1
|
Li NS, Koo SC, Piccirilli JA. Synthesis of Oligoribonucleotides Containing a 2'-Amino-5'- S-phosphorothiolate Linkage. J Org Chem 2021; 86:13231-13244. [PMID: 34533968 PMCID: PMC8491167 DOI: 10.1021/acs.joc.1c01059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
![]()
Oligoribonucleotides
containing a photocaged 2′-amino-5′-S-phophorothiolate linkage have potential applications as
therapeutic agents and biological probes to investigate the RNA structure
and function. We envisioned that oligoribonucleotides containing a
2′-amino-5′-S-phosphorothiolate linkage
could provide an approach to identify the general base within catalytic
RNAs by chemogenetic suppression. To enable preliminary tests of this
idea, we developed synthetic approaches to a dinucleotide, trinucleotide,
and oligoribonucleotide containing a photocaged 2′-amino-5′-S-phosphorothiolate linkage. We incorporated the photocaged
2′-amino-5′-S-phosphorothiolate linkage
into an oligoribonucleotide substrate for the hepatitis delta virus
(HDV) ribozyme and investigated the pH dependence of its cleavage
following UV irradiation both in the presence and absence of the ribozyme.
The substrate exhibited a pH-rate profile characteristic of the modified
linkage but reacted slower when bound to the ribozyme. Cleavage inhibition
by the HDV ribozyme could reflect a non-productive ground-state interaction
with the modified substrate’s nucleophilic 2′-NH2 or a poor fit of the modified transition state at the ribozyme’s
active site.
Collapse
Affiliation(s)
- Nan-Sheng Li
- Department of Biochemistry & Molecular Biology, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, Unites States
| | - Selene C Koo
- Department of Biochemistry & Molecular Biology, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, Unites States
| | - Joseph A Piccirilli
- Department of Biochemistry & Molecular Biology, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, Unites States.,Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, Unites States
| |
Collapse
|
2
|
Farzan VM, Ulashchik EA, Martynenko-Makaev YV, Kvach MV, Aparin IO, Brylev VA, Prikazchikova TA, Maklakova SY, Majouga AG, Ustinov AV, Shipulin GA, Shmanai VV, Korshun VA, Zatsepin TS. Automated Solid-Phase Click Synthesis of Oligonucleotide Conjugates: From Small Molecules to Diverse N-Acetylgalactosamine Clusters. Bioconjug Chem 2017; 28:2599-2607. [PMID: 28921968 DOI: 10.1021/acs.bioconjchem.7b00462] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We developed a novel technique for the efficient conjugation of oligonucleotides with various alkyl azides such as fluorescent dyes, biotin, cholesterol, N-acetylgalactosamine (GalNAc), etc. using copper-catalysed alkyne-azide cycloaddition on the solid phase and CuI·P(OEt)3 as a catalyst. Conjugation is carried out in an oligonucleotide synthesizer in fully automated mode and is coupled to oligonucleotide synthesis and on-column deprotection. We also suggest a set of reagents for the construction of diverse conjugates. The sequential double-click procedure using a pentaerythritol-derived tetraazide followed by the addition of a GalNAc or Tris-GalNAc alkyne gives oligonucleotide-GalNAc dendrimer conjugates in good yields with minimal excess of sophisticated alkyne reagents. The approach is suitable for high-throughput synthesis of oligonucleotide conjugates ranging from fluorescent DNA probes to various multi-GalNAc derivatives of 2'-modified siRNA.
Collapse
Affiliation(s)
- Valentina M Farzan
- Center of Translational Biomedicine, Skolkovo Institute of Science and Technology , Skolkovo, Moscow 143026, Russia
| | - Egor A Ulashchik
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus , Surganova 13, Minsk 220072, Belarus
| | - Yury V Martynenko-Makaev
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus , Surganova 13, Minsk 220072, Belarus
| | - Maksim V Kvach
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus , Surganova 13, Minsk 220072, Belarus
| | - Ilya O Aparin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Vladimir A Brylev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Tatiana A Prikazchikova
- Center of Translational Biomedicine, Skolkovo Institute of Science and Technology , Skolkovo, Moscow 143026, Russia
| | - Svetlana Yu Maklakova
- Department of Chemistry, Lomonosov Moscow State University , Leninskie gory 3, Moscow 119992, Russia
| | - Alexander G Majouga
- Department of Chemistry, Lomonosov Moscow State University , Leninskie gory 3, Moscow 119992, Russia.,National University of Science and Technology "MISiS" , Leninskiy Prospect 4, Moscow 119991, Russia
| | - Alexey V Ustinov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - German A Shipulin
- Central Research Institute of Epidemiology , Novogireevskaya 3a, Moscow 111123, Russia
| | - Vadim V Shmanai
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus , Surganova 13, Minsk 220072, Belarus
| | - Vladimir A Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Miklukho-Maklaya 16/10, Moscow 117997, Russia.,Gause Institute of New Antibiotics , Bolshaya Pirogovskaya 11, Moscow 119021, Russia
| | - Timofei S Zatsepin
- Center of Translational Biomedicine, Skolkovo Institute of Science and Technology , Skolkovo, Moscow 143026, Russia.,Department of Chemistry, Lomonosov Moscow State University , Leninskie gory 3, Moscow 119992, Russia.,Central Research Institute of Epidemiology , Novogireevskaya 3a, Moscow 111123, Russia
| |
Collapse
|
3
|
Aralov AV, Klykov VN, Chakhmakhcheva OG, Efimov VA. [Monomers containing 2'-o-alkoxymethyl groups as synthons for the synthesis of oligoribonucleotides by the phosphotriester method]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2012; 37:654-61. [PMID: 22332361 DOI: 10.1134/s1068162011050025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A general scheme for the synthesis of ribonucleotide monomers containing alkoxymethyl group in 2'-O-position for the solid-phase phosphotriester oligonucleotide synthesis using O-nucleophilic intramolecular catalysis has been developed. In particular, the monomers containing 2'-O-modifying 2-azidoethoxymethyl, propargyloxymethyl, or 3,4-cyclocarbonatebutoxymethyl groups has been prepared.
Collapse
|
4
|
Li NS, Piccirilli JA. Efficient synthesis of 2′-C-α-aminomethyl-2′-deoxynucleosides. Chem Commun (Camb) 2012; 48:8754-6. [DOI: 10.1039/c2cc34556k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Mori K, Kodama T, Baba T, Obika S. Bridged nucleic acid conjugates at 6'-thiol: synthesis, hybridization properties and nuclease resistances. Org Biomol Chem 2011; 9:5272-9. [PMID: 21643564 DOI: 10.1039/c1ob05469d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The bridged nucleic acid (BNA) containing a thiol at the 6'-position in the bridged structure was synthesized from the disulfide-type BNA and conjugated with various functional molecules via the thioether or the disulfide linkage post-synthetically and efficiently in solution phase. The disulfide-linked conjugate was cleaved under reductive conditions derived from glutathione and an oligonucleotide bearing a free thiol was released smoothly. Conjugated functional molecules had great effects on duplex stability with the DNA complement. In contrast, the molecules little influenced the stability with the RNA complement. Moreover, the oligonucleotides with functional groups at the 6'-position had as high or higher resistances against 3'-exonuclease than phosphorothioate oligonucleotide (S-oligo).
Collapse
Affiliation(s)
- Kazuto Mori
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
6
|
Lu K, Duan QP, Ma L, Zhao DX. Chemical strategies for the synthesis of peptide-oligonucleotide conjugates. Bioconjug Chem 2010; 21:187-202. [PMID: 19856957 DOI: 10.1021/bc900158s] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The use of synthetic oligonucleotides and their mimics to inhibit gene expression by hybridizing with their target sequences has been hindered by their poor cellular uptake and inability to reach the nucleus. Covalent postsynthesis or solid-phase conjugation of peptides to oligonucleotides offers a possible solution to these problems. As feasible chemistry is a prerequisite for biological studies, development of efficient and reproducible approaches for convenient preparation of peptide-oligonucleotide conjugates has become a subject of considerable importance. The present review gives an account of the main synthetic methods available to prepare covalent conjugation of peptides to oligonucleotides.
Collapse
Affiliation(s)
- Kui Lu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | | | | | | |
Collapse
|
7
|
Postsynthetic modification of DNA via threoninol on a solid support by means of allylic protection. Tetrahedron Lett 2008. [DOI: 10.1016/j.tetlet.2008.06.090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Porphyrin conjugated to DNA by a 2'-amido-2'-deoxyuridine linkage. Bioorg Med Chem Lett 2007; 18:850-5. [PMID: 18054487 DOI: 10.1016/j.bmcl.2007.11.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2007] [Revised: 11/06/2007] [Accepted: 11/08/2007] [Indexed: 11/21/2022]
Abstract
A porphyrin that contains a single carboxylic acid group was synthesized and coupled to 2'-amino-2'-deoxyuridine. The resultant product contained a free 3' hydroxyl group and a 4,4'-dimethoxytrityl (DMT) protecting group on the 5' hydroxyl of the uridine, making it suitable for use in oligonucleotide synthesis. The 3' H-phosphonate derivative of this molecule was synthesized and used to form a conjugate with a 19 nucleotide sequence of DNA (5'-CCTCCAGTGGAAATCAAGG-3'). This was carried out with the DNA attached at the 3' end to a control pore glass (CPG) substrate, allowing for rapid purification. After removal of the DMT group, an additional three nucleotides were added, leaving the porphyrin as an internal modification. This is the first report of porphyrin attached internally to an oligonucleotide using a hydrogen-bonding nucleoside analog. This allows oligonucleotides to be used as a scaffold for precise positioning of multiple porphyrins within biomimetic arrays.
Collapse
|
9
|
Constable EC, Dunphy EL, Housecroft CE, Neuburger M, Schaffner S, Schaper F, Batten SR. Expanded ligands: bis(2,2′:6′,2″-terpyridine carboxylic acid)ruthenium(ii) complexes as metallosupramolecular analogues of dicarboxylic acids. Dalton Trans 2007:4323-32. [PMID: 17893822 DOI: 10.1039/b709557k] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ligands in which multiple metal-binding domains are linked by a metal-containing moiety rather than a conventional organic group are described as "expanded ligands". The use of 4,4'-difunctionalised {Ru(tpy)(2)} units provides a linear spacer between metal-binding domains and we have extended this motif to expanded ligands containing two carboxylic acid metal-binding domains. In this paper, we describe the synthesis and structural characterisation of ruthenium(ii) complexes of 2,2':6',2''-terpyridine-4'-carboxylic acid and 4'-carboxyphenyl-2,2':6',2''-terpyridine. The ability of the ruthenium(ii) centre to charge compensate deprotonation of the carboxylic acid leads to Zwitterionic complexes and three representative compounds have been structurally characterised.
Collapse
Affiliation(s)
- Edwin C Constable
- Department of Chemistry, University of Basel, Spitalstrasse 51, 4056 Basel, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
10
|
Kalra N, Parlato MC, Parmar VS, Wengel J. DNA and LNA oligonucleotides containing N2'-functionalised derivatives of 2'-amino-2'-deoxyuridine. Bioorg Med Chem Lett 2006; 16:3166-9. [PMID: 16621554 DOI: 10.1016/j.bmcl.2006.03.072] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Revised: 03/15/2006] [Accepted: 03/16/2006] [Indexed: 11/18/2022]
Abstract
Synthesis of various N-acylated derivatives of 2'-amino-2'-deoxyuridine is described together with their incorporation into DNA and LNA oligonucleotides using the phosphoramidite approach on an automated DNA synthesizer. The thermal stabilities of duplexes formed by these 2'-amino-DNA-modified DNA or LNA/DNA chimeric strands and complementary DNA or RNA strands have been studied. Introduction of LNA monomers around the functionalised 2'-amino-DNA modifications results in reversal of the affinity-decreasing effect of the latter. This represents a novel general approach for design and synthesis of high-affinity functionalised oligonucleotides for biotechnological or medicinal applications.
Collapse
Affiliation(s)
- Neerja Kalra
- Nucleic Acid Center, Department of Chemistry, University of Southern Denmark, DK-5230 Odense M, Denmark
| | | | | | | |
Collapse
|
11
|
Synthesis of DNA conjugates by solid-phase fragment condensation via aldehyde–nucleophile coupling. Tetrahedron Lett 2005. [DOI: 10.1016/j.tetlet.2005.03.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Miller GP, Kool ET. Versatile 5'-functionalization of oligonucleotides on solid support: amines, azides, thiols, and thioethers via phosphorus chemistry. J Org Chem 2004; 69:2404-10. [PMID: 15049637 DOI: 10.1021/jo035765e] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although the preparation of conjugates of oligonucleotides is by now commonplace, existing methods (usually utilizing thiols or primary amines) are generally expensive, and often require postsynthetic reaction with the DNA followed by a separate purification. Here we describe simple procedures for a broad set of direct 5'-end (5'-terminal carbon) functionalizations of DNA oligonucleotides while they remain on the synthesizer column. 5'-Iodinated oligonucleotides (prepared by an automated cycle as previously reported) are converted directly to 5'-azides, 5'-thiocarbamates, and alkyl and aryl 5'-thioethers in high yields. Further, we demonstrate high-yielding conversions of DNA-azides to 5'-amines, and of thiocarbamates to 5'-thiols. Finally, we report a new, one-pot conversion of naturally substituted 5'-OH oligonucleotides (again on the solid support) to 5'-amino-oligonucleotides. All of the above reactions are demonstrated in multiple sequence contexts. Most of the procedures are automatable.
Collapse
Affiliation(s)
- Gregory P Miller
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|
13
|
Dioubankova NN, Malakhov AD, Shenkarev ZO, Korshun VA. Oligonucleotides containing new fluorescent 1-phenylethynylpyrene and 9,10-bis(phenylethynyl)anthracene uridine-2′-carbamates: synthesis and properties. Tetrahedron 2004. [DOI: 10.1016/j.tet.2004.03.076] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Winkler J, Urban E, Losert D, Wacheck V, Pehamberger H, Noe CR. A novel concept for ligand attachment to oligonucleotides via a 2'-succinyl linker. Nucleic Acids Res 2004; 32:710-8. [PMID: 14757835 PMCID: PMC373351 DOI: 10.1093/nar/gkh229] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Conjugation of ligands to antisense oligonucleotides is a promising approach for enhancing their effects. In this report, a new method for synthesizing oligonucleotide conjugates is described. 2'-Amino-2'-deoxy-5'-dimethoxytrityl-uridine was select ively acylated with a succinic acid linker at the 2' position. This compound was incorporated at the 3' end of an oligonucleotide corresponding to the sequence of Oblimersen. The carboxyl group was protected for oligonucleotide synthesis as a benzyl ester, which could be selectively cleaved at the solid phase by a catalytic phase transfer reaction using palladium nanoparticles as catalyst. An oligonucleotide-fluorescein conjugate was prepared by condensation of aminofluorescein. Circular dichroism spectroscopic experiments showed a B-DNA type structure. The melting temperature of the duplex was only slightly lower than that of Oblimersen. Biological activity measured by western blotting resulted in a Bcl-2 target downregulation nearly identical to that of control Oblimersen on human melanoma cells, proving that this method is attractive for the binding of ligands located in the minor groove.
Collapse
Affiliation(s)
- Johannes Winkler
- Institute for Pharmaceutical Chemistry, Universität Wien, Austria
| | | | | | | | | | | |
Collapse
|
15
|
Virta P, Katajisto J, Niittymäki T, Lönnberg H. Solid-supported synthesis of oligomeric bioconjugates. Tetrahedron 2003. [DOI: 10.1016/s0040-4020(03)00704-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Hwang JT, Baltasar FE, Cole DL, Sigman DS, Chen CHB, Greenberg MM. Transcription inhibition using modified pentanucleotides. Bioorg Med Chem 2003; 11:2321-8. [PMID: 12713844 DOI: 10.1016/s0968-0896(03)00071-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inhibition of gene expression was recently achieved by targeting the transcriptionally competent open complex using relatively short, pentameric modified oligonucleotides at approximately 60 microM. Corroborative affinity cleavage experiments using the copper complex of a phenanthroline conjugate provided the impetus to synthesize additional analogues containing substituents at the 2'-position of uridine in a derivative of 5'-GUGGA (-4 to +1), with the purpose of inhibiting transcription at lower concentrations. Conjugates of 5'-GUGGA modified at the 2'-position of uridine were convergently synthesized using a recently reported method. Seven analogues based upon the 5'-GUGGA scaffold were tested for their ability to inhibit transcription of the lac UV-5 operon. The conjugate containing a tethered pyrene showed 70% inhibition at 20 microM, and modest inhibition at as low as 5 microM. This is a significant improvement over previously tested pentanucleotides and provides direction for the preparation of a next generation of inhibitors.
Collapse
Affiliation(s)
- Jae-Taeg Hwang
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | | | | | |
Collapse
|
17
|
Wang CCY, Seo TS, Li Z, Ruparel H, Ju J. Site-specific fluorescent labeling of DNA using Staudinger ligation. Bioconjug Chem 2003; 14:697-701. [PMID: 12757398 DOI: 10.1021/bc0256392] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the site-specific fluorescent labeling of DNA using Staudinger ligation with high efficiency and high selectivity. An oligonucleotide modified at its 5' end by an azido group was selectively reacted with 5-[(N-(3'-diphenylphosphinyl-4'-methoxycarbonyl)phenylcarbonyl)aminoacetamido]fluorescein (Fam) under aqueous conditions to produce a Fam-labeled oligonucleotide with a high yield (approximately 90%). The fluorescent oligonucleotide was characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Because of the relatively high yield of the Staudinger ligation, simple purification of the product by size-exclusion chromatography and desalting is sufficient for the resulting fluorescent oligonucleotide to be used as a primer in a Sanger dideoxy sequencing reaction to produce fluorescent DNA extension fragments, which are analyzed by a fluorescent electrophoresis DNA sequencer. The results indicate that the Staudinger ligation can be used successfully and site-specifically to prepare fluorescent oligonucleotides to produce DNA sequencing products, which are detected with single base resolution in a capillary electrophoresis DNA sequencer using laser-induced fluorescence detection.
Collapse
Affiliation(s)
- Charles C-Y Wang
- Columbia Genome Center, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
18
|
|
19
|
Lyttle MH, Walton TA, Dick DJ, Carter TG, Beckman JH, Cook RM. New reagents and methods for the synthesis of internal and 3'-labeled DNA. Bioconjug Chem 2002; 13:1146-54. [PMID: 12236798 DOI: 10.1021/bc020011c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The syntheses of two new nucleoside phosphoramidites containing a hydroxyl functionality masked by a levulinate protecting group are presented; N(4)-(2-(ethylene glycol-2-levulinate)ethyl)-5-methyl-5'-(4,4'-dimethoxytrityl)-3'-O-(2-cyanoethyldiisopropylphosphoramidite)-2'-deoxycytidine 1 and 5-(N-(6-O-levulinoyl-1-aminohexyl)-3(E)-acrylamido)-5'-(4,4'-dimethoxytrityl)-3'-(2-cyanoethyldiisopropylphosphoramidite)-2'-deoxyuridine 3. Optimization of solid-phase-supported synthetic parameters for incorporation of these into DNA, removal of the levulinate group by exposure to dilute hydrazine, and subsequent attachment of dye labels is described. Synthesis of the known compound 5-(N-(6-trifluoroacetylaminohexyl)-3(E)-acrylamido)-5'-(4,4'-dimethoxytrityl)-3'-(2-cyanoethyldiisopropylphosphoramidite)-2'-deoxyuridine 2 (1), containing a masked amine at the end of an alkyl chain attached at the 5 position, was also revisited using new techniques developed for 3.
Collapse
Affiliation(s)
- Matthew H Lyttle
- Biosearch Technologies, Inc., 81 Digital Drive, Novato, California 94949, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Gorchs O, Hernández M, Garriga L, Pedroso E, Grandas A, Farràs J. A new method for the preparation of modified oligonucleotides. Org Lett 2002; 4:1827-30. [PMID: 12027624 DOI: 10.1021/ol025643t] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
[reaction-see text] N-Nitrothymidine can be transformed into a phosphoramidite building block suitable for oligonucleotide synthesis using the standard phosphite triester solid-phase approach. The N-nitrothymidine residues remain stable during the elongation cycles and react smoothly with primary amines, furnishing oligonucleotides containing N3-modified thymidines. A number of N3-substituted oligonucleotides have been prepared using this methodology, some of them incorporating aminoalkyl or hydroxyalkyl groups.
Collapse
Affiliation(s)
- Olga Gorchs
- Departament de Química Orgànica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
[reaction: see text] A general strategy for the functional diversification of DNA oligonucleotides under physiological conditions was developed. We describe the synthesis of DNA molecules bearing ketone ports (ketone-DNA) and the efficient postsynthetic decoration of ketone-DNA with structurally diverse aminooxy compounds.
Collapse
Affiliation(s)
- S Dey
- Department of Chemistry and The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA
| | | |
Collapse
|
22
|
Greenberg MM, Kahl JD. Template-free segmental synthesis of oligonucleotides containing nonnative linkages. J Org Chem 2001; 66:7151-4. [PMID: 11597244 DOI: 10.1021/jo010610x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protected oligonucleotides containing 3'-alkyl carboxylic acids or 3'-alkylamines were obtained from photolabile solid-phase synthesis supports (1 and 4). Protected oligonucleotides containing 5'-alkylamines and 3'-hydroxyl groups were obtained using a photolabile solid-phase synthesis support (2) and a commercially available phosphoramidite reagent (3). Depending upon the source of alkylamine-containing oligonucleotide, the segments were coupled under mild conditions to form products containing either 5'-3' or 3'-3' linkages in good yield and high purity. Oligonucleotides as long as 40 nucleotides were prepared, and coupling yields of protected biopolymer segments were independent of length over the range examined. This method is particularly well suited for the convergent synthesis of oligonucleotides containing nonnative linkages and should be useful for the rapid assembly of modified biopolymers that are useful in biochemical studies.
Collapse
Affiliation(s)
- M M Greenberg
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
| | | |
Collapse
|