1
|
Davies DT, Leiris S, Zalacain M, Sprynski N, Castandet J, Bousquet J, Lozano C, Llanos A, Alibaud L, Vasa S, Pattipati R, Valige R, Kummari B, Pothukanuri S, De Piano C, Morrissey I, Holden K, Warn P, Marcoccia F, Benvenuti M, Pozzi C, Tassone G, Mangani S, Docquier JD, Pallin D, Elliot R, Lemonnier M, Everett M. Discovery of ANT3310, a Novel Broad-Spectrum Serine β-Lactamase Inhibitor of the Diazabicyclooctane Class, Which Strongly Potentiates Meropenem Activity against Carbapenem-Resistant Enterobacterales and Acinetobacter baumannii. J Med Chem 2020; 63:15802-15820. [DOI: 10.1021/acs.jmedchem.0c01535] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- David T. Davies
- Antabio SAS, 436 rue Pierre et Marie Curie, 31670 Labège, France
| | - Simon Leiris
- Antabio SAS, 436 rue Pierre et Marie Curie, 31670 Labège, France
| | | | - Nicolas Sprynski
- Antabio SAS, 436 rue Pierre et Marie Curie, 31670 Labège, France
| | - Jérôme Castandet
- Antabio SAS, 436 rue Pierre et Marie Curie, 31670 Labège, France
| | - Justine Bousquet
- Antabio SAS, 436 rue Pierre et Marie Curie, 31670 Labège, France
| | - Clarisse Lozano
- Antabio SAS, 436 rue Pierre et Marie Curie, 31670 Labège, France
| | - Agustina Llanos
- Antabio SAS, 436 rue Pierre et Marie Curie, 31670 Labège, France
| | | | - Srinivas Vasa
- GVK Biosciences Pvt. Ltd., Survey No. 125
and 126, IDA, Mallapur, Hyderabad, Telangana 500 076, India
| | - Ramesh Pattipati
- GVK Biosciences Pvt. Ltd., Survey No. 125
and 126, IDA, Mallapur, Hyderabad, Telangana 500 076, India
| | - Ravindar Valige
- GVK Biosciences Pvt. Ltd., Survey No. 125
and 126, IDA, Mallapur, Hyderabad, Telangana 500 076, India
| | - Bhaskar Kummari
- GVK Biosciences Pvt. Ltd., Survey No. 125
and 126, IDA, Mallapur, Hyderabad, Telangana 500 076, India
| | - Srinivasu Pothukanuri
- GVK Biosciences Pvt. Ltd., Survey No. 125
and 126, IDA, Mallapur, Hyderabad, Telangana 500 076, India
| | - Cyntia De Piano
- International Health Management Associates (IHMA), Rte. De I’Ile-au-Bois 1A, 1870 Monthey, Switzerland
| | - Ian Morrissey
- International Health Management Associates (IHMA), Rte. De I’Ile-au-Bois 1A, 1870 Monthey, Switzerland
| | - Kirsty Holden
- Evotec (UK) Ltd., Block 23, Alderley Park, Macclesfield, Cheshire SK10 4TG, U.K
| | - Peter Warn
- Evotec (UK) Ltd., Block 23, Alderley Park, Macclesfield, Cheshire SK10 4TG, U.K
| | - Francesca Marcoccia
- Dipartimento di Biotecnologie Mediche, University of Siena, Viale Bracci 16, Siena 53100, Italy
| | - Manuela Benvenuti
- Dipartimento di Biotecnologie, Chimica e Farmacia, University of Siena, Via Aldo Moro 2, Siena 53100, Italy
| | - Cecilia Pozzi
- Dipartimento di Biotecnologie, Chimica e Farmacia, University of Siena, Via Aldo Moro 2, Siena 53100, Italy
| | - Giusy Tassone
- Dipartimento di Biotecnologie, Chimica e Farmacia, University of Siena, Via Aldo Moro 2, Siena 53100, Italy
| | - Stefano Mangani
- Dipartimento di Biotecnologie, Chimica e Farmacia, University of Siena, Via Aldo Moro 2, Siena 53100, Italy
| | - Jean-Denis Docquier
- Dipartimento di Biotecnologie Mediche, University of Siena, Viale Bracci 16, Siena 53100, Italy
| | - David Pallin
- Charles River Laboratories, 8-9 The Spire Green Centre, Harlow, Essex CM19 5TR, U.K
| | - Richard Elliot
- Charles River Laboratories, 8-9 The Spire Green Centre, Harlow, Essex CM19 5TR, U.K
| | - Marc Lemonnier
- Antabio SAS, 436 rue Pierre et Marie Curie, 31670 Labège, France
| | - Martin Everett
- Antabio SAS, 436 rue Pierre et Marie Curie, 31670 Labège, France
| |
Collapse
|
2
|
Abstract
From a selection of research topics carried out in our laboratory during the last twenty years it becomes apparent that our main target was the discovery of new or improved synthetic methods together with new properties. Our efforts were made with the aim of being of some utility to other fields of research, with particular emphasis to glycobiology and heterocyle-based bioorganic chemistry. We performed new chemistry mainly in the field of carbohydrate manipulations taking as a primary rule the simplicity and efficiency manners. Toward this end, modern synthetic tools and approaches were employed such as heterocyle-based transformations, multicomponent reactions, organocatalysis, click azide–alkyne cycloadditions, reactions in ionic liquids, click photoinduced thiol-ene coupling, and click sulfur–fluoride exchange chemistry. With these potent methodologies in hand, the syntheses of carbohydrate containing amino acids up to proteins glycosylation were performed.1 Heterocyclic Glycoconjugates and Amino Acids2 Triazole-Linked Oligonucleotides: Application of Click CuAAC3 Non-Natural Glycosyl Amino Acids4 Non-Natural Oligosaccharides5 Calixarene-Based Glycoclusters6 Carbohydrate-Based Building Blocks7 Homoazasugars and Aza-C-disaccharides8 Synthesis of Glycodendrimers9 Peptide and Protein Glycoconjugates10 Conclusions
Collapse
|
3
|
Strategies for the Development of Glycomimetic Drug Candidates. Pharmaceuticals (Basel) 2019; 12:ph12020055. [PMID: 30978966 PMCID: PMC6631974 DOI: 10.3390/ph12020055] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 02/06/2023] Open
Abstract
Carbohydrates are a structurally-diverse group of natural products which play an important role in numerous biological processes, including immune regulation, infection, and cancer metastasis. Many diseases have been correlated with changes in the composition of cell-surface glycans, highlighting their potential as a therapeutic target. Unfortunately, native carbohydrates suffer from inherently weak binding affinities and poor pharmacokinetic properties. To enhance their usefulness as drug candidates, 'glycomimetics' have been developed: more drug-like compounds which mimic the structure and function of native carbohydrates. Approaches to improve binding affinities (e.g., deoxygenation, pre-organization) and pharmacokinetic properties (e.g., limiting metabolic degradation, improving permeability) have been highlighted in this review, accompanied by relevant examples. By utilizing these strategies, high-affinity ligands with optimized properties can be rationally designed and used to address therapies for novel carbohydrate-binding targets.
Collapse
|
4
|
Yamada S, Yamagami K, Oaku S. [2+2] photodimerization of (E)-styrylthiazoles through cation–π-controlled preorientation. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.04.085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Affiliation(s)
- Bing Xu
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Guang Li
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jing Li
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yian Shi
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
6
|
Gorantla JN, Lankalapalli RS. Synthesis of β-C-Galactosyl Ceramide and Its New Aza Variant via the Horner–Wadsworth–Emmons Reaction. J Org Chem 2014; 79:5193-200. [DOI: 10.1021/jo500769f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jaggaiah N. Gorantla
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
- Agroprocessing and
Natural Products Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India
| | - Ravi S. Lankalapalli
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
- Agroprocessing and
Natural Products Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India
| |
Collapse
|
7
|
|
8
|
Abstract
A synthetic C-glycoside, α-C-galactosylceramide, is an active immunostimulant in mice. It displays better activity than α-O-galactosylceramide in several disease models. Syntheses of several α-C-galactosylceramides are described. Experiments that probe its immunostimulant activity are outlined. Possible explanations for its superior activity are discussed.
Collapse
Affiliation(s)
- Richard W Franck
- Department of Chemistry, Hunter College of CUNY 695 Park Ave., New York, NY 10021 Ph 212-772-5340 Fax 212-772-5332
| |
Collapse
|
9
|
Massen ZS, Sarli VC, Coutouli-Argyropoulou E, Gallos JK. Synthesis of C-glycosylated amino acids by hetero-Diels–Alder addition of ethyl 2-nitrosoacrylate to exo-glycals. Carbohydr Res 2011; 346:230-7. [DOI: 10.1016/j.carres.2010.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 11/23/2010] [Accepted: 12/03/2010] [Indexed: 11/29/2022]
|
10
|
Andreini M, Anderluh M, Audfray A, Bernardi A, Imberty A. Monovalent and bivalent N-fucosyl amides as high affinity ligands for Pseudomonas aeruginosa PA-IIL lectin. Carbohydr Res 2010; 345:1400-7. [DOI: 10.1016/j.carres.2010.03.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 03/11/2010] [Accepted: 03/14/2010] [Indexed: 11/30/2022]
|
11
|
Kolympadi M, Fontanella M, Venturi C, André S, Gabius HJ, Jiménez-Barbero J, Vogel P. Synthesis and Conformational Analysis of (α-D-Galactosyl)phenylmethane and α-,β-Difluoromethane Analogues: Interactions with the Plant Lectin Viscumin. Chemistry 2009; 15:2861-73. [DOI: 10.1002/chem.200801394] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
12
|
Ducatti DRB, Massi A, Noseda MD, Duarte MER, Dondoni A. Production of carbohydrate building blocks from red seaweed polysaccharides. Efficient conversion of galactans into C-glycosyl aldehydes. Org Biomol Chem 2009; 7:576-88. [DOI: 10.1039/b816606d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
13
|
Krämer K, Deska J, Hebach C, Kazmaier U. A straightforward approach towards glycoamino acids and glycopeptidesviaPd-catalysed allylic alkylation. Org Biomol Chem 2009; 7:103-10. [DOI: 10.1039/b813978d] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Timpano G, Tabarani G, Anderluh M, Invernizzi D, Vasile F, Potenza D, Nieto PM, Rojo J, Fieschi F, Bernardi A. Synthesis of novel DC-SIGN ligands with an alpha-fucosylamide anchor. Chembiochem 2008; 9:1921-30. [PMID: 18655085 DOI: 10.1002/cbic.200800139] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The dendritic cell-specific intercellular adhesion molecule (ICAM) 3-grabbing nonintegrin (DC-SIGN) is a C-type lectin that appears to perform several different functions. Besides mediating adhesion between dendritic cells and T lymphocytes, DC-SIGN recognizes several pathogens some of which, including HIV, appear to exploit it to invade host organisms. The intriguing diversity of the roles attributed to DC-SIGN and their therapeutic implications have stimulated the search for new ligands that could be used as biological probes and possibly as lead compounds for drug development. The natural ligands of DC-SIGN consist of mannose oligosaccharides or fucose-containing Lewis-type determinants. Using the known 3D structure of the Lewis-x trisaccharide, we have identified some monovalent alpha-fucosylamides that bind to DC-SIGN with inhibitory constants 0.4-0.5 mM, as determined by SPR, and have characterized their interaction with the protein by STD NMR spectroscopy. This work establishes for the first time alpha-fucosylamides as functional mimics of chemically and enzymatically unstable alpha-fucosides and describes interesting candidates for the preparation of multivalent systems able to block the receptor DC-SIGN with high affinity and with potential biomedical applications.
Collapse
Affiliation(s)
- Gabriele Timpano
- Dipartimento di Chimica Organica e Industriale and CISI, Università di Milano, via Venezian 21, 20133 Milano, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Nolen EG, Donahue LA, Greaves R, Daly TA, Calabrese DR. Syntheses of α- and β-C-Glucopyranosyl Serines from a Common Intermediate. Org Lett 2008; 10:4911-4. [DOI: 10.1021/ol802009v] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ernest G. Nolen
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346
| | - Laurence A. Donahue
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346
| | - Rebecca Greaves
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346
| | - Trevor A. Daly
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346
| | - David R. Calabrese
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346
| |
Collapse
|
16
|
Chen G, Chien M, Tsuji M, Franck RW. E and Z alpha-C-galactosylceramides by Julia-Lythgoe-Kocienski chemistry: a test of the receptor-binding model for glycolipid immunostimulants. Chembiochem 2006; 7:1017-22. [PMID: 16795118 DOI: 10.1002/cbic.200500386] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Guangwu Chen
- Department of Chemistry, Hunter College of CUNY, New York, NY 10021, USA
| | | | | | | |
Collapse
|
17
|
Vidal S, Bruyère I, Malleron A, Augé C, Praly JP. Non-isosteric C-glycosyl analogues of natural nucleotide diphosphate sugars as glycosyltransferase inhibitors. Bioorg Med Chem 2006; 14:7293-301. [PMID: 16843664 DOI: 10.1016/j.bmc.2006.06.057] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 06/13/2006] [Accepted: 06/23/2006] [Indexed: 11/26/2022]
Abstract
A series of C-glycosyl ethylphosphonophosphate analogues of UDP-Glc, UDP-Gal, UDP-GlcNAc and GDP-Fuc were synthesized from the corresponding C-glycosyl ethylphosphonic acids. Analogues were obtained as alpha-anomers through either diastereoselective photo-induced radical addition of glycosyl bromides (D-Glc, D-Gal and L-Fuc) to diethyl vinylphosphonate, or a multi-step sequence (D-GlcNAc), with subsequent coupling with morpholidate-activated nucleotide monophosphates. The in vitro inhibitory activity of UDP-Gal, GDP-Fuc and UDP-GlcNAc analogues towards glycosyltransferases (beta-1,4-GalT, FUT3 and LgtA) was evaluated through a competition fluorescence assay and IC(50) values of 40 microM, 2 mM and 3.5 mM were obtained, respectively.
Collapse
Affiliation(s)
- Sébastien Vidal
- Laboratoire de Chimie Organique 2, UMR-CNRS 5181, Université Claude Bernard Lyon 1, CPE-Lyon Bâtiment 308, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France
| | | | | | | | | |
Collapse
|
18
|
Awad L, Demange R, Zhu YH, Vogel P. The use of levoglucosenone and isolevoglucosenone as templates for the construction of C-linked disaccharides. Carbohydr Res 2006; 341:1235-52. [PMID: 16678805 DOI: 10.1016/j.carres.2006.04.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Revised: 04/10/2006] [Accepted: 04/12/2006] [Indexed: 11/19/2022]
Abstract
Because of their functionalities (enone, ketone, and acetal) and their bicyclic structure (steric factors), levoglucosenone (1,6-anhydro-3,4-dideoxy-beta-D-glycero-hex-3-enopyran-2-ulose) and isolevoglucosenone (1,6-anhydro-2,3-dideoxy-beta-D-glycero-hex-3-enopyran-4-ulose) are useful templates for the convergent and combinatorial synthesis of (1-->2), (1-->3), and (1-->4)-linked C-disaccharides in reactions combining them with sugar-derived carbaldehydes. Synthetic methods relying on conjugate nucleophilic additions of these enones, their combination with aluminum reagents and aldehydes (Baylis-Hillman reaction) and modified Takai-Hiyama-Nozaki-Kishi couplings of enol triflates derived from them with sugar-derived aldehydes are reviewed. Highly stereoselective methods have thus been developed. These allow the generation of disaccharide mimetics with a high molecular diversity.
Collapse
Affiliation(s)
- Loay Awad
- Laboratoire de Glycochimie et de Synthèse Asymétrique, Ecole Polytechnique Fédérale de Lausanne (EPFL), BCH, CH-1015 Lausanne, Switzerland.
| | | | | | | |
Collapse
|
19
|
Lan YH, Chang FR, Yang YL, Wu YC. New Constituents from Stems of Goniothalamus amuyon. Chem Pharm Bull (Tokyo) 2006; 54:1040-3. [PMID: 16819228 DOI: 10.1248/cpb.54.1040] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two new compounds, goniothalesacetate (1) and goniothalesdiol A (2) together with goniodiol-7-monoacetate, goniodiol-8-monoacetate, leiocarpin C, liriodenine, griffithazanone A, 4-methyl-2,9,10-(2H)-1-azaanthracencetrione, velutinam and aristolactam BII were isolated and characterized from the stems of Goniothalamus amuyon. Structures of new compounds were determined by spectral analysis.
Collapse
Affiliation(s)
- Yu-Hsuan Lan
- Graduate Institute of Natural Products, Kaohsiung Medical University; Kaohsiung, 807 Taiwan
| | | | | | | |
Collapse
|
20
|
Dondoni A, Massi A, Sabbatini S. Multiple Component Approaches to C-Glycosyl β-Amino Acids by Complementary One-Pot Mannich-Type and Reformatsky-Type Reactions. Chemistry 2005; 11:7110-25. [PMID: 16224807 DOI: 10.1002/chem.200500823] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The development of new methods for the preparation of C-glycosyl beta-amino acid libraries with chemical and stereochemical diversity levels was investigated and the results are described herein. Two complementary one-pot three-component Mannich-type and Reformatsky-type synthetic strategies have been developed for the construction of chiral 3-amino propanoate fragments (eventually bis-substituted at C-2) directly linked to the anomeric carbon of pyranose and furanose residues. Both methods involved as the initial step the coupling of a sugar aldehyde to p-methoxybenzylamine but differed in the nucleophile (a d(2) synthon equivalent) which was successively added: a ketene silyl acetal (Mannich route) or a bromozinc enolate (Reformatsky route). Individual C-glycosyl beta-amino esters were isolated as single 3R diastereoisomers in fair to excellent yield (60-90%) and their structure assigned by NMR spectroscopy (Riguera protocol) supported by X-ray crystallography. A tentative explanation of the observed stereochemical outcome based on transition-state models is provided. A preliminary study on the synthesis of alpha,alpha-difluoro C-glycosyl beta-amino acids via a more traditional Reformatsky route is also reported.
Collapse
Affiliation(s)
- Alessandro Dondoni
- Laboratorio di Chimica Organica, Dipartimento di Chimica, Università di Ferrara, Via L. Borsari 46, 44100 Ferrara, Italy.
| | | | | |
Collapse
|
21
|
Dondoni A, Catozzi N, Marra A. Concise and Practical Synthesis of C-Glycosyl Ketones from Sugar Benzothiazoles and Their Transformation into Chiral Tertiary Alcohols. J Org Chem 2005; 70:9257-68. [PMID: 16268598 DOI: 10.1021/jo051377w] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[Reaction: see text]. A collection of 13 unsymmetrical ketones, each one featuring a sugar (d-glucosyl, d-galactosyl, d-mannosyl, and l-fucosyl) and an aglycone moiety (phenyl, 2-thiazolyl, TMS-ethynyl, allyl, and 1-propenyl) was prepared by a uniform route based on the use of benzothiazole as a carbonyl group equivalent. Succinctly, C-glycosylbenzothiazoles readily prepared by addition of 2-lithiobenzothiazole to sugar lactones and deoxygenation, were subjected to a one-pot reaction sequence involving N-methylation of the heterocyclic ring by MeOTf, treatment of the N-methylbenzothiazolium salt with a Grignard reagent, and HgCl(2)-promoted hydrolysis of the benzothiazoline thus formed. The resulting ketones were isolated in yields varying from 35 to 80%. Treatment of the sugar ketones with various organometals containing the phenyl, 2-thiazolyl, TMS-ethynyl, or ethynyl group as a substituent afforded chiral tertiary alcohols. These addition reactions were highly stereoselective as observed by crude NMR analysis and isolation of a single epimer in high yield in each case examined. However, because of the complexity of the reagents involved, the stereochemical outcome of these reactions appears to be difficult to rationalize by simple classical steric models, thus, ab initio studies taking into account the role of the sugar fragment are advisable. An interesting synthetic elaboration of a propargylic alcohol containing the thiazole ring into a propargylic alcohol bearing the formyl and carboxylate groups is reported.
Collapse
Affiliation(s)
- Alessandro Dondoni
- Dipartimento di Chimica, Laboratorio di Chimica Organica, Università di Ferrara, Via L. Borsari 46, 44100-Ferrara, Italy.
| | | | | |
Collapse
|
22
|
Nolen EG, Kurish AJ, Potter JM, Donahue LA, Orlando MD. Stereoselective Synthesis of α-C-Glucosyl Serine and Alanine via a Cross-Metathesis/Cyclization Strategy. Org Lett 2005; 7:3383-6. [PMID: 16018666 DOI: 10.1021/ol051341q] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
C-Glycosyl amino acids represent stable mimics of monomeric units within natural O-linked glycoproteins. Olefin cross-metathesis has been used to provide alkene precursors for a mercury(II)-mediated cyclization, yielding alpha-C-glucosyl serine and alanine.
Collapse
Affiliation(s)
- Ernest G Nolen
- Department of Chemistry, Colgate University, Hamilton, New York 13346, USA.
| | | | | | | | | |
Collapse
|
23
|
Dondoni A, Giovannini PP, Perrone D. Cross-Metathesis of C-Allyl Iminosugars with Alkenyl Oxazolidines as a Key Step in the Synthesis of C-Iminoglycosyl α-Amino Acids.1 A Route to Iminosugar Containing C-Glycopeptides. J Org Chem 2005; 70:5508-18. [PMID: 15989332 DOI: 10.1021/jo050494o] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[structures: see text] A general access to a novel class of sugar alpha-amino acids composed of iminofuranose and iminopyranose residues anomerically linked to the glycinyl group through an alkyl chain is described. A set of eight compounds was prepared by the same reaction sequence involving as an initial step the Grubbs Ru-carbene-catalyzed cross-metathesis (CM) of various N-Cbz-protected allyl C-iminoglycosides with N-Boc-vinyl- and N-Boc-allyloxazolidine. The isolated yields of the CM products (mixtures of E- and Z-alkenes) varied in the range 40-70%. Each mixture was elaborated by first reducing the carbon-carbon double bond using in situ generated diimide and then unveiling the N-Boc glycinyl group [CH(BocNH)CO2H] by oxidative cleavage of the oxazolidine ring by the Jones reagent. All amino acids were characterized as their methyl esters. The insertion of a model C-iminoglycosyl-2-aminopentanoic acid into a tripeptide via sequential carboxylic and amino group coupling with L-phenylalanine derivatives was carried out as a demonstration of the potential of these sugar amino acids in designed glycopeptide synthesis.
Collapse
Affiliation(s)
- Alessandro Dondoni
- Dipartimento di Chimica, Laboratorio di Chimica Organica, Università di Ferrara, Via L. Borsari 46, 44100-Ferrara, Italy.
| | | | | |
Collapse
|
24
|
Five-membered ring systems: with N and S (Se) atoms. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s0959-6380(05)80331-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|