1
|
Murto P, Li B, Fu Y, Walker LE, Brown L, Bond AD, Zeng W, Chowdhury R, Cho HH, Yu CP, Grey CP, Friend RH, Bronstein H. Steric Control of Luminescence in Phenyl-Substituted Trityl Radicals. J Am Chem Soc 2024; 146:13133-13141. [PMID: 38695282 PMCID: PMC11099960 DOI: 10.1021/jacs.4c00292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024]
Abstract
Triphenylmethyl (trityl) radicals have shown potential for use in organic optoelectronic applications, but the design of practical trityl structures has been limited to donor/radical charge-transfer systems due to the poor luminescence of alternant symmetry hydrocarbons. Here, we circumvent the symmetry-forbidden transition of alternant hydrocarbons via excited-state symmetry breaking in a series of phenyl-substituted tris(2,4,6-trichlorophenyl)methyl (TTM) radicals. We show that 3-fold phenyl substitution enhances the emission of the TTM radical and that steric control modulates the optical properties in these systems. Simple ortho-methylphenyl substitution boosts the photoluminescence quantum efficiency from 1% (for TTM) to 65% at a peak wavelength of 612 nm (for 2-T3TTM) in solution. In the crystalline solid state, the neat 2-T3TTM radical shows a remarkably high photoluminescence quantum efficiency of 25% for emission peaking at 706 nm. This has implications in the design of aryl-substituted radical structures where the electronic coupling of the substituents influences variables such as emission, charge transfer, and spin interaction.
Collapse
Affiliation(s)
- Petri Murto
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Biwen Li
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Yao Fu
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Lucy E. Walker
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Laura Brown
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Andrew D. Bond
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Weixuan Zeng
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | | | - Hwan-Hee Cho
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Craig P. Yu
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Clare P. Grey
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Richard H. Friend
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Hugo Bronstein
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K.
| |
Collapse
|
2
|
Zong Y, Chen L, Zeng Y, Xu J, Zhang H, Zhang X, Liu W, Wu D. Do We Appropriately Detect and Understand Singlet Oxygen Possibly Generated in Advanced Oxidation Processes by Electron Paramagnetic Resonance Spectroscopy? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37311080 DOI: 10.1021/acs.est.3c01553] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy using sterically hindered amine is extensively applied to detect singlet oxygen (1O2) possibly generated in advanced oxidation processes. However, EPR-detectable 1O2 signals were observed in not only the 1O2-dominated hydrogen peroxide (H2O2)/hypochlorite (NaClO) reaction but surprisingly also the 1O2-absent Fe(II)/H2O2, UV/H2O2, and ferrate [Fe(VI)] process with even stronger intensities. By taking advantage of the characteristic reaction between 1O2 and 9,10-diphenyl-anthracene and near-infrared phosphorescent emission of 1O2, 1O2 was excluded in the Fe(II)/H2O2, UV/H2O2, and Fe(VI) process. The false detection of 1O2 was ascribed to the direct oxidation of hindered amine to piperidyl radical by reactive species [e.g., •OH and Fe(VI)/Fe(V)/Fe(IV)] via hydrogen transfer, followed by molecular oxygen addition (forming a piperidylperoxyl radical) and back reaction with piperidyl radical to generate a nitroxide radical, as evidenced by the successful identification of a piperidyl radical intermediate at 100 K and theoretical calculations. Moreover, compared to the highly oxidative species (e.g., •OH and high-valence Fe), the much lower reactivity of 1O2 and the profound nonradiative relaxation of 1O2 in H2O resulted it too selective and inefficient in organic contaminant destruction. This study demonstrated that EPR-based 1O2 detection could be remarkably misled by common oxidative species and thereby jeopardize the understandings on 1O2.
Collapse
Affiliation(s)
- Yang Zong
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Long Chen
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yunqiao Zeng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
| | - Jun Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
| | - Hua Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
| | - Xiaomeng Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
3
|
Campanella AJ, Üngör Ö, Zadrozny JM. Quantum Mimicry With Inorganic Chemistry. COMMENT INORG CHEM 2023; 44:11-53. [PMID: 38515928 PMCID: PMC10954259 DOI: 10.1080/02603594.2023.2173588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Quantum objects, such as atoms, spins, and subatomic particles, have important properties due to their unique physical properties that could be useful for many different applications, ranging from quantum information processing to magnetic resonance imaging. Molecular species also exhibit quantum properties, and these properties are fundamentally tunable by synthetic design, unlike ions isolated in a quadrupolar trap, for example. In this comment, we collect multiple, distinct, scientific efforts into an emergent field that is devoted to designing molecules that mimic the quantum properties of objects like trapped atoms or defects in solids. Mimicry is endemic in inorganic chemistry and featured heavily in the research interests of groups across the world. We describe a new field of using inorganic chemistry to design molecules that mimic the quantum properties (e.g. the lifetime of spin superpositions, or the resonant frequencies thereof) of other quantum objects, "quantum mimicry." In this comment, we describe the philosophical design strategies and recent exciting results from application of these strategies.
Collapse
Affiliation(s)
- Anthony J. Campanella
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA, Address: 200 W. Lake St, Campus Delivery 1872, Fort Collins, CO 80523, USA
| | - Ökten Üngör
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA, Address: 200 W. Lake St, Campus Delivery 1872, Fort Collins, CO 80523, USA
| | - Joseph M. Zadrozny
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA, Address: 200 W. Lake St, Campus Delivery 1872, Fort Collins, CO 80523, USA
| |
Collapse
|
4
|
Azuma R, Yamasaki T, Emoto MC, Sato-Akaba H, Sano K, Munekane M, Fujii HG, Mukai T. Effect of relative configuration of TEMPO-type nitroxides on ascorbate reduction. Free Radic Biol Med 2023; 194:114-122. [PMID: 36442586 DOI: 10.1016/j.freeradbiomed.2022.11.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/10/2022] [Accepted: 11/22/2022] [Indexed: 11/28/2022]
Abstract
2,2,6,6-Tetramethylpiperidin-N-oxyl (TEMPO)-type nitroxides are susceptible to bioreduction, leading to a loss of radical properties. Although it has been reported that the steric and electronic environments around the N-O moiety of nitroxides affect the reduction, how the relative configuration of nitroxide derivatives alters it is unclear. In this study, we investigated the effect of diastereomers on the radical properties of C2- and C4-disubstituted TEMPO-type nitroxides. We succeeded in isolating the diastereomers of the studied nitroxides for the first time. In addition, we compared the reactivities of nitroxide derivatives with different substituents at the C2 and C4 positions toward ascorbate reduction. We found that the bulky substituents at both C2 and C4 and the electronic effect of C4 affected the reduction of the isomers. C2- and C4-disubstituted nitroxides were administered to mice for electron spin resonance imaging to assess bioreduction in the brain. Similar to the reactivity to reduction in vitro, a difference in the bioreduction of diastereomers was observed in brain tissues. Our research strongly indicates that bioreduction can be controlled by changing the relative configuration, which can be used in the design of nitroxide derivatives for biological applications.
Collapse
Affiliation(s)
- Risa Azuma
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Toshihide Yamasaki
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Miho C Emoto
- Department of Clinical Laboratory Science, School of Medical Technology, Health Sciences University of Hokkaido, Sapporo, Hokkaido, 002-8072, Japan
| | - Hideo Sato-Akaba
- Department of Systems Innovation, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
| | - Kohei Sano
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Masayuki Munekane
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Hirotada G Fujii
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari, Hokkaido, 061-0293, Japan
| | - Takahiro Mukai
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan.
| |
Collapse
|
5
|
Campanella AJ, Nguyen MT, Zhang J, Ngendahimana T, Antholine WE, Eaton GR, Eaton SS, Glezakou VA, Zadrozny JM. Ligand control of low-frequency electron paramagnetic resonance linewidth in Cr(III) complexes. Dalton Trans 2021; 50:5342-5350. [PMID: 33881070 PMCID: PMC8173706 DOI: 10.1039/d1dt00066g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding how the ligand shell controls low-frequency electron paramagnetic resonance (EPR) spectroscopic properties of metal ions is essential if they are to be used in EPR-based bioimaging schemes. In this work, we probe how specific variations in the ligand structure impact L-band (ca. 1.3 GHz) EPR spectroscopic linewidths in the trichloride salts of five Cr(iii) complexes: [Cr(RR-dphen)3]3+ (RR-dphen = (1R,2R)-(+)-diphenylethylenediamine, 1), [Cr(en)3]3+ (en = ethylenediamine, 2), [Cr(me-en)3]3+ (me-en = 1,2-diaminopropane, 3), [Cr(tn)3]3+ (tn = 1,3-diaminopropane, 4) [Cr(trans-chxn)3]3+ (trans-chxn = trans-(±)-1,2-diaminocyclohexane, 5). Spectral broadening varies in a nonintuitive manner across the series, showing the sharpest peaks for 1 and broadest for 5. Molecular dynamics simulations provide evidence that the broadening is correlated to rigidity in the inner coordination sphere and reflected in ligand-dependent distribution of Cr-N bond distances that can be found in frozen solution.
Collapse
Affiliation(s)
- Anthony J Campanella
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| | - Manh-Thuong Nguyen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Jun Zhang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Thacien Ngendahimana
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, USA
| | - William E Antholine
- National Biomedical EPR Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Gareth R Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, USA
| | - Sandra S Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, USA
| | | | - Joseph M Zadrozny
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
6
|
Biller JR, McPeak JE. EPR Everywhere. APPLIED MAGNETIC RESONANCE 2021; 52:1113-1139. [PMID: 33519097 PMCID: PMC7826499 DOI: 10.1007/s00723-020-01304-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/16/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
This review is inspired by the contributions from the University of Denver group to low-field EPR, in honor of Professor Gareth Eaton's 80th birthday. The goal is to capture the spirit of innovation behind the body of work, especially as it pertains to development of new EPR techniques. The spirit of the DU EPR laboratory is one that never sought to limit what an EPR experiment could be, or how it could be applied. The most well-known example of this is the development and recent commercialization of rapid-scan EPR. Both of the Eatons have made it a point to remain knowledgeable on the newest developments in electronics and instrument design. To that end, our review touches on the use of miniaturized electronics and applications of single-board spectrometers based on software-defined radio (SDR) implementations and single-chip voltage-controlled oscillator (VCO) arrays. We also highlight several non-traditional approaches to the EPR experiment such as an EPR spectrometer with a "wand" form factor for analysis of the OxyChip, the EPR-MOUSE which enables non-destructive in situ analysis of many non-conforming samples, and interferometric EPR and frequency swept EPR as alternatives to classical high Q resonant structures.
Collapse
Affiliation(s)
| | - Joseph E. McPeak
- University of Denver, Denver, CO 80210 USA
- Berlin Joint EPR Laboratory and EPR4Energy, Department Spins in Energy Conversion and Quantum Information Science (ASPINS), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| |
Collapse
|
7
|
Hunold J, Eisermann J, Brehm M, Hinderberger D. Characterization of Aqueous Lower-Polarity Solvation Shells Around Amphiphilic 2,2,6,6-Tetramethylpiperidine-1-oxyl Radicals in Water. J Phys Chem B 2020; 124:8601-8609. [DOI: 10.1021/acs.jpcb.0c04863] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Johannes Hunold
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| | - Jana Eisermann
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| | - Martin Brehm
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| | - Dariush Hinderberger
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| |
Collapse
|
8
|
Babić N, Orio M, Peyrot F. Unexpected rapid aerobic transformation of 2,2,6,6-tetraethyl-4-oxo(piperidin-1-yloxyl) radical by cytochrome P450 in the presence of NADPH: Evidence against a simple reduction of the nitroxide moiety to the hydroxylamine. Free Radic Biol Med 2020; 156:144-156. [PMID: 32561320 DOI: 10.1016/j.freeradbiomed.2020.05.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/29/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022]
Abstract
Aminoxyl radicals (nitroxides) are a class of compounds with important biomedical applications, serving as antioxidants, spin labels for proteins, spin probes of oximetry, pH, or redox status in electron paramagnetic resonance (EPR), or as contrast agents in magnetic resonance imaging (MRI). However, the fast reduction of the radical moiety in common tetramethyl-substituted cyclic nitroxides within cells, yielding diamagnetic hydroxylamines, limits their use in spectroscopic and imaging studies. In vivo half-lives of commonly used tetramethyl-substituted nitroxides span no more than a few minutes. Therefore, synthetic efforts have focused on enhancing the nitroxide stability towards reduction by varying the electronic and steric environment of the radical. Tetraethyl-substitution at alpha position to the aminoxyl function proved efficient in vitro against reduction by ascorbate or cytosolic extracts. Moreover, 2,2,6,6-tetraethyl-4-oxo(piperidin-1-yloxyl) radical (TEEPONE) was used successfully for tridimensional EPR and MRI in vivo imaging of mouse head, with a reported half-life of over 80 min. We decided to investigate the stability of tetraethyl-substituted piperidine nitroxides in the presence of hepatic microsomal fractions, since no detailed study of their "metabolic stability" at the molecular level had been reported despite examples of the use of these nitroxides in vivo. In this context, the rapid aerobic transformation of TEEPONE observed in the presence of rat liver microsomal fractions and NADPH was unexpected. Combining EPR, HPLC-HRMS, and DFT studies on a series of piperidine nitroxides - TEEPONE, 4-oxo-2,2,6,6-tetramethyl(piperidin-1-yloxyl) (TEMPONE), and 2,2,6,6-tetraethyl-4-hydroxy(piperidin-1-yloxyl) (TEEPOL), we propose that the rapid loss in paramagnetic character of TEEPONE is not due to reduction to hydroxylamine but is a consequence of carbon backbone modification initiated by hydrogen radical abstraction in alpha position to the carbonyl by the P450-Fe(V)=O species. Besides, hydrogen radical abstraction by P450 on ethyl substituents, leading to dehydrogenation or hydroxylation products, leaves the aminoxyl function intact but could alter the linewidth of the EPR signal and thus interfere with methods relying on measurement of this parameter (EPR oximetry).
Collapse
Affiliation(s)
- Nikola Babić
- Université de Paris, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601, CNRS, F-75006, Paris, France
| | - Maylis Orio
- Aix-Marseille Univ., CNRS, Centrale Marseille, ISm2, Marseille, France
| | - Fabienne Peyrot
- Université de Paris, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601, CNRS, F-75006, Paris, France; Sorbonne Université, Institut National Supérieur Du Professorat et de L'Éducation (INSPE) de L'Académie de Paris, F-75016, Paris, France.
| |
Collapse
|
9
|
Lampp L, Morgenstern U, Merzweiler K, Imming P, Seidel RW. Synthesis and characterization of sterically and electrostatically shielded pyrrolidine nitroxide radicals. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.01.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Molecular Probes for Evaluation of Oxidative Stress by In Vivo EPR Spectroscopy and Imaging: State-of-the-Art and Limitations. MAGNETOCHEMISTRY 2019. [DOI: 10.3390/magnetochemistry5010013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxidative stress, defined as a misbalance between the production of reactive oxygen species and the antioxidant defenses of the cell, appears as a critical factor either in the onset or in the etiology of many pathological conditions. Several methods of detection exist. However, they usually rely on ex vivo evaluation or reports on the status of living tissues only up to a few millimeters in depth, while a whole-body, real-time, non-invasive monitoring technique is required for early diagnosis or as an aid to therapy (to monitor the action of a drug). Methods based on electron paramagnetic resonance (EPR), in association with molecular probes based on aminoxyl radicals (nitroxides) or hydroxylamines especially, have emerged as very promising to meet these standards. The principles involve monitoring the rate of decrease or increase of the EPR signal in vivo after injection of the nitroxide or the hydroxylamine probe, respectively, in a pathological versus a control situation. There have been many successful applications in various rodent models. However, current limitations lie in both the field of the technical development of the spectrometers and the molecular probes. The scope of this review will mainly focus on the latter.
Collapse
|
11
|
Russo J, Litz M, Ray W, Rosen GM, Bigio DI, Fazio R. Development of tritiated nitroxide for nuclear battery. Appl Radiat Isot 2017; 125:66-73. [DOI: 10.1016/j.apradiso.2017.04.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/24/2017] [Accepted: 04/04/2017] [Indexed: 11/15/2022]
|
12
|
Weaver J, Burks SR, Liu KJ, Kao JPY, Rosen GM. In vivo EPR oximetry using an isotopically-substituted nitroxide: Potential for quantitative measurement of tissue oxygen. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 271:68-74. [PMID: 27567323 PMCID: PMC5266518 DOI: 10.1016/j.jmr.2016.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/12/2016] [Accepted: 08/15/2016] [Indexed: 06/06/2023]
Abstract
Variations in brain oxygen (O2) concentration can have profound effects on brain physiology. Thus, the ability to quantitate local O2 concentrations noninvasively in vivo could significantly enhance understanding of several brain pathologies. However, quantitative O2 mapping in the brain has proven difficult. The electron paramagnetic resonance (EPR) spectra of nitroxides are sensitive to molecular O2 and can be used to estimate O2 concentrations in aqueous media. We recently synthesized labile-ester-containing nitroxides, such as 3-acetoxymethoxycarbonyl-2,2,5,5-tetramethyl-1-pyrrolidinyloxyl (nitroxide 4), which accumulate in cerebral tissue after in situ hydrolysis, and thus enable spatial mapping of O2 concentrations in the mouse brain by EPR imaging. In an effort to improve O2 quantitation, we prepared 3-acetoxymethoxycarbonyl-2,2,5,5-tetra((2)H3)methyl-1-(3,4,4-(2)H3,1-(15)N)pyrrolidinyloxyl (nitroxide 2), which proved to be a more sensitive probe than its normo-isotopic version for quantifying O2 in aqueous solutions of various O2 concentrations. We now demonstrate that this isotopically substituted nitroxide is ∼2-fold more sensitive in vivo than the normo-isotopic nitroxide 4. Moreover, in vitro and in vivo EPR spectral-spatial imaging results with nitroxide 2 demonstrate significant improvement in resolution, reconstruction and spectral response to local O2 concentrations in cerebral tissue. Thus, isotopic-substituted nitroxides, such as 2, are excellent sensors for in vivo O2 quantitation in tissues, such as the brain.
Collapse
Affiliation(s)
- John Weaver
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States; Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, United States.
| | - Scott R Burks
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Center for EPR Imaging In Vivo Physiology, University of Maryland, Baltimore, MD 21201, United States
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States; Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, United States
| | - Joseph P Y Kao
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Center for EPR Imaging In Vivo Physiology, University of Maryland, Baltimore, MD 21201, United States
| | - Gerald M Rosen
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Center for EPR Imaging In Vivo Physiology, University of Maryland, Baltimore, MD 21201, United States; Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, United States
| |
Collapse
|
13
|
Casano G, Poulhès F, Tran TK, Ayhan MM, Karoui H, Siri D, Gaudel-Siri A, Rockenbauer A, Jeschke G, Bardelang D, Tordo P, Ouari O. High binding yet accelerated guest rotation within a cucurbit[7]uril complex. Toward paramagnetic gyroscopes and rolling nanomachines. NANOSCALE 2015; 7:12143-12150. [PMID: 26123621 DOI: 10.1039/c5nr03288a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The (15-oxo-3,7,11-triazadispiro[5.1.5.3]hexadec-7-yl)oxidanyl, a bis-spiropiperidinium nitroxide derived from TEMPONE, can be included in cucurbit[7]uril to form a strong (K(a)∼ 2 × 10(5) M(-1)) CB[7]@bPTO complex. EPR and MS spectra, DFT calculations, and unparalleled increased resistance (a factor of ∼10(3)) toward ascorbic acid reduction show evidence of deep inclusion of bPTO inside CB[7]. The unusual shape of the CB[7]@bPTO EPR spectrum can be explained by an anisotropic Brownian rotational diffusion, the global tumbling of the complex being slower than rotation of bPTO around its "long molecular axis" inside CB[7]. The CB[7] (stator) with the encapsulated bPTO (rotator) behaves as a supramolecular paramagnetic rotor with increased rotational speed of the rotator that has great potential for advanced nanoscale machines requiring wheels such as cucurbiturils with virtually no friction between the wheel and the axle for optimum wheel rotation (i.e. nanopulleys and nanocars).
Collapse
Affiliation(s)
- G Casano
- Aix-Marseille Université, CNRS, Institut de Chimie Radicalaire, UMR 7273, 13013 Marseille, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Muñoz-Gómez JL, Marín-Montesinos I, Lloveras V, Pons M, Vidal-Gancedo J, Veciana J. Novel PTM–TEMPO Biradical for Fast Dissolution Dynamic Nuclear Polarization. Org Lett 2014; 16:5402-5. [DOI: 10.1021/ol502644x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jose-Luis Muñoz-Gómez
- Institut de Ciència
de Materials de Barcelona ICMAB−CSIC, Campus UAB, 08193 Bellaterra, Barcelona, Spain
- CIBER de Bioingeniería,
Biomateriales y Nanomedicina, CIBER-BBN, Barcelona, Spain
| | - Ildefonso Marín-Montesinos
- Biomolecular NMR
Laboratory, Organic Chemistry Department, UB, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Vega Lloveras
- Institut de Ciència
de Materials de Barcelona ICMAB−CSIC, Campus UAB, 08193 Bellaterra, Barcelona, Spain
- CIBER de Bioingeniería,
Biomateriales y Nanomedicina, CIBER-BBN, Barcelona, Spain
| | - Miquel Pons
- Biomolecular NMR
Laboratory, Organic Chemistry Department, UB, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - José Vidal-Gancedo
- Institut de Ciència
de Materials de Barcelona ICMAB−CSIC, Campus UAB, 08193 Bellaterra, Barcelona, Spain
- CIBER de Bioingeniería,
Biomateriales y Nanomedicina, CIBER-BBN, Barcelona, Spain
| | - Jaume Veciana
- Institut de Ciència
de Materials de Barcelona ICMAB−CSIC, Campus UAB, 08193 Bellaterra, Barcelona, Spain
- CIBER de Bioingeniería,
Biomateriales y Nanomedicina, CIBER-BBN, Barcelona, Spain
| |
Collapse
|
15
|
Kavala M, Boča R, Dlháň L, Brezová V, Breza M, Kožíšek J, Fronc M, Herich P, Švorc L, Szolcsányi P. Preparation and Spectroscopic, Magnetic, and Electrochemical Studies of Mono-/Biradical TEMPO Derivatives. J Org Chem 2013; 78:6558-69. [DOI: 10.1021/jo400845m] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Miroslav Kavala
- Department
of Organic Chemistry, ‡Department of Inorganic Chemistry, §Department of Physical Chemistry, and ∥Department of
Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského
9, SK-812 37 Bratislava, Slovakia
| | - Roman Boča
- Department
of Organic Chemistry, ‡Department of Inorganic Chemistry, §Department of Physical Chemistry, and ∥Department of
Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského
9, SK-812 37 Bratislava, Slovakia
| | - Lubomír Dlháň
- Department
of Organic Chemistry, ‡Department of Inorganic Chemistry, §Department of Physical Chemistry, and ∥Department of
Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského
9, SK-812 37 Bratislava, Slovakia
| | - Vlasta Brezová
- Department
of Organic Chemistry, ‡Department of Inorganic Chemistry, §Department of Physical Chemistry, and ∥Department of
Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského
9, SK-812 37 Bratislava, Slovakia
| | - Martin Breza
- Department
of Organic Chemistry, ‡Department of Inorganic Chemistry, §Department of Physical Chemistry, and ∥Department of
Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského
9, SK-812 37 Bratislava, Slovakia
| | - Jozef Kožíšek
- Department
of Organic Chemistry, ‡Department of Inorganic Chemistry, §Department of Physical Chemistry, and ∥Department of
Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského
9, SK-812 37 Bratislava, Slovakia
| | - Marek Fronc
- Department
of Organic Chemistry, ‡Department of Inorganic Chemistry, §Department of Physical Chemistry, and ∥Department of
Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského
9, SK-812 37 Bratislava, Slovakia
| | - Peter Herich
- Department
of Organic Chemistry, ‡Department of Inorganic Chemistry, §Department of Physical Chemistry, and ∥Department of
Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského
9, SK-812 37 Bratislava, Slovakia
| | - Lubomír Švorc
- Department
of Organic Chemistry, ‡Department of Inorganic Chemistry, §Department of Physical Chemistry, and ∥Department of
Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského
9, SK-812 37 Bratislava, Slovakia
| | - Peter Szolcsányi
- Department
of Organic Chemistry, ‡Department of Inorganic Chemistry, §Department of Physical Chemistry, and ∥Department of
Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského
9, SK-812 37 Bratislava, Slovakia
| |
Collapse
|
16
|
Epel, B, Halpern H. Electron paramagnetic resonance oxygen imaging in vivo. ELECTRON PARAMAGNETIC RESONANCE 2012. [DOI: 10.1039/9781849734837-00180] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This review covers the last 15 years of the development of EPR in vivo oxygen imaging. During this time, a number of major technological and methodological advances have taken place. Narrow line width, long relaxation time, and non-toxic triaryl methyl radicals were introduced in the late 1990s. These not only improved continuous wave (CW) imaging, but also enabled the application of pulse EPR imaging to animals. Recent developments in pulse technology have brought an order of magnitude increase in image acquisition speed, enhancement of sensitivity, and considerable improvement in the precision and accuracy of oxygen measurements. Consequently, pulse methods take up a significant part of this review.
Collapse
Affiliation(s)
- Boris Epel,
- Center for EPR Imaging in vivo Physiology the University of Chicago, Department of Radiation and Cellular Oncology (MC 1105), Chicago Illinois 60637
| | - Howard Halpern
- Center for EPR Imaging in vivo Physiology the University of Chicago, Department of Radiation and Cellular Oncology (MC 1105), Chicago Illinois 60637
| |
Collapse
|
17
|
Paletta JT, Pink M, Foley B, Rajca S, Rajca A. Synthesis and reduction kinetics of sterically shielded pyrrolidine nitroxides. Org Lett 2012; 14:5322-5. [PMID: 23050653 DOI: 10.1021/ol302506f] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A series of sterically shielded pyrrolidine nitroxides were synthesized, and their reduction by ascorbate (vitamin C) indicate that nitroxide 3, a tetraethyl derivative of 3-carboxy-PROXYL, is reduced at the slowest rate among known nitroxides, i.e., at a 60-fold slower rate than that for 3-carboxy-PROXYL.
Collapse
Affiliation(s)
- Joseph T Paletta
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, USA
| | | | | | | | | |
Collapse
|
18
|
Biller JR, Meyer V, Elajaili H, Rosen GM, Kao JP, Eaton SS, Eatona GR. Relaxation times and line widths of isotopically-substituted nitroxides in aqueous solution at X-band. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2011; 212:370-7. [PMID: 21843961 PMCID: PMC3196672 DOI: 10.1016/j.jmr.2011.07.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 07/21/2011] [Accepted: 07/22/2011] [Indexed: 05/16/2023]
Abstract
Optimization of nitroxides as probes for EPR imaging requires detailed understanding of spectral properties. Spin lattice relaxation times, spin packet line widths, nuclear hyperfine splitting, and overall lineshapes were characterized for six low molecular weight nitroxides in dilute deoxygenated aqueous solution at X-band. The nitroxides included 6-member, unsaturated 5-member, or saturated 5-member rings, most of which were isotopically labeled. The spectra are near the fast tumbling limit with T(1)∼T(2) in the range of 0.50-1.1 μs at ambient temperature. Both spin-lattice relaxation T(1) and spin-spin relaxation T(2) are longer for (15)N- than for (14)N-nitroxides. The dominant contributions to T(1) are modulation of nitrogen hyperfine anisotropy and spin rotation. Dependence of T(1) on nitrogen nuclear spin state m(I) was observed for both (14)N and (15)N. Unresolved hydrogen/deuterium hyperfine couplings dominate overall line widths. Lineshapes were simulated by including all nuclear hyperfine couplings and spin packet line widths that agreed with values obtained by electron spin echo. Line widths and relaxation times are predicted to be about the same at 250 MHz as at X-band.
Collapse
Affiliation(s)
- Joshua R. Biller
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208
- Center for EPR Imaging in Vivo Physiology, University of Denver, Denver, CO 80208 and University of Maryland, Baltimore, Baltimore, MD, 21201
| | - Virginia Meyer
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208
- Center for EPR Imaging in Vivo Physiology, University of Denver, Denver, CO 80208 and University of Maryland, Baltimore, Baltimore, MD, 21201
| | - Hanan Elajaili
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208
- Center for EPR Imaging in Vivo Physiology, University of Denver, Denver, CO 80208 and University of Maryland, Baltimore, Baltimore, MD, 21201
| | - Gerald M. Rosen
- Center for EPR Imaging in Vivo Physiology, University of Denver, Denver, CO 80208 and University of Maryland, Baltimore, Baltimore, MD, 21201
- Center for Biomedical Engineering and Technology, University of Maryland, Baltimore, Baltimore, MD, 21201
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Baltimore, MD, 21201
| | - Joseph P.Y. Kao
- Center for EPR Imaging in Vivo Physiology, University of Denver, Denver, CO 80208 and University of Maryland, Baltimore, Baltimore, MD, 21201
- Center for Biomedical Engineering and Technology, University of Maryland, Baltimore, Baltimore, MD, 21201
- Department of Physiology, University of Maryland, Baltimore, Baltimore, MD, 21201
| | - Sandra S. Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208
- Center for EPR Imaging in Vivo Physiology, University of Denver, Denver, CO 80208 and University of Maryland, Baltimore, Baltimore, MD, 21201
| | - Gareth R. Eatona
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208
- Center for EPR Imaging in Vivo Physiology, University of Denver, Denver, CO 80208 and University of Maryland, Baltimore, Baltimore, MD, 21201
| |
Collapse
|
19
|
Marshall DL, Christian ML, Gryn'ova G, Coote ML, Barker PJ, Blanksby SJ. Oxidation of 4-substituted TEMPO derivatives reveals modifications at the 1- and 4-positions. Org Biomol Chem 2011; 9:4936-47. [DOI: 10.1039/c1ob05037k] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|