1
|
Novikova D, Sagaidak A, Vorona S, Tribulovich V. A Visual Compendium of Principal Modifications within the Nucleic Acid Sugar Phosphate Backbone. Molecules 2024; 29:3025. [PMID: 38998973 PMCID: PMC11243533 DOI: 10.3390/molecules29133025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Nucleic acid chemistry is a huge research area that has received new impetus due to the recent explosive success of oligonucleotide therapy. In order for an oligonucleotide to become clinically effective, its monomeric parts are subjected to modifications. Although a large number of redesigned natural nucleic acids have been proposed in recent years, the vast majority of them are combinations of simple modifications proposed over the past 50 years. This review is devoted to the main modifications of the sugar phosphate backbone of natural nucleic acids known to date. Here, we propose a systematization of existing knowledge about modifications of nucleic acid monomers and an acceptable classification from the point of view of chemical logic. The visual representation is intended to inspire researchers to create a new type of modification or an original combination of known modifications that will produce unique oligonucleotides with valuable characteristics.
Collapse
Affiliation(s)
- Daria Novikova
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology, St. Petersburg 190013, Russia
| | - Aleksandra Sagaidak
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology, St. Petersburg 190013, Russia
| | - Svetlana Vorona
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology, St. Petersburg 190013, Russia
| | - Vyacheslav Tribulovich
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology, St. Petersburg 190013, Russia
| |
Collapse
|
2
|
Iadevaia G, Hunter CA. Recognition-Encoded Synthetic Information Molecules. Acc Chem Res 2023; 56:712-727. [PMID: 36894535 PMCID: PMC10035037 DOI: 10.1021/acs.accounts.3c00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
ConspectusNucleic acids represent a unique class of highly programmable molecules, where the sequence of monomer units incorporated into the polymer chain can be read through duplex formation with a complementary oligomer. It should be possible to encode information in synthetic oligomers as a sequence of different monomer units in the same way that the four different bases program information into DNA and RNA. In this Account, we describe our efforts to develop synthetic duplex-forming oligomers composed of sequences of two complementary recognition units that can base-pair in organic solvents through formation of a single H-bond, and we outline some general guidelines for the design of new sequence-selective recognition systems.The design strategy has focused on three interchangeable modules that control recognition, synthesis, and backbone geometry. For a single H-bond to be effective as a base-pairing interaction, very polar recognition units, such as phosphine oxide and phenol, are required. Reliable base-pairing in organic solvents requires a nonpolar backbone, so that the only polar functional groups present are the donor and acceptor sites on the two recognition units. This criterion limits the range of functional groups that can be produced in the synthesis of oligomers. In addition, the chemistry used for polymerization should be orthogonal to the recognition units. Several compatible high yielding coupling chemistries that are suitable for the synthesis of recognition-encoded polymers are explored. Finally, the conformational properties of the backbone module play an important role in determining the supramolecular assembly pathways that are accessible to mixed sequence oligomers.Almost all complementary homo-oligomers will form duplexes provided the product of the association constant for formation of a base-pair and the effective molarity for the intramolecular base-pairing interactions that zip up the duplex is significantly greater than one. For these systems, the structure of the backbone does not play a major role, and the effective molarities for duplex formation tend to fall in the range 10-100 mM for both rigid and flexible backbones. For mixed sequences, intramolecular H-bonding interactions lead to folding. The competition between folding and duplex formation depends critically on the conformational properties of the backbone, and high-fidelity sequence-selective duplex formation is only observed for backbones that are sufficiently rigid to prevent short-range folding between bases that are close in sequence. The final section of the Account highlights the prospects for functional properties, other than duplex formation, that might be encoded with sequence.
Collapse
Affiliation(s)
- Giulia Iadevaia
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Christopher A Hunter
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|
3
|
Cui Y, Zhang M, Xu H, Zhang T, Zhang S, Zhao X, Jiang P, Li J, Ye B, Sun Y, Wang M, Deng Y, Meng Q, Liu Y, Fu Q, Lin J, Wang L, Chen Y. Elastase Inhibitor Cyclotheonellazole A: Total Synthesis and In Vivo Biological Evaluation for Acute Lung Injury. J Med Chem 2022; 65:2971-2987. [PMID: 35005973 PMCID: PMC8936052 DOI: 10.1021/acs.jmedchem.1c01583] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Indexed: 12/23/2022]
Abstract
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is one of the most common complications in COVID-19. Elastase has been recognized as an important target to prevent ALI/ARDS in the patient of COVID-19. Cyclotheonellazole A (CTL-A) is a natural macrocyclic peptide reported to be a potent elastase inhibitor. Herein, we completed the first total synthesis of CTL-A in 24 linear steps. The key reactions include three-component MAC reactions and two late-stage oxidations. We also provided seven CTL-A analogues and elucidated preliminary structure-activity relationships. The in vivo ALI mouse model further suggested that CTL-A alleviated acute lung injury with reductions in lung edema and pathological deterioration, which is better than sivelestat, one approved elastase inhibitor. The activity of CTL-A against elastase, along with its cellular safety and well-established synthetic route, warrants further investigation of CTL-A as a candidate against COVID-19 pathogeneses.
Collapse
Affiliation(s)
- Yingjun Cui
- State
Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, People’s Republic of China
| | - Mengyi Zhang
- State
Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, People’s Republic of China
| | - Honglei Xu
- State
Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, People’s Republic of China
| | - Tingrong Zhang
- State
Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, People’s Republic of China
| | - Songming Zhang
- State
Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, People’s Republic of China
| | - Xiuhe Zhao
- State
Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, People’s Republic of China
| | - Peng Jiang
- State
Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, People’s Republic of China
| | - Jing Li
- State
Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, People’s Republic of China
- College
of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Baijun Ye
- State
Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, People’s Republic of China
| | - Yuanjun Sun
- State
Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, People’s Republic of China
| | - Mukuo Wang
- State
Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, People’s Republic of China
| | - Yangping Deng
- College
of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Qing Meng
- State
Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, People’s Republic of China
| | - Yang Liu
- State
Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, People’s Republic of China
| | - Qiang Fu
- Tianjin
4th Centre Hospital, Tianjin 300140, People’s Republic
of China
| | - Jianping Lin
- State
Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, People’s Republic of China
- Biodesign
Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, People’s Republic of China
| | - Liang Wang
- State
Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, People’s Republic of China
- College
of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Yue Chen
- State
Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, People’s Republic of China
- College
of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| |
Collapse
|
4
|
Wang L, Huang S, Wang M, Liu ZY, Chen XM, Yang H. Synthesis and Self-Assembly of Alternating Heterodinucleoside Polytriazoles. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Li Wang
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Institute of Advanced Materials, Southeast University, Nanjing, Jiangsu Province 211189, China
| | - Shuai Huang
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Institute of Advanced Materials, Southeast University, Nanjing, Jiangsu Province 211189, China
| | - Meng Wang
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Institute of Advanced Materials, Southeast University, Nanjing, Jiangsu Province 211189, China
| | - Zhi-Yang Liu
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Institute of Advanced Materials, Southeast University, Nanjing, Jiangsu Province 211189, China
| | - Xu-Man Chen
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Institute of Advanced Materials, Southeast University, Nanjing, Jiangsu Province 211189, China
| | - Hong Yang
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Institute of Advanced Materials, Southeast University, Nanjing, Jiangsu Province 211189, China
| |
Collapse
|
5
|
Wojtyniak M, Schmidtgall B, Kirsch P, Ducho C. Towards Zwitterionic Oligonucleotides with Improved Properties: the NAA/LNA-Gapmer Approach. Chembiochem 2020; 21:3234-3243. [PMID: 32662164 PMCID: PMC7754139 DOI: 10.1002/cbic.202000450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Indexed: 01/21/2023]
Abstract
Oligonucleotides (ON) are promising therapeutic candidates, for instance by blocking endogenous mRNA (antisense mechanism). However, ON usually require structural modifications of the native nucleic acid backbone to ensure satisfying pharmacokinetic properties. One such strategy to design novel antisense oligonucleotides is to replace native phosphate diester units by positively charged artificial linkages, thus leading to (partially) zwitterionic backbone structures. Herein, we report a "gapmer" architecture comprised of one zwitterionic central segment ("gap") containing nucleosyl amino acid (NAA) modifications and two outer segments of locked nucleic acid (LNA). This NAA/LNA-gapmer approach furnished a partially zwitterionic ON with optimised properties: i) the formation of stable ON-RNA duplexes with base-pairing fidelity and superior target selectivity at 37 °C; and ii) excellent stability in complex biological media. Overall, the NAA/LNA-gapmer approach is thus established as a strategy to design partially zwitterionic ON for the future development of novel antisense agents.
Collapse
Affiliation(s)
- Melissa Wojtyniak
- Department of PharmacyPharmaceutical and Medicinal ChemistrySaarland UniversityCampus C2 366123SaarbrückenGermany
| | - Boris Schmidtgall
- Department of ChemistryUniversity of PaderbornWarburger Str. 10033098PaderbornGermany
| | - Philine Kirsch
- Department of PharmacyPharmaceutical and Medicinal ChemistrySaarland UniversityCampus C2 366123SaarbrückenGermany
| | - Christian Ducho
- Department of PharmacyPharmaceutical and Medicinal ChemistrySaarland UniversityCampus C2 366123SaarbrückenGermany
- Department of ChemistryUniversity of PaderbornWarburger Str. 10033098PaderbornGermany
| |
Collapse
|
6
|
Jahanban-Esfahlan A, Seidi K, Jaymand M, Schmidt TL, Majdi H, Javaheri T, Jahanban-Esfahlan R, Zare P. Dynamic DNA nanostructures in biomedicine: Beauty, utility and limits. J Control Release 2019; 315:166-185. [PMID: 31669209 DOI: 10.1016/j.jconrel.2019.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 01/16/2023]
Abstract
DNA composite materials are at the forefront, especially for biomedical science, as they can increase the efficacy and safety of current therapies and drug delivery systems. The specificity and predictability of the Watson-Crick base pairing make DNA an excellent building material for the production of programmable and multifunctional objects. In addition, the principle of nucleic acid hybridization can be applied to realize mobile nanostructures, such as those reflected in DNA walkers that sort and collect cargo on DNA tracks, DNA robots performing tasks within living cells and/or DNA tweezers as ultra-sensitive biosensors. In this review, we present the diversity of dynamic DNA nanostructures functionalized with different biomolecules/functional units, imaging smart biomaterials capable of sensing, interacting, delivery and performing complex tasks within living cells/organisms.
Collapse
Affiliation(s)
| | - Khaled Seidi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Thorsten L Schmidt
- Physics Department, 103 Smith Hall, Kent State University, Kent, OH, 44240, USA
| | - Hasan Majdi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tahereh Javaheri
- Ludwig Boltzmann Institute for Cancer Research, 1090 Vienna, Austria.
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Medicine, Cardinal Stefan Wyszyński University in Warsaw, 01-938 Warsaw, Poland.
| | - Peyman Zare
- Faculty of Medicine, Cardinal Stefan Wyszyński University in Warsaw, 01-938 Warsaw, Poland.
| |
Collapse
|
7
|
Cleaves HJ, Butch C, Burger PB, Goodwin J, Meringer M. One Among Millions: The Chemical Space of Nucleic Acid-Like Molecules. J Chem Inf Model 2019; 59:4266-4277. [PMID: 31498614 DOI: 10.1021/acs.jcim.9b00632] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Biology encodes hereditary information in DNA and RNA, which are finely tuned to their biological functions and modes of biological production. The central role of nucleic acids in biological information flow makes them key targets of pharmaceutical research. Indeed, other nucleic acid-like polymers can play similar roles to natural nucleic acids both in vivo and in vitro; yet despite remarkable advances over the last few decades, much remains unknown regarding which structures are compatible with molecular information storage. Chemical space describes the structures and properties of molecules that could exist within a given molecular formula or other classification system. Using structure generation methods, we explore nucleic acid analogues within the formula ranges BC3-7H5-15O2-4 and BC3-6H5-15N1-2O0-4, where B is a recognition element (e.g., a nucleobase). Other restrictions included two obligatory points of attachment for inclusion into a linear polymer and substructures predicting chemical stability. These sets contain 86,007 (CHO) and 75,309 (CHNO) compositionally isomeric structures, representing 706,568 CHO and 454,422 CHNO stereoisomers, that diversely and densely occupy this space. These libraries point toward there being large spaces of unexplored chemistry relevant to pharmacology and biochemistry and efforts to understand the origins of life.
Collapse
Affiliation(s)
- Henderson James Cleaves
- Earth-Life Science Institute , Tokyo Institute of Technology , 2-12-IE-1 Ookayama , Meguro-ku , Tokyo 152-8551 , Japan.,Institute for Advanced Study , Princeton , New Jersey 08540 , United States.,Blue Marble Space Institute for Science , 1515 Gallatin St. NW , Washington , DC 20011 , United States
| | - Christopher Butch
- Earth-Life Science Institute , Tokyo Institute of Technology , 2-12-IE-1 Ookayama , Meguro-ku , Tokyo 152-8551 , Japan.,Blue Marble Space Institute for Science , 1515 Gallatin St. NW , Washington , DC 20011 , United States.,Department of Chemistry , Emory University , 1515 Dickey Dr. , Atlanta , Georgia 30322 , United States
| | - Pieter Buys Burger
- Department of Chemistry , Emory University , 1515 Dickey Dr. , Atlanta , Georgia 30322 , United States
| | - Jay Goodwin
- Department of Chemistry , Emory University , 1515 Dickey Dr. , Atlanta , Georgia 30322 , United States
| | - Markus Meringer
- German Aerospace Center (DLR) , Earth Observation Center (EOC) , Münchner Straße 20 , 82234 Oberpfaffenhofen-Wessling , Germany
| |
Collapse
|
8
|
Datta D, Dasgupta S, Pathak T. Sulfonic nucleic acids (SNAs): a new class of substrate mimics for ribonuclease A inhibition. Org Biomol Chem 2019; 17:7215-7221. [PMID: 31322157 DOI: 10.1039/c9ob01250h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sulfonic nucleic acids were identified as inhibitors of ribonuclease A (RNase A). The incorporation of a strongly acidic group (sulfonic, -SO3H) at the 3'-end of pyrimidine nucleosides thymidine and uridine was prompted by the low inhibition constant (Ki) values recorded for carboxymethylsulfonyl (-SO2CH2CO2H) and -CO2H functionalized nucleosides. It was envisaged that the sulfonic acid-modified pyrimidines would bind effectively with the positively charged P1 site of ribonuclease A. Typical harsh conditions used for SO3H incorporation were replaced with milder reaction conditions. The uridine analogue showing a Ki value of 0.96 μM elicited a better result than the thymidine-modified inhibitor. Notably, it was also the best result among all modified non-phosphate acidic nucleosides reported and screened so far as RNase A inhibitors.
Collapse
Affiliation(s)
- Dhrubajyoti Datta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Swagata Dasgupta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Tanmaya Pathak
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
9
|
Wang L, Wang M, Guo LX, Sun Y, Zhang XQ, Lin BP, Yang H. Oligodeoxynucleosides with Olefin Bridges. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b02115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Li Wang
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Jiangsu Key Laboratory for Science and Application of Molecular Ferroelectrics, Southeast University, Nanjing, Jiangsu Province 211189, China
| | - Meng Wang
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Jiangsu Key Laboratory for Science and Application of Molecular Ferroelectrics, Southeast University, Nanjing, Jiangsu Province 211189, China
| | - Ling-Xiang Guo
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Jiangsu Key Laboratory for Science and Application of Molecular Ferroelectrics, Southeast University, Nanjing, Jiangsu Province 211189, China
| | - Ying Sun
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Jiangsu Key Laboratory for Science and Application of Molecular Ferroelectrics, Southeast University, Nanjing, Jiangsu Province 211189, China
| | - Xue-Qin Zhang
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Jiangsu Key Laboratory for Science and Application of Molecular Ferroelectrics, Southeast University, Nanjing, Jiangsu Province 211189, China
| | - Bao-Ping Lin
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Jiangsu Key Laboratory for Science and Application of Molecular Ferroelectrics, Southeast University, Nanjing, Jiangsu Province 211189, China
| | - Hong Yang
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Jiangsu Key Laboratory for Science and Application of Molecular Ferroelectrics, Southeast University, Nanjing, Jiangsu Province 211189, China
| |
Collapse
|
10
|
Meng M, Schmidtgall B, Ducho C. Enhanced Stability of DNA Oligonucleotides with Partially Zwitterionic Backbone Structures in Biological Media. Molecules 2018; 23:molecules23112941. [PMID: 30423832 PMCID: PMC6278555 DOI: 10.3390/molecules23112941] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 11/16/2022] Open
Abstract
Deficient stability towards nuclease-mediated degradation is one of the most relevant tasks in the development of oligonucleotide-derived biomedical agents. This hurdle can be overcome through modifications to the native oligonucleotide backbone structure, with the goal of simultaneously retaining the unique hybridization properties of nucleic acids. The nucleosyl amino acid (NAA)-modification is a recently introduced artificial cationic backbone linkage. Partially zwitterionic NAA-modified oligonucleotides had previously shown hybridization with DNA strands with retained base-pairing fidelity. In this study, we report the significantly enhanced stability of NAA-modified oligonucleotides towards 3′- and 5′-exonuclease-mediated degradation as well as in complex biological media such as human plasma and whole cell lysate. This demonstrates the potential versatility of the NAA-motif as a backbone modification for the development of biomedically active oligonucleotide analogues.
Collapse
Affiliation(s)
- Melissa Meng
- Saarland University, Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Campus C2 3, 66123 Saarbrücken, Germany.
| | - Boris Schmidtgall
- Saarland University, Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Campus C2 3, 66123 Saarbrücken, Germany.
- University of Paderborn, Department of Chemistry, Warburger Str. 100, 33098 Paderborn, Germany.
| | - Christian Ducho
- Saarland University, Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Campus C2 3, 66123 Saarbrücken, Germany.
- University of Paderborn, Department of Chemistry, Warburger Str. 100, 33098 Paderborn, Germany.
| |
Collapse
|
11
|
Swain J, Iadevaia G, Hunter CA. H-Bonded Duplexes based on a Phenylacetylene Backbone. J Am Chem Soc 2018; 140:11526-11536. [PMID: 30179469 PMCID: PMC6148443 DOI: 10.1021/jacs.8b08087] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Indexed: 11/30/2022]
Abstract
Complementary phenylacetylene oligomers equipped with phenol and phosphine oxide recognition sites form stable multiply H-bonded duplexes in toluene solution. Oligomers were prepared by Sonogashira coupling of diiodobenzene and bis-acetylene building blocks in the presence of monoacetylene chain terminators. The product mixtures were separated by reverse phase preparative high-pressure liquid chromatography to give a series of pure oligomers up to seven recognition units in length. Duplex formation between length complementary homo-oligomers was demonstrated by 31P NMR denaturation experiments using dimethyl sulfoxide as a competing H-bond acceptor. The denaturation experiments were used to determine the association constants for duplex formation, which increase by nearly 2 orders of magnitude for every phenol-phosphine oxide base-pair added. These experiments show that the phenylacetylene backbone supports formation of extended duplexes with multiple cooperative intermolecular H-bonding interactions, and together with previous studies on the mixed sequence phenylacetylene 2-mer, suggest that this supramolecular architecture is a promising candidate for the development of synthetic information molecules that parallel the properties of nucleic acids.
Collapse
Affiliation(s)
- Jonathan
A. Swain
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Giulia Iadevaia
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Christopher A. Hunter
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
12
|
Iadevaia G, Núñez-Villanueva D, Stross AE, Hunter CA. Backbone conformation affects duplex initiation and duplex propagation in hybridisation of synthetic H-bonding oligomers. Org Biomol Chem 2018; 16:4183-4190. [PMID: 29790563 PMCID: PMC5989393 DOI: 10.1039/c8ob00819a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 04/30/2018] [Indexed: 01/06/2023]
Abstract
Synthetic oligomers equipped with complementary H-bond donor and acceptor side chains form multiply H-bonded duplexes in organic solvents. Comparison of the duplex forming properties of four families of oligomers with different backbones shows that formation of an extended duplex with three or four inter-strand H-bonds is more challenging than formation of complexes that make only two H-bonds. The stabilities of 1 : 1 complexes formed between length complementary homo-oligomers equipped with either phosphine oxide or phenol recognition modules were measured in toluene. When the backbone is very flexible (pentane-1,5-diyl thioether), the stability increases uniformly by an order of magnitude for each additional base-pair added to the duplex: the effective molarities for formation of the first intramolecular H-bond (duplex initiation) and subsequent intramolecular H-bonds (duplex propagation) are similar. This flexible system is compared with three more rigid backbones that are isomeric combinations of an aromatic ring and methylene groups. One of the rigid systems behaves in exactly the same way as the flexible backbone, but the other two do not. For these systems, the effective molarity for formation of the first intramolecular H-bond is the same as that found for the other two backbones, but additional H-bonds are not formed between the longer oligomers. The effective molarities are too low for duplex propagation in these systems, because the oligomer backbones cannot adopt conformations compatible with formation of an extended duplex.
Collapse
Affiliation(s)
- Giulia Iadevaia
- Department of Chemistry
, University of Cambridge
,
Lensfield Road
, Cambridge CB21EW
, UK
.
| | - Diego Núñez-Villanueva
- Department of Chemistry
, University of Cambridge
,
Lensfield Road
, Cambridge CB21EW
, UK
.
| | - Alexander E. Stross
- Department of Chemistry
, University of Cambridge
,
Lensfield Road
, Cambridge CB21EW
, UK
.
| | - Christopher A. Hunter
- Department of Chemistry
, University of Cambridge
,
Lensfield Road
, Cambridge CB21EW
, UK
.
| |
Collapse
|
13
|
Meng M, Ducho C. Oligonucleotide analogues with cationic backbone linkages. Beilstein J Org Chem 2018; 14:1293-1308. [PMID: 29977397 PMCID: PMC6009206 DOI: 10.3762/bjoc.14.111] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/26/2018] [Indexed: 12/28/2022] Open
Abstract
Their unique ability to selectively bind specific nucleic acid sequences makes oligonucleotides promising bioactive agents. However, modifications of the nucleic acid structure are an essential prerequisite for their application in vivo or even in cellulo. The oligoanionic backbone structure of oligonucleotides mainly hampers their ability to penetrate biological barriers such as cellular membranes. Hence, particular attention has been given to structural modifications of oligonucleotides which reduce their overall number of negative charges. One such approach is the site-specific replacement of the negatively charged phosphate diester linkage with alternative structural motifs which are positively charged at physiological pH, thus resulting in zwitterionic or even oligocationic backbone structures. This review provides a general overview of this concept and summarizes research on four according artificial backbone linkages: aminoalkylated phosphoramidates (and related systems), guanidinium groups, S-methylthiourea motifs, and nucleosyl amino acid (NAA)-derived modifications. The synthesis and properties of the corresponding oligonucleotide analogues are described.
Collapse
Affiliation(s)
- Melissa Meng
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany
| |
Collapse
|
14
|
Schmidtgall B, Kuepper A, Meng M, Grossmann TN, Ducho C. Oligonucleotides with Cationic Backbone and Their Hybridization with DNA: Interplay of Base Pairing and Electrostatic Attraction. Chemistry 2017; 24:1544-1553. [PMID: 29048135 PMCID: PMC5814856 DOI: 10.1002/chem.201704338] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Indexed: 01/01/2023]
Abstract
Non‐natural oligonucleotides represent important (bio)chemical tools and potential therapeutic agents. Backbone modifications altering hybridization properties and biostability can provide useful analogues. Here, we employ an artificial nucleosyl amino acid (NAA) motif for the synthesis of oligonucleotides containing a backbone decorated with primary amines. An oligo‐T sequence of this cationic DNA analogue shows significantly increased affinity for complementary DNA. Notably, hybridization with DNA is still governed by Watson–Crick base pairing. However, single base pair mismatches are tolerated and some degree of sequence‐independent interactions between the cationic NAA backbone and fully mismatched DNA are observed. These findings demonstrate that a high density of positive charges directly connected to the oligonucleotide backbone can affect Watson–Crick base pairing. This provides a paradigm for the design of therapeutic oligonucleotides with altered backbone charge patterns.
Collapse
Affiliation(s)
- Boris Schmidtgall
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123, Saarbrücken, Germany.,Department of Chemistry, University of Paderborn, Warburger Strasse 100, 33098, Paderborn, Germany
| | - Arne Kuepper
- Chemical Genomics Centre (CGC) of the Max Planck Society, Otto-Hahn-Str. 15, 44227, Dortmund, Germany.,Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Melissa Meng
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123, Saarbrücken, Germany
| | - Tom N Grossmann
- Chemical Genomics Centre (CGC) of the Max Planck Society, Otto-Hahn-Str. 15, 44227, Dortmund, Germany.,Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany.,Department of Chemistry & Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123, Saarbrücken, Germany.,Department of Chemistry, University of Paderborn, Warburger Strasse 100, 33098, Paderborn, Germany
| |
Collapse
|
15
|
Stross A, Iadevaia G, Núñez-Villanueva D, Hunter CA. Sequence-Selective Formation of Synthetic H-Bonded Duplexes. J Am Chem Soc 2017; 139:12655-12663. [PMID: 28857551 PMCID: PMC5627343 DOI: 10.1021/jacs.7b06619] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Indexed: 11/30/2022]
Abstract
Oligomers equipped with a sequence of phenol and pyridine N-oxide groups form duplexes via H-bonding interactions between these recognition units. Reductive amination chemistry was used to synthesize all possible 3-mer sequences: AAA, AAD, ADA, DAA, ADD, DAD, DDA, and DDD. Pairwise interactions between the oligomers were investigated using NMR titration and dilution experiments in toluene. The measured association constants vary by 3 orders of magnitude (102 to 105 M-1). Antiparallel sequence-complementary oligomers generally form more stable complexes than mismatched duplexes. Mismatched duplexes that have an excess of H-bond donors are stabilized by the interaction of two phenol donors with one pyridine N-oxide acceptor. Oligomers that have a H-bond donor and acceptor on the ends of the chain can fold to form intramolecular H-bonds in the free state. The 1,3-folding equilibrium competes with duplex formation and lowers the stability of duplexes involving these sequences. As a result, some of the mismatch duplexes are more stable than some of the sequence-complementary duplexes. However, the most stable mismatch duplexes contain DDD and compete with the most stable sequence-complementary duplex, AAA·DDD, so in mixtures that contain all eight sequences, sequence-complementary duplexes dominate. Even higher fidelity sequence selectivity can be achieved if alternating donor-acceptor sequences are avoided.
Collapse
Affiliation(s)
- Alexander
E. Stross
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Giulia Iadevaia
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Diego Núñez-Villanueva
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Christopher A. Hunter
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
16
|
Núñez-Villanueva D, Hunter CA. Homochiral oligomers with highly flexible backbones form stable H-bonded duplexes. Chem Sci 2017; 8:206-213. [PMID: 28451167 PMCID: PMC5308278 DOI: 10.1039/c6sc02995g] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/02/2016] [Indexed: 12/24/2022] Open
Abstract
Two homochiral building blocks featuring a protected thiol, an alkene and a H-bond recognition unit (phenol or phosphine oxide) have been prepared. Iterative photochemical thiol-ene coupling reactions were used to synthesize oligomers containing 1-4 phosphine oxide and 1-4 phenol recognition sites. Length-complementary H-bond donor and H-bond acceptor oligomers were found to form stable duplexes in toluene. NMR titrations and thermal denaturation experiments show that the association constant and the enthalpy of duplex formation increase significantly for every additional H-bonding unit added to the chain. There is an order of magnitude increase in stability for each additional H-bonding interaction at room temperature indicating that all of the H-bonding sites are fully bound to their complements in the duplexes. The backbone of the thiol-ene duplexes is a highly flexible alkane chain, but this conformational flexibility does not have a negative impact on binding affinity. The average effective molarity for the intramolecular H-bonding interactions that zip up the duplexes is 18 mM. This value is somewhat higher than the EM of 14 mM found for a related family of duplexes, which have the same recognition units but a more rigid backbone prepared using reductive amination chemistry. The flexible thiol-ene AAAA·DDDD duplex is an order of magnitude more stable than the rigid reductive amination AAAA·DDDD duplex. The backbone of the thiol-ene system retains much of its conformational flexibility in the duplex, and these results show that highly flexible molecules can make very stable complexes, provided there is no significant restriction of degrees of freedom on complexation.
Collapse
Affiliation(s)
- Diego Núñez-Villanueva
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK .
| | - Christopher A Hunter
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK .
| |
Collapse
|
17
|
Iadevaia G, Stross AE, Neumann A, Hunter CA. Mix and match backbones for the formation of H-bonded duplexes. Chem Sci 2016; 7:1760-1767. [PMID: 28936325 PMCID: PMC5592378 DOI: 10.1039/c5sc04467g] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 12/18/2015] [Indexed: 11/21/2022] Open
Abstract
The formation of well-defined supramolecular assemblies involves competition between intermolecular and intramolecular interactions, which is quantified by effective molarity. Formation of a duplex between two oligomers equipped with recognition sites displayed along a non-interacting backbone requires that once one intermolecular interaction has been formed, all subsequent interactions take place in an intramolecular sense. The efficiency of this process is governed by the geometric complementarity and conformational flexibility of the backbone linking the recognition sites. Here we report a series of phosphine oxide H-bond acceptor AA 2-mers and phenol H-bond donor DD 2-mers, where the two recognition sites are connected by isomeric backbone modules that vary in geometry and flexibility. All AA and DD combinations form stable AA·DD duplexes, where two cooperative H-bonds lead to an increase in stability of an order of magnitude compared with the corresponding A·D complexes that can only form one H-bond. For all six possible backbone combinations, the effective molarity for duplex formation is approximately constant (7-20 mM). Thus strict complementarity and high degrees of preorganisation are not required for efficient supramolecular assembly. Provided there is some flexibility, quite different backbone modules can be used interchangeably to construct stable H-bonded duplexes.
Collapse
Affiliation(s)
- Giulia Iadevaia
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK .
| | - Alexander E Stross
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK .
| | - Anja Neumann
- Department of Chemistry , University of Sheffield , Sheffield S3 7HF , UK
| | - Christopher A Hunter
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK .
| |
Collapse
|
18
|
Stross AE, Iadevaia G, Hunter CA. Cooperative duplex formation by synthetic H-bonding oligomers. Chem Sci 2015; 7:94-101. [PMID: 29861969 PMCID: PMC5950798 DOI: 10.1039/c5sc03414k] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/15/2015] [Indexed: 01/12/2023] Open
Abstract
Flexible phenol-phosphine oxide oligomers show promise as a new class of synthetic information molecule.
A series of flexible oligomers equipped with phenol H-bond donors and phosphine oxide H-bond acceptors have been synthesised using reductive amination chemistry. H-bonding interactions between complementary oligomers leads to the formation of double-stranded complexes which were characterised using NMR titrations and thermal denaturation experiments. The stability of the duplex increases by one order of magnitude for every H-bonding group added to the chain. Similarly, the enthalpy change for duplex assembly and the melting temperature for duplex denaturation both increase with increasing chain length. These observations indicate that H-bond formation along the oligomers is cooperative despite the flexible backbone, and the effective molarity for intramolecular H-bond formation (14 mM) is sufficient to propagate the formation of longer duplexes using this approach. The product K EM, which is used to quantify chelate cooperativity is 5, which means that each H-bond is more than 80% populated in the assembled duplex. The modular design of these oligomers represents a general strategy for the design of synthetic information molecules that could potentially encode and replicate chemical information in the same way as nucleic acids.
Collapse
Affiliation(s)
- Alexander E Stross
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK .
| | - Giulia Iadevaia
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK .
| | - Christopher A Hunter
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK .
| |
Collapse
|
19
|
Schmidtgall B, Spork AP, Wachowius F, Höbartner C, Ducho C. Synthesis and properties of DNA oligonucleotides with a zwitterionic backbone structure. Chem Commun (Camb) 2015; 50:13742-5. [PMID: 25251903 DOI: 10.1039/c4cc06371f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The nucleosyl amino acid (NAA)-modification of oligonucleotides is introduced, which enables the preparation of oligonucleotides with zwitterionic backbone structures. It is demonstrated that partially zwitterionic NAA-modified DNA oligonucleotides are capable of duplex formation with native polyanionic counterstrands and show retained sensitivity towards base-pairing mismatches.
Collapse
Affiliation(s)
- Boris Schmidtgall
- University of Paderborn, Department of Chemistry, Warburger Str. 100, 33 098 Paderborn, Germany
| | | | | | | | | |
Collapse
|
20
|
Isobe H, Fujino T. Triazole-linked analogues of DNA and RNA ((TL)DNA and (TL)RNA): synthesis and functions. CHEM REC 2014; 14:41-51. [PMID: 24734308 DOI: 10.1002/tcr.201300023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Click chemistry has provided us with access to DNA and RNA analogues with non-natural triazole internucleoside linkages. The bond periodicity of the oligonucleotides was designed to enforce duplex formation with natural congeners, and the non-cleavable linkages protect the oligomers against nuclease digestion. This account reviews the progress of the triazole-linked analogues over the past five years. Reinforced by their synthetic robustness, these analogues may find various utilities as tools for exploratory research.
Collapse
|
21
|
Basílio Janke EM, Weisz K. A TT Dinucleotide with a Nonionic Silyl Backbone: Impact on Conformation and H-Bond Mediated Base Pairing as Studied by Low-Temperature NMR. Z PHYS CHEM 2013. [DOI: 10.1524/zpch.2013.0382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
A TSiT dinucleotide linked through a nonionic diisopropylsilyl backbone has been synthesized and studied for its self-association through base–base recognition together with a free thymidine nucleoside. To characterize hydrogen-bonded associates in more detail, NMR measurements were performed in a freonic solvent at temperatures as low as 113 K in the slow hydrogen bond exchange regime. For the thymidine, TT base pairs with both the 2- and 4-carbonyl engaged in hydrogen bonds to the imino proton were observed. Whereas hydrogen bonds to the O4 acceptor are stronger as evidenced by a more deshielded proton in the hydrogen bridge when compared to hydrogen bonds to the O2 acceptor, the latter is nevertheless slightly favored over O4 in the H-bond formation of TT base pairs. The diisopropylsilyl linkage of the TSiT dinucleotide has no significant impact on the geometry and strength of formed NH–O2 and NH–O4 hydrogen bonds indicating, that the silyl backbone does not compromise the alignment of bases and does not pose any restrictions to the cyclic hydrogen bond formation between thymidines of the two strands. However, NMR results point to an exclusive formation of TSiT duplexes with an antiparallel strand orientation.
Collapse
|
22
|
Huang R, Xie C, Huang L, Liu J. Copper-catalyzed N-alkoxyalkylation of nucleobases involving direct functionalization of sp3 C–H bonds adjacent to oxygen atoms. Tetrahedron 2013. [DOI: 10.1016/j.tet.2012.11.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Worthington RJ, Micklefield J. Biophysical and cellular-uptake properties of mixed-sequence pyrrolidine-amide oligonucleotide mimics. Chemistry 2011; 17:14429-41. [PMID: 22076794 DOI: 10.1002/chem.201101950] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Indexed: 02/04/2023]
Abstract
Previously we introduced the positively charged pyrrolidine-amide oligonucleotide mimics (POM), which possess a pyrrolidine ring and amide linkage in place of the sugar-phosphodiester backbone of natural nucleic acids. Short POM homo-oligomers have shown promising DNA and RNA recognition properties. However, to better understand the properties of POM and to assess their potential for use as modulators of gene expression and bioanalytical or diagnostic tools, more biologically relevant, longer, mixed-sequence oligomers need to be studied. In light of this, several mixed-sequence POM oligomers were synthesised, along with fluorescently labelled POM oligomers and a POM-peptide conjugate. UV thermal denaturation showed that mixed-sequence POMs hybridise to DNA and RNA with high affinity but slow rates of association and dissociation. The sequence specificity, influence of terminal amino acids, and the effect of pH and ionic strength on the DNA and RNA hybridisation properties of POM were extensively investigated. In addition, isothermal titration calorimetry (ITC) was used to investigate the thermodynamic parameters of the binding of a POM-peptide conjugate to DNA. Cellular uptake experiments have also shown that a fluorescently labelled POM oligomer is taken up into HeLa cells. These findings demonstrate that POM has the potential for use in a variety of applications, alongside other modified nucleic acids developed to date, such as peptide nucleic acids (PNA) and phosphoramidate morpholino oligomers (PMO).
Collapse
Affiliation(s)
- Roberta J Worthington
- School of Chemistry & Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | | |
Collapse
|
24
|
Lv JL, Zhao ZY, Yang ZQ, Liu DS, Fan QH. Synthesis of dendritic oligodeoxyribonucleotide analogs with nonionic diisopropylsilyl linkage. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.09.108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
25
|
|
26
|
Herdeis L, Bernet B, Augustine A, Kälin RE, Brändli AW, Vasella A. Oligonucleotide Analogues with Integrated Bases and Backbone. Part 27. Helv Chim Acta 2011. [DOI: 10.1002/hlca.201000451] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
Xiao Z, Weisz K. Base-base recognition of nonionic dinucleotide analogues in an apolar environment studied by low-temperature NMR spectroscopy. J Am Chem Soc 2010; 132:3862-9. [PMID: 20180555 DOI: 10.1021/ja910220s] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Two self-complementary dinucleotide analogues T(Si)A and A(Si)T with a nonionic diisopropylsilyl-modified backbone were synthesized, and their association in a nonaqueous aprotic environment was studied by NMR spectroscopy. Using a CDClF(2)/CDF(3) solvent mixture, measurements at temperatures as low as 113 K allowed the observation and structural characterization of individual complexes in the slow exchange regime. The A(Si)T analogue associates to exclusively form a dinucleotide antiparallel duplex with regular Watson-Crick base pairing, but both A and T nucleosides exhibit a predominant C3'-endo sugar pucker reminiscent of an A-type conformation. In contrast to A(Si)T, the T(Si)A dinucleotide is found to exhibit significant variability and flexibility. Thus, different secondary structures with weaker hydrogen bonds for all T(Si)A structures are observed at low temperatures. Although a B-like Watson-Crick antiparallel dinucleotide duplex with a preferred C2'-endo sugar pucker largely predominates at temperatures above 153 K, two additional species, namely a dinucleotide Hoogsteen duplex with a syn glycosidic torsion angle of the adenosine nucleoside and a presumably intramolecularly folded structure, are increasingly populated upon further cooling. By adding typical DNA intercalators like anthracene or benz[c]acridine derivatives to the A(Si)T dinucleotide duplex in the aprotic solvent environment, no binding of the polycyclic aromatic molecules can be detected even at lower temperatures. Obviously, van der Waals and stacking interactions are insufficient to compensate for the other unfavorable contributions to the overall free energy of binding, and only in the presence of additional hydrophobic effects in an aqueous environment does binding occur.
Collapse
Affiliation(s)
- Zhou Xiao
- Institute of Biochemistry, Ernst-Moritz-Arndt University Greifswald, Felix-Hausdorff-Str. 4, D-17489 Greifswald, Germany
| | | |
Collapse
|
28
|
Worthington RJ, Bell NM, Wong R, Micklefield J. RNA-selective cross-pairing of backbone-extended pyrrolidine-amide oligonucleotide mimics (bePOMs). Org Biomol Chem 2007; 6:92-103. [PMID: 18075653 DOI: 10.1039/b714580m] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pyrrolidine-amide oligonucleotide mimics (POMs) can cross-pair strongly with complementary parallel and antiparallel DNA and RNA targets in a sequence-specific fashion. As a result POMs have significant potential for applications including in vivo gene silencing, diagnostics and bioanalysis. To further modulate the DNA- and RNA-recognition properties and fine-tune the physiochemical properties of POMs for nucleic acid targeting, backbone-extended pyrrolidine-amide oligonucleotide mimics (bePOM I and II) were introduced. The bePOMs differ from the original POMs through the insertion of an additional methylene group into the backbone units, which increases the flexibility of the oligomers. bePOM I and II oligomers were synthesised using solid-phase peptide chemistry. Interestingly, UV thermal denaturation and circular dichroism studies reveals bePOM I and II can hybridise with complementary RNA, but not DNA.
Collapse
Affiliation(s)
- Roberta J Worthington
- School of Chemistry and Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester, UK M17DN
| | | | | | | |
Collapse
|
29
|
Sheng J, Jiang J, Salon J, Huang Z. Synthesis of a 2'-Se-thymidine phosphoramidite and its incorporation into oligonucleotides for crystal structure study. Org Lett 2007; 9:749-52. [PMID: 17263541 PMCID: PMC2532523 DOI: 10.1021/ol062937w] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
[reaction: see text] To investigate nucleic acids with selenium derivatization for crystallography, we report the first synthesis of 2'-methylseleno-thymidine phosphoramidite and its incorporation into DNAs and RNAs by solid-phase synthesis with over 99% coupling yield. The d(GT(Se)GTACAC)2 crystal structure was also determined at 1.40 A resolution using Se phasing, revealing that this Se derivatization did not cause significant structure perturbation, consistent with our UV melting study. In addition, we observed that the Se modification largely facilitated the crystallization.
Collapse
Affiliation(s)
- Jia Sheng
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | | | |
Collapse
|
30
|
Greenwell HC, Coveney PV. Layered double hydroxide minerals as possible prebiotic information storage and transfer compounds. ORIGINS LIFE EVOL B 2006; 36:13-37. [PMID: 16372196 DOI: 10.1007/s11084-005-2068-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Accepted: 06/17/2005] [Indexed: 10/25/2022]
Abstract
One of the fundamental difficulties when considering the origin of life on Earth is the identification of an emergent system that not only replicated, but also had the capacity to undergo discrete mutation in such a way that following generations might inherit and pass on the mutation. We speculate that the layered double hydroxide (LDH) minerals are plausible candidates for a proto-RNA molecule. We describe a hypothetical LDH-like system which, when intercalated with certain anions, forms crystals with a high degree of internal order giving rise to novel information storage structures in which replication fidelity is maintained, a concept we use to propose an explanation for interstratification in terephthalate LDHs. The external surfaces of these hypothetical crystals provide active sites whose structure and chemistry is dictated by the internal information content of the LDH. Depending on the LDH polytype, the opposing external surfaces of a crystal may give rise to reactive sites that are either complementary or mirror images of each other, and so may be chiral. We also examine similarities between these proposed "proto-RNA" structures and the DNA that encodes the hereditary information in life today, concluding with a hypothetical scenario wherein these proto-RNA molecules predated the putative RNA-world.
Collapse
Affiliation(s)
- H Chris Greenwell
- Centre for Computational Science, Christopher Ingold Laboratory, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| | | |
Collapse
|
31
|
Bouchez LC, Turks M, Dubbaka SR, Fonquerne F, Craita C, Laclef S, Vogel P. Sulfur dioxide mediated one-pot, four-component synthesis of polyfunctional sulfones and sulfonamides, including medium-ring cyclic derivatives. Tetrahedron 2005. [DOI: 10.1016/j.tet.2005.08.067] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|