannini R, Lanari S, Marcolini M, Marcantoni E. A convergent approach to (R)-Tiagabine by a regio- and stereocontrolled hydroiodination of alkynes. Org Biomol Chem 2010; 8:3509-17. [PMID: 20532411 DOI: 10.1039/c005042c] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The occurrence of unsaturated systems in natural products combined with the mildness and the wide range of applicability of CeCl(3) promoted methodologies suggest several potential future synthetic applications within the field of total synthesis of biologically active molecules. On this concept, the use of CeCl(3).7H(2)O-NaI system as an efficient heterogeneous promoter has been highlighted in the iodofunctionalization of carbon-carbon triple bonds. The study has shown that this method would be particularly interesting for the stereoselective formation of trisubstituted (Z)- or (E)-iodoalkenes by simply changing the nature of the solvent. The methodology has been successfully applied to the synthesis of (R)-1-[4,4-bis-(3-methyl-2-thienyl)-3-butenyl]-3-piperidinecarboxylic acid , named (R)-Tiagabine, which is a potent and selective gamma-aminobutyric acid (GABA) uptake inhibitor with proven anticonvulsant efficacy in humans.
Collapse
Affiliation(s)
- Giuseppe Bartoli
- Department of Organic Chemistry "A. Mangini", University of Bologna, viale Risorgiment 4, I-40136 Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
23
|
Neuronal and non-neuronal GABA transporters as targets for antiepileptic drugs. Pharmacol Ther 2010; 125:394-401. [DOI: 10.1016/j.pharmthera.2009.11.007] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 11/24/2009] [Indexed: 12/23/2022]
|
24
|
Zhuang W, Zhao X, Zhao G, Guo L, Lian Y, Zhou J, Fang D. Synthesis and biological evaluation of 4-fluoroproline and 4-fluoropyrrolidine-2-acetic acid derivatives as new GABA uptake inhibitors. Bioorg Med Chem 2009; 17:6540-6. [PMID: 19703775 DOI: 10.1016/j.bmc.2009.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 08/03/2009] [Accepted: 08/04/2009] [Indexed: 11/26/2022]
Abstract
Preparation for the N-alkylated derivatives of enantiomerically pure (2S)-4-fluoroproline and (2S)-4-fluoropyrrolidine-2-acetic acid is described. The final compounds were evaluated as potential GAT-1 uptake inhibitors via cultured cell lines expressing mouse GAT-1. Compared with their corresponding 4-hydroxy compounds, these derivatives exhibited slight improvement on their inhibitory potency, but still much weaker than their corresponding compounds with no substituents at the C-4 of the pyrrolidine moiety, with the most potent affinity being about 1/15 fold as that of Tiagabine. The drastic decrease of their affinity may arise from sharp reduction of their basicity due to strong inductive effect of the 4-fluorine. However the configuration of the C-4 linking fluorine did not have much influence on their affinity for GAT-1.
Collapse
Affiliation(s)
- Weiping Zhuang
- Fujian Institute of Microbiology, No. 25, Jinbu road, Fuzhou 350007, China
| | | | | | | | | | | | | |
Collapse
|
25
|
Enantioseparation of nonproteinogenic amino acids. Anal Bioanal Chem 2009; 393:1789-96. [DOI: 10.1007/s00216-008-2564-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 11/28/2008] [Accepted: 12/03/2008] [Indexed: 10/21/2022]
|
26
|
Ryabukhin SV, Plaskon AS, Volochnyuk DM, Pipko SE, Tolmachev AA. Facile One-Pot Synthesis of 1,2,3,4-Tetrahydroquinoline-3-carboxylic Acids and Their Heterocyclic Analogs. SYNTHETIC COMMUN 2008. [DOI: 10.1080/00397910802044272] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Gugger PA, Hockless DC, Kilah NL, Mayadunne RC, Wild SB. Resolution of (±)-nipecotic acid ((±)-3-piperidinecarboxylic acid) by separation of palladium(II) diastereomers containing orthometallated (S)-(−)-1-[1-(dimethylamino)ethyl]naphthalene. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.tetasy.2008.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
|
29
|
Masuda N, Peng Q, Li Q, Jiang M, Liang Y, Wang X, Zhao M, Wang W, Ross CA, Duan W. Tiagabine is neuroprotective in the N171-82Q and R6/2 mouse models of Huntington's disease. Neurobiol Dis 2008; 30:293-302. [PMID: 18395459 PMCID: PMC2468217 DOI: 10.1016/j.nbd.2008.01.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 01/18/2008] [Accepted: 01/31/2008] [Indexed: 01/13/2023] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by chorea, incoordination, and shortened life-span, and by huntingtin inclusions and neurodegeneration. We previously screened the 1040 FDA-approved compounds from the NINDS compound library and found that a compound, nipecotic acid, significantly reduced mutant huntingtin aggregations and blocked cell toxicity in an inducible cell model of HD. Because nipecotic acid does not cross the blood-brain barrier (BBB), we studied its analogue, tiagabine, which is able to cross the BBB, in both N171-82Q and R6/2 transgenic mouse models of HD. Tiagabine was administered intraperitoneally at 2 and 5 mg/kg daily in HD mice. We found that tiagabine extended survival, improved motor performance, and attenuated brain atrophy and neurodegeneration in N171-82Q HD mice. These beneficial effects were further confirmed in R6/2 HD mice. The levels of tiagabine at effective doses in mouse serum are comparable to the levels in human patients treated with tiagabine. These results suggest that tiagabine may have beneficial effects in the treatment of HD. Because tiagabine is an FDA-approved drug, it may be a promising candidate for future clinical trials for the treatment of HD.
Collapse
Affiliation(s)
- Naoki Masuda
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, CMSC 8-121, 600 N. Wolfe Street, Baltimore, MD 21287, USA
| | - Qi Peng
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, CMSC 8-121, 600 N. Wolfe Street, Baltimore, MD 21287, USA
| | - Qing Li
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, CMSC 8-121, 600 N. Wolfe Street, Baltimore, MD 21287, USA
| | - Mali Jiang
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, CMSC 8-121, 600 N. Wolfe Street, Baltimore, MD 21287, USA
| | - Yideng Liang
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, CMSC 8-121, 600 N. Wolfe Street, Baltimore, MD 21287, USA
| | - Xiaofang Wang
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, CMSC 8-121, 600 N. Wolfe Street, Baltimore, MD 21287, USA
| | - Ming Zhao
- Oncology Analytical Pharmacology core, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Wenfei Wang
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, CMSC 8-121, 600 N. Wolfe Street, Baltimore, MD 21287, USA
| | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, CMSC 8-121, 600 N. Wolfe Street, Baltimore, MD 21287, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Wenzhen Duan
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, CMSC 8-121, 600 N. Wolfe Street, Baltimore, MD 21287, USA.
| |
Collapse
|
30
|
Ye W, Jiang Z, Zhao Y, Goh SLM, Leow D, Soh YT, Tan CH. Chiral Bicyclic Guanidine as a Versatile Brønsted Base Catalyst for the Enantioselective Michael Reactions of Dithiomalonates and β-Keto Thioesters. Adv Synth Catal 2007. [DOI: 10.1002/adsc.200700326] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
Winkler M, Meischler D, Klempier N. Nitrilase-Catalyzed Enantioselective Synthesis of Pyrrolidine- and Piperidinecarboxylic Acids. Adv Synth Catal 2007. [DOI: 10.1002/adsc.200700040] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
32
|
Percec V, Glodde M, Peterca M, Rapp A, Schnell I, Spiess HW, Bera TK, Miura Y, Balagurusamy VSK, Aqad E, Heiney PA. Self-Assembly of Semifluorinated Dendrons Attached to Electron-Donor Groups Mediates Their π-Stacking via a Helical Pyramidal Column. Chemistry 2006; 12:6298-314. [PMID: 16718722 DOI: 10.1002/chem.200501195] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Semifluorinated first-generation self-assembling dendrons attached via a flexible spacer to electron-donor molecules induce pi-stacking of the donors in the center of a supramolecular helical pyramidal column. These helical pyramidal columns self-organize in various columnar liquid crystal phases that mediate self-processing of large single crystal liquid crystal domains of columns and self-repair their intracolumnar structural defects. In addition, all supramolecular columns exhibit a columnar phase at lower temperatures that maintains the helical pyramidal columnar supramolecular structure and displays higher intracolumnar order than that in the liquid crystals phases. The results described here demonstrate the universality of this concept, the power of the fluorous phase or the fluorophobic effect in self-assembly and the unexpected generality of pyramidal liquid crystals.
Collapse
Affiliation(s)
- Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Hulshof JW, Vischer HF, Verheij MHP, Fratantoni SA, Smit MJ, de Esch IJP, Leurs R. Synthesis and pharmacological characterization of novel inverse agonists acting on the viral-encoded chemokine receptor US28. Bioorg Med Chem 2006; 14:7213-30. [PMID: 16843661 DOI: 10.1016/j.bmc.2006.06.054] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 06/08/2006] [Accepted: 06/23/2006] [Indexed: 11/16/2022]
Abstract
G-protein coupled receptors encoded by viruses represent an unexplored class of potential drug targets. In this study, we describe the synthesis and pharmacological characterization of the first class of inverse agonists acting on the HCMV-encoded receptor US28. It is shown that replacement of the 4-hydroxy group of lead compound 1 with a methylamine group results in a significant 6-fold increase in affinity. Interestingly, increasing the rigidity of the spacer by the introduction of a double bond also leads to a significant increase in binding affinity compared to 1. These novel inverse agonists serve as valuable tools to elucidate the role of constitutive signaling in the pathogenesis of viral infection and may have therapeutic potential as leads for new antiviral drugs.
Collapse
Affiliation(s)
- Janneke W Hulshof
- Leiden/Amsterdam Center for Drug Research, LACDR, Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
35
|
Clausen RP, Madsen K, Larsson OM, Frølund B, Krogsgaard-Larsen P, Schousboe A. Structure–Activity Relationship and Pharmacology of γ‐Aminobutyric Acid (GABA) Transport Inhibitors. GABA 2006; 54:265-84. [PMID: 17175818 DOI: 10.1016/s1054-3589(06)54011-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Rasmus Praetorius Clausen
- Department of Medicinal Chemistry, The Danish University of Pharmaceutical Sciences, 2 Universitetsparken, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
36
|
Structural Features of the Binding Site for Diphenin and other Anticonvulsants belonging to the Group of Sodium Channel Blockers. Pharm Chem J 2005. [DOI: 10.1007/s11094-006-0007-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Wang H, Hussain AA, Wedlund PJ. Nipecotic Acid: Systemic Availability and Brain Delivery After Nasal Administration of Nipecotic Acid and n-Butyl Nipecotate to Rats. Pharm Res 2005; 22:556-62. [PMID: 15846463 DOI: 10.1007/s11095-005-2491-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Accepted: 12/28/2004] [Indexed: 10/25/2022]
Abstract
PURPOSE The purpose of this research was to characterize nipecotic acid pharmacokinetics in blood and brain after intravenous (i.v.) and nasal administration of nipecotic acid and its n-butyl ester. METHODS Nipecotic acid and its n-butyl ester were administered to rats i.v. and intranasally (n = 5 rats/drug per route), and nipecotic acid pharmacokinetics in blood were characterized. Nipecotic acid concentration-time profiles were determined in blood by noncompartmental and compartmental methods. Nipecotic acid was also dosed i.v. and its n-butyl ester was dosed by nasal and i.v. routes, and brain levels of nipecotic acid over the subsequent 4 h (n = 5 rats/time point per route) were assessed. RESULTS The absolute systemic availability of nipecotic acid after nasal dosing was 14%. After i.v. and nasal dosing of the n-butyl ester, nipecotic acid systemic availability was 97% and 92%, respectively. Both i.v. and nasal administration of the n-butyl ester resulted in a significantly longer terminal half-life and larger mean resident time and volume of distribution for nipecotic acid than was observed after an i.v. nipecotic acid dose. Total brain exposure to nipecotic acid was not significantly different after nasal and i.v. dosing of the n-butyl ester. However, the brain/blood nipecotic acid ratio declined significantly with time after i.v. and nasal dosing of the ester prodrug. Nipecotic acid was not detectable in brain after i.v. dosing of nipecotic acid. CONCLUSIONS The use of an ester formulation was crucial to delivering nipecotic acid to the brain. Preliminary evidence strongly suggests ester hydrolysis is rate limiting to nipecotic acid brain delivery. Once nipeoctic acid was formed, it displayed tissue trapping in brain. Parenteral dosing of nipecotic acid esters is unnecessary for systemic or brain delivery of nipecotic acid and possibly other CNS active zwitterion esters.
Collapse
Affiliation(s)
- Hongna Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | |
Collapse
|
38
|
Clausen RP, Moltzen EK, Perregaard J, Lenz SM, Sanchez C, Falch E, Frølund B, Bolvig T, Sarup A, Larsson OM, Schousboe A, Krogsgaard-Larsen P. Selective inhibitors of GABA uptake: synthesis and molecular pharmacology of 4-N-methylamino-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol analogues. Bioorg Med Chem 2005; 13:895-908. [PMID: 15653355 DOI: 10.1016/j.bmc.2004.10.029] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Accepted: 10/12/2004] [Indexed: 11/23/2022]
Abstract
A series of lipophilic diaromatic derivatives of the glia-selective GABA uptake inhibitor (R)-4-amino-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol [(R)-exo-THPO, 4] were synthesized via reductive amination of 3-ethoxy-4,5,6,7-tetrahydrobenzo[d]isoxazol-4-one (9) or via N-alkylation of O-alkylatedracemic 4. The effects of the target compounds on GABA uptake mechanisms in vitro were measured using a rat brain synaptosomal preparation or primary cultures of mouse cortical neurons and glia cells (astrocytes), as well as HEK cells transfected with cloned mouse GABA transporter subtypes (GAT1-4). The activity against isoniazid-induced convulsions in mice after subcutaneous administration of the compounds was determined. All of the compounds were potent inhibitors of synaptosomal uptake the most potent compound being (RS)-4-[N-(1,1-diphenylbut-1-en-4-yl)amino]-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol (17a, IC50 = 0.14 microM). The majority of the compounds showed a weak preference for glial, as compared to neuronal, GABA uptake. The highest degree of selectivity was 10-fold corresponding to the glia selectivity of (R)-N-methyl-exo-THPO (5). All derivatives showed a preference for the GAT1 transporter, as compared with GAT2-4, with the exception of (RS)-4-[N-[1,1-bis(3-methyl-2-thienyl)but-1-en-4-yl]-N-methylamino]-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol (28d), which quite surprisingly turned out to be more potent than GABA at both GAT1 and GAT2 subtypes. The GAT1 activity was shown to reside in (R)-28d whereas (R)-28d and (S)-28d contributed equally to GAT2 activity. This makes (S)-28d a GAT2 selective compound, and (R)-28d equally effective in inhibition of GAT1 and GAT2 mediated GABA transport. All compounds tested were effective as anticonvulsant reflecting that these compounds have blood-brain barrier permeating ability.
Collapse
Affiliation(s)
- Rasmus P Clausen
- Department of Medicinal Chemistry, The Danish University of Pharmaceutical Sciences, 2 Universitetsparken, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ferraz HMC, Pereira FLC, Gonçalo ERS, Santos LS, Eberlin MN. Unexpected Synthesis of Conformationally Restricted Analogues of γ-Amino Butyric Acid (GABA): Mechanism Elucidation by Electrospray Ionization Mass Spectrometry. J Org Chem 2004; 70:110-4. [PMID: 15624912 DOI: 10.1021/jo048309e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
From previous results with lower homologues, dehydroiodination of the three alkenyl-beta-enamino esters 3a-c was expected to provide six-membered N-heterocyclic products. The reactions of 3a-c with triethylamine are found to lead, however, to the unexpected stereoselective synthesis of the trisubstituted cyclopentane derivatives 4a-c, as confirmed by IR and NMR spectroscopy. Cyclopentanes 4a-c bear two chiral centers and a gamma-amino ester moiety, and are therefore conformationally restricted analogues of gamma-amino butyric acid (GABA), which is the major inhibitory neurotransmitter in the central nervous system. Use of electrospray ionization mass (ESI-MS) and tandem mass spectrometry (ESI-MS/MS) allowed the key iminium ion intermediates 5a-c(+), as well as the protonated molecules of both the reactant and final products, [3a-c + H](+) and [4a-c + H](+), to be intercepted and structurally characterized. From these findings a mechanism for this unexpected but synthetically attractive and efficient stereoselective reaction is proposed.
Collapse
Affiliation(s)
- Helena M C Ferraz
- Institute of Chemistry, University of São Paulo-USP, São Paulo SP, 05508-900, Brazil.
| | | | | | | | | |
Collapse
|
40
|
Beleboni RO, Carolino ROG, Pizzo AB, Castellan-Baldan L, Coutinho-Netto J, dos Santos WF, Coimbra NC. Pharmacological and biochemical aspects of GABAergic neurotransmission: pathological and neuropsychobiological relationships. Cell Mol Neurobiol 2004; 24:707-28. [PMID: 15672674 DOI: 10.1007/s10571-004-6913-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
1. The GABAergic neurotransmission has been implicated in the modulation of many neural networks in forebrain, midbrain and hindbrain, as well as, in several neurological disorders. 2. The complete comprehension of GABA system neurochemical properties and the search for approaches in identifying new targets for the treatment of neural diseases related to GABAergic pathway are of the extreme relevance. 3. The present review will be focused on the pharmacology and biochemistry of the GABA metabolism, GABA receptors and transporters. In addition, the pathological and psychobiological implications related to GABAergic neurotransmission will be considered.
Collapse
Affiliation(s)
- Renê Oliveira Beleboni
- Departament of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
41
|
Frolovskii VA, Studnev YN, Garibova TL, Voronina TA. Some aspects in the search for anticonvulsants (a review). Pharm Chem J 2004. [DOI: 10.1007/s11094-005-0018-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Bremner JB. Chapter 7 Seven-membered rings. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s0959-6380(03)80019-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|