1
|
Yang WC, Chen CT. Expedient Azide-Alkyne Huisgen Cycloaddition Catalyzed by a Combination of VOSO 4 with Cu(0) in Aqueous Media. ACS ORGANIC & INORGANIC AU 2024; 4:235-240. [PMID: 38585512 PMCID: PMC10995936 DOI: 10.1021/acsorginorgau.3c00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 04/09/2024]
Abstract
A series of vanadium(III), vanadyl(IV/V) species, inorganic metal oxides, and transition-metal oxides was examined as cocatalysts with Cu(0) powder for copper(I)-catalyzed azide-alkyne cycloaddition. Among them, vanadyl(IV) species bearing acetylacetonate, acetate, and sulfate, vanadyl(V) isopropoxide, and vanadate were suitable for the click reactions of per-acetyl and per-benzyl β-azido glycosides with three different terminal alkynes in CH3CN. Water-soluble vanadyl(IV) sulfate was further selected for efficient click reactions for unprotected β-glycosyl azides and even compatible with a thiol-containing substrate in aqueous media at ambient temperature.
Collapse
Affiliation(s)
- Wen-Chieh Yang
- Department of Chemistry, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan R.O.C
| | - Chien-Tien Chen
- Department of Chemistry, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan R.O.C
| |
Collapse
|
2
|
Ullah S, Halim SA, Waqas M, Mansoor F, Avula SK, Khan FA, Perviaz M, Ogaly HA, Khan A, Al-Harrasi A. Biochemical and computational inhibition of α-glucosidase by novel metronidazole-linked 1 H-1,2,3-triazole and carboxylate moieties: kinetics and dynamic investigations. J Biomol Struct Dyn 2024:1-21. [PMID: 38433423 DOI: 10.1080/07391102.2024.2322622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/16/2024] [Indexed: 03/05/2024]
Abstract
In the current study, metronidazole derivatives containing 1H-1,2,3-triazole and carboxylate moieties were evaluated in vitro and by computational methods for their anti-diabetic potential to insight into their medicinal use for the management of type II diabetes mellitus. Interestingly all 14 compounds displayed high to significant inhibitory capability against the key carbohydrate's digestive enzyme α-glucosidase with IC50 values in range of 9.73-56.39 μM, as compared to marketed drug acarbose (IC50 = 873.34 ± 1.67 μM). Compounds 5i and 7c exhibited the highest inhibition, therefore, these two compounds were further evaluated for their mechanistic studies to explore its type of inhibition. Compounds 5i and 7c both displayed a concentration-dependent (competitive type of inhibition) with Ki values 7.14 ± 0.01, 6.15 ± 0.02 μM, respectively, which conclude their favourable interactions with the active site residues of the α-glucosidase. Interestingly all compounds are non-cytotoxic against BJ cell line. To further validate our findings, in-silico approaches like molecular docking, and molecular dynamic simulations were applied to investigate the mode of bindings of compounds with the enzyme and identifies their inhibition mechanism, which strongly complements our experimental findings.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Saeed Ullah
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Muhammad Waqas
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Farheen Mansoor
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Satya Kumar Avula
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Farhan A Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, KPK, Pakistan
| | - Muhammad Perviaz
- Department of Basic & Applied Chemistry, Faculty of Science & Technology, University of Central Punjab, Lahore, Pakistan
| | - Hanan A Ogaly
- Chemistry Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| |
Collapse
|
3
|
Zhang Y, Chen W, Wu D, Liu Y, Wu Z, Li J, Zhang SY, Ji Q. Molecular basis for cell-wall recycling regulation by transcriptional repressor MurR in Escherichia coli. Nucleic Acids Res 2022; 50:5948-5960. [PMID: 35640608 PMCID: PMC9177960 DOI: 10.1093/nar/gkac442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/01/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
The cell-wall recycling process is important for bacterial survival in nutrient-limited conditions and, in certain cases, is directly involved in antibiotic resistance. In the sophisticated cell-wall recycling process in Escherichia coli, the transcriptional repressor MurR controls the expression of murP and murQ, which are involved in transporting and metabolizing N-acetylmuramic acid (MurNAc), generating N-acetylmuramic acid-6-phosphate (MurNAc-6-P) and N-acetylglucosamine-6-phosphate (GlcNAc-6-P). Here, we report that both MurNAc-6-P and GlcNAc-6-P can bind to MurR and weaken the DNA binding ability of MurR. Structural characterizations of MurR in complex with MurNAc-6-P or GlcNAc-6-P as well as in the apo form revealed the detailed ligand recognition chemistries. Further studies showed that only MurNAc-6-P, but not GlcNAc-6-P, is capable of derepressing the expression of murQP controlled by MurR in cells and clarified the substrate specificity through the identification of key residues responsible for ligand binding in the complex structures. In summary, this study deciphered the molecular mechanism of the cell wall recycling process regulated by MurR in E. coli.
Collapse
Affiliation(s)
- Ya Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weizhong Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Di Wu
- Shanghai Key Laboratory for Molecular Engineer of Chiral Drugs, School of Chemistry and Chemical Engineering & Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yushi Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhaowei Wu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shu-Yu Zhang
- Shanghai Key Laboratory for Molecular Engineer of Chiral Drugs, School of Chemistry and Chemical Engineering & Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Quanjiang Ji
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
4
|
Hénault J, Quellier P, Mock-Joubert M, Le Narvor C, Alix A, Bonnaffé D. Regioselective Reductive Opening of Benzylidene Acetals with Dichlorophenylborane/Triethylsilane: Previously Unreported Side Reactions and How to Prevent Them. J Org Chem 2022; 87:963-973. [PMID: 35015527 DOI: 10.1021/acs.joc.1c02141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Arylidene acetals are widely used protecting groups, because of not only the high regioselectivity of their introduction but also the possibility of performing further regioselective reductive opening in the presence of a hydride donor and an acid catalyst. In this context, the Et3SiH/PhBCl2 system presents several advantages: silanes are efficient, environmentally benign, and user-friendly hydride donors, while PhBCl2 opens the way to unique regioselectivity with regard to all other Brønsted or Lewis acids used with silanes. This system has been extensively used by several groups, and we have demonstrated its high regioselectivity in the reductive opening of 4,6- and 2,4-O-p-methoxybenzylidene moieties in protected disaccharides. Surprisingly, its use on 4,6-O-benzylidene-containing substrates 1 and 2 led to unreproducible yields due to the unexpected formation of several side products. Their characterizations allowed us to identify different pitfalls potentially affecting the outcome of reductive opening of arylidenes with the Et3SiH/PhBCl2 reagent system: alkene hydroboration, azide reduction, and/or Lewis acid-promoted cleavage of the arylidene. With this knowledge, we optimized reproducible and high-yielding reaction conditions that secure and extend the scope of the Et3SiH/PhBCl2 system as a reagent for the regioselective opening of arylidenes in complex and multifunctional molecules.
Collapse
Affiliation(s)
- Jérôme Hénault
- Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d'Orsay, 91405 Orsay, France
| | - Pauline Quellier
- Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d'Orsay, 91405 Orsay, France
| | - Maxime Mock-Joubert
- Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d'Orsay, 91405 Orsay, France
| | - Christine Le Narvor
- Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d'Orsay, 91405 Orsay, France
| | - Aurélien Alix
- Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d'Orsay, 91405 Orsay, France
| | - David Bonnaffé
- Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d'Orsay, 91405 Orsay, France
| |
Collapse
|
5
|
Avula SK, Raza Shah S, Al-Hosni K, U Anwar M, Csuk R, Das B, Al-Harrasi A. Synthesis and antimicrobial activity of 1 H-1,2,3-triazole and carboxylate analogues of metronidazole. Beilstein J Org Chem 2021; 17:2377-2384. [PMID: 34621399 PMCID: PMC8450958 DOI: 10.3762/bjoc.17.154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/03/2021] [Indexed: 11/23/2022] Open
Abstract
Herein, a series of novel 1H-1,2,3-triazole and carboxylate derivatives of metronidazole (5a-i and 7a-e) were synthesized and evaluated for their antimicrobial activity in vitro. All the newly synthesized compounds were characterized by 1H NMR, 13C NMR, HRMS, and 19F NMR (5b, 5c and 5h) spectroscopy wherever applicable. The structures of compounds 3, 5c and 7b were unambiguously confirmed by single crystal X-ray analysis diffraction method. Single crystal X-ray structure analysis supported the formation of the metronidazole derivatives. The antimicrobial (antifungal and antibacterial) activity of the prepared compounds was studied. All compounds (except 2 and 3) showed a potent inhibition rate of fungal growth as compared to control and metronidazole. The synthetic compounds also showed higher bacterial growth inhibiting effects compared to the activity of the parent compound. Amongst the tested compounds 5b, 5c, 5e, 7b and 7e displayed excellent potent antimicrobial activity. The current study has demonstrated the usefulness of the 1H-1,2,3-triazole moiety in the metronidazole skeleton.
Collapse
Affiliation(s)
- Satya Kumar Avula
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Postal Code 616, Birkat Al Mauz, Nizwa, Sultanate of Oman
| | - Syed Raza Shah
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Postal Code 616, Birkat Al Mauz, Nizwa, Sultanate of Oman
| | - Khdija Al-Hosni
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Postal Code 616, Birkat Al Mauz, Nizwa, Sultanate of Oman
| | - Muhammad U Anwar
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Postal Code 616, Birkat Al Mauz, Nizwa, Sultanate of Oman
| | - Rene Csuk
- Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, d-06120, Halle (Saale), Germany
| | - Biswanath Das
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Postal Code 616, Birkat Al Mauz, Nizwa, Sultanate of Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Postal Code 616, Birkat Al Mauz, Nizwa, Sultanate of Oman
| |
Collapse
|
6
|
Agrahari AK, Bose P, Jaiswal MK, Rajkhowa S, Singh AS, Hotha S, Mishra N, Tiwari VK. Cu(I)-Catalyzed Click Chemistry in Glycoscience and Their Diverse Applications. Chem Rev 2021; 121:7638-7956. [PMID: 34165284 DOI: 10.1021/acs.chemrev.0c00920] [Citation(s) in RCA: 165] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Copper(I)-catalyzed 1,3-dipolar cycloaddition between organic azides and terminal alkynes, commonly known as CuAAC or click chemistry, has been identified as one of the most successful, versatile, reliable, and modular strategies for the rapid and regioselective construction of 1,4-disubstituted 1,2,3-triazoles as diversely functionalized molecules. Carbohydrates, an integral part of living cells, have several fascinating features, including their structural diversity, biocompatibility, bioavailability, hydrophilicity, and superior ADME properties with minimal toxicity, which support increased demand to explore them as versatile scaffolds for easy access to diverse glycohybrids and well-defined glycoconjugates for complete chemical, biochemical, and pharmacological investigations. This review highlights the successful development of CuAAC or click chemistry in emerging areas of glycoscience, including the synthesis of triazole appended carbohydrate-containing molecular architectures (mainly glycohybrids, glycoconjugates, glycopolymers, glycopeptides, glycoproteins, glycolipids, glycoclusters, and glycodendrimers through regioselective triazole forming modular and bio-orthogonal coupling protocols). It discusses the widespread applications of these glycoproducts as enzyme inhibitors in drug discovery and development, sensing, gelation, chelation, glycosylation, and catalysis. This review also covers the impact of click chemistry and provides future perspectives on its role in various emerging disciplines of science and technology.
Collapse
Affiliation(s)
- Anand K Agrahari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Priyanka Bose
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sanchayita Rajkhowa
- Department of Chemistry, Jorhat Institute of Science and Technology (JIST), Jorhat, Assam 785010, India
| | - Anoop S Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Srinivas Hotha
- Department of Chemistry, Indian Institute of Science and Engineering Research (IISER), Pune, Maharashtra 411021, India
| | - Nidhi Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
7
|
Kleski KA, Shi M, Lohman M, Hymel GT, Gattoji VK, Andreana PR. Synthesis of an Aminooxy Derivative of the GM3 Antigen and Its Application in Oxime Ligation. J Org Chem 2020; 85:16207-16217. [PMID: 32320231 PMCID: PMC7606269 DOI: 10.1021/acs.joc.0c00320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The anomeric aminooxy GM3 trisaccharide cancer antigen (Neu5Acα2,3Galβ1,4Glcβ-ONH2) has been chemically synthesized using a linear glycosylation approach. The key step involves a highly α(2,3)-stereoselective sialylation to a galactose acceptor. The Neu5Acα2,3Gal intermediate was functionalized as a donor for a [2 + 1] glycosylation, including a glucose acceptor that featured an O-succinimidyl group on the reducing end as an aminooxy precursor. The fully deprotected anomeric aminooxy GM3 trisaccharide was then conjugated to the immunologically relevant zwitterionic polysaccharide PS A1 via an oxime link.
Collapse
Affiliation(s)
- Kristopher A. Kleski
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Mengchao Shi
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Matthew Lohman
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Gabrielle T. Hymel
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Vinod K. Gattoji
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Peter R. Andreana
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| |
Collapse
|
8
|
Li W, Yu B. Temporary ether protecting groups at the anomeric center in complex carbohydrate synthesis. Adv Carbohydr Chem Biochem 2020; 77:1-69. [PMID: 33004110 DOI: 10.1016/bs.accb.2019.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The synthesis of a carbohydrate building block usually starts with introduction of a temporary protecting group at the anomeric center and ends with its selective cleavage for further transformation. Thus, the choice of the anomeric temporary protecting group must be carefully considered because it should retain intact during the whole synthetic manipulation, and it should be chemoselectively removable without affecting other functional groups at a late stage in the synthesis. Etherate groups are the most widely used temporary protecting groups at the anomeric center, generally including allyl ethers, MP (p-methoxyphenyl) ethers, benzyl ethers, PMB (p-methoxybenzyl) eithers, and silyl ethers. This chapter provides a comprehensive review on their formation, cleavage, and applications in the synthesis of complex carbohydrates.
Collapse
Affiliation(s)
- Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Biao Yu
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
9
|
Bera S, Mondal D. A role for ultrasound in the fabrication of carbohydrate-supported nanomaterials. J Ultrasound 2019; 22:131-156. [PMID: 30811013 PMCID: PMC6531602 DOI: 10.1007/s40477-019-00363-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 01/24/2019] [Indexed: 01/02/2023] Open
Abstract
Nowadays, sonication is a well-known technique for the fabrication and surface modification of nanomaterials with various sizes, shapes, and chemical and physical properties. In addition to conducting catalyst-mediated chemical reactions and enhancing medicinal properties, such as antibacterial and antifungal activities, nanoparticles made from biodegradable and biocompatible carbohydrate coatings and glycosidic frameworks offer exciting opportunities for the development of biomaterials, optical sensors, packaging materials, agricultural products, and food. This review article discusses the synthesis of carbohydrate-coated nanoparticles by ultrasound radiation as well as the many applications of these nanoparticles.
Collapse
Affiliation(s)
- Smritilekha Bera
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, 382030, India.
| | - Dhananjoy Mondal
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, 382030, India
| |
Collapse
|
10
|
Guchhait S, Goswami RK. Studies toward the synthesis of macrotermycin C: stereoselective construction of the acyclic skeleton of the aglycon. Org Biomol Chem 2019; 17:9502-9509. [DOI: 10.1039/c9ob01999e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first asymmetric synthesis of the acyclic skeleton of the aglycon of macrotermycin C has been achieved in 17 linear steps with 5.7% overall yield following a convergent approach.
Collapse
Affiliation(s)
- Sandip Guchhait
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata-700032
- India
| | - Rajib Kumar Goswami
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata-700032
- India
| |
Collapse
|
11
|
Avula SK, Khan A, Rehman NU, Anwar MU, Al-Abri Z, Wadood A, Riaz M, Csuk R, Al-Harrasi A. Synthesis of 1H-1,2,3-triazole derivatives as new α-glucosidase inhibitors and their molecular docking studies. Bioorg Chem 2018; 81:98-106. [DOI: 10.1016/j.bioorg.2018.08.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/28/2018] [Accepted: 08/06/2018] [Indexed: 10/28/2022]
|
12
|
Bylsma M, Bennett CS. Stereospecific Synthesis of the Saccharosamine-Rhamnose-Fucose Fragment Present in Saccharomicin B. Org Lett 2018; 20:4695-4698. [PMID: 30015496 PMCID: PMC6094934 DOI: 10.1021/acs.orglett.8b02028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A synthetic route has been developed for constructing the d-saccharosamine-l-rhamnose-d-fucose (Sac-Rha-Fuc) trisaccharide fragment present in the antibacterial natural product saccharomicin B. The Sac monosaccharide was synthesized through a modified nine step procedure starting from d-rhamnal in 23% overall yield. 1- O-TBS Sac donors were used to construct the β-linked Sac-Rha disaccharide. This disaccharide was coupled to a Fuc acceptor under BSP/Tf2O conditions to afford a trisaccharide properly functionalized for elaboration to saccharomicin B.
Collapse
Affiliation(s)
- Marissa Bylsma
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Clay S. Bennett
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
13
|
Zhang GL, Yang L, Zhu J, Wei M, Yan W, Xiong DC, Ye XS. Synthesis and Antigenic Evaluation of Oligosaccharide Mimics of Vi Antigen from Salmonella typhi. Chemistry 2017. [DOI: 10.1002/chem.201702114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Gao-Lan Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences; Peking University; Xue Yuan Road No. 38 Beijing 100191 China
| | - Lin Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences; Peking University; Xue Yuan Road No. 38 Beijing 100191 China
| | - Jingjing Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences; Peking University; Xue Yuan Road No. 38 Beijing 100191 China
| | - Mengman Wei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences; Peking University; Xue Yuan Road No. 38 Beijing 100191 China
| | - Wanjun Yan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences; Peking University; Xue Yuan Road No. 38 Beijing 100191 China
| | - De-Cai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences; Peking University; Xue Yuan Road No. 38 Beijing 100191 China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences; Peking University; Xue Yuan Road No. 38 Beijing 100191 China
| |
Collapse
|
14
|
Yin L, Wang L, Liu XJ, Cheng FC, Shi DH, Cao ZL, Liu WW. Synthesis and bioactivity of novel C2-glycosyl triazole derivatives as acetylcholinesterase inhibitors. HETEROCYCL COMMUN 2017. [DOI: 10.1515/hc-2016-0163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
AbstractNew C2-glycosyl triazole derivatives 6a–l were synthesized by cyclization of glycosyl acylthiosemicarbazides 5 in refluxing 3 N sodium hydroxide aqueous solution. Substrates 5 were obtained by the reaction of glycosyl isothiocyanate 3 with various hydrazides. The acetylcholinesterase (AChE) inhibitory activities of compounds 6 were tested by Ellman’s method. Compounds that exhibited over 85% inhibition were subsequently evaluated for the IC50 values. Compound 6f possesses the best acetylcholinesterase-inhibition activity with IC50 of 1.46±0.25 μg/mL.
Collapse
Affiliation(s)
- Long Yin
- College of Pharmaceutical Sciences, Huaihai Institute of Technology, Lianyungang 222005, P.R. China
| | - Lei Wang
- College of Pharmaceutical Sciences, Huaihai Institute of Technology, Lianyungang 222005, P.R. China
| | - Xiu-Jian Liu
- College of Pharmaceutical Sciences, Huaihai Institute of Technology, Lianyungang 222005, P.R. China
| | - Feng-Chang Cheng
- China University of Mining and Technology, Xuzhou 221116, P.R. China
| | - Da-Hua Shi
- College of Pharmaceutical Sciences, Huaihai Institute of Technology, Lianyungang 222005, P.R. China
- Jiangsu Institute of Marine Resources, Lianyungang 222005, P.R. China
| | - Zhi-Ling Cao
- College of Pharmaceutical Sciences, Huaihai Institute of Technology, Lianyungang 222005, P.R. China
- Jiangsu Institute of Marine Resources, Lianyungang 222005, P.R. China
| | - Wei-Wei Liu
- College of Pharmaceutical Sciences, Huaihai Institute of Technology, Lianyungang 222005, P.R. China
- Jiangsu Institute of Marine Resources, Lianyungang 222005, P.R. China
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Huaihai Institute of Technology, Lianyungang 222005, P.R. China
| |
Collapse
|
15
|
Mancini RS, Lee JB, Taylor MS. Boronic esters as protective groups in carbohydrate chemistry: processes for acylation, silylation and alkylation of glycoside-derived boronates. Org Biomol Chem 2017; 15:132-143. [DOI: 10.1039/c6ob02278b] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Boronic esters are employed in streamlined protocols for protection, functionalization and deprotection of glycosides, avoiding isolation and purification of intermediates.
Collapse
Affiliation(s)
| | - Jessica B. Lee
- Department of Chemistry
- University of Toronto
- Toronto
- Canada
| | - Mark S. Taylor
- Department of Chemistry
- University of Toronto
- Toronto
- Canada
| |
Collapse
|
16
|
Berthelot N, Brossay A, Gasciolli V, Bono JJ, Baron A, Beau JM, Urban D, Boyer FD, Vauzeilles B. Synthesis of lipo-chitooligosaccharide analogues and their interaction with LYR3, a high affinity binding protein for Nod factors and Myc-LCOs. Org Biomol Chem 2017; 15:7802-7812. [DOI: 10.1039/c7ob01201b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lipo-chitotetrasaccharide analogues have been synthesized from a derivative obtained by controlled chitin depolymerization and a functionalized N-acetyl-glucosamine.
Collapse
Affiliation(s)
- Nathan Berthelot
- Institut de Chimie des Substances Naturelles
- CNRS UPR2301
- Univ. Paris-Sud
- Université Paris-Saclay
- F-91198 Gif-sur-Yvette
| | - Antoine Brossay
- Institut de Chimie des Substances Naturelles
- CNRS UPR2301
- Univ. Paris-Sud
- Université Paris-Saclay
- F-91198 Gif-sur-Yvette
| | | | | | - Aurélie Baron
- Institut de Chimie des Substances Naturelles
- CNRS UPR2301
- Univ. Paris-Sud
- Université Paris-Saclay
- F-91198 Gif-sur-Yvette
| | - Jean-Marie Beau
- Institut de Chimie des Substances Naturelles
- CNRS UPR2301
- Univ. Paris-Sud
- Université Paris-Saclay
- F-91198 Gif-sur-Yvette
| | - Dominique Urban
- Institut de Chimie des Substances Naturelles
- CNRS UPR2301
- Univ. Paris-Sud
- Université Paris-Saclay
- F-91198 Gif-sur-Yvette
| | - François-Didier Boyer
- Institut de Chimie des Substances Naturelles
- CNRS UPR2301
- Univ. Paris-Sud
- Université Paris-Saclay
- F-91198 Gif-sur-Yvette
| | - Boris Vauzeilles
- Institut de Chimie des Substances Naturelles
- CNRS UPR2301
- Univ. Paris-Sud
- Université Paris-Saclay
- F-91198 Gif-sur-Yvette
| |
Collapse
|
17
|
Mende M, Bednarek C, Wawryszyn M, Sauter P, Biskup MB, Schepers U, Bräse S. Chemical Synthesis of Glycosaminoglycans. Chem Rev 2016; 116:8193-255. [DOI: 10.1021/acs.chemrev.6b00010] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Marco Mende
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Christin Bednarek
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Mirella Wawryszyn
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Paul Sauter
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Moritz B. Biskup
- Division
2—Informatics, Economics and Society, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, D-76131 Karlsruhe, Germany
| | - Ute Schepers
- Institute
of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
- Institute
of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
18
|
Bedini E, Laezza A, Iadonisi A. Chemical Derivatization of Sulfated Glycosaminoglycans. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600108] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Emiliano Bedini
- Department of Chemical Sciences; University of Naples Federico II; Complesso Universitario Monte S. Angelo; via Cintia 4 80126 Napoli Italy
| | - Antonio Laezza
- Department of Chemical Sciences; University of Naples Federico II; Complesso Universitario Monte S. Angelo; via Cintia 4 80126 Napoli Italy
| | - Alfonso Iadonisi
- Department of Chemical Sciences; University of Naples Federico II; Complesso Universitario Monte S. Angelo; via Cintia 4 80126 Napoli Italy
| |
Collapse
|
19
|
Schmidt MS, Götz KH, Koch W, Grimm T, Ringwald M. Studies toward the synthesis of linear triazole linked pseudo oligosaccharides and the use of ferrocene as analytical probe. Carbohydr Res 2016; 425:28-34. [DOI: 10.1016/j.carres.2016.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 10/22/2022]
|
20
|
Tiwari VK, Mishra BB, Mishra KB, Mishra N, Singh AS, Chen X. Cu-Catalyzed Click Reaction in Carbohydrate Chemistry. Chem Rev 2016; 116:3086-240. [PMID: 26796328 DOI: 10.1021/acs.chemrev.5b00408] [Citation(s) in RCA: 540] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC), popularly known as the "click reaction", serves as the most potent and highly dependable tool for facile construction of simple to complex architectures at the molecular level. Click-knitted threads of two exclusively different molecular entities have created some really interesting structures for more than 15 years with a broad spectrum of applicability, including in the fascinating fields of synthetic chemistry, medicinal science, biochemistry, pharmacology, material science, and catalysis. The unique properties of the carbohydrate moiety and the advantages of highly chemo- and regioselective click chemistry, such as mild reaction conditions, efficient performance with a wide range of solvents, and compatibility with different functionalities, together produce miraculous neoglycoconjugates and neoglycopolymers with various synthetic, biological, and pharmaceutical applications. In this review we highlight the successful advancement of Cu(I)-catalyzed click chemistry in glycoscience and its applications as well as future scope in different streams of applied sciences.
Collapse
Affiliation(s)
- Vinod K Tiwari
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Bhuwan B Mishra
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Kunj B Mishra
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Nidhi Mishra
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Anoop S Singh
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Xi Chen
- Department of Chemistry, One Shields Avenue, University of California-Davis , Davis, California 95616, United States
| |
Collapse
|
21
|
Kayet A, Ganguly A, Pathak T. Vinyl sulfone modified-azidofuranoside building-blocks: 1,4-/1,5-disubstituted-1,2,3-triazole linked trisaccharides via an aqueous/ionic-liquid route and “Click” chemistry. RSC Adv 2016. [DOI: 10.1039/c5ra25942h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
1,5-Disubstituted 1,2,3-triazole (1,5-DT) linked disaccharides have been synthesized from stable building blocks having both vinyl sulfone and azido groups using aqueous ionic-liquid media.
Collapse
Affiliation(s)
- Anirban Kayet
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721 302
- India
| | - Arghya Ganguly
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721 302
- India
| | - Tanmaya Pathak
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721 302
- India
| |
Collapse
|
22
|
Munneke S, Painter GF, Gainsford GJ, Stocker BL, Timmer MS. Total synthesis of LewisX using a late-stage crystalline intermediate. Carbohydr Res 2015; 414:1-7. [DOI: 10.1016/j.carres.2015.05.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 05/23/2015] [Indexed: 10/23/2022]
|
23
|
Bera S, Mondal D, Martin JT, Singh M. Potential effect of ultrasound on carbohydrates. Carbohydr Res 2015; 410:15-35. [DOI: 10.1016/j.carres.2015.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 02/20/2015] [Accepted: 02/21/2015] [Indexed: 10/23/2022]
|
24
|
Liu WW, Li QX, Shi DH, Cao ZL, Cheng FC, Tao CZ, Yin L, Wang X. Synthesis, Characterization, and Biological Evaluation of Some Novel Glycosyl 1,3,4-Thiadiazole Derivatives as Acetylcholinesterase Inhibitors. HETEROCYCLES 2015. [DOI: 10.3987/com-14-13134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Affiliation(s)
- Hongwen He
- College
of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xiangming Zhu
- College
of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
- Centre
for Synthesis and Chemical Biology, UCD School of Chemistry and Chemical
Biology, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
26
|
Adamo R, Micoli F, Proietti D, Berti F. Efficient Synthesis of Meningococcal X Polysaccharide Repeating Unit (N-Acetylglucosamine-4-phosphate) as Analytical Standard for Polysaccharide Determination. SYNTHETIC COMMUN 2014. [DOI: 10.1080/00397911.2013.853189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Roberto Adamo
- a Research Center , Novartis Vaccines and Diagnostics , Siena , Italy
| | - Francesca Micoli
- b Research Center , Novartis Vaccines Institute for Global Health , Siena , Italy
| | - Daniela Proietti
- a Research Center , Novartis Vaccines and Diagnostics , Siena , Italy
| | - Francesco Berti
- a Research Center , Novartis Vaccines and Diagnostics , Siena , Italy
| |
Collapse
|
27
|
Lee DJ, Yang SH, Williams GM, Brimble MA. Synthesis of Multivalent Neoglyconjugates of MUC1 by the Conjugation of Carbohydrate-Centered, Triazole-Linked Glycoclusters to MUC1 Peptides Using Click Chemistry. J Org Chem 2012; 77:7564-71. [DOI: 10.1021/jo3013435] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Dong Jun Lee
- School of Chemical
Sciences, The University of Auckland, 23
Symonds Street, Auckland, New Zealand
| | - Sung-Hyun Yang
- School of Chemical
Sciences, The University of Auckland, 23
Symonds Street, Auckland, New Zealand
| | - Geoffrey M. Williams
- School of Chemical
Sciences, The University of Auckland, 23
Symonds Street, Auckland, New Zealand
| | - Margaret A. Brimble
- School of Chemical
Sciences, The University of Auckland, 23
Symonds Street, Auckland, New Zealand
| |
Collapse
|
28
|
Tanaka H, Tago H, Adachi Y, Ohno N, Takahashi T. Synthesis of a β-glucan polysaccharide analogue by an iterative copper-catalyzed azide–acetylene coupling reaction. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2012.05.111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
29
|
Synthetic and semi-synthetic chondroitin sulfate oligosaccharides, polysaccharides, and glycomimetics. Carbohydr Res 2012; 356:75-85. [PMID: 22410317 DOI: 10.1016/j.carres.2012.02.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 02/10/2012] [Accepted: 02/11/2012] [Indexed: 02/04/2023]
Abstract
Chondroitin sulfate (CS) is a sulfated polysaccharide involved in a myriad of biological processes. Due to the variable sulfation pattern of CS polymer chains, the need to study in detail structure-activity relationships regarding CS biomedical features has provoked much interest in obtaining synthetic CS species. This paper reviews two decades of synthetic and semi-synthetic CS oligosaccharides, polysaccharides, and glycomimetics obtained by chemical, chemoenzymatic, enzymatic, and microbiological-chemical strategies.
Collapse
|
30
|
Bhaskar U, Sterner E, Hickey AM, Onishi A, Zhang F, Dordick JS, Linhardt RJ. Engineering of routes to heparin and related polysaccharides. Appl Microbiol Biotechnol 2011; 93:1-16. [PMID: 22048616 DOI: 10.1007/s00253-011-3641-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 09/23/2011] [Accepted: 10/08/2011] [Indexed: 10/16/2022]
Abstract
Anticoagulant heparin has been shown to possess important biological functions that vary according to its fine structure. Variability within heparin's structure occurs owing to its biosynthesis and animal tissue-based recovery and adds another dimension to its complex polymeric structure. The structural variations in chain length and sulfation patterns mediate its interaction with many heparin-binding proteins, thereby eliciting complex biological responses. The advent of novel chemical and enzymatic approaches for polysaccharide synthesis coupled with high throughput combinatorial approaches for drug discovery have facilitated an increased effort to understand heparin's structure-activity relationships. An improved understanding would offer potential for new therapeutic development through the engineering of polysaccharides. Such a bioengineering approach requires the amalgamation of several different disciplines, including carbohydrate synthesis, applied enzymology, metabolic engineering, and process biochemistry.
Collapse
Affiliation(s)
- Ujjwal Bhaskar
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | | | | | | | | | | | | |
Collapse
|