1
|
Warnes ME, Fascione MA. Bimodal Glycosyl Donors as an Emerging Approach Towards a General Glycosylation Strategy. Chemistry 2024; 30:e202400399. [PMID: 38501362 PMCID: PMC11497259 DOI: 10.1002/chem.202400399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024]
Abstract
Organic synthesis provides an accessible route to preparative scale biological glycans, although schemes to access these complex structures are often complicated by preparation of multiple monosaccharide building blocks. Bimodal glycosyl donors capable of forming both α- and β-anomers selectively, are an emerging tactic to reduce the required number of individual synthetic components in glycan construction. This review discusses examples of bimodal donors in the literature, and how they achieve their stereocontrol for both anomers. Notable examples include a bespoke O-2 benzyl protecting group, a strained glycal for reaction using organometallic catalysis, and a simple perbenzylated donor optimised for stereoselective glycosylation through extensive reaction tuning.
Collapse
|
2
|
Wang M, Zhang L, Li Y, Gu L. Imidazole Promoted Efficient Anomerization of β‐D‐Glucose Pentaacetate in Solid State and Reaction Mechanism. ChemistrySelect 2022. [DOI: 10.1002/slct.202202508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Meifeng Wang
- Department of Biomedical Engineering Jinan University; #601 Huangpu Avenue West Guangzhou China
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources Hunan University of Science and Engineering Yongzhou 425199 China
- Department of Chemistry Jinan University, #601, Huangpu Avenue West Guangzhou China
| | - Liyin Zhang
- Department of Biomedical Engineering Jinan University; #601 Huangpu Avenue West Guangzhou China
| | - Yiqun Li
- Department of Chemistry Jinan University, #601, Huangpu Avenue West Guangzhou China
| | - Liuqun Gu
- Department of Biomedical Engineering Jinan University; #601 Huangpu Avenue West Guangzhou China
| |
Collapse
|
3
|
Kravchenko EA, Gippius AA, Tkachev AV, Mastryukov MV, Brekhovskikh MN. The purity of SnCl4 as monitored by 35Cl nuclear quadrupole resonance. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.07.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Tiwari V, Murugan K, Sabiah S, Kandasamy J. An Efficient and Direct Esterification of Uronic Acids Using H2SO4-SiO2 at Room Temperature. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Trinderup HH, Sandgaard TLP, Juul-Madsen L, Jensen HH. Anomeric Thioglycosides Give Different Anomeric Product Distributions under NIS/TfOH Activation. J Org Chem 2022; 87:4154-4167. [PMID: 35239337 DOI: 10.1021/acs.joc.1c03001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The reaction of a series of anomeric thioglycosides with various glycosyl acceptors and N-iodosuccinimide/catalytic triflic acid was investigated with respect to reactivity and anomeric selectivity. In general, β-configured donors were found to give a more β-selective reaction outcome compared to their α-configured counterparts. The relative reactivity of various thioglycosides was measured through competition experiments, and the following order was established: phenyl, tolyl, methyl, ethyl, isopropyl, and 1-adamantyl.
Collapse
Affiliation(s)
| | | | - Line Juul-Madsen
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| | - Henrik H Jensen
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
6
|
Cameron G, Cheng JMH, Godfrey DI, Timmer MSM, Stocker BL, Dangerfield EM. The NKT cell TCR repertoire can accommodate structural modifications to the lipid and orientation of the terminal carbohydrate of iGb3. RSC Adv 2022; 12:18493-18500. [PMID: 35799937 PMCID: PMC9215340 DOI: 10.1039/d2ra02373c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/09/2022] [Indexed: 12/04/2022] Open
Abstract
Isoglobotrihexosylceramide (iGb3) is a known NKT cell agonist, however the specific interactions required to trigger NKT cell TCR activation in response to this mammalian glycolipid are not fully understood. Here we report the synthesis of 1,3-β-Gal-LacCer (βG-iGb3) that displays a β-linked terminal sugar. βG-iGb3 activated NKT cells to a similar extent as iGb3 with a terminal α-linkage, indicating that the conformation of the terminal sugar residue of iGb3 is not essential to facilitate NKT cell TCR recognition. In addition, the immunological activity of four recently described iGb3 analogues with modifications to their terminal sugar or lipid backbone were also investigated. These iGb3 analogues all induced NKT cell proliferation, with IL-13 the predominate cytokine detected. This highlights the ability of the NKT cell TCR to accommodate variations in iGb3-based glycolipids and suggests that undiscovered NKT cell ligands may exist within the lacto-series of mammalian glycosphingolipids. The synthesised βG-iGb3 glycolipid, with a terminal 1,3-β linked galactose, induced NKT cell proliferation indicating that the α conformation of the terminal sugar residue of iGb3 is not essential for NKT cell TCR recognition.![]()
Collapse
Affiliation(s)
- Garth Cameron
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3000, Australia
| | - Janice M. H. Cheng
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, 6140, Wellington, New Zealand
| | - Dale I. Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3000, Australia
| | - Mattie S. M. Timmer
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, 6140, Wellington, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, 6140, Wellington, New Zealand
| | - Bridget L. Stocker
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, 6140, Wellington, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, 6140, Wellington, New Zealand
| | - Emma M. Dangerfield
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, 6140, Wellington, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, 6140, Wellington, New Zealand
| |
Collapse
|
7
|
Zhong X, Zhao X, Ao J, Huang Y, Liu Y, Zhou S, Li B, Ishiwata A, Fang Q, Yang C, Cai H, Ding F. An experimental and theoretical study on stereocontrolled glycosylations by a “one-pot” procedure. Org Chem Front 2022. [DOI: 10.1039/d2qo00727d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we describe a “one-pot” strategy to install the stereoselectivity of both α- and β-glycosides by changing reaction conditions.
Collapse
Affiliation(s)
- Xuemei Zhong
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaoya Zhao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Jiaming Ao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yan Huang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yuhua Liu
- School of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006, China
| | - Siai Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Bizhi Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | | | - Qianglin Fang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Chongguang Yang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Hui Cai
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Feiqing Ding
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
8
|
Yang M, Guo Y, Zhang XP, Sun H, Wang Y, Zhang W, Wu Y, Jian Y, Gao Z. Natural Amino Acid L‐Phenylalanine Coordinated Zirconocene Complex as Bifunctional Catalyst for the Synthesis of 1,5‐Benzothiazepines. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mingming Yang
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Yingying Guo
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Xue-Peng Zhang
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Huaming Sun
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Yanyan Wang
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Weiqiang Zhang
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Ya Wu
- Xi'an Shiyou University College of Chemistry and Chemical Engineering CHINA
| | - Yajun Jian
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Ziwei Gao
- Shaanxi Normal University School of Chemistry and Chemical Engineering 620 West Chang'an Street 710119 Xi'an CHINA
| |
Collapse
|
9
|
Muru K, Cloutier M, Provost-Savard A, Di Cintio S, Burton O, Cordeil J, Groleau MC, Legault J, Déziel E, Gauthier C. Total Synthesis of a Chimeric Glycolipid Bearing the Partially Acetylated Backbone of Sponge-Derived Agminoside E. J Org Chem 2021; 86:15357-15375. [PMID: 34672576 DOI: 10.1021/acs.joc.1c01907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe the total synthesis of a chimeric glycolipid bearing both the partially acetylated backbone of sponge-derived agminoside E and the (R)-3-hydroxydecanoic acid chain of bacterial rhamnolipids. The branched pentaglucolipid skeleton was achieved using a [3 + 2] disconnection approach. The β-(1 → 2) and β-(1 → 4)-glycosidic bonds were synthesized through a combination of NIS/Yb(OTf)3- and TMSOTf-mediated stereoselective glycosylations of thiotolyl, N-phenyltrifluoroacetimidate, and trichloroacetimidate donors. Late-stage pentaacetylation, Staudinger reduction of a (2-azidomethyl)benzoyl group, followed by continuous-flow microfluidic hydrogenolysis completed the total synthesis of the structurally simplified glycolipid, whose partial acetylation pattern on the glycan part was identical to agminoside E. Our study lays the foundation for the total synthesis of sponge-derived agminosides and the understanding of their biological functions in sponges.
Collapse
Affiliation(s)
- Kevin Muru
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531, boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| | - Maude Cloutier
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531, boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| | - Arianne Provost-Savard
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531, boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| | - Sabrina Di Cintio
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531, boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| | - Océane Burton
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531, boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| | - Justin Cordeil
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531, boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| | - Marie-Christine Groleau
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531, boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| | - Jean Legault
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi (UQAC), 555, boulevard de l'Université, Chicoutimi, Québec G7H 2B1, Canada
| | - Eric Déziel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531, boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| | - Charles Gauthier
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531, boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| |
Collapse
|
10
|
Mastryukov MV, Demina LI, Moiseeva LV, Soldatkina AD, Brekhovskikh MN. Synthesis and Deep Purification of Tin Tetrachloride. RUSS J INORG CHEM+ 2021. [DOI: 10.1134/s003602362107007x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Abronina PI, Zinin AI, Malysheva NN, Karpenko MY, Kolotyrkina NG, Kononov LO. The Influence of Anomeric Configuration and Aglycone Structure on the Outcome of Acid‐Promoted Ring Contraction in 2,3‐Di‐
O
‐Silylated S‐Galactopyranosides. ChemistrySelect 2021. [DOI: 10.1002/slct.202101441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Polina I. Abronina
- N.K. Kochetkov Laboratory of Carbohydrate Chemistry N.D. Zelinsky Institute of Organic Chemistry Leninsky prosp. 47 119991 Moscow Russian Federation
| | - Alexander I. Zinin
- N.K. Kochetkov Laboratory of Carbohydrate Chemistry N.D. Zelinsky Institute of Organic Chemistry Leninsky prosp. 47 119991 Moscow Russian Federation
| | - Nelly N. Malysheva
- N.K. Kochetkov Laboratory of Carbohydrate Chemistry N.D. Zelinsky Institute of Organic Chemistry Leninsky prosp. 47 119991 Moscow Russian Federation
| | - Maxim Y. Karpenko
- N.K. Kochetkov Laboratory of Carbohydrate Chemistry N.D. Zelinsky Institute of Organic Chemistry Leninsky prosp. 47 119991 Moscow Russian Federation
| | - Natalya G. Kolotyrkina
- N.K. Kochetkov Laboratory of Carbohydrate Chemistry N.D. Zelinsky Institute of Organic Chemistry Leninsky prosp. 47 119991 Moscow Russian Federation
| | - Leonid O. Kononov
- N.K. Kochetkov Laboratory of Carbohydrate Chemistry N.D. Zelinsky Institute of Organic Chemistry Leninsky prosp. 47 119991 Moscow Russian Federation
| |
Collapse
|
12
|
Pereira CS, Silveira RL, Skaf MS. QM/MM Simulations of Enzymatic Hydrolysis of Cellulose: Probing the Viability of an Endocyclic Mechanism for an Inverting Cellulase. J Chem Inf Model 2021; 61:1902-1912. [PMID: 33760586 PMCID: PMC8154253 DOI: 10.1021/acs.jcim.0c01380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Glycoside hydrolases
(GH) cleave carbohydrate glycosidic bonds
and play pivotal roles in living organisms and in many industrial
processes. Unlike acid-catalyzed hydrolysis of carbohydrates in solution,
which can occur either via cyclic or acyclic oxocarbenium-like transition
states, it is widely accepted that GH-catalyzed hydrolysis proceeds
via a general acid mechanism involving a cyclic oxocarbenium-like
transition state with protonation of the glycosidic oxygen. The GH45
subfamily C inverting endoglucanase from Phanerochaete chrysosporium (PcCel45A) defies the classical inverting mechanism as its crystal
structure conspicuously lacks a general Asp or Glu base residue. Instead,
PcCel45A has an Asn residue, a notoriously weak base in solution,
as one of its catalytic residues at position 92. Moreover, unlike
other inverting GHs, the relative position of the catalytic residues
in PcCel45A impairs the proton abstraction from the nucleophilic water
that attacks the anomeric carbon, a key step in the classical mechanism.
Here, we investigate the viability of an endocyclic mechanism for
PcCel45A using hybrid quantum mechanics/molecular mechanics (QM/MM)
simulations, with the QM region treated with the self-consistent-charge
density-functional tight-binding level of theory. In this mechanism,
an acyclic oxocarbenium-like transition state is stabilized leading
to the opening of the glucopyranose ring and formation of an unstable
acyclic hemiacetal that can be readily decomposed into hydrolysis
product. In silico characterization of the Michaelis
complex shows that PcCel45A significantly restrains the sugar ring
to the 4C1 chair conformation at the −1
subsite of the substrate binding cleft, in contrast to the classical
exocyclic mechanism in which ring puckering is critical. We also show
that PcCel45A provides an environment where the catalytic Asn92 residue
in its standard amide form participates in a cooperative hydrogen
bond network resulting in its increased nucleophilicity due to an
increased negative charge on the oxygen atom. Our results for PcCel45A
suggest that carbohydrate hydrolysis catalyzed by GHs may take an
alternative route from the classical mechanism.
Collapse
Affiliation(s)
- Caroline S Pereira
- Institute of Chemistry and Center for Computing in Engineering and Sciences, University of Campinas-Unicamp, Campinas 13084-862, Sao Paulo, Brazil
| | - Rodrigo L Silveira
- Institute of Chemistry and Center for Computing in Engineering and Sciences, University of Campinas-Unicamp, Campinas 13084-862, Sao Paulo, Brazil.,Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Rio de Janeiro, Brazil
| | - Munir S Skaf
- Institute of Chemistry and Center for Computing in Engineering and Sciences, University of Campinas-Unicamp, Campinas 13084-862, Sao Paulo, Brazil
| |
Collapse
|
13
|
Traverssi MG, Peñéñory AB, Varela O, Colomer JP. Photooxidation of thiosaccharides mediated by sensitizers in aerobic and environmentally friendly conditions. RSC Adv 2021; 11:9262-9273. [PMID: 35423421 PMCID: PMC8695230 DOI: 10.1039/d0ra09534f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/23/2021] [Indexed: 11/21/2022] Open
Abstract
A series of β-d-glucopyranosyl derivates have been synthesized and evaluated in photooxidation reactions promoted by visible light and mediated by organic dyes under aerobic conditions. Among the different photocatalysts employed, tetra-O-acetyl riboflavin afforded chemoselectively the respective sulfoxides, without over-oxidation to sulfones, in good to excellent yields and short reaction times. This new methodology for the preparation of synthetically useful glycosyl sulfoxides constitutes a catalytic, efficient, economical, and environmentally friendly oxidation process not reported so far for carbohydrates.
Collapse
Affiliation(s)
- Miqueas G Traverssi
- Departamento de Química Orgánica, Universidad Nacional de Córdoba, Facultad Ciencias Químicas, Ciudad Universitaria Edificio de Ciencias II Córdoba Argentina .,Instituto de Investigaciones en Fisico-Química de Córdoba (INFIQC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), UNC Argentina
| | - Alicia B Peñéñory
- Departamento de Química Orgánica, Universidad Nacional de Córdoba, Facultad Ciencias Químicas, Ciudad Universitaria Edificio de Ciencias II Córdoba Argentina .,Instituto de Investigaciones en Fisico-Química de Córdoba (INFIQC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), UNC Argentina
| | - Oscar Varela
- Departamento de Química Orgánica, Universidad de Buenos Aires, Facultad Ciencias Exactas y Naturales, Ciudad Universitaria Pab. 2, C1428EHA Buenos Aires Argentina.,Centro de Investigación en Hidratos de Carbono (CIHIDECAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), UBA Argentina
| | - Juan P Colomer
- Departamento de Química Orgánica, Universidad Nacional de Córdoba, Facultad Ciencias Químicas, Ciudad Universitaria Edificio de Ciencias II Córdoba Argentina .,Instituto de Investigaciones en Fisico-Química de Córdoba (INFIQC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), UNC Argentina
| |
Collapse
|
14
|
|
15
|
Hribernik N, Tamburrini A, Falletta E, Bernardi A. One pot synthesis of thio-glycosides via aziridine opening reactions. Org Biomol Chem 2021; 19:233-247. [DOI: 10.1039/d0ob01956a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
thio-Glycosides with a pseudo-disaccharide structure are synthesized via aziridine opening reactions starting from glycosyl thioacetates with a one-pot protocol, which affords glycomimetics equipped for easy and stable conjugation to aglycones.
Collapse
Affiliation(s)
- Nives Hribernik
- Università degli Studi di Milano
- Dipartimento di Chimica
- 20133 Milano
- Italy
| | - Alice Tamburrini
- Università degli Studi di Milano
- Dipartimento di Chimica
- 20133 Milano
- Italy
| | - Ermelinda Falletta
- Università degli Studi di Milano
- Dipartimento di Chimica
- 20133 Milano
- Italy
| | - Anna Bernardi
- Università degli Studi di Milano
- Dipartimento di Chimica
- 20133 Milano
- Italy
| |
Collapse
|
16
|
Total Synthesis and Structural Revision of Rebaudioside S, a Steviol Glycoside. J Org Chem 2020; 85:15857-15871. [PMID: 32281375 DOI: 10.1021/acs.joc.0c00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The total synthesis of rebaudioside S, a minor steviol glycoside from the leaves of Stevia rebaudiana, was investigated via a modular strategy, culminating not only in the first and highly efficient synthesis of Reb-S and analogues thereof but also in the revision of the originally proposed structure. The modular strategy dictated the application of C2-branched disaccharide Yu donors to forge C-13 steviol glycosidic linkages, posing considerable challenges in stereoselectivity control. Through systematic investigations, the effect of the internal glycosidic linkage configuration on the glycosylation stereoselectivity of 1,2-linked disaccharide donors was disclosed, and the intensified solvent effect by the 4,6-O-benzylidene protecting group was also observed with glucosyl donors. Through the orchestrated application of these favorable effects, the stereoselectivity problems were exquisitely tackled.
Collapse
|
17
|
Lee S, Ku AF, Vippila MR, Wang Y, Zhang M, Wang X, Hedstrom L, Cuny GD. Mycophenolic anilides as broad specificity inosine-5'-monophosphate dehydrogenase (IMPDH) inhibitors. Bioorg Med Chem Lett 2020; 30:127543. [PMID: 32931912 DOI: 10.1016/j.bmcl.2020.127543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 11/28/2022]
Abstract
Inosine-5'-monophosphate dehydrogenase (IMPDH) is a potential target for microorganisms. However, identifying inhibitor design determinants for IMPDH orthologs continues to evolve. Herein, a series of mycophenolic anilide inhibitors of Cryptosporidium parvum and human IMPDHs are reported. Furthermore, molecular docking of 12 (e.g. SH-19; CpIMPDH Ki,app = 0.042 ± 0.015 µM, HsIMPDH2 Ki,app = 0.13 ± 0.05 µM) supports different binding modes with the two enzymes. For CpIMPDH the inhibitor extends into a pocket in an adjacent subunit. In contrast, docking suggests the inhibitor interacts with Ser276 in the NAD binding site in HsIMPDH2, as well as an adjacent pocket within the same subunit. These results provide further guidance for generating IMPDH inhibitors for enzymes found in an array of pathogenic microorganisms, including Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Seungheon Lee
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Health Building 2, Houston, TX 77204, USA
| | - Angela F Ku
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Health Building 2, Houston, TX 77204, USA; Department of Chemistry, University of Houston, Health Building 2, Houston, TX 77204, USA
| | - Mohana Rao Vippila
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Health Building 2, Houston, TX 77204, USA
| | - Yong Wang
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Health Building 2, Houston, TX 77204, USA
| | - Minjia Zhang
- Departments of Biology, 415 South St., Waltham, MA 02454, USA
| | - Xingyou Wang
- Departments of Biology, 415 South St., Waltham, MA 02454, USA
| | - Lizbeth Hedstrom
- Departments of Biology, 415 South St., Waltham, MA 02454, USA; Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA
| | - Gregory D Cuny
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Health Building 2, Houston, TX 77204, USA.
| |
Collapse
|
18
|
Geringer SA, Singh Y, Hoard DJ, Demchenko AV. A Highly Efficient Glycosidation of Glycosyl Chlorides by Using Cooperative Silver(I) Oxide-Triflic Acid Catalysis. Chemistry 2020; 26:8053-8063. [PMID: 32145116 PMCID: PMC7695998 DOI: 10.1002/chem.201905576] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Indexed: 01/22/2023]
Abstract
Following our discovery that silver(I) oxide-promoted glycosylation with glycosyl bromides can be greatly accelerated in the presence of catalytic TMSOTf or TfOH, we report herein a new discovery that glycosyl chlorides are even more effective glycosyl donors under these reaction conditions. The developed reaction conditions work well with a variety of glycosyl chlorides. Both benzoylated and benzylated chlorides have been successfully glycosidated, and these reaction conditions proved to be effective in coupling substrates containing nitrogen and sulfur atoms. Another convenient feature of this glycosylation is that the progress of the reaction can be monitored visually; its completion can be judged by the disappearance of the characteristic dark color of Ag2 O.
Collapse
Affiliation(s)
- Scott A. Geringer
- Department of Chemistry and Biochemistry, University of Missouri – St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA
| | - Yashapal Singh
- Department of Chemistry and Biochemistry, University of Missouri – St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA
| | - Daniel J. Hoard
- Department of Chemistry and Biochemistry, University of Missouri – St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA
| | - Alexei V. Demchenko
- Department of Chemistry and Biochemistry, University of Missouri – St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA
| |
Collapse
|
19
|
Del Vigo EA, Stortz CA, Marino C. Regioselectivity of glycosylation reactions of galactose acceptors: an experimental and theoretical study. Beilstein J Org Chem 2019; 15:2982-2989. [PMID: 31921370 PMCID: PMC6941450 DOI: 10.3762/bjoc.15.294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/06/2019] [Indexed: 11/23/2022] Open
Abstract
Regioselective glycosylations allow planning simpler strategies for the synthesis of oligosaccharides, and thus reducing the need of using protecting groups. With the idea of gaining further understanding of such regioselectivity, we analyzed the relative reactivity of the OH-3 and OH-4 groups of 2,6-diprotected methyl α- and β-galactopyranoside derivatives in glycosylation reactions. The glycosyl acceptors were efficiently prepared by simple methodologies, and glycosyl donors with different reactivities were assessed. High regioselectivities were achieved in favor of the 1→3 products due to the equatorial orientation of the OH-3 group. A molecular modeling approach endorsed this general trend of favoring O-3 substitution, although it showed some failures to explain subtler factors governing the difference in regioselectivity between some of the acceptors. However, the Galp-(β1→3)-Galp linkage could be regioselectively installed by using some of the acceptors assayed herein.
Collapse
Affiliation(s)
- Enrique A Del Vigo
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Departamento de Química Orgánica, Pab. 2, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Carlos A Stortz
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Departamento de Química Orgánica, Pab. 2, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Carla Marino
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Departamento de Química Orgánica, Pab. 2, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| |
Collapse
|
20
|
Feng X, Bello D, Lowe PT, Clark J, O'Hagan D. Two 3'- O-β-glucosylated nucleoside fluorometabolites related to nucleocidin in Streptomyces calvus. Chem Sci 2019; 10:9501-9505. [PMID: 32110306 PMCID: PMC7017864 DOI: 10.1039/c9sc03374b] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/19/2019] [Indexed: 12/13/2022] Open
Abstract
The antibiotic nucleocidin is a product of the soil bacterium Streptomyces calvus T-3018. It is among the very rare fluorine containing natural products but is distinct from the other fluorometabolites in that it is not biosynthesised from 5'-fluorodeoxyadenosine via the fluorinase. It seems to have a unique enzymatic fluorination process. We disclose here the structures of two 4'-fluoro-3'-O-β-glucosylated metabolites (F-Mets I and II) which appear and then disappear before nucleocidin production in batch cultures of S. calvus. Full genome sequencing of S. calvus T-3018 and an analysis of the putative biosynthetic gene cluster for nucleocidin identified UDP-glucose dependent glucosyl transferase (nucGT) and glucosidase (nucGS) genes within the cluster. We demonstrate that these genes express enzymes that have the capacity to attach and remove glucose from the 3'-O-position of adenosine analogues. In the case of F-Met II, deglucosylation with the NucGS glucosidase generates nucleocidin suggesting a role in its biosynthesis. Gene knockouts of nucGT abolished nucelocidin production.
Collapse
Affiliation(s)
- Xuan Feng
- School of Chemistry , University of St Andrews , North Haugh, St Andrews , Fife , KY16 9ST , UK .
| | - Davide Bello
- School of Chemistry , University of St Andrews , North Haugh, St Andrews , Fife , KY16 9ST , UK .
| | - Phillip T Lowe
- School of Chemistry , University of St Andrews , North Haugh, St Andrews , Fife , KY16 9ST , UK .
| | - Joshua Clark
- School of Chemistry , University of St Andrews , North Haugh, St Andrews , Fife , KY16 9ST , UK .
| | - David O'Hagan
- School of Chemistry , University of St Andrews , North Haugh, St Andrews , Fife , KY16 9ST , UK .
| |
Collapse
|
21
|
Wu X, Chen L, Fan Y, Fu F, Li J, Zhang J. Water Solubility and Surface Property of Alkyl Di-/Tri-/Tetraoxyethyl β-d-Xylopyranosides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10361-10372. [PMID: 31487173 DOI: 10.1021/acs.jafc.9b03435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Alkyl di-/tri-/tetraoxyethyl β-d-xylopyranosides as derivatives of alkyl xylosides are a class of non-ionic sugar-based surfactants. They were stereoselectively synthesized by the Helferich method. Their properties including hydrophilic-lipophilic balance number, water solubility, surface property, foam property, emulsifying property, and thermotropic liquid crystal property were mainly investigated. The results showed that their water solubility decreased with increasing the alkyl chain length and increasing the number of the oligooxyethyl fragment. The critical micelle concentration had a monotonous decreasing trend with increasing the alkyl chain length. Nonyl di-/tri-/tetraoxyethyl β-d-xylopyranosides [-(OCH2CH2)m-, where m = 2, 3, and 4] exhibited the most excellent foaming ability and foam stability. In the n-octane/water system, dodecyl tetraoxyethyl β-d-xylopyranosides and tetradecyl tetraoxyethyl β-d-xylopyranosides had the strongest emulsion ability. In addition, some alkyl di-/tri-/tetraoxyethyl β-d-xylopyranosides had thermotropic liquid crystal properties. Such sugar-based surfactants, alkyl di-/tri-/tetraoxyethyl β-d-xylopyranosides, will be expected to develop for a variety of practical application.
Collapse
Affiliation(s)
- Xiubing Wu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan , Hunan 411105 , People's Republic of China
| | - Langqiu Chen
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan , Hunan 411105 , People's Republic of China
| | - Yulin Fan
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan , Hunan 411105 , People's Republic of China
| | - Fang Fu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan , Hunan 411105 , People's Republic of China
| | - Jiping Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan , Hunan 411105 , People's Republic of China
| | - Jing Zhang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan , Hunan 411105 , People's Republic of China
| |
Collapse
|
22
|
Meng S, Bhetuwal BR, Acharya PP, Zhu J. Facile Synthesis of Sugar Lactols via Bromine-Mediated Oxidation of Thioglycosides. J Carbohydr Chem 2019; 38:109-126. [PMID: 31396001 DOI: 10.1080/07328303.2019.1581889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Synthesis of a variety of sugar lactols (hemiacetals) has been accomplished in moderate to excellent yields by using bromine-mediated oxidation of thioglycosides. It was found that acetonitrile is the optimal solvent for this oxidation reaction. This approach involving bromine as oxidant is superior to that using N-bromosuccimide (NBS) which produces byproduct succinimide often difficult to separate from the lactol products.
Collapse
Affiliation(s)
- Shuai Meng
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States
| | - Bishwa Raj Bhetuwal
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States
| | - Padam P Acharya
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States
| | - Jianglong Zhu
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States
| |
Collapse
|
23
|
Roux A, Loffredo S, Ferrara AL, Murphy PV. Synthesis and biological evaluation of S-simplexides and other analogues of simplexide. PURE APPL CHEM 2019. [DOI: 10.1515/pac-2019-0218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Abstract
Simplexides are natural glycolipids isolated from the marine sponge Plakortis simplex, and contain alkyl 4-O-(α-D-glucopyranosyl)-β-D-galactopyranoside. Simplexides can release of cytokines (IL-6) and chemokines (CXCL-8) from human monocytes and cause the expansion of natural killer T-cells (iNKTs) in vitro, with iNKTs contributing to the sustenance of immune homeostasis. Herein, the stereoselective syntheses of S-glycosidic analogues, i.e. S-simplexides, are described. The routes included Lewis acid promoted anomerisation of glycosyl thiols and thioglycolipids, as well as anomeric S-alkylation. Synthesis of O-glycosidic analogues are included. Heptadecanyl O- and S-glycosides as well as the 17-tritriacontyl 4-O-(α-D-glucopyranosyl)-β-D-galactopyranoside, a component of the natural simplexide isolate, all induced IL-6 and CXCL-8 production at both 10 and 30 μg/mL concentrations from PBMCs whereas the two S-simplexides were inactive. It is speculated that the lack of activity for the S-disaccharide analogue could be due to inhibition of cellular α-glucosidase, preventing degradation of the simplex disaccharide to a simpler galactopyranoside, whereas lack of activity for the S-galactolipid analogue could be due to increased conformational flexibility of S-glycosides. On the other hand, simpler unbranched O- and S-glycolipid analogues were active. Natural simplexide, and a synthetic simplexide, the 18-pentatriacontanyl 4-O-(α-D-glucopyranosyl)-β-D-galactopyranoside, were more potent than the new compounds tested.
Collapse
Affiliation(s)
- Amélie Roux
- School of Chemistry, National University of Ireland Galway , University Road , Galway H91 TK33 , Ireland
| | - Stefania Loffredo
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI) , University of Naples Federico II , WAO Center of Excellence , Naples , Italy
| | - Anne Lise Ferrara
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI) , University of Naples Federico II , WAO Center of Excellence , Naples , Italy
| | - Paul V. Murphy
- School of Chemistry, National University of Ireland Galway , University Road , Galway H91 TK33 , Ireland
| |
Collapse
|
24
|
Sletten ET, Tu YJ, Schlegel HB, Nguyen HM. Are Brønsted Acids the True Promoter of Metal-Triflate-Catalyzed Glycosylations? A Mechanistic Probe into 1,2- cis-Aminoglycoside Formation by Nickel Triflate. ACS Catal 2019; 9:2110-2123. [PMID: 31819822 PMCID: PMC6900934 DOI: 10.1021/acscatal.8b04444] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Metal triflates have been utilized to catalytically facilitate numerous glycosylation reactions under mild conditions. In some methods, the metal triflate system provides stereocontrol during the glycosylation, rather than the nature of protecting groups on the substrate. Despite these advances, the true activating nature of metal triflates remains unclear. Our findings indicated that the in situ generation of trace amounts of triflic acid from metal triflates can be the active catalyst species in the glycosylation. This fact has been mentioned previously in metal triflate-catalyzed glycosylation reactions; however, a thorough study on the subject and its implications on stereoselectivity has yet to be performed. Experimental evidence from control reactions and 19F NMR spectroscopy have been obtained to confirm and quantify the triflic acid released from nickel triflate, for which it is of paramount importance in achieving a stereoselective 1,2-cis-2-amino glycosidic bond formation via a transient anomeric triflate. A putative intermediate resembling that of a glycosyl triflate has been detected using variable temperature NMR (1H and 13C) experiments. These observations, together with density functional theory calculations and a kinetic study, corroborate a mechanism involving triflic acid-catalyzed stereoselective glycosylation with N-substituted trifluoromethylbenzylideneamino protected electrophiles. Specifically, triflic acid facilitates formation of a glycosyl triflate intermediate which then undergoes isomerization from the stable α-anomer to the more reactive β-anomer. Subsequent SN2-like displacement of the reactive anomer by a nucleophile is highly favorable for the production of 1,2-cis-2-aminoglycosides. Although there is a previously reported work regarding glycosyl triflates, none of these reports have been confirmed to come from the counter ion of the metal center. Our work provides supporting evidence for the induction of a glycosyl triflate through the role of triflic acid in metal triflate-catalyzed glycosylation reactions.
Collapse
Affiliation(s)
- Eric T Sletten
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United Sates
| | - Yi-Jung Tu
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - H Bernhard Schlegel
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Hien M Nguyen
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
25
|
Stereoselective trimethylsilylation of α- and β-galactopyranoses. Carbohydr Res 2019; 474:51-56. [PMID: 30731331 DOI: 10.1016/j.carres.2019.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/28/2019] [Accepted: 01/28/2019] [Indexed: 11/22/2022]
Abstract
Trimethylsilylation of the anomeric hydroxyl groups of tetra-O-benzyl and tetra-O-acetyl galactopyranoses was investigated. Stereoselective formation of β-trimethylsilyl glycoside (β-TMS glycoside) of benzyl protected compound was achieved using N-trimethylsilyl diethylamine. In the course of the investigation of the selective synthesis of TMS galactosides using TMS-imidazole, we observed the formation of an intermediate, which was converted predominantly into α-TMS glycoside after silica gel column chromatography. A reaction of acetylated compound using TMS-trifluoromethanesulfonate-2,6-lutindine selectively yielded α-TMS glycoside.
Collapse
|
26
|
Doyle LM, Meany FB, Murphy PV. Lewis acid promoted anomerisation of alkyl O- and S-xylo-, arabino- and fucopyranosides. Carbohydr Res 2019; 471:85-94. [PMID: 30508660 DOI: 10.1016/j.carres.2018.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 10/27/2022]
Abstract
Pentopyranoside and 6-deoxyhexopyranosides, such as those from d-xylose, l-arabinose and l-fucose are components of natural products, oligosaccharides or polysaccharides. Lewis acid promoted anomerisation of some of their alkyl O- and S-glycopyranosides is reported here. SnCl4 was more successful than TiCl4, with the latter giving the glycosyl chloride by-product in some cases, and both were superior to BF3OEt2. Kinetics study using 1H NMR spectroscopy showed an order of reactivity: O-xylopyranoside > O-arabinopyranoside > O-fucopyranoside. Benzoylated glycosides were more reactive than acetylated glycosides. The reactivity of S-glycosides was greater than that of O-glycosides for both arabinose and fucose derivatives; the reactivity of O- and S-xylopyranosides was similar. The highest stereoselectivities were observed for fucopyranosides. The β-d-xylopyranoside and α-l-arabinopyranoside reactants are conformationally more flexible than β-l-fucopyranosides.
Collapse
Affiliation(s)
- Lisa M Doyle
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Fiach B Meany
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Paul V Murphy
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland.
| |
Collapse
|
27
|
Koffi Teki DSE, Bil A, Moreau V, Chagnault V, Fanté B, Adjou A, Kovensky J. Synthesis of multivalent S-glycoside analogs of a heparan sulfate sequence. Org Chem Front 2019. [DOI: 10.1039/c9qo00581a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In this article, we report on the synthesis of new glycoclusters with thiodisaccharide units, S-analogs of heparan sulfate.
Collapse
Affiliation(s)
- Dindet Steve-Evanes Koffi Teki
- Laboratoire de Chimie Organique et de Substances Naturelles
- UFR SSMT
- Université Félix Houphouët-Boigny
- 22 B.P. 582 Abidjan 22
- Republic of Ivory Coast
| | - Abed Bil
- Laboratoire de Glycochimie
- des Antimicrobiens et des Agroressources (LG2A)
- UMR 7378 CNRS
- Université de Picardie Jules Verne
- F-80039 Amiens Cedex
| | - Vincent Moreau
- Laboratoire de Glycochimie
- des Antimicrobiens et des Agroressources (LG2A)
- UMR 7378 CNRS
- Université de Picardie Jules Verne
- F-80039 Amiens Cedex
| | - Vincent Chagnault
- Laboratoire de Glycochimie
- des Antimicrobiens et des Agroressources (LG2A)
- UMR 7378 CNRS
- Université de Picardie Jules Verne
- F-80039 Amiens Cedex
| | - Bamba Fanté
- Laboratoire de Chimie Organique et de Substances Naturelles
- UFR SSMT
- Université Félix Houphouët-Boigny
- 22 B.P. 582 Abidjan 22
- Republic of Ivory Coast
| | - Ané Adjou
- Laboratoire de Chimie Organique et de Substances Naturelles
- UFR SSMT
- Université Félix Houphouët-Boigny
- 22 B.P. 582 Abidjan 22
- Republic of Ivory Coast
| | - José Kovensky
- Laboratoire de Glycochimie
- des Antimicrobiens et des Agroressources (LG2A)
- UMR 7378 CNRS
- Université de Picardie Jules Verne
- F-80039 Amiens Cedex
| |
Collapse
|
28
|
Jäger SN, Porta EOJ, Labadie GR. Convenient synthesis of the immunogenic glycolipid BbGL1. Steroids 2019; 141:41-45. [PMID: 30468783 DOI: 10.1016/j.steroids.2018.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/09/2018] [Accepted: 11/17/2018] [Indexed: 10/27/2022]
Abstract
A simple and efficient method to synthesize the immunogenic glycolipid BbGL1 is introduced. Two simple steps were required to obtain the desired product in good yield. First, a highly efficient glycosylation of cholesterol using galactosyl trichloroacetimidate as a donor was performed to produce cholesteryl-β-d-galactoside. Finally, an efficient palmitoylation on the C6-OH of the galactose of the synthesized saponin using sym-collidine and acyl chloride under microwave heating that produced BbGL1 in good yield. The procedure is a convenient and cheaper alternative to the reported procedures allowing a rapid preparation of multiple analogs and conjugates.
Collapse
Affiliation(s)
- Sebastián N Jäger
- Instituto de Química Rosario (IQUIR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Exequiel O J Porta
- Instituto de Química Rosario (IQUIR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Guillermo R Labadie
- Instituto de Química Rosario (IQUIR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina.
| |
Collapse
|
29
|
Kerins L, Byrne S, Gabba A, Murphy PV. Anomer Preferences for Glucuronic and Galacturonic Acid and Derivatives and Influence of Electron-Withdrawing Substituents. J Org Chem 2018; 83:7714-7729. [DOI: 10.1021/acs.joc.8b00610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Louise Kerins
- School of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
| | - Sylvester Byrne
- School of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
| | - Adele Gabba
- School of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
| | - Paul V. Murphy
- School of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
| |
Collapse
|
30
|
Influence of acyl groups on glucopyranoside reactivity in Lewis acid promoted anomerisation. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.05.076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
31
|
Doyle LM, O'Sullivan S, Di Salvo C, McKinney M, McArdle P, Murphy PV. Stereoselective Epimerizations of Glycosyl Thiols. Org Lett 2018; 19:5802-5805. [PMID: 29039672 DOI: 10.1021/acs.orglett.7b02760] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glycosyl thiols are widely used in stereoselective S-glycoside synthesis. Their epimerization from 1,2-trans to 1,2-cis thiols (e.g., equatorial to axial epimerization in thioglucopyranose) was attained using TiCl4, while SnCl4 promoted their axial-to-equatorial epimerization. The method included application for stereoselective β-d-manno- and β-l-rhamnopyranosyl thiol formation. Complex formation explains the equatorial preference when using SnCl4, whereas TiCl4 can shift the equilibrium toward the 1,2-cis thiol via 1,3-oxathiolane formation.
Collapse
Affiliation(s)
- Lisa M Doyle
- School of Chemistry, National University of Ireland Galway , University Road, Galway, Ireland H91 TK33
| | - Shane O'Sullivan
- School of Chemistry, National University of Ireland Galway , University Road, Galway, Ireland H91 TK33
| | - Claudia Di Salvo
- School of Chemistry, National University of Ireland Galway , University Road, Galway, Ireland H91 TK33
| | - Michelle McKinney
- School of Chemistry, National University of Ireland Galway , University Road, Galway, Ireland H91 TK33
| | - Patrick McArdle
- School of Chemistry, National University of Ireland Galway , University Road, Galway, Ireland H91 TK33
| | - Paul V Murphy
- School of Chemistry, National University of Ireland Galway , University Road, Galway, Ireland H91 TK33
| |
Collapse
|
32
|
Mukherjee K, Narindoshvili T, Raushel FM. Discovery of a Kojibiose Phosphorylase in Escherichia coli K-12. Biochemistry 2018; 57:2857-2867. [PMID: 29684280 DOI: 10.1021/acs.biochem.8b00392] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The substrate profiles for three uncharacterized enzymes (YcjM, YcjT, and YcjU) that are expressed from a cluster of 12 genes ( ycjM-W and ompG) of unknown function in Escherichia coli K-12 were determined. Through a comprehensive bioinformatic and steady-state kinetic analysis, the catalytic function of YcjT was determined to be kojibiose phosphorylase. In the presence of saturating phosphate and kojibiose (α-(1,2)-d-glucose-d-glucose), this enzyme catalyzes the formation of d-glucose and β-d-glucose-1-phosphate ( kcat = 1.1 s-1, Km = 1.05 mM, and kcat/ Km = 1.12 × 103 M-1 s-1). Additionally, it was also shown that in the presence of β-d-glucose-1-phosphate, YcjT can catalyze the formation of other disaccharides using 1,5-anhydro-d-glucitol, l-sorbose, d-sorbitol, or l-iditol as a substitute for d-glucose. Kojibiose is a component of cell wall lipoteichoic acids in Gram-positive bacteria and is of interest as a potential low-calorie sweetener and prebiotic. YcjU was determined to be a β-phosphoglucomutase that catalyzes the isomerization of β-d-glucose-1-phosphate ( kcat = 21 s-1, Km = 18 μM, and kcat/ Km = 1.1 × 106 M-1 s-1) to d-glucose-6-phosphate. YcjU was also shown to exhibit catalytic activity with β-d-allose-1-phosphate, β-d-mannose-1-phosphate, and β-d-galactose-1-phosphate. YcjM catalyzes the phosphorolysis of α-(1,2)-d-glucose-d-glycerate with a kcat = 2.1 s-1, Km = 69 μM, and kcat/ Km = 3.1 × 104 M-1 s-1.
Collapse
Affiliation(s)
- Keya Mukherjee
- Department of Biochemistry & Biophysics , Texas A&M University , College Station , Texas 77844 , United States
| | - Tamari Narindoshvili
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Frank M Raushel
- Department of Biochemistry & Biophysics , Texas A&M University , College Station , Texas 77844 , United States.,Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| |
Collapse
|
33
|
Rajput J, Hotha S, Vangala M. AuBr 3-catalyzed azidation of per- O-acetylated and per- O-benzoylated sugars. Beilstein J Org Chem 2018; 14:682-687. [PMID: 29623131 PMCID: PMC5870170 DOI: 10.3762/bjoc.14.56] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/05/2018] [Indexed: 12/23/2022] Open
Abstract
Herein we report, for the first time, the successful anomeric azidation of per-O-acetylated and per-O-benzoylated sugars by catalytic amounts of oxophilic AuBr3 in good to excellent yields. The method is applicable to a wide range of easily accessible per-O-acetylated and per-O-benzoylated sugars. While reaction with per-O-acetylated and per-O-benzoylated monosaccharides was complete within 1-3 h at room temperature, the per-O-benzoylated disaccharides needed 2-3 h of heating at 55 °C.
Collapse
Affiliation(s)
- Jayashree Rajput
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411 008, India
| | - Srinivas Hotha
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411 008, India
| | - Madhuri Vangala
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411 008, India
| |
Collapse
|
34
|
Lu YJ, Lai YH, Lin YY, Wang YC, Liang PH. 2- O- N-Benzylcarbamoyl as a Protecting Group To Promote β-Selective Glycosylation and Its Applications in the Stereoselective Synthesis of Oligosaccharides. J Org Chem 2018; 83:3688-3701. [PMID: 29512381 DOI: 10.1021/acs.joc.8b00047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study examines the utility of the N-benzylcarbamoyl (BnCar) protecting group in glycosylation reactions of the parent O-2 protected carbohydrate donor. It was found that the BnCar group imparted exclusively β-selectivity with primary and secondary alcohols. A mechanistic study revealed the activated intermediate to be the glycosyl triflate in a skew conformation, which results in β-selective glycosylation via an SN2-like pathway. The BnCar group can be readily cleaved using tetrabutylammonium nitrite, without affecting ester and ether protecting groups. Taken together, these results show BnCar to be useful for the synthesis of complex oligosaccharides, an undertaking that requires delicate chemical differentiation of various protecting groups.
Collapse
Affiliation(s)
- Yin-Jen Lu
- School of Pharmacy, College of Medicine , National Taiwan University , Taipei 100 , Taiwan
| | - Yen-Hsun Lai
- School of Pharmacy, College of Medicine , National Taiwan University , Taipei 100 , Taiwan
| | - You-Yu Lin
- School of Pharmacy, College of Medicine , National Taiwan University , Taipei 100 , Taiwan
| | - Yi-Chi Wang
- School of Pharmacy, College of Medicine , National Taiwan University , Taipei 100 , Taiwan
| | - Pi-Hui Liang
- School of Pharmacy, College of Medicine , National Taiwan University , Taipei 100 , Taiwan
| |
Collapse
|
35
|
Belenok MG, Andreeva OV, Garifullin BF, Strobykina AS, Kravchenko MA, Voloshina AD, Kataev VE. Synthesis and Antitubercular, Antimicrobial, and Hemolytic Activity of Methyl D-Glucopyranuronate and Its Simplest Derivatives. RUSS J GEN CHEM+ 2017. [DOI: 10.1134/s1070363217120106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Highly efficient synthesis of bioactive oleanane-type saponins. Carbohydr Res 2017; 452:43-46. [DOI: 10.1016/j.carres.2017.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/21/2017] [Accepted: 08/21/2017] [Indexed: 11/17/2022]
|
37
|
Ho KL, Yuen KK, Yau MS, Murphy MB, Wan Y, Fong BMW, Tam S, Giesy JP, Leung KSY, Lam MHW. Glucuronide and Sulfate Conjugates of Bisphenol A: Chemical Synthesis and Correlation Between Their Urinary Levels and Plasma Bisphenol A Content in Voluntary Human Donors. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 73:410-420. [PMID: 28770280 DOI: 10.1007/s00244-017-0438-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/24/2017] [Indexed: 06/07/2023]
Abstract
Bisphenol A (BPA) glucuronide and sulfate conjugates are major products of Phase II metabolism of BPA in humans. In the past, their determination in body fluids usually involves tedious enzymatic hydrolysis and multiresidual analysis. The recent availability of authentic standards of these conjugates enables our better understand of the human metabolism of BPA and the distribution of their metabolites in body fluids. In this work, we report the chemical synthesis and purification of BPA mono- and di-glucuronide and BPA mono- and di-sulfate. Their levels, as well as that of BPA, in 140 paired human plasma and urine samples collected randomly from voluntary donors in Hong Kong SAR, China, were determined by solid-phase extraction and liquid chromatography-tandem mass spectrometry (LC-MS/MS). BPA was found in more than 135 human plasma and urine samples. Its Phase II metabolites, ranging from N.D. to 36.7 µg g-1-creatinine, also were detected in 139 of the 140 urine samples. Good correlation (r = 0.911) between molar concentration of BPA in the plasma and that of "total urinary BPA" (i.e., ln [(BPA + ∑ BPA phase II conjugate)molar concentration]) was observed. Direct quantification of Phase II metabolites of BPA in human urine can be a useful assessment tool for population exposure to this potent endocrine disrupting chemical.
Collapse
Affiliation(s)
- Ka-Lok Ho
- State Key Laboratory for Marine Pollution, Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, People's Republic of China
| | - Ka-Ki Yuen
- State Key Laboratory for Marine Pollution, Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, People's Republic of China
| | - Man-Shan Yau
- State Key Laboratory for Marine Pollution, Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, People's Republic of China
| | - Margaret B Murphy
- State Key Laboratory for Marine Pollution, Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, People's Republic of China
| | - Yi Wan
- Department of Biomedical Veterinary Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Canada
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, People's Republic of China
| | - Bonnie M-W Fong
- Division of Clinical Biochemistry, Queen Mary Hospital, Kowloon, Hong Kong SAR, People's Republic of China
- Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong SAR, People's Republic of China
| | - Sidney Tam
- Division of Clinical Biochemistry, Queen Mary Hospital, Kowloon, Hong Kong SAR, People's Republic of China
| | - John P Giesy
- State Key Laboratory for Marine Pollution, Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, People's Republic of China
- Department of Biomedical Veterinary Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Canada
- Department of Zoology and Center for Integrative Toxicology, Michigan State University, Lansing, MI, USA
- School of Biological Sciences, The University of Hong Kong, Kowloon, Hong Kong SAR, People's Republic of China
- Department of Zoology, and Center for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | - Kelvin S-Y Leung
- Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong SAR, People's Republic of China
| | - Michael H-W Lam
- State Key Laboratory for Marine Pollution, Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, People's Republic of China.
| |
Collapse
|
38
|
Hu Y, Yu K, Shi LL, Liu L, Sui JJ, Liu DY, Xiong B, Sun JS. o-(p-Methoxyphenylethynyl)phenyl Glycosides: Versatile New Glycosylation Donors for the Highly Efficient Construction of Glycosidic Linkages. J Am Chem Soc 2017; 139:12736-12744. [DOI: 10.1021/jacs.7b07020] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yang Hu
- The National Research Centre
for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang
Avenue, Nanchang 330022, China
| | - Ke Yu
- The National Research Centre
for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang
Avenue, Nanchang 330022, China
| | - Li-Li Shi
- The National Research Centre
for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang
Avenue, Nanchang 330022, China
| | - Lei Liu
- The National Research Centre
for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang
Avenue, Nanchang 330022, China
| | - Jing-Jing Sui
- The National Research Centre
for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang
Avenue, Nanchang 330022, China
| | - De-Yong Liu
- The National Research Centre
for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang
Avenue, Nanchang 330022, China
| | - Bin Xiong
- The National Research Centre
for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang
Avenue, Nanchang 330022, China
| | - Jian-Song Sun
- The National Research Centre
for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang
Avenue, Nanchang 330022, China
| |
Collapse
|
39
|
Xing L, Niu Q, Li C. Practical Glucosylations and Mannosylations Using Anomeric Benzoyloxy as a Leaving Group Activated by Sulfonium Ion. ACS OMEGA 2017; 2:3698-3709. [PMID: 30023701 PMCID: PMC6044952 DOI: 10.1021/acsomega.7b00729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 07/06/2017] [Indexed: 06/08/2023]
Abstract
One obstacle for practical glycosylations is the high cost of promoters and low-temperature equipment. This problem has been at least partially solved by using MeSCH2Cl/KI as a low-cost promoter system. MeSCH2Cl has an estimated cost of <$1/mol compared with $1741/mol for AgOTf and $633/mol for TMSOTf. This new promoter system is capable of activating various leaving groups including anomeric Cl, F, trichloroacetimidate, and acyloxy groups. Stable and easy-to-prepare anomeric benzoloxy carbohydrate donors were investigated in the glycosylations of carbohydrates, aliphatic alcohols, amino acids, steroids, and nucleoside acceptors. Most of these glycosylations were operationally simple with fast reaction rates and moderate yields of 35-79%. In addition, direct glycosylations of nucleosides using less than 2 equiv of anomeric benzoloxy donors and high stereoselective mannosylation have been achieved. From an economic point of view, this glycosylation method should be highly applicable to industrial processes.
Collapse
Affiliation(s)
- Linlin Xing
- Department of Chemistry, School of Science, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300354, P. R. China
| | - Qun Niu
- Department of Chemistry, School of Science, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300354, P. R. China
| | - Chunbao Li
- Department of Chemistry, School of Science, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300354, P. R. China
| |
Collapse
|
40
|
Abstract
AbstractExistence of endocyclic cleavage reaction is now clearly shown from experimental evidence of endocyclic cleavage reaction as well as computational chemistry. Not only stereoelectronic factor, several factors could be main factors for endocyclic cleavage reaction. Endocyclic cleavage reaction is useful for 1,2-cis aminoglycoside formation, which is difficult by conventional glycosylation. By using endocyclic cleavage reaction, several glycosides with 1,2-cis aminoglycoside were prepared.
Collapse
Affiliation(s)
- Shino Manabe
- RIKEN, Synthetic Cellular Chemistry Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yukishige Ito
- RIKEN, Synthetic Cellular Chemistry Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
41
|
Synthesis of Chrysogeside B from Halotolerant Fungus Penicillium and Its Antimicrobial Activities Evaluation. Sci Rep 2017; 7:45927. [PMID: 28397807 PMCID: PMC5387731 DOI: 10.1038/srep45927] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/28/2017] [Indexed: 11/12/2022] Open
Abstract
Chrysogeside B, a natural cerebroside, was efficiently synthesized from commercial feedstocks. The bioassays showed that compounds 4, 5 and 6 exhibited enhanced biological activities compared Chrysogeside B. Further studies revealed that free hydroxyl groups and glycosidic bond have significant impact on the antimicrobial activities. The synthesis of Chrysogeside B and analogues designed to allow identification of the features of this glycolipid required for recognition by tested bacteria and Hela cells is described.
Collapse
|
42
|
Methyl 2,3,6-tri-O-Benzoyl-4-O-(tert-butyldimethylsilyl)-β-d-galactopyranoside. MOLBANK 2017. [DOI: 10.3390/m935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
43
|
Izmest’ev ES, Andreeva OV, Sharipova RR, Kravchenko MA, Garifullin BF, Strobykina IY, Kataev VE, Mironov VF. Synthesis and antitubercular activity of first glucuronosyl phosphates and amidophosphates containing polymethylene chains. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1070428017010092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Giralt E, Lo Re D. The Therapeutic Potential of Migrastatin-Core Analogs for the Treatment of Metastatic Cancer. Molecules 2017; 22:molecules22020198. [PMID: 28208778 PMCID: PMC6155687 DOI: 10.3390/molecules22020198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 01/25/2017] [Accepted: 02/02/2017] [Indexed: 01/30/2023] Open
Abstract
Tumor metastasis is a complex process in which cells detach from the primary tumor and colonize a distant organ. Metastasis is also the main process responsible for cancer-related death. Despite the enormous efforts made to unravel the metastatic process, there is no effective therapy, and patients with metastatic tumors have poor prognosis. In this regard, there is an urgent need for new therapeutic tools for the treatment of this disease. Small molecules with the capacity to reduce cell migration could be used to treat metastasis. Migrastatin-core analogs are naturally inspired macrocycles that inhibit pathological cell migration and are able to reduce metastasis in animal models. Migrastatin analogs can be synthesized from a common advanced intermediate. Herein we present a review of the synthetic approaches that can be used to prepare this key intermediate, together with a review of the biological activity of migrastatin-core analogs and current hypotheses concerning their mechanism of action.
Collapse
Affiliation(s)
- Ernest Giralt
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, C/Baldiri Reixac 10, Barcelona E-08028, Spain.
- Department of Organic Chemistry, University of Barcelona, Marti i Franques 1-11, Barcelona E-08028, Spain.
| | - Daniele Lo Re
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, C/Baldiri Reixac 10, Barcelona E-08028, Spain.
| |
Collapse
|
45
|
Smith R, Müller-Bunz H, Zhu X. Investigation of α-Thioglycoside Donors: Reactivity Studies toward Configuration-Controlled Orthogonal Activation in One-Pot Systems. Org Lett 2016; 18:3578-81. [PMID: 27399930 DOI: 10.1021/acs.orglett.6b01572] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The influence of anomeric configuration upon thioglycoside donors remains relatively unexplored. Utilizing methodology developed for the stereoselective and high-yielding synthesis of α-glycosyl thiols, a series of α-thioglycosides were synthesized, and their reactivity was compared to that of their β-counterparts. The highly selective activation observed for anomeric pairs containing a 2-O-acyl moiety and additional findings are reported. Application of a pair of "superarmed" thioglycosides to a one-pot oligosaccharide system is also described, in which selectivity is a result of configuration-based orthogonal activation.
Collapse
Affiliation(s)
- Raymond Smith
- Centre for Synthesis and Chemical Biology, UCD School of Chemistry, University College Dublin , Belfield, Dublin 4, Ireland
| | - Helge Müller-Bunz
- Centre for Synthesis and Chemical Biology, UCD School of Chemistry, University College Dublin , Belfield, Dublin 4, Ireland
| | - Xiangming Zhu
- Centre for Synthesis and Chemical Biology, UCD School of Chemistry, University College Dublin , Belfield, Dublin 4, Ireland
| |
Collapse
|
46
|
Goswami M, Ashley DC, Baik MH, Pohl NLB. Mechanistic Studies of Bismuth(V)-Mediated Thioglycoside Activation Reveal Differential Reactivity of Anomers. J Org Chem 2016; 81:5949-62. [PMID: 27295299 DOI: 10.1021/acs.joc.6b00860] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mechanism of bismuth(V)-mediated thioglycoside activation was examined using reaction kinetics and quantum chemical reaction models. NMR experiments show an unusual nonlinear growth/decay curve for the glycosylation reaction. Further studies suggest an anomeric inversion of the β-glycoside donor to the α-donor during its activation, even in the presence of a neighboring 2-position acetate. Interestingly, in situ anomerization was not observed in the activation of an α-glycoside donor, and this anomer also showed faster reaction times and higher product diastereoselectivites. Density functional theory calculations identify the structure of the promoter triphenyl bismuth ditriflate, [Ph3Bi(OTf)2, 1], in solution and map out the energetics of its interactions with the two thioglycoside anomers. These calculations suggest that 1 must bind the thiopropyl arm to induce triflate loss. The computational analyses also show that, unlike most O-glycosides, the β- and α-donor S-glycosides are similar in energy. One energetically reasonable anomerization pathway of the donors is an SN1-like mechanism promoted by forming a bismuth-sulfonium adduct with the Lewis acidic Bi(V) for the formation of an oxacarbenium intermediate. Finally, the computed energy compensations needed to form these α vs β Bi adducts is a possible explanation for the differential reactivity of these donors.
Collapse
Affiliation(s)
- Manibarsha Goswami
- Department of Chemistry, Iowa State University , Ames, Iowa 50011, United States
| | - Daniel C Ashley
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States
| | - Mu-Hyun Baik
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) , Daejeon 305-701, Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 305-701, Korea
| | - Nicola L B Pohl
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States.,Department of Chemical and Biological Engineering, Iowa State University , Ames, Iowa 50011, United States
| |
Collapse
|
47
|
Stefaniu C, Ries A, Gutowski O, Ruett U, Seeberger PH, Werz DB, Brezesinski G. Impact of Structural Differences in Galactocerebrosides on the Behavior of 2D Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:2436-2444. [PMID: 26907993 DOI: 10.1021/acs.langmuir.5b03830] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The molecular interactions of three biologically important galactocerebrosides have been studied in monolayers formed at the soft air/water interface as 2D model membranes. Highly surface-sensitive techniques as GIXD (grazing incidence X-ray diffraction), IRRAS (infrared reflection-absorption spectroscopy), and BAM (Brewster angle microscopy) have been used. The study reveals that small differences in the chemical structure have a relevant impact on the physical-chemical properties and intermolecular interactions. The presence of a 2-d-hydroxyl group in the fatty acid favored for GalCer C24:0 (2-OH) monolayers a higher hydration state of the headgroup at low lateral pressures (<25 mN/m) and a higher condensation effect above 30 mN/m. An opposite behavior was recorded for GalCer C24:0 and GalCer C24:1, for which the intermolecular interactions are defined by the weakly hydrated but strong H-bonded interconnected head groups. Additionally, the 15-cis-double bond in the fatty acid chain (nervonic acid) of GalCer C24:1 stabilized the LE phase but did not disturb the packing parameters of the LC phase as compared with the saturated compound GalCer C24:0.
Collapse
Affiliation(s)
- Cristina Stefaniu
- Max Planck Institute of Colloids and Interfaces , Science Park Potsdam-Golm, 14476 Potsdam, Germany
| | - Annika Ries
- Georg-August-Universität Göttingen , Institute of Organic and Biomolecular Chemistry, Tammannstr. 2, 37077 Göttingen, Germany
| | - Olof Gutowski
- DESY , Forschungsbereich FS, Notkestr. 85, 22603 Hamburg, Germany
| | - Uta Ruett
- DESY , Forschungsbereich FS, Notkestr. 85, 22603 Hamburg, Germany
| | - Peter H Seeberger
- Max Planck Institute of Colloids and Interfaces , Science Park Potsdam-Golm, 14476 Potsdam, Germany
- Freie Universität Berlin , Institute of Chemistry and Biochemistry, Arnimallee 22, 14195 Berlin, Germany
| | - Daniel B Werz
- Technische Universität Braunschweig , Institute of Organic Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| | - Gerald Brezesinski
- Max Planck Institute of Colloids and Interfaces , Science Park Potsdam-Golm, 14476 Potsdam, Germany
| |
Collapse
|
48
|
Riordan SW, Field JJ, Corkran HM, Dasyam N, Stocker BL, Timmer MSM, Harvey JE, Teesdale-Spittle PH. Synthesis of mycothiol conjugate analogues and evaluation of their antimycobacterial activity. Bioorg Med Chem Lett 2016; 25:2152-5. [PMID: 25881831 DOI: 10.1016/j.bmcl.2015.03.070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/02/2015] [Accepted: 03/24/2015] [Indexed: 10/23/2022]
Abstract
Drug-resistant Mycobacterium tuberculosis is a growing health problem. As proof of principle that the bacterial-specific metabolite mycothiol could be used as a delivery agent for antimycobacterial agents, simplified analogues of mycothiol were synthesised containing an S-trichloroethenyl substituted cysteine residue. It was envisaged that uptake of the mycothiol analogue would be followed by release of the known cytotoxin S-trichloroethenyl cysteine by the action of mycothiol S-conjugate amidase or its paralog, mycothiol deacetylase MshB. Promising activity was displayed against model Mycobacteria, although further development will be required to improve selectivity.
Collapse
Affiliation(s)
- Scott W Riordan
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Jessica J Field
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Hilary M Corkran
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Nathaniel Dasyam
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Bridget L Stocker
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Mattie S M Timmer
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Joanne E Harvey
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | | |
Collapse
|
49
|
McDonagh AW, Mahon MF, Murphy PV. Lewis Acid Induced Anomerization of Se-Glycosides. Application to Synthesis of α-Se-GalCer. Org Lett 2016; 18:552-5. [DOI: 10.1021/acs.orglett.5b03591] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Anthony W. McDonagh
- School
of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
| | - Mary F. Mahon
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2
7AY, United Kingdom
| | - Paul V. Murphy
- School
of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
| |
Collapse
|
50
|
Greatrex BW, Daines AM, Hook S, Lenz DH, McBurney W, Rades T, Rendle PM. Synthesis, Formulation, and Adjuvanticity of Monodesmosidic Saponins with Olenanolic Acid, Hederagenin and Gypsogenin Aglycones, and some C-28 Ester Derivatives. ChemistryOpen 2015; 4:740-55. [PMID: 27308200 PMCID: PMC4906508 DOI: 10.1002/open.201500149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/20/2015] [Indexed: 11/06/2022] Open
Abstract
In an attempt to discover a new synthetic vaccine adjuvant, the glycosylation of hederagenin, gypsogenin, and oleanolic acid acceptors with di- and trisaccharide donors to generate a range of mimics of natural product QS-21 was carried out. The saponins were formulated with phosphatidylcholine and cholesterol, and the structures analyzed by transmission electron microscopy. 3-O-(Manp(1→3)Glcp)hederagenin was found to produce numerous ring-like micelles when formulated, while C-28 choline ester derivatives preferred self-assembly and did not interact with the liposomes. When alone and in the presence of cholesterol and phospholipid, the choline ester derivatives produced nanocrystalline rods or helical micelles. The effects of modifying sugar stereochemistry and the aglycone on the immunostimulatory effects of the saponins was then evaluated using the activation markers MHC class II and CD86 in murine bone marrow dendritic cells. The most active saponin, 3-O-(Manp(1→3)Glcp)hederagenin, was stimulatory at high concentrations in cell culture, but this did not translate to strong responses in vivo.
Collapse
Affiliation(s)
- Ben W. Greatrex
- Ferrier Research InstituteVictoria University of WellingtonGracefield RdLower Hutt5010New Zealand
- School of Science & TechnologyUniversity of New EnglandArmidaleNSW2351Australia
| | - Alison M. Daines
- Ferrier Research InstituteVictoria University of WellingtonGracefield RdLower Hutt5010New Zealand
| | - Sarah Hook
- School of PharmacyUniversity of OtagoDunedin9016New Zealand
| | - Dirk H. Lenz
- Ferrier Research InstituteVictoria University of WellingtonGracefield RdLower Hutt5010New Zealand
| | | | - Thomas Rades
- School of PharmacyUniversity of OtagoDunedin9016New Zealand
| | - Phillip M. Rendle
- Ferrier Research InstituteVictoria University of WellingtonGracefield RdLower Hutt5010New Zealand
| |
Collapse
|