1
|
Ladwig A, Kroll M, Schulz S. Identification and determination of the absolute configuration of amorph-4-en-10β-ol, a cadinol-type sesquiterpene from the scent glands of the African reed frog Hyperolius cinnamomeoventris. Beilstein J Org Chem 2023; 19:167-175. [PMID: 36814452 PMCID: PMC9940504 DOI: 10.3762/bjoc.19.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/25/2023] [Indexed: 02/18/2023] Open
Abstract
Hyperolid reed frogs are one of the few families of Anurans known to possess glands that emit volatile compounds used in chemical communication. Hyperolius cinnamomeoventris, a model species, possesses a gular gland on its vocal sac that emits chemicals, and sends visual and auditory signals during calling. Previous investigations have shown that the glandular compounds are typically macrocyclic lactones. However, in this work, we show that another major constituent of the male specific gland is (10R,1S,6R,7R,10R)-amorph-4-ene-10β-ol [(1R,4R,4aR,8aS)-4-isopropyl-1,6-dimethyl-1,2,3,4,4a,7,8,8a-octahydronaphthalen-1-ol]. This compound was synthesized for the first time and has the opposite configuration to amorph-4-ene-10β-ol known from plants. A short synthesis using an organocatalytic approach through a tandem Mannich/intramolecular Diels-Alder reaction led to a mixture of cadinols, which was used for the assignment of the natural cadinol structures and their stereoisomers.
Collapse
Affiliation(s)
- Angelique Ladwig
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Markus Kroll
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Stefan Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
2
|
Effective Synthesis and Antifouling Activity of Dolastatin 16 Derivatives. Mar Drugs 2022; 20:md20020124. [PMID: 35200652 PMCID: PMC8876244 DOI: 10.3390/md20020124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 11/17/2022] Open
Abstract
Some derivatives of dolastatin 16, a depsipeptide natural product first obtained from the sea hare Dolabella auricularia, were synthesized through second-generation synthesis of two unusual amino acids, dolaphenvaline and dolamethylleuine. The second-generation synthesis enabled derivatizations such as functionalization of the aromatic ring in dolaphenvaline. The derivatives of fragments and whole structures were evaluated for antifouling activity against the cypris larvae of Amphibalanus amphitrite. Small fragments inhibited the settlement of the cypris larvae at potent to moderate concentrations (EC50 = 0.60-4.62 μg/mL), although dolastatin 16 with a substituent on the aromatic ring (24) was much less potent than dolastatin 16.
Collapse
|
3
|
Massarotti A, Brunelli F, Aprile S, Giustiniano M, Tron GC. Medicinal Chemistry of Isocyanides. Chem Rev 2021; 121:10742-10788. [PMID: 34197077 DOI: 10.1021/acs.chemrev.1c00143] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In eons of evolution, isocyanides carved out a niche in the ecological systems probably thanks to their metal coordinating properties. In 1859 the first isocyanide was synthesized by humans and in 1950 the first natural isocyanide was discovered. Now, at the beginning of XXI century, hundreds of isocyanides have been isolated both in prokaryotes and eukaryotes and thousands have been synthesized in the laboratory. For some of them their ecological role is known, and their potent biological activity as antibacterial, antifungal, antimalarial, antifouling, and antitumoral compounds has been described. Notwithstanding, the isocyanides have not gained a good reputation among medicinal chemists who have erroneously considered them either too reactive or metabolically unstable, and this has restricted their main use to technical applications as ligands in coordination chemistry. The aim of this review is therefore to show the richness in biological activity of the isocyanide-containing molecules, to support the idea of using the isocyanide functional group as an unconventional pharmacophore especially useful as a metal coordinating warhead. The unhidden hope is to convince the skeptical medicinal chemists of the isocyanide potential in many areas of drug discovery and considering them in the design of future drugs.
Collapse
Affiliation(s)
- Alberto Massarotti
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Francesca Brunelli
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Silvio Aprile
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Mariateresa Giustiniano
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via D. Montesano 49, 80131 Napoli, Italy
| | - Gian Cesare Tron
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| |
Collapse
|
4
|
Avila C, Angulo-Preckler C. Bioactive Compounds from Marine Heterobranchs. Mar Drugs 2020; 18:657. [PMID: 33371188 PMCID: PMC7767343 DOI: 10.3390/md18120657] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 12/22/2022] Open
Abstract
The natural products of heterobranch molluscs display a huge variability both in structure and in their bioactivity. Despite the considerable lack of information, it can be observed from the recent literature that this group of animals possesses an astonishing arsenal of molecules from different origins that provide the molluscs with potent chemicals that are ecologically and pharmacologically relevant. In this review, we analyze the bioactivity of more than 450 compounds from ca. 400 species of heterobranch molluscs that are useful for the snails to protect themselves in different ways and/or that may be useful to us because of their pharmacological activities. Their ecological activities include predator avoidance, toxicity, antimicrobials, antifouling, trail-following and alarm pheromones, sunscreens and UV protection, tissue regeneration, and others. The most studied ecological activity is predation avoidance, followed by toxicity. Their pharmacological activities consist of cytotoxicity and antitumoral activity; antibiotic, antiparasitic, antiviral, and anti-inflammatory activity; and activity against neurodegenerative diseases and others. The most studied pharmacological activities are cytotoxicity and anticancer activities, followed by antibiotic activity. Overall, it can be observed that heterobranch molluscs are extremely interesting in regard to the study of marine natural products in terms of both chemical ecology and biotechnology studies, providing many leads for further detailed research in these fields in the near future.
Collapse
Affiliation(s)
- Conxita Avila
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, Biodiversity Research Institute (IrBIO), Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Catalonia, Spain;
| | - Carlos Angulo-Preckler
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, Biodiversity Research Institute (IrBIO), Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Catalonia, Spain;
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, Hansine Hansens veg 18, 9019 Tromsø, Norway
| |
Collapse
|
5
|
Wu Q, Chen WT, Li SW, Ye JY, Huan XJ, Gavagnin M, Yao LG, Wang H, Miao ZH, Li XW, Guo YW. Cytotoxic Nitrogenous Terpenoids from Two South China Sea Nudibranchs Phyllidiella pustulosa, Phyllidia coelestis, and Their Sponge-Prey Acanthella cavernosa. Mar Drugs 2019; 17:E56. [PMID: 30654446 PMCID: PMC6356796 DOI: 10.3390/md17010056] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 12/28/2018] [Accepted: 01/04/2019] [Indexed: 11/17/2022] Open
Abstract
A detailed chemical investigation of two South China Sea nudibranchs Phyllidiella pustulosa and Phyllidia coelestis, as well as their possible sponge-prey Acanthella cavernosa, led to the isolation of one new nitrogenous cadinane-type sesquiterpenoid xidaoisocyanate A (1), one new naturally occurring nitrogen-containing kalihinane-type diterpenoid bisformamidokalihinol A (16), along with 17 known nitrogenous terpenoids (2⁻15, 17⁻19). The structures of all the isolates were elucidated by detailed spectroscopic analysis and by the comparison of their spectroscopic data with those reported in the literature. In addition, the absolute stereochemistry of the previously reported axiriabiline A (5) was determined by X-ray diffraction (XRD) analysis. In a bioassay, the bisabolane-type sesquiterpenoids 8, 10, and 11 exhibited cytotoxicity against several human cancer cell lines.
Collapse
Affiliation(s)
- Qihao Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zuchongzhi Road 555 Zhangjiang Hi-Tech Park, Shanghai 201203, China.
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Wen-Ting Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zuchongzhi Road 555 Zhangjiang Hi-Tech Park, Shanghai 201203, China.
| | - Song-Wei Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zuchongzhi Road 555 Zhangjiang Hi-Tech Park, Shanghai 201203, China.
| | - Jian-Yu Ye
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zuchongzhi Road 555 Zhangjiang Hi-Tech Park, Shanghai 201203, China.
| | - Xia-Juan Huan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zuchongzhi Road 555 Zhangjiang Hi-Tech Park, Shanghai 201203, China.
| | - Margherita Gavagnin
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica Biomolecolare (ICB), Via Campi Flegrei, 34, 80078 Pozzuoli (Na), Italy.
| | - Li-Gong Yao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zuchongzhi Road 555 Zhangjiang Hi-Tech Park, Shanghai 201203, China.
| | - Hong Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Ze-Hong Miao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zuchongzhi Road 555 Zhangjiang Hi-Tech Park, Shanghai 201203, China.
| | - Xu-Wen Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zuchongzhi Road 555 Zhangjiang Hi-Tech Park, Shanghai 201203, China.
| | - Yue-Wei Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zuchongzhi Road 555 Zhangjiang Hi-Tech Park, Shanghai 201203, China.
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
6
|
Casalme LO, Yamauchi A, Sato A, Petitbois JG, Nogata Y, Yoshimura E, Okino T, Umezawa T, Matsuda F. Total synthesis and biological activity of dolastatin 16. Org Biomol Chem 2018; 15:1140-1150. [PMID: 28074955 DOI: 10.1039/c6ob02657e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The total synthesis of dolastatin 16, a macrocyclic depsipeptide first isolated from the sea hare Dolabella auricularia as a potential antineoplastic metabolite by Pettit et al., was achieved in a convergent manner. Dolastatin 16 was reported by Tan to exhibit strong antifouling activity, and thus shows promise for inhibiting the attachment of marine benthic organisms such as Amphibalanus amphitrite to ships and submerged artificial structures. Therefore, dolastatin 16 is a potential compound for a new, environmentally friendly antifouling material to replace banned tributyltin-based antifouling paints. The synthesis of dolastatin 16 involved the use of prolinol to prevent formation of a diketopiperazine composed of l-proline and N-methyl-d-valine during peptide coupling. This strategy for the elongation of peptide chains allowed the efficient and scalable synthesis of one segment, which was subsequently coupled with a second segment and cyclized to form the macrocyclic framework of dolastatin 16. The synthetic dolastatin 16 exhibited potent antifouling activity similar to that of natural dolastatin 16 toward cypris larvae of Amphibalanus amphitrite.
Collapse
Affiliation(s)
- Loida O Casalme
- Graduate School of Environmental Science, Hokkaido University, N10W5 Sapporo 060-0810, Japan.
| | - Arisa Yamauchi
- Graduate School of Environmental Science, Hokkaido University, N10W5 Sapporo 060-0810, Japan.
| | - Akinori Sato
- Graduate School of Environmental Science, Hokkaido University, N10W5 Sapporo 060-0810, Japan.
| | - Julie G Petitbois
- Graduate School of Environmental Science, Hokkaido University, N10W5 Sapporo 060-0810, Japan.
| | - Yasuyuki Nogata
- Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, 1646 Abiko, Abiko, Chiba 270-1194, Japan
| | | | - Tatsufumi Okino
- Graduate School of Environmental Science, Hokkaido University, N10W5 Sapporo 060-0810, Japan.
| | - Taiki Umezawa
- Graduate School of Environmental Science, Hokkaido University, N10W5 Sapporo 060-0810, Japan.
| | - Fuyuhiko Matsuda
- Graduate School of Environmental Science, Hokkaido University, N10W5 Sapporo 060-0810, Japan.
| |
Collapse
|
7
|
Abstract
Covering: up to the end of February 2017Nudibranchs have attracted the attention of natural product researchers due to the potential for discovery of bioactive metabolites, in conjunction with the interesting predator-prey chemical ecological interactions that are present. This review covers the literature published on natural products isolated from nudibranchs up to February 2017 with species arranged taxonomically. Selected examples of metabolites obtained from nudibranchs across the full range of taxa are discussed, including their origins (dietary or biosynthetic) if known and biological activity.
Collapse
Affiliation(s)
- Lewis J Dean
- School of Science, University of Waikato, Hamilton 3240, New Zealand.
| | | |
Collapse
|
8
|
New Marine Antifouling Compounds from the Red Alga Laurencia sp. Mar Drugs 2017; 15:md15090267. [PMID: 28846653 PMCID: PMC5618406 DOI: 10.3390/md15090267] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/20/2017] [Accepted: 08/23/2017] [Indexed: 02/06/2023] Open
Abstract
Six new compounds, omaezol, intricatriol, hachijojimallenes A and B, debromoaplysinal, and 11,12-dihydro-3-hydroxyretinol have been isolated from four collections of Laurencia sp. These structures were determined by MS and NMR analyses. Their antifouling activities were evaluated together with eight previously known compounds isolated from the same samples. In particular, omaezol and hachijojimallene A showed potent activities (EC50 = 0.15–0.23 µg/mL) against larvae of the barnacle Amphibalanus amphitrite.
Collapse
|
9
|
Design, Synthesis, and Antifouling Activity of Glucosamine-Based Isocyanides. Mar Drugs 2017; 15:md15070203. [PMID: 28661419 PMCID: PMC5532645 DOI: 10.3390/md15070203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/12/2017] [Accepted: 06/21/2017] [Indexed: 11/30/2022] Open
Abstract
Biofouling, an undesirable accumulation of organisms on sea-immersed structures such as ship hulls and fishing nets, is a serious economic issue whose effects include oil wastage and clogged nets. Organotin compounds were utilized since the 1960s as an antifouling material; however, the use of such compounds was later banned by the International Maritime Organization (IMO) due to their high toxicity toward marine organisms, resulting in masculinization and imposex. Since the ban, there have been extensive efforts to develop environmentally benign antifoulants. Natural antifouling products obtained from marine creatures have been the subject of considerable attention due to their potent antifouling activity and low toxicity. These antifouling compounds often contain isocyano groups, which are well known to have natural antifouling properties. On the basis of our previous total synthesis of natural isocyanoterpenoids, we envisaged the installation of an isocyano functional group onto glucosamine to produce an environmentally friendly antifouling material. This paper describes an effective synthetic method for various glucosamine-based isocyanides and evaluation of their antifouling activity and toxicity against cypris larvae of the barnacle Amphibalanus amphitrite. Glucosamine isocyanides with an ether functionality at the anomeric position exhibited potent antifouling activity, with EC50 values below 1 μg/mL, without detectable toxicity even at a high concentration of 10 μg/mL. Two isocyanides had EC50 values of 0.23 and 0.25 μg/mL, comparable to that of CuSO4, which is used as a fouling inhibitor (EC50 = 0.27 μg/mL).
Collapse
|
10
|
Daub ME, Prudhomme J, Ben Mamoun C, Le Roch KG, Vanderwal CD. Antimalarial Properties of Simplified Kalihinol Analogues. ACS Med Chem Lett 2017; 8:355-360. [PMID: 28337330 PMCID: PMC5346982 DOI: 10.1021/acsmedchemlett.7b00013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 02/16/2017] [Indexed: 11/29/2022] Open
Abstract
Several kalihinol natural products, members of the broader isocyanoterpene family of antimalarial agents, are potent inhibitors of Plasmodium falciparum, the agent of the most severe form of human malaria. Our previous total synthesis of kalihinol B provided a blueprint to generate many analogues within this family, some as complex as the natural product and some much simplified and easier to access. Each analogue was tested for blood-stage antimalarial activity using both drug-sensitive and -resistant P. falciparum strains. Many considerably simpler analogues of the kalihinols retained potent activity, as did a compound with a different decalin scaffold made in only three steps from sclareolide. Finally, one representative compound showed reasonable stability toward microsomal metabolism, suggesting that the isonitrile functional group that is critical for activity is not an inherent liability in these compounds.
Collapse
Affiliation(s)
- Mary Elisabeth Daub
- Department
of Chemistry, University of California, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - Jacques Prudhomme
- Department of Cell Biology & Neuroscience, University of California, 900 University Avenue, Riverside, California 92521, United States
| | - Choukri Ben Mamoun
- Department
of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut 06520, United States
| | - Karine G. Le Roch
- Department of Cell Biology & Neuroscience, University of California, 900 University Avenue, Riverside, California 92521, United States
| | - Christopher D. Vanderwal
- Department
of Chemistry, University of California, 1102 Natural Sciences II, Irvine, California 92697, United States
| |
Collapse
|
11
|
Affiliation(s)
- Taiki Umezawa
- Faculty of Environmental Earth Science, Hokkaido University
| | | | | | | |
Collapse
|
12
|
Schnermann MJ, Shenvi RA. Syntheses and biological studies of marine terpenoids derived from inorganic cyanide. Nat Prod Rep 2015; 32:543-77. [PMID: 25514696 DOI: 10.1039/c4np00109e] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Isocyanoterpenes (ICTs) are marine natural products biosynthesized through an unusual pathway that adorns terpene scaffolds with nitrogenous functionality derived from cyanide. The appendage of nitrogen functional groups - isonitriles in particular - onto stereochemically-rich carbocyclic ring systems provides enigmatic, bioactive molecules that have required innovative chemical syntheses. This review discusses the challenges inherent to the synthesis of this diverse family and details the development of the field. We also present recent progress in isolation and discuss key aspects of the remarkable biological activity of these compounds.
Collapse
Affiliation(s)
- Martin J Schnermann
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21701, USA.
| | | |
Collapse
|
13
|
Umezawa T, Sato A, Ameda Y, Casalme LO, Matsuda F. Synthetic study on dolastatin 16: concise and scalable synthesis of two unusual amino acid units. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2014.11.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
Qian PY, Li Z, Xu Y, Li Y, Fusetani N. Mini-review: marine natural products and their synthetic analogs as antifouling compounds: 2009-2014. BIOFOULING 2015; 31:101-22. [PMID: 25622074 DOI: 10.1080/08927014.2014.997226] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
This review covers 214 marine natural compounds and 23 of their synthetic analogs, which were discovered and/or synthesized from mid-2009 to August 2014. The antifouling (AF) compounds reported have medium to high bioactivity (with a threshold of EC(50) < 15.0 mg ml(-1)). Among these compounds, 82 natural compounds were identified as new structures. All the compounds are marine-derived, demonstrating that marine organisms are prolific and promising sources of natural products that may be developed as environmentally friendly antifoulants. However, this mini-review excludes more than 200 compounds that were also reported as AF compounds but with rather weak bioactivity during the same period. Also excluded are terrestrial-derived AF compounds reported during the last five years. A brief discussion on current challenges in AF compound research is also provided to reflect the authors' own views in terms of future research directions.
Collapse
Affiliation(s)
- Pei-Yuan Qian
- a Division of Life Science , Hong Kong University of Science and Technology , HKSAR , PR China
| | | | | | | | | |
Collapse
|
15
|
Nishikawa K, Umezawa T, Garson MJ, Matsuda F. Confirmation of the configuration of 10-isothiocyanato-4-cadinene diastereomers through synthesis. JOURNAL OF NATURAL PRODUCTS 2012; 75:2232-2235. [PMID: 23163354 DOI: 10.1021/np300439e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The marine sponge metabolite 10-isothiocyanato-4-cadinene (1) was first isolated by Garson et al. from Acanthella cavernosa in 2000. The same structure 1 was later reported by Wright et al. from the nudibranch Phyllidiella pustulosa and its sponge diet, but with different NMR data. The syntheses of both enantiomers of 1 were accomplished through the isothiocyanation of 10-isocyano-4-cadinene (2) previously synthesized by our group. The correct spectroscopic data and specific rotation value of the structure 1 were determined on the basis of the syntheses. The NMR data of synthetic 1 matched those of the isothiocyanate isolated by Garson and differed from those reported by Wright. The spectroscopic data and specific rotation values of 10-epi-10-isothiocyanato-4-cadinene (6) and di-1,6-epi-10-isothiocyanato-4-cadinene (8) were also established through the syntheses of these diastereomers. Structure 6 has been reported as a natural product by Mitome et al., but the NMR data for the synthetic sample of 6 differ from those of the natural isolate.
Collapse
Affiliation(s)
- Keisuke Nishikawa
- Division of Environmental Materials Science, Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | |
Collapse
|
16
|
Affiliation(s)
- Braulio M Fraga
- Instituto de Productos Naturales y Agrobiología, CSIC, 38206-La Laguna, Tenerife, Canary Islands, Spain.
| |
Collapse
|