1
|
Yang J, Xie D, Ma X. Recent Advances in Chemical Synthesis of Amino Sugars. Molecules 2023; 28:4724. [PMID: 37375279 DOI: 10.3390/molecules28124724] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Amino sugars are a kind of carbohydrates with one or more hydroxyl groups replaced by an amino group. They play crucial roles in a broad range of biological activities. Over the past few decades, there have been continuing efforts on the stereoselective glycosylation of amino sugars. However, the introduction of glycoside bearing basic nitrogen is challenging using conventional Lewis acid-promoted pathways owing to competitive coordination of the amine to the Lewis acid promoter. Additionally, diastereomeric mixtures of O-glycoside are often produced if aminoglycoside lack a C2 substituent. This review focuses on the updated overview of the way to stereoselective synthesis of 1,2-cis-aminoglycoside. The scope, mechanism, and the applications in the synthesis of complex glycoconjugates for the representative methodologies were also included.
Collapse
Affiliation(s)
- Jian Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Demeng Xie
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiaofeng Ma
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Endo H, Ochi M, Rahman MA, Hamada T, Kawano T, Nokami T. Synthesis of cyclic α-1,4-oligo- N-acetylglucosamine 'cyclokasaodorin' via a one-pot electrochemical polyglycosylation-isomerization-cyclization process. Chem Commun (Camb) 2022; 58:7948-7951. [PMID: 35748909 DOI: 10.1039/d2cc02287g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Electrochemical synthesis of unnatural cyclic oligosaccharides composed of N-acetylglucosamine with α-1,4-glycosidic linkages has been accomplished. A thioglycoside monomer equipped with the 2,3-oxazolidinone protecting group was used to prepare linear oligosaccharides by electrochemical polyglycosylation. In the same pot, isomerization of the linear oligosaccharides and intramolecular electrochemical glycosylation for cyclization were also conducted sequentially to obtain the precursor of the cyclic α-1,4-oligo-N-acetylglucosamine 'cyclokasaodorin'.
Collapse
Affiliation(s)
- Hirofumi Endo
- Department of Chemistry and Biotechnology, Tottori University, 4-101 Koyamacho Minami, Tottori City, 680-8552 Tottori, Japan.
| | - Masaharu Ochi
- Department of Chemistry and Biotechnology, Tottori University, 4-101 Koyamacho Minami, Tottori City, 680-8552 Tottori, Japan.
| | - Md Azadur Rahman
- Department of Chemistry and Biotechnology, Tottori University, 4-101 Koyamacho Minami, Tottori City, 680-8552 Tottori, Japan.
| | - Tomoaki Hamada
- Koganei Corporation, 3-11-28 Midorimachi, Koganei City, 184-8533 Tokyo, Japan
| | - Takahiro Kawano
- Koganei Corporation, 3-11-28 Midorimachi, Koganei City, 184-8533 Tokyo, Japan
| | - Toshiki Nokami
- Department of Chemistry and Biotechnology, Tottori University, 4-101 Koyamacho Minami, Tottori City, 680-8552 Tottori, Japan. .,Centre for Research on Green Sustainable Chemistry, Faculty of Engineering, Tottori University, 4-101 Koyamacho Minami, Tottori City, 680-8552 Tottori, Japan
| |
Collapse
|
3
|
Zhang Y, Wang L, Overkleeft HS, van der Marel GA, Codée JDC. Assembly of a Library of Pel-Oligosaccharides Featuring α-Glucosamine and α-Galactosamine Linkages. Front Chem 2022; 10:842238. [PMID: 35155372 PMCID: PMC8826555 DOI: 10.3389/fchem.2022.842238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/05/2022] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa, a pathogenic Gram-negative bacterium for which currently antibiotic resistance is posing a significant problem and for which no vaccines are available, protects itself by the formation of a biofilm. The Pel polysaccharide, a cationic polymer composed of cis-linked galactosamine (GalN), N-acetyl galactosamine (GalNAc), glucosamine (GlcN) and N-acetyl glucosamine (GlcNAc) monosaccharides, is an important constituent of the biofilm. Well-defined Pel oligosaccharides will be valuable tools to probe the biosynthesis machinery of this polysaccharide and may serve as diagnostic tools or be used as components of glycoconjugate vaccines. We here, report on the development of synthetic chemistry to access well-defined Pel-oligosaccharides. The chemistry hinges on the use of di-tert-butylsilylidene protected GalN and GlcN building blocks, which allow for completely cis-selective glycosylation reactions. We show the applicability of the chemistry by the assembly of a matrix of 3 × 6 Pel heptasaccharides, which has been generated from a single set of suitably protected Pel heptasaccharides, in which a single glucosamine residue is incorporated and positioned at different places along the Pel oligo-galactosamine chain.
Collapse
Affiliation(s)
- Yongzhen Zhang
- Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Liming Wang
- Institute of Chemistry, Leiden University, Leiden, Netherlands
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, China
| | | | | | - Jeroen D. C. Codée
- Institute of Chemistry, Leiden University, Leiden, Netherlands
- *Correspondence: Jeroen D. C. Codée,
| |
Collapse
|
4
|
Morelli L, Legnani L, Ronchi S, Confalonieri L, Imperio D, Toma L, Compostella F. 2,3-Carbamate mannosamine glycosyl donors in glycosylation reactions of diacetone-d-glucose. An experimental and theoretical study. Carbohydr Res 2021; 509:108421. [PMID: 34450528 DOI: 10.1016/j.carres.2021.108421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/05/2021] [Accepted: 08/18/2021] [Indexed: 11/25/2022]
Abstract
The role of the cyclic 2,3-N,O-carbamate protecting group in directing the selectivity of mannosylation reactions of diacetone-d-glucose, promoted by BSP/Tf2O via α-triflate intermediates, has been investigated through a combined computational and experimental approach. DFT calculations were used to locate the transition states leading to the α or β anomers. These data indicate the preferential formation of the β-adduct with mannosyl donors either equipped with the 4,6-O-benzylidene protection or without it. The synthetic results confirmed this preference, showing in both cases an α/β selectivity of 4:6. This highlights a role for the 2,3-N,O-carbamate in sharp contrast with what described in the case of 2,3-O-carbonate mannosyl donors.
Collapse
Affiliation(s)
- Laura Morelli
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Saldini 50, 20133 Milano, Italy
| | - Laura Legnani
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Silvia Ronchi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Saldini 50, 20133 Milano, Italy
| | - Laura Confalonieri
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, L.go Donegani 2, 28100 Novara, Italy
| | - Daniela Imperio
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, L.go Donegani 2, 28100 Novara, Italy
| | - Lucio Toma
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy.
| | - Federica Compostella
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Saldini 50, 20133 Milano, Italy.
| |
Collapse
|
5
|
Qin X, Ye X. Donor
Preactivation‐Based
Glycosylation: An Efficient Strategy for Glycan Synthesis. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000484] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xianjin Qin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Xin‐Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Road No. 38 Beijing 100191 China
| |
Collapse
|
6
|
4,6-Di-O-Benzylidenyl group-directed preparation of 2-deoxy-2-azido-α-d-galactopyranosides promoted by 3-O-TBDPS. Carbohydr Res 2021; 500:108237. [PMID: 33548832 DOI: 10.1016/j.carres.2021.108237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 11/22/2022]
Abstract
In this study, we designed a method to prepare 2-deoxy-2-azido-α-d-galactopyranosidic bonds using 4,6-di-O-benzylidenyl-3-O-t-butyldiphenylsilyl protected 2-deoxy-2-azido-1-thio-d-galactopyranoside 5 as donors. The donor 5 gives a good to excellent α-selectivity in the glycosylation with secondary alcohols, which was found to be associated with the benzylidenyl on 4,6-di-O and TBDPS on 3-O of the donor 5. Compared with results of the donor 6 and 7, the 3-O-TBDPS could increase the activity of the thioglycoside, and the lone pairs on 4,6-di-O-benzylidenyl group enhanced the gg-cofnormation, which plays a role in improving the stereoselectivity. Finally, this method was demonstrated through the synthesis of a α-galactosamine -containing pentasaccharide 26.
Collapse
|
7
|
|
8
|
Wang L, Zhang Y, Overkleeft HS, van der Marel GA, Codée JDC. Reagent Controlled Glycosylations for the Assembly of Well-Defined Pel Oligosaccharides. J Org Chem 2020; 85:15872-15884. [PMID: 32375481 PMCID: PMC7754192 DOI: 10.1021/acs.joc.0c00703] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
A new
additive, methyl(phenyl)formamide (MPF), is introduced for
the glycosylation of 2-azido-2-deoxyglucose building blocks. A linear
α-(1,4)-glucosamine tetrasaccharide was assembled to prove the
utility of MPF. Next, a hexasaccharide fragment of the Pseudomonas
aeruginosa exopolysaccharide Pel was assembled using a [2
+ 2 + 2] strategy modulated by MPF. The used [galactosazide-α-(1,4)-glucosazide]
disaccharide building blocks were synthesized using a 4,6-O-DTBS protected galactosyl azide donor.
Collapse
Affiliation(s)
- Liming Wang
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Yongzhen Zhang
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Herman S Overkleeft
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Gijsbert A van der Marel
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
9
|
Jeanneret RA, Johnson SE, Galan MC. Conformationally Constrained Glycosyl Donors as Tools to Control Glycosylation Outcomes. J Org Chem 2020; 85:15801-15826. [DOI: 10.1021/acs.joc.0c02045] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Robin A. Jeanneret
- School of Chemistry, University of Bristol, Cantock’s
Close, Bristol BS8 1TS, United Kingdom
| | - Simon E. Johnson
- School of Chemistry, University of Bristol, Cantock’s
Close, Bristol BS8 1TS, United Kingdom
| | - M. Carmen Galan
- School of Chemistry, University of Bristol, Cantock’s
Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
10
|
Meng S, Zhong W, Yao W, Li Z. Stereoselective Phenylselenoglycosylation of Glycals Bearing a Fused Carbonate Moiety toward the Synthesis of 2-Deoxy-β-galactosides and β-Mannosides. Org Lett 2020; 22:2981-2986. [PMID: 32216320 DOI: 10.1021/acs.orglett.0c00732] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A phenylselenoglycosylation reaction of glycal derivatives mediated by diphenyl diselenide and phenyliodine(III) bis(trifluoroacetate) under mild conditions is described. Stereoselective glycosylation has been achieved by installing fused carbonate on those glycals. 3,4-O-Carbonate galactals and 2,3-O-carbonate 2-hydroxyglucals are converted into corresponding glycosides in good yields with excellent β-selectivity, resulting in 2-phenylseleno-2-deoxy-β-galactosides and 2-phenylseleno-β-mannosides which are good precursors of 2-deoxy-β-galactosides and β-mannosides, respectively.
Collapse
Affiliation(s)
- Shuai Meng
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P.R. China
| | - Wenhe Zhong
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P.R. China
| | - Wang Yao
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P.R. China
| | - Zhongjun Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P.R. China
| |
Collapse
|
11
|
Mannino MP, Demchenko AV. Synthesis of β-Glucosides with 3-O-Picoloyl-Protected Glycosyl Donors in the Presence of Excess Triflic Acid: Defining the Scope. Chemistry 2020; 26:2938-2946. [PMID: 31886911 DOI: 10.1002/chem.201905278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Indexed: 11/08/2022]
Abstract
Excellent β-stereoselectivity for the glycosylation with glucosyl donors equipped with the 3-O-picoloyl (Pico) group, without the use of participating group, was achieved in the presence of NIS/excess TfOH promoter system. A complete investigation of the scope of this reaction was performed, revealing all important attributes of successful glycosylation. While altering the halogen source was tolerated, substitution of the triflate anion resulted in complete loss of stereoselectivity. Protonation of the Pico group was determined to be crucial in this reaction. The stability or extent of the protonated pyridine ring was also found to be another important key factor in obtaining high stereoselectivity. The nucleophilicity of the acceptor was found to be proportional to the stereoselectivity obtained, suggesting an SN 2-like mechanism.
Collapse
Affiliation(s)
- Michael P Mannino
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
| |
Collapse
|
12
|
Zhang Y, Zhang H, Zhao Y, Guo Z, Gao J. Efficient Strategy for α-Selective Glycosidation of d-Glucosamine and Its Application to the Synthesis of a Bacterial Capsular Polysaccharide Repeating Unit Containing Multiple α-Linked GlcNAc Residues. Org Lett 2020; 22:1520-1524. [DOI: 10.1021/acs.orglett.0c00101] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yanxin Zhang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| | - Han Zhang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| | - Ying Zhao
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, United States
| | - Jian Gao
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
13
|
Hamala V, Červenková Šťastná L, Kurfiřt M, Cuřínová P, Dračínský M, Karban J. Use of remote acyl groups for stereoselective 1,2-cis-glycosylation with fluorinated glucosazide thiodonors. Org Biomol Chem 2020; 18:5427-5434. [DOI: 10.1039/d0ob01065k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Introducing remote O-acyl protecting groups enabled 1,2-cis stereoselective glycosylation with fluorinated glucosazide glycosyl donors.
Collapse
Affiliation(s)
- Vojtěch Hamala
- Institute of Chemical Process Fundamentals of the CAS
- 16502 Praha 6
- Czech Republic
- University of Chemistry and Technology Prague
- 16628 Praha 6
| | | | - Martin Kurfiřt
- Institute of Chemical Process Fundamentals of the CAS
- 16502 Praha 6
- Czech Republic
- University of Chemistry and Technology Prague
- 16628 Praha 6
| | - Petra Cuřínová
- Institute of Chemical Process Fundamentals of the CAS
- 16502 Praha 6
- Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry of the CAS
- Praha 6
- Czech Republic
| | - Jindřich Karban
- Institute of Chemical Process Fundamentals of the CAS
- 16502 Praha 6
- Czech Republic
| |
Collapse
|
14
|
Doyle LM, Meany FB, Murphy PV. Lewis acid promoted anomerisation of alkyl O- and S-xylo-, arabino- and fucopyranosides. Carbohydr Res 2019; 471:85-94. [PMID: 30508660 DOI: 10.1016/j.carres.2018.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 10/27/2022]
Abstract
Pentopyranoside and 6-deoxyhexopyranosides, such as those from d-xylose, l-arabinose and l-fucose are components of natural products, oligosaccharides or polysaccharides. Lewis acid promoted anomerisation of some of their alkyl O- and S-glycopyranosides is reported here. SnCl4 was more successful than TiCl4, with the latter giving the glycosyl chloride by-product in some cases, and both were superior to BF3OEt2. Kinetics study using 1H NMR spectroscopy showed an order of reactivity: O-xylopyranoside > O-arabinopyranoside > O-fucopyranoside. Benzoylated glycosides were more reactive than acetylated glycosides. The reactivity of S-glycosides was greater than that of O-glycosides for both arabinose and fucose derivatives; the reactivity of O- and S-xylopyranosides was similar. The highest stereoselectivities were observed for fucopyranosides. The β-d-xylopyranoside and α-l-arabinopyranoside reactants are conformationally more flexible than β-l-fucopyranosides.
Collapse
Affiliation(s)
- Lisa M Doyle
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Fiach B Meany
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Paul V Murphy
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland.
| |
Collapse
|
15
|
Panza M, Pistorio SG, Stine KJ, Demchenko AV. Automated Chemical Oligosaccharide Synthesis: Novel Approach to Traditional Challenges. Chem Rev 2018; 118:8105-8150. [PMID: 29953217 PMCID: PMC6522228 DOI: 10.1021/acs.chemrev.8b00051] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Advances in carbohydrate chemistry have certainly made common oligosaccharides much more accessible. However, many current methods still rely heavily upon specialized knowledge of carbohydrate chemistry. The application of automated technologies to chemical and life science applications such as genomics and proteomics represents a vibrant field. These automated technologies also present opportunities for their application to organic synthesis, including that of the synthesis of oligosaccharides. However, application of automated methods to the synthesis of carbohydrates is an underdeveloped area as compared to other classes of biomolecules. The overarching goal of this review article is to present the advances that have been made at the interface of carbohydrate chemistry and automated technology.
Collapse
Affiliation(s)
- Matteo Panza
- Department of Chemistry and Biochemistry, University of Missouri–St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Salvatore G. Pistorio
- Department of Chemistry and Biochemistry, University of Missouri–St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Keith J. Stine
- Department of Chemistry and Biochemistry, University of Missouri–St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Alexei V. Demchenko
- Department of Chemistry and Biochemistry, University of Missouri–St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| |
Collapse
|
16
|
Influence of acyl groups on glucopyranoside reactivity in Lewis acid promoted anomerisation. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.05.076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
17
|
Yang B, Yang W, Ramadan S, Huang X. Pre-activation Based Stereoselective Glycosylations. European J Org Chem 2018; 2018:1075-1096. [PMID: 29805297 PMCID: PMC5963711 DOI: 10.1002/ejoc.201701579] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Indexed: 12/19/2022]
Abstract
Due to the wide presence of carbohydrates in nature and their crucial roles in numerous important biological processes, oligosaccharides have attracted a lot of attention in synthetic organic chemistry community. Many innovative synthetic methods have been developed for oligosaccharide synthesis, among which the pre-activation based glycosylation is particularly noteworthy. Traditionally, glycosylation reactions are carried out when the glycosyl donor and the acceptor are both present when the promoter is added. In comparison, the pre-activation based glycosylation is unique, where the glycosyl donor is activated by the promoter in the absence of the acceptor. Upon complete donor activation, the acceptor is added to the reaction mixture enabling glycosylation. The key step in any oligosaccharide synthesis is the stereoselective formation of the glycosidic bond. As donor activation and acceptor glycosylation are temporally separated, pre-activation based glycosylation can bestow unique stereochemical control. This review systematically discusses factors impacting the stereochemical outcome of a pre-activation based glycosylation reaction including substituents on the glycosyl donor, reaction solvent, and additives. Applications of pre-activation based stereoselective glycosylation in assembly of complex oligosaccharides are also discussed.
Collapse
Affiliation(s)
- Bo Yang
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, MI 48824 USA
| | - Weizhun Yang
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, MI 48824 USA
| | - Sherif Ramadan
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, MI 48824 USA
- Chemistry Department, Faculty of Science, Benha University, Benha, Qaliobiya 13518, Egypt
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, MI 48824 USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824 USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
18
|
Lourenço E, Ventura M. Improvement of the stereoselectivity of the glycosylation reaction with 2-azido-2-deoxy-1-thioglucoside donors. Carbohydr Res 2016; 426:33-9. [DOI: 10.1016/j.carres.2016.03.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 11/28/2022]
|
19
|
Fascione MA, Brabham R, Turnbull WB. Mechanistic Investigations into the Application of Sulfoxides in Carbohydrate Synthesis. Chemistry 2016; 22:3916-28. [PMID: 26744250 PMCID: PMC4794778 DOI: 10.1002/chem.201503504] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Indexed: 12/04/2022]
Abstract
The utility of sulfoxides in a diverse range of transformations in the field of carbohydrate chemistry has seen rapid growth since the first introduction of a sulfoxide as a glycosyl donor in 1989. Sulfoxides have since developed into more than just anomeric leaving groups, and today have multiple roles in glycosylation reactions. These include as activators for thioglycosides, hemiacetals, and glycals, and as precursors to glycosyl triflates, which are essential for stereoselective β-mannoside synthesis, and bicyclic sulfonium ions that facilitate the stereoselective synthesis of α-glycosides. In this review we highlight the mechanistic investigations undertaken in this area, often outlining strategies employed to differentiate between multiple proposed reaction pathways, and how the conclusions of these investigations have and continue to inform upon the development of more efficient transformations in sulfoxide-based carbohydrate synthesis.
Collapse
Affiliation(s)
- Martin A Fascione
- York Structural Biology Lab, Department of Chemistry, University of York, Heslington Road, York, YO10 5DD, UK.
| | - Robin Brabham
- York Structural Biology Lab, Department of Chemistry, University of York, Heslington Road, York, YO10 5DD, UK
| | - W Bruce Turnbull
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| |
Collapse
|
20
|
Satoh H, Hansen HS, Manabe S, van Gunsteren WF, Hünenberger PH. Theoretical Investigation of Solvent Effects on Glycosylation Reactions: Stereoselectivity Controlled by Preferential Conformations of the Intermediate Oxacarbenium-Counterion Complex. J Chem Theory Comput 2015; 6:1783-97. [PMID: 26615839 DOI: 10.1021/ct1001347] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The mechanism of solvent effects on the stereoselectivity of glycosylation reactions is investigated using quantum-mechanical (QM) calculations and molecular dynamics (MD) simulations, considering a methyl-protected glucopyranoside triflate as a glycosyl donor equivalent and the solvents acetonitrile, ether, dioxane, or toluene, as well as gas-phase conditions (vacuum). The QM calculations on oxacarbenium-solvent complexes do not provide support to the usual solvent-coordination hypothesis, suggesting that an experimentally observed β-selectivity (α-selectivity) is caused by the preferential coordination of a solvent molecule to the reactive cation on the α-side (β-side) of the anomeric carbon. Instead, explicit-solvent MD simulations of the oxacarbenium-counterion (triflate ion) complex (along with corresponding QM calculations) are compatible with an alternative mechanism, termed here the conformer and counterion distribution hypothesis. This new hypothesis suggests that the stereoselectivity is dictated by two interrelated conformational properties of the reactive complex, namely, (1) the conformational preferences of the oxacarbenium pyranose ring, modulating the steric crowding and exposure of the anomeric carbon toward the α or β face, and (2) the preferential coordination of the counterion to the oxacarbenium cation on one side of the anomeric carbon, hindering a nucleophilic attack from this side. For example, in acetonitrile, the calculations suggest a dominant B2,5 ring conformation of the cation with preferential coordination of the counterion on the α side, both factors leading to the experimentally observed β selectivity. Conversely, in dioxane, they suggest a dominant (4)H3 ring conformation with preferential counterion coordination on the β side, both factors leading to the experimentally observed α selectivity.
Collapse
Affiliation(s)
- Hiroko Satoh
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology (ETH), CH-8093 Zürich, Switzerland, National Institute of Informatics, Tokyo 101-8430, Japan, and RIKEN Advanced Science Institute, Saitama 351-0198, Japan
| | - Halvor S Hansen
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology (ETH), CH-8093 Zürich, Switzerland, National Institute of Informatics, Tokyo 101-8430, Japan, and RIKEN Advanced Science Institute, Saitama 351-0198, Japan
| | - Shino Manabe
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology (ETH), CH-8093 Zürich, Switzerland, National Institute of Informatics, Tokyo 101-8430, Japan, and RIKEN Advanced Science Institute, Saitama 351-0198, Japan
| | - Wilfred F van Gunsteren
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology (ETH), CH-8093 Zürich, Switzerland, National Institute of Informatics, Tokyo 101-8430, Japan, and RIKEN Advanced Science Institute, Saitama 351-0198, Japan
| | - Philippe H Hünenberger
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology (ETH), CH-8093 Zürich, Switzerland, National Institute of Informatics, Tokyo 101-8430, Japan, and RIKEN Advanced Science Institute, Saitama 351-0198, Japan
| |
Collapse
|
21
|
Nigudkar SS, Demchenko AV. Stereocontrolled 1,2- cis glycosylation as the driving force of progress in synthetic carbohydrate chemistry. Chem Sci 2015; 6:2687-2704. [PMID: 26078847 PMCID: PMC4465199 DOI: 10.1039/c5sc00280j] [Citation(s) in RCA: 317] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 03/05/2015] [Indexed: 01/21/2023] Open
Abstract
Recent developments in stereoselective 1,2-cis glycosylation that have emerged during the past decade are surveyed herein. Recent developments in stereoselective 1,2-cis glycosylation that have emerged during the past decade are surveyed herein. For detailed coverage of the previous achievements in the field the reader is referred to our earlier reviews: A. V. Demchenko, Curr. Org. Chem. , 2003, 7 , 35–79 and Synlett , 2003, 1225–1240.
Collapse
Affiliation(s)
- Swati S. Nigudkar
- Department of Chemistry and Biochemistry , University of Missouri – St. Louis , One University Blvd , St. Louis , MO 63121 , USA .
| | - Alexei V. Demchenko
- Department of Chemistry and Biochemistry , University of Missouri – St. Louis , One University Blvd , St. Louis , MO 63121 , USA .
| |
Collapse
|
22
|
Frihed TG, Bols M, Pedersen CM. Mechanisms of Glycosylation Reactions Studied by Low-Temperature Nuclear Magnetic Resonance. Chem Rev 2015; 115:4963-5013. [DOI: 10.1021/cr500434x] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Mikael Bols
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | | |
Collapse
|
23
|
Additive-controlled stereoselective glycosylations of 2,3-oxazolidinone protected glucosamine or galactosamine thioglycoside donors with phenols based on preactivation protocol. Carbohydr Res 2015; 403:104-14. [DOI: 10.1016/j.carres.2014.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/05/2014] [Accepted: 07/07/2014] [Indexed: 11/18/2022]
|
24
|
Manabe S, Ito Y. Pyranosides with 2,3-trans carbamate groups: exocyclic or endocyclic cleavage reaction? CHEM REC 2014; 14:502-15. [PMID: 24914008 DOI: 10.1002/tcr.201402004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Indexed: 12/28/2022]
Abstract
Pyranosides with 2,3-trans carbamate groups exhibit high 1,2-cis selectivity in glycosylation reactions. Using glycosyl donors with N-benzyl 2,3-trans carbamate groups, an anti-Helicobacter pylori oligosaccharide was synthesized in an efficient manner. Moreover, pyranosides with 2,3-trans carbamate groups readily undergo anomerization from the β to the α configuration under mild acidic conditions via endocyclic cleavage. Acyclic cations generated during the endocyclic cleavage reaction were captured using reduction and intramolecular Friedel-Crafts reaction. By exploiting this anomerization, multiply aligned 1,2-trans glycosyl bonds can be transformed to 1,2-cis glycosyl bonds in a single operation.
Collapse
Affiliation(s)
- Shino Manabe
- RIKEN, Synthetic Cellular Chemistry Laboratory, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | | |
Collapse
|
25
|
Cai F, Yang F. Sulfenyl Triflates as Glycosylation Promoters: Applications in Synthesis and Mechanistic Studies. J Carbohydr Chem 2014. [DOI: 10.1080/07328303.2013.875554] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Feng Cai
- a Department of Biochemistry , University of Texas Southwestern Medical Center , Dallas , TX , 75390 , USA
| | - Fan Yang
- a Department of Biochemistry , University of Texas Southwestern Medical Center , Dallas , TX , 75390 , USA
| |
Collapse
|
26
|
|
27
|
Manabe S, Satoh H, Hutter J, Lüthi HP, Laino T, Ito Y. Significant substituent effect on the anomerization of pyranosides: mechanism of anomerization and synthesis of a 1,2-cis glucosamine oligomer from the 1,2-trans anomer. Chemistry 2013; 20:124-32. [PMID: 24307501 DOI: 10.1002/chem.201303474] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Indexed: 11/06/2022]
Abstract
Aminoglycosides containing a 2,3-trans carbamate group easily undergo anomerization from the 1,2-trans glycoside to the 1,2-cis isomer under mild acidic conditions. The N-substituent of the carbamate has a significant effect on the anomerization reaction; in particular, an N-acetyl group facilitated rapid and complete α-anomerization. The differences in reactivity due to the various N-substituents were supported by the results of DFT calculations; the orientation of the acetyl carbonyl group close to the anomeric position was found to contribute significantly to the directing of the anomerization reaction. By exploiting this reaction, oligoaminoglycosides with multiple 1,2-cis glycosidic bonds were generated from 1,2-trans glycosides in a one-step process.
Collapse
Affiliation(s)
- Shino Manabe
- RIKEN, Synthetic Cellular Chemistry Laboratory, Hirosawa, Wako, Saitama 351-0198 (Japan), Fax: (+81) 48-462-9430.
| | | | | | | | | | | |
Collapse
|
28
|
Lin HJ, Adak AK, Reddy LVR, Wu SH, Lin CC. Total Synthesis of an Immunomodulatory Phosphoglycolipid from Thermophilic Bacteria. Chemistry 2013; 19:7989-98. [DOI: 10.1002/chem.201204550] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/18/2013] [Indexed: 01/08/2023]
|
29
|
Frihed TG, Walvoort MTC, Codée JDC, van der Marel GA, Bols M, Pedersen CM. Influence of O6 in Mannosylations Using Benzylidene Protected Donors: Stereoelectronic or Conformational Effects? J Org Chem 2013; 78:2191-205. [DOI: 10.1021/jo302455d] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Tobias Gylling Frihed
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100
Copenhagen, Denmark
| | - Marthe T. C. Walvoort
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden,
The Netherlands
| | - Jeroen D. C. Codée
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden,
The Netherlands
| | - Gijs A. van der Marel
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden,
The Netherlands
| | - Mikael Bols
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100
Copenhagen, Denmark
| | | |
Collapse
|
30
|
Yang L, Qin Q, Ye XS. Preactivation: An Alternative Strategy in Stereoselective Glycosylation and Oligosaccharide Synthesis. ASIAN J ORG CHEM 2013. [DOI: 10.1002/ajoc.201200136] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
31
|
Walvoort MTC, van der Marel GA, Overkleeft HS, Codée JDC. On the reactivity and selectivity of donor glycosides in glycochemistry and glycobiology: trapped covalent intermediates. Chem Sci 2013. [DOI: 10.1039/c2sc21610h] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
32
|
Manabe S, Satoh H. Unique Reactivity of Pyranosides with 2,3-trans Carbamate Group; Renaissance of Endocyclic Cleavage Reaction. J SYN ORG CHEM JPN 2013. [DOI: 10.5059/yukigoseikyokaishi.71.616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
Nokami T, Saito K, Yoshida JI. Synthetic carbohydrate research based on organic electrochemistry. Carbohydr Res 2012; 363:1-6. [DOI: 10.1016/j.carres.2012.09.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 09/26/2012] [Accepted: 09/28/2012] [Indexed: 12/16/2022]
|
34
|
Sharma I, Bohé L, Crich D. Influence of protecting groups on the anomeric equilibrium; case of the 4,6-O-benzylidene acetal in the mannopyranose series. Carbohydr Res 2012; 357:126-31. [PMID: 22739244 PMCID: PMC3396728 DOI: 10.1016/j.carres.2012.05.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 05/25/2012] [Accepted: 05/28/2012] [Indexed: 11/29/2022]
Abstract
It is reported that the replacement of the 4- and 6-O-benzyl ethers in 2,3,4,6-tetra-O-benzyl-α,β-mannopyranose by a 4,6-O-benzylidene acetal results in an increased population of the β-anomer at equilibrium in CDCl(3) solution. The phenomenon is considered to arise from the lower steric bulk of the benzylidene acetal that, through diminished buttressing interactions, reduces steric interactions normally present in the β-anomer.
Collapse
Affiliation(s)
- Indrajeet Sharma
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA
| | - Luis Bohé
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, 1 Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - David Crich
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, 1 Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| |
Collapse
|
35
|
Enugala R, Carvalho LCR, Dias Pires MJ, Marques MMB. Stereoselective Glycosylation of Glucosamine: The Role of the
N
‐Protecting Group. Chem Asian J 2012; 7:2482-501. [DOI: 10.1002/asia.201200338] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Indexed: 12/17/2022]
Affiliation(s)
- Ramu Enugala
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica 2829‐516 Caparica (Portugal), Fax: (+351) 21‐294‐8550
| | - Luísa C. R. Carvalho
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica 2829‐516 Caparica (Portugal), Fax: (+351) 21‐294‐8550
| | - Marina J. Dias Pires
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica 2829‐516 Caparica (Portugal), Fax: (+351) 21‐294‐8550
| | - M. Manuel B. Marques
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica 2829‐516 Caparica (Portugal), Fax: (+351) 21‐294‐8550
| |
Collapse
|
36
|
Khodaei MM, Nazari E. n-Butylammonium carboxylates/Tf2O: ionic liquid based systems for the synthesis of unsymmetrical imides via a Ritter-type reaction. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2012.03.121] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Zulueta MML, Lin SY, Lin YT, Huang CJ, Wang CC, Ku CC, Shi Z, Chyan CL, Irene D, Lim LH, Tsai TI, Hu YP, Arco SD, Wong CH, Hung SC. α-Glycosylation by d-Glucosamine-Derived Donors: Synthesis of Heparosan and Heparin Analogues That Interact with Mycobacterial Heparin-Binding Hemagglutinin. J Am Chem Soc 2012; 134:8988-95. [DOI: 10.1021/ja302640p] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Medel Manuel L. Zulueta
- Genomics Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Taipei 115, Taiwan
- Institute of Chemistry, University of the Philippines, Diliman, Quezon City
1101, Philippines
| | - Shu-Yi Lin
- Genomics Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Taipei 115, Taiwan
- Department
of Chemistry, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300, Taiwan
| | - Ya-Ting Lin
- Department
of Chemistry, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300, Taiwan
| | - Ching-Jui Huang
- Department
of Chemistry, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300, Taiwan
| | - Chun-Chih Wang
- Department
of Chemistry, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300, Taiwan
| | - Chiao-Chu Ku
- Genomics Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Taipei 115, Taiwan
| | - Zhonghao Shi
- Genomics Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Taipei 115, Taiwan
| | - Chia-Lin Chyan
- Department of Chemistry, National Dong Hwa University, No. 1, Sec. 2, Ta-Hsueh
Road, Shoufeng, Hualien 974, Taiwan
| | - Deli Irene
- Department of Chemistry, National Dong Hwa University, No. 1, Sec. 2, Ta-Hsueh
Road, Shoufeng, Hualien 974, Taiwan
| | - Liang-Hin Lim
- Department of Chemistry, National Dong Hwa University, No. 1, Sec. 2, Ta-Hsueh
Road, Shoufeng, Hualien 974, Taiwan
| | - Tsung-I Tsai
- Genomics Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Taipei 115, Taiwan
| | - Yu-Peng Hu
- Genomics Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Taipei 115, Taiwan
- Department
of Chemistry, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300, Taiwan
| | - Susan D. Arco
- Institute of Chemistry, University of the Philippines, Diliman, Quezon City
1101, Philippines
| | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Taipei 115, Taiwan
| | - Shang-Cheng Hung
- Genomics Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Taipei 115, Taiwan
- Department of Applied Chemistry, National Chiao Tung University, No. 1001, Ta-Hsueh Road, Hsinchu 300, Taiwan
| |
Collapse
|
38
|
Nokami T, Shibuya A, Saigusa Y, Manabe S, Ito Y, Yoshida JI. Electrochemical generation of 2,3-oxazolidinone glycosyl triflates as an intermediate for stereoselective glycosylation. Beilstein J Org Chem 2012; 8:456-60. [PMID: 22509217 PMCID: PMC3326625 DOI: 10.3762/bjoc.8.52] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 03/06/2012] [Indexed: 12/25/2022] Open
Abstract
Glycosyl triflates with a 2,3-oxazolidinone protecting group were generated from thioglycosides by low-temperature electrochemical oxidation. The glycosyl triflates reacted with alcohols to give the corresponding glycosides β-selectively at low temperatures. However, α-selectivity was observed in the absence of base at elevated reaction temperatures. In situ generated triflic acid promotes the isomerization of β-products to α-products.
Collapse
Affiliation(s)
- Toshiki Nokami
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Nishikyo-ku Kyoto 615-8510 Japan
| | | | | | | | | | | |
Collapse
|
39
|
Manabe S, Ishii K, Satoh H, Ito Y. Substituent effects in endocyclic cleavage–recyclization anomerization reaction of pyranosides. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.09.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
40
|
Crich D. Methodology development and physical organic chemistry: a powerful combination for the advancement of glycochemistry. J Org Chem 2011; 76:9193-209. [PMID: 21919522 PMCID: PMC3215858 DOI: 10.1021/jo2017026] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
This Perspective outlines work in the Crich group on the diastereoselective synthesis of the so-called difficult classes of glycosidic bond: the 2-deoxy-β-glycopyranosides, the β-mannopyranosides, the α-sialosides, the α-glucopyranosides, and the β-arabinofuranosides with an emphasis on the critical interplay between mechanism and methodology development.
Collapse
Affiliation(s)
- David Crich
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| |
Collapse
|
41
|
Yang L, Zhu J, Zheng XJ, Tai G, Ye XS. A highly α-stereoselective synthesis of oligosaccharide fragments of the Vi antigen from Salmonella typhi and their antigenic activities. Chemistry 2011; 17:14518-26. [PMID: 22095754 DOI: 10.1002/chem.201102615] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Indexed: 01/03/2023]
Abstract
In this paper, a convenient approach to the synthesis of the repeating α-(1→4)-linked N-acetyl galactosaminuronic acid units from the capsular polysaccharide of Salmonella typhi is reported. The exclusively α-stereoselective glycosylation reactions were achieved by using oxazolidinone-protected glycosides as building blocks based on a pre-activation protocol. Di-, tri-, and tetrasaccharides were prepared by this short and efficient approach in high yields. The enzyme-linked immunosorbent assay experiments show that our synthetic tri- and tetrasaccharide had much higher antigenic activities than previously reported ones in the inhibition of antibody binding by the native polysaccharide. The results demonstrate that the antigenic activities of saccharides can be strengthened greatly by increasing the number of acetyl groups present.
Collapse
Affiliation(s)
- Lin Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | | | | | | | | |
Collapse
|
42
|
Nokami T, Nozaki Y, Saigusa Y, Shibuya A, Manabe S, Ito Y, Yoshida JI. Glycosyl Sulfonium Ions as Storable Intermediates for Glycosylations. Org Lett 2011; 13:1544-7. [DOI: 10.1021/ol200242u] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Toshiki Nokami
- Department of Synthetic Chemistry, Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan, RIKEN Advanced Science Institute, Hirosawa, Wako, Saitama 351-0198, Japan, and ERATO JST, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yuki Nozaki
- Department of Synthetic Chemistry, Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan, RIKEN Advanced Science Institute, Hirosawa, Wako, Saitama 351-0198, Japan, and ERATO JST, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshihiro Saigusa
- Department of Synthetic Chemistry, Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan, RIKEN Advanced Science Institute, Hirosawa, Wako, Saitama 351-0198, Japan, and ERATO JST, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Akito Shibuya
- Department of Synthetic Chemistry, Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan, RIKEN Advanced Science Institute, Hirosawa, Wako, Saitama 351-0198, Japan, and ERATO JST, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shino Manabe
- Department of Synthetic Chemistry, Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan, RIKEN Advanced Science Institute, Hirosawa, Wako, Saitama 351-0198, Japan, and ERATO JST, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yukishige Ito
- Department of Synthetic Chemistry, Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan, RIKEN Advanced Science Institute, Hirosawa, Wako, Saitama 351-0198, Japan, and ERATO JST, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Jun-ichi Yoshida
- Department of Synthetic Chemistry, Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan, RIKEN Advanced Science Institute, Hirosawa, Wako, Saitama 351-0198, Japan, and ERATO JST, Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
43
|
Codée JD, Ali A, Overkleeft HS, van der Marel GA. Novel protecting groups in carbohydrate chemistry. CR CHIM 2011. [DOI: 10.1016/j.crci.2010.05.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
44
|
Manabe S, Ishii K, Ito Y. N-Benzyl-2,3-trans-Carbamate-Bearing Glycosyl Donors for 1,2-cis-Selective Glycosylation Reactions. European J Org Chem 2010. [DOI: 10.1002/ejoc.201001278] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
45
|
Guo J, Ye XS. Protecting groups in carbohydrate chemistry: influence on stereoselectivity of glycosylations. Molecules 2010; 15:7235-65. [PMID: 20966873 PMCID: PMC6259426 DOI: 10.3390/molecules15107235] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2010] [Accepted: 10/15/2010] [Indexed: 11/16/2022] Open
Abstract
Saccharides are polyhydroxy compounds, and their synthesis requires complex protecting group manipulations. Protecting groups are usually used to temporarily mask a functional group which may interfere with a certain reaction, but protecting groups in carbohydrate chemistry do more than protecting groups usually do. Particularly, protecting groups can participate in reactions directly or indirectly, thus affecting the stereochemical outcomes, which is important for synthesis of oligosaccharides. Herein we present an overview of recent advances in protecting groups influencing stereoselectivity in glycosylation reactions, including participating protecting groups, and conformation-constraining protecting groups in general.
Collapse
Affiliation(s)
| | - Xin-Shan Ye
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86 10-82801570; Fax: +86-10-62014949
| |
Collapse
|
46
|
Mensah EA, Yu F, Nguyen HM. Nickel-Catalyzed Stereoselective Glycosylation with C(2)-N-Substituted Benzylidene d-Glucosamine and Galactosamine Trichloroacetimidates for the Formation of 1,2-cis-2-Amino Glycosides. Applications to the Synthesis of Heparin Disaccharides, GPI Anchor Pseudodisaccharides, and α-GalNAc. J Am Chem Soc 2010; 132:14288-302. [DOI: 10.1021/ja106682m] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Enoch A. Mensah
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242
| | - Fei Yu
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242
| | - Hien M. Nguyen
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
47
|
Yang L, Ye XS. A highly alpha-selective glycosylation for the convenient synthesis of repeating alpha-(1-->4)-linked N-acetyl-galactosamine units. Carbohydr Res 2010; 345:1713-21. [PMID: 20591420 DOI: 10.1016/j.carres.2010.05.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Revised: 05/24/2010] [Accepted: 05/31/2010] [Indexed: 11/24/2022]
Abstract
The repeating GalpNAc-alpha-(1-->4)-GalpNAc unit is part of a series of essential structures that can be found in many important biomolecules such as the glycoproteins and the O-antigenic polysaccharides of clinically important bacterial strains. In this paper, we describe an exclusive alpha-selective glycosylation reaction, using a 4,6-di-O-tert-butyldimethylsilyl-N-acetyloxazolidinone-protected thioglycoside as the glycosyl donor, under pre-activation conditions, with only half amount of the promoter, providing the product GalpNAc-alpha-(1-->4)-GalpNAc in high isolated yield. This reaction can be also applied to increasing the length of the repeating structure, which is of significant use in further synthesis of branched or linear oligosaccharides.
Collapse
Affiliation(s)
- Lin Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | | |
Collapse
|
48
|
Joined use of oxazolidinone and desymmetric amino protection: a new strategy for protection of glucosamine. Tetrahedron Lett 2010. [DOI: 10.1016/j.tetlet.2010.02.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
49
|
Manabe S. The Synthesis of 1,2-cis-Amino Containing Oligosaccharides Toward Biological Investigation. Methods Enzymol 2010; 478:413-35. [DOI: 10.1016/s0076-6879(10)78020-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
50
|
Manabe S, Ishii K, Hashizume D, Koshino H, Ito Y. Evidence for endocyclic cleavage of conformationally restricted glycopyranosides. Chemistry 2009; 15:6894-901. [PMID: 19533730 DOI: 10.1002/chem.200900064] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
2,3-trans-Carbamate- and -carbonate-carrying pyranosides were very easily anomerised from the beta to the alpha direction in the presence of a Lewis acid compared to other pyranosides. This reaction is caused by endocyclic cleavage of the pyranosides. Evidence for endocyclic cleavage of conformationally restricted pyranosides in the chair form was obtained by intra- and intermolecular Friedel-Crafts reactions, chloride addition, and reduction of the generated cation. On the other hand, pyranosides with the distorted conformation were never cleaved in an endocyclic manner.
Collapse
Affiliation(s)
- Shino Manabe
- RIKEN Advanced Science Institute, Wako, Hirosawa, Saitama 351-0198, Japan.
| | | | | | | | | |
Collapse
|