1
|
Banjara R, Thapa P, Kela SH, Wu F, Zhu J. Synthesis of 2,3-diazido-2,3-dideoxy-β-d-mannosides and 2,3-diazido-2,3-dideoxy-β-d-mannuronic acid via stereoselective anomeric O-alkylation. Carbohydr Res 2024; 545:109279. [PMID: 39326206 DOI: 10.1016/j.carres.2024.109279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Stereoselective synthesis of 2,3-diazido-2,3-dideoxy-β-d-mannosides has been accomplished via Cs2CO3-mediated anomeric O-alkylation of 2,3-diazido-2,3-dideoxy-β-d-mannoses with primary electrophiles. Selective oxidation of the C6 primary alcohol of the 2,3-diazido-2,3-dideoxy-β-d-mannoside successfully produced corresponding 2,3-diazido-2,3-dideoxy-β-d-mannuronic acid.
Collapse
Affiliation(s)
- Rama Banjara
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, OH, 43606, United States
| | - Prakash Thapa
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, OH, 43606, United States
| | - Shailja Hitesh Kela
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, OH, 43606, United States
| | - Fenglang Wu
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, OH, 43606, United States
| | - Jianglong Zhu
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, OH, 43606, United States.
| |
Collapse
|
2
|
Chen GW, Guo L, Huang J, Ma H, Fernandez-Castillo S, Soubal-Mora JP, Valdes-Balbin Y, Verez-Bencomo V. Synthesis of oligosaccharides from terminal B. pertussis LPS pentasaccharide and definition of the minimal epitope recognized by anti-pertussis antibodies. Glycoconj J 2024; 41:241-254. [PMID: 39046578 DOI: 10.1007/s10719-024-10160-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 06/04/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024]
Abstract
Pertussis vaccines have been very effective in controlling whooping-cough epidemics but are ineffective in controlling circulation in older children and adults, thus facilitating the onset of future outbreaks. Antibodies against the lipopolysaccharide could reduce the carriage of the bacteria, its circulation, and transmission. The oligosaccharide fragments from the lipopolysaccharide may become a potential complement to existing vaccines in the form of protein glycoconjugates. An important step in the development of this type of vaccine is defining the minimal oligosaccharide epitope recognized by B. pertussis anti-lipopolysaccharide antibodies. This paper describes the complete synthesis of oligosaccharides containing two to five monosaccharide units corresponding to the pentasaccharide at the nonreducing end of the lipooligosaccharide and their recognition by mice and rabbit antibodies elicited against whole-cell B. pertussis. For the first time, we report that the terminal disaccharide, α-D-GlcNAcp-(1 → 4)-(2,3-di-NAc)-D-ManAp acid is the minimal structure recognized by antibodies induced by B. pertussis.
Collapse
Affiliation(s)
- Guang-Wu Chen
- Chengdu Olisynn Biotech. Co., Ltd., Building 3, Tianfu Life science Park. No 88, South Keyuan Rd., Chengdu, Sichuan, 610041, People's Republic of China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Lina Guo
- Chengdu Olisynn Biotech. Co., Ltd., Building 3, Tianfu Life science Park. No 88, South Keyuan Rd., Chengdu, Sichuan, 610041, People's Republic of China
| | - Jiasheng Huang
- Chengdu Olisynn Biotech. Co., Ltd., Building 3, Tianfu Life science Park. No 88, South Keyuan Rd., Chengdu, Sichuan, 610041, People's Republic of China
| | - Haijun Ma
- Chengdu Olisynn Biotech. Co., Ltd., Building 3, Tianfu Life science Park. No 88, South Keyuan Rd., Chengdu, Sichuan, 610041, People's Republic of China
| | | | | | | | | |
Collapse
|
3
|
Pospíšilová J, Toman D, Ručil T, Cankař P. D-Hexopyranosides with Vicinal Nitrogen-Containing Functionalities. Molecules 2024; 29:3465. [PMID: 39124870 PMCID: PMC11313743 DOI: 10.3390/molecules29153465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
Various substituted D-hexopypyranosides units with nitrogen-containing functionalities are present in many important natural compounds and pharmaceutical substances. Since their complex structural diversity contributes to a broad spectrum of biological functions and activities, these derivatives are frequently studied. This review covers syntheses of D-hexopyranosides with vicinal nitrogen-containing functionalities since the 1960s, when the first articles emerged. The syntheses are arranged according to the positions of substitutions, to form a relative configuration of vicinal functionalities, and synthetic methodologies.
Collapse
Affiliation(s)
| | | | | | - Petr Cankař
- Department of Organic Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 1192/12, 77900 Olomouc, Czech Republic; (J.P.); (D.T.); (T.R.)
| |
Collapse
|
4
|
Hao T, Feng K, Jin H, Li J, Zhou C, Liu X, Zhao W, Yu F, Li T. Acceptor-Reactivity-Controlled Stereoconvergent Synthesis and Immunological Activity of a Unique Pentasaccharide from the Cell Wall Polysaccharide of Cutibacterium acnes C7. Angew Chem Int Ed Engl 2024; 63:e202405297. [PMID: 38651620 DOI: 10.1002/anie.202405297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/14/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Bacterial cell-surface polysaccharides are involved in various biological processes and have attracted widespread attention as potential targets for developing carbohydrate-based drugs. However, the accessibility to structurally well-defined polysaccharide or related active oligosaccharide domains remains challenging. Herein, we describe an efficiently stereocontrolled approach for the first total synthesis of a unique pentasaccharide repeating unit containing four difficult-to-construct 1,2-cis-glycosidic linkages from the cell wall polysaccharide of Cutibacterium acnes C7. The features of our approach include: 1) acceptor-reactivity-controlled glycosylation to stereoselectively construct two challenging rare 1,2-cis-ManA2,3(NAc)2 (β-2,3-diacetamido-2,3-dideoxymannuronic acid) linkages, 2) combination use of 6-O-tert-butyldiphenylsilyl (6-O-TBDPS)-mediated steric shielding effect and ether solvent effect to stereoselectively install a 1,2-cis-glucosidic linkage, 3) bulky 4,6-di-O-tert-butylsilylene (DTBS)-directed glycosylation to stereospecifically construct a 1,2-cis-galactosidic linkage, 4) stereoconvergent [2+2+1] and one-pot chemoselective glycosylation to rapidly assemble the target pentasaccharide. Immunological activity tests suggest that the pentasaccharide can induce the production of proinflammatory cytokine TNF-α in a dose-dependent manner.
Collapse
Affiliation(s)
- Tianhui Hao
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ke Feng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Hongzhen Jin
- School of Health and Life Sciences, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266113, China
| | - Jiawei Li
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chenkai Zhou
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xingbang Liu
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wei Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Fan Yu
- School of Health and Life Sciences, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266113, China
| | - Tiehai Li
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Bhetuwal BR, Wu F, Acharya PP, Thapa P, Zhu J. Synthesis of 2-Amino-2-deoxy-β-d-mannosides via Stereoselective Anomeric O-Alkylation of 2 N,3 O-Oxazolidinone-Protected d-Mannosamine: Synthesis of the Trisaccharide Repeating Unit of Streptococcus pneumoniae 19F Polysaccharide. Org Lett 2023; 25:4214-4218. [PMID: 37257021 PMCID: PMC10330879 DOI: 10.1021/acs.orglett.3c01564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Cesium carbonate-mediated stereoselective anomeric O-alkylation of a 2N,3O-oxazolidinone-protected d-mannosamine with sugar-derived primary or secondary alkyl triflates afforded the corresponding 2-amino-2-deoxy-β-d-mannosides in moderate to good yields and excellent stereoselectivity. The oxazolidinone ring can be opened with aqueous alkali hydroxide to liberate the amine functionality. This method has been successfully applied to the synthesis of the trisaccharide repeating unit of Streptococcus pneumoniae 19F polysaccharide.
Collapse
Affiliation(s)
- Bishwa Raj Bhetuwal
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States
| | - Fenglang Wu
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States
| | - Padam Prasad Acharya
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States
| | - Prakash Thapa
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States
| | - Jianglong Zhu
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States
| |
Collapse
|
6
|
Novakova M, Das A, Alex C, Demchenko AV. Synthesis and glycosidation of building blocks of D-altrosamine. Front Chem 2022; 10:945779. [PMID: 36226114 PMCID: PMC9548543 DOI: 10.3389/fchem.2022.945779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Presented herein is a streamlined synthesis of building blocks of a rare sugar D-altrosamine. Also investigated was the glycosylation of different glycosyl acceptors with differentially protected altrosamine donors. High facial stereoselectivity was achieved with 3-O-picoloyl donors and reactive glycosyl acceptors via the H-bond-mediated aglycone delivery (HAD) pathway. In contrast, glycosidations of the altrosamine donor equipped with the 3-O-benzoyl group were poorly stereoselective.
Collapse
Affiliation(s)
- Mariya Novakova
- Department of Chemistry, Saint Louis University, St. Louis, MO, United States
| | - Anupama Das
- Department of Chemistry, Saint Louis University, St. Louis, MO, United States
| | - Catherine Alex
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, One University Boulevard, St. Louis, MO, United States
| | - Alexei V. Demchenko
- Department of Chemistry, Saint Louis University, St. Louis, MO, United States
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, One University Boulevard, St. Louis, MO, United States
| |
Collapse
|
7
|
Wu X, Zheng Z, Wang L, Xue Y, Liao J, Liu H, Liu D, Sun JS, Zhang Q. Stereoselective Synthesis of 2,3‐diamino‐2,3‐dideoxyglycosides from 3‐O‐acetyl‐2‐nitroglycals. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiaopei Wu
- Jiangxi Normal University Jiangxi Normal University CHINA
| | - Zhichao Zheng
- Jiangxi Normal University Jiangxi Normal University CHINA
| | - Liming Wang
- Jiangxi Normal University Jiangxi Normal University CHINA
| | - Yunxia Xue
- Jiangxi Normal University Jiangxi Normal University CHINA
| | - Jinxi Liao
- Jiangxi Normal University Jiangxi Normal University CHINA
| | - Hui Liu
- Jiangxi Normal University Jiangxi Normal University CHINA
| | - Deyong Liu
- Jiangxi Normal University Jiangxi Normal University CHINA
| | - Jian-Song Sun
- Jiangxi Normal University Jiangxi Normal University CHINA
| | - Qingju Zhang
- Jiangxi Normal University National Research Centre for Carbohydrate Synthesis 99 Ziyang Avenue 330022 Nanchang CHINA
| |
Collapse
|
8
|
Alex C, Demchenko AV. Recent Advances in Stereocontrolled Mannosylation: Focus on Glycans Comprising Acidic and/or Amino Sugars. CHEM REC 2021; 21:3278-3294. [PMID: 34661961 DOI: 10.1002/tcr.202100201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/20/2022]
Abstract
The main focus of this review is to describe accomplishments made in the stereoselective synthesis of β-linked mannosides functionalized with carboxyls or amines/amides. These ManNAc, ManA and ManNAcA residues found in many glycoconjugates, bacterial polysaccharides, and alginates have consistently captured interest of the glycoscience community both due to synthetic challenge and therapeutic potential.
Collapse
Affiliation(s)
- Catherine Alex
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Blvd., St. Louis, MO 63121, USA
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Blvd., St. Louis, MO 63121, USA.,Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, MO 63103, USA
| |
Collapse
|
9
|
Niedzwiecka A, Sequeira C, Zhang P, Ling CC. An efficient and scalable synthesis of 2,4-di- N-acetyl- l-altrose ( l-2,4-Alt-diNAc). RSC Adv 2021; 11:11583-11594. [PMID: 35423663 PMCID: PMC8695972 DOI: 10.1039/d1ra01070k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022] Open
Abstract
An efficient and scalable synthesis of pseudaminic acid precursor l-2,4-Alt-diNAc was developed from l-fucose. The desired l-altro configuration and N-acetamido substitutions ensued from a sequence of highly regio- and stereoselective transformations.
Collapse
Affiliation(s)
| | | | - Ping Zhang
- Department of Chemistry
- University of Calgary
- Calgary
- Canada
| | | |
Collapse
|
10
|
Bhetuwal BR, Wu F, Meng S, Zhu J. Stereoselective Synthesis of 2-Azido-2-deoxy-β-d-mannosides via Cs 2CO 3-Mediated Anomeric O-Alkylation with Primary Triflates: Synthesis of a Tetrasaccharide Fragment of Micrococcus luteus Teichuronic Acid. J Org Chem 2020; 85:16196-16206. [PMID: 33201716 DOI: 10.1021/acs.joc.0c02370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cesium carbonate-mediated anomeric O-alkylation of various protected 2-azido-2-deoxy-d-mannoses with primary triflate electrophiles afforded corresponding 2-azido-2-deoxy-β-mannosides in good yields and excellent anomeric selectivity. In addition, 1,3-dibromo-5,5-dimethylhydantoin was found to be the optimal oxidant for preparation of those 2-azido-2-deoxy-d-mannoses from their corresponding thioglycosides. The utilization of this method was demonstrated in the synthesis of a tetrasaccharide fragment of Micrococcus luteus teichuronic acid containing N-acetyl-β-d-mannosaminuronic acid (ManNAcA).
Collapse
Affiliation(s)
- Bishwa Raj Bhetuwal
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Fenglang Wu
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Shuai Meng
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Jianglong Zhu
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| |
Collapse
|
11
|
Wang P, Huo CX, Lang S, Caution K, Nick ST, Dubey P, Deora R, Huang X. Chemical Synthesis and Immunological Evaluation of a Pentasaccharide Bearing Multiple Rare Sugars as a Potential Anti-pertussis Vaccine. Angew Chem Int Ed Engl 2020; 59:6451-6458. [PMID: 31953912 PMCID: PMC7141973 DOI: 10.1002/anie.201915913] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Indexed: 01/11/2023]
Abstract
With the infection rate of Bordetella pertussis at a 60-year high, there is an urgent need for new anti-pertussis vaccines. The lipopolysaccharide (LPS) of B. pertussis is an attractive antigen for vaccine development. With the presence of multiple rare sugars and unusual glycosyl linkages, the B. pertussis LPS is a highly challenging synthetic target. In this work, aided by molecular dynamics simulation and modeling, a pertussis-LPS-like pentasaccharide was chemically synthesized for the first time. The pentasaccharide was conjugated with a powerful carrier, bacteriophage Qβ, as a vaccine candidate. Immunization of mice with the conjugate induced robust anti-glycan IgG responses with IgG titers reaching several million enzyme-linked immunosorbent assay (ELISA) units. The antibodies generated were long lasting and boostable and could recognize multiple clinical strains of B. pertussis, highlighting the potential of Qβ-glycan as a new anti-pertussis vaccine.
Collapse
Affiliation(s)
- Peng Wang
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, MI, 48824, USA
| | - Chang-Xin Huo
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, MI, 48824, USA
| | - Shuyao Lang
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, MI, 48824, USA
| | - Kyle Caution
- Department of Microbial Infection and Immunity, The Ohio State University, 460 W 12th Ave, Columbus, OH, 43210, USA
| | - Setare Tahmasebi Nick
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, MI, 48824, USA
| | - Purnima Dubey
- Department of Microbial Infection and Immunity, The Ohio State University, 460 W 12th Ave, Columbus, OH, 43210, USA
| | - Rajendar Deora
- Department of Microbial Infection and Immunity, The Ohio State University, 460 W 12th Ave, Columbus, OH, 43210, USA
- Department of Microbiology, The Ohio State University, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, MI, 48824, USA
- Department of Biomedical Engineering, Michigan State University, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, USA
| |
Collapse
|
12
|
Wang P, Huo C, Lang S, Caution K, Nick ST, Dubey P, Deora R, Huang X. Chemical Synthesis and Immunological Evaluation of a Pentasaccharide Bearing Multiple Rare Sugars as a Potential Anti‐pertussis Vaccine. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915913] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Peng Wang
- Department of ChemistryMichigan State University 578 South Shaw Lane East Lansing MI 48824 USA
| | - Chang‐xin Huo
- Department of ChemistryMichigan State University 578 South Shaw Lane East Lansing MI 48824 USA
| | - Shuyao Lang
- Department of ChemistryMichigan State University 578 South Shaw Lane East Lansing MI 48824 USA
| | - Kyle Caution
- Department of Microbial Infection and ImmunityThe Ohio State University 460 W 12th Ave Columbus OH 43210 USA
| | - Setare Tahmasebi Nick
- Department of ChemistryMichigan State University 578 South Shaw Lane East Lansing MI 48824 USA
| | - Purnima Dubey
- Department of Microbial Infection and ImmunityThe Ohio State University 460 W 12th Ave Columbus OH 43210 USA
| | - Rajendar Deora
- Department of Microbial Infection and ImmunityThe Ohio State University 460 W 12th Ave Columbus OH 43210 USA
- Department of MicrobiologyThe Ohio State University USA
| | - Xuefei Huang
- Department of ChemistryMichigan State University 578 South Shaw Lane East Lansing MI 48824 USA
- Department of Biomedical EngineeringMichigan State University USA
- Institute for Quantitative Health Science and EngineeringMichigan State University USA
| |
Collapse
|
13
|
Nemcsok T, Rapi Z, Bagi P, Bakó P. Synthesis and application of novel carbohydrate-based ammonium and triazolium salts. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1625403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Tamás Nemcsok
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Zsolt Rapi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Péter Bagi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Péter Bakó
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| |
Collapse
|
14
|
Emmadi M, Kulkarni SS. Synthesis of Rare Deoxy Amino Sugar Building Blocks Enabled the Total Synthesis of a Polysaccharide Repeating Unit Analogue from the LPS of Psychrobacter cryohalolentis K5T. J Org Chem 2018; 83:14323-14337. [DOI: 10.1021/acs.joc.8b02037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Madhu Emmadi
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Suvarn S. Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
15
|
|
16
|
Hagen B, Ali S, Overkleeft HS, van der Marel GA, Codée JDC. Mapping the Reactivity and Selectivity of 2-Azidofucosyl Donors for the Assembly of N-Acetylfucosamine-Containing Bacterial Oligosaccharides. J Org Chem 2017; 82:848-868. [PMID: 28051314 PMCID: PMC5332126 DOI: 10.1021/acs.joc.6b02593] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The synthesis of complex oligosaccharides is often hindered by a lack of knowledge on the reactivity and selectivity of their constituent building blocks. We investigated the reactivity and selectivity of 2-azidofucosyl (FucN3) donors, valuable synthons in the synthesis of 2-acetamido-2-deoxyfucose (FucNAc) containing oligosaccharides. Six FucN3 donors, bearing benzyl, benzoyl, or tert-butyldimethylsilyl protecting groups at the C3-O and C4-O positions, were synthesized, and their reactivity was assessed in a series of glycosylations using acceptors of varying nucleophilicity and size. It was found that more reactive nucleophiles and electron-withdrawing benzoyl groups on the donor favor the formation of β-glycosides, while poorly reactive nucleophiles and electron-donating protecting groups on the donor favor α-glycosidic bond formation. Low-temperature NMR activation studies of Bn- and Bz-protected donors revealed the formation of covalent FucN3 triflates and oxosulfonium triflates. From these results, a mechanistic explanation is offered in which more reactive acceptors preferentially react via an SN2-like pathway, while less reactive acceptors react via an SN1-like pathway. The knowledge obtained in this reactivity study was then applied in the construction of α-FucN3 linkages relevant to bacterial saccharides. Finally, a modular synthesis of the Staphylococcus aureus type 5 capsular polysaccharide repeating unit, a trisaccharide consisting of two FucNAc units, is described.
Collapse
Affiliation(s)
- Bas Hagen
- Leiden Institute of Chemistry, Universiteit Leiden , Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Sara Ali
- Leiden Institute of Chemistry, Universiteit Leiden , Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Herman S Overkleeft
- Leiden Institute of Chemistry, Universiteit Leiden , Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Gijsbert A van der Marel
- Leiden Institute of Chemistry, Universiteit Leiden , Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Jeroen D C Codée
- Leiden Institute of Chemistry, Universiteit Leiden , Einsteinweg 55, 2333CC Leiden, The Netherlands
| |
Collapse
|
17
|
Tang SL, Pohl NLB. Automated fluorous-assisted solution-phase synthesis of β-1,2-, 1,3-, and 1,6-mannan oligomers. Carbohydr Res 2016; 430:8-15. [PMID: 27155895 PMCID: PMC4893899 DOI: 10.1016/j.carres.2016.03.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 12/30/2022]
Abstract
Automated solution-phase syntheses of β-1,2-, 1,3-, and 1,6-mannan oligomers have been accomplished by applying a β-directing C-5 carboxylate strategy. Fluorous-tag-assisted purification after each reaction cycle allowed the synthesis of short β-mannan oligomers with limited loading of glycosyl donor-as low as 3.0 equivalents for each glycosylation cycle. This study showed the capability of the automated solution-phase synthesis protocol for synthesizing various challenging glycosides, including use of a C-5 ester as a protecting group that could be converted under reductive conditions to a hydroxymethyl group for chain extension.
Collapse
Affiliation(s)
- Shu-Lun Tang
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
| | - Nicola L B Pohl
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA; Department of Chemistry, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
18
|
Banerjee A, Senthilkumar S, Baskaran S. Benzylidene Acetal Protecting Group as Carboxylic Acid Surrogate: Synthesis of Functionalized Uronic Acids and Sugar Amino Acids. Chemistry 2015; 22:902-6. [PMID: 26572799 DOI: 10.1002/chem.201503998] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Indexed: 02/05/2023]
Abstract
Direct oxidation of the 4,6-O-benzylidene acetal protecting group to C-6 carboxylic acid has been developed that provides an easy access to a wide range of biologically important and synthetically challenging uronic acid and sugar amino acid derivatives in good yields. The RuCl3 -NaIO4 -mediated oxidative cleavage method eliminates protection and deprotection steps and the reaction takes place under mild conditions. The dual role of the benzylidene acetal, as a protecting group and source of carboxylic acid, was exploited in the efficient synthesis of six-carbon sialic acid analogues and disaccharides bearing uronic acids, including glycosaminoglycan analogues.
Collapse
Affiliation(s)
- Amit Banerjee
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-, 600036, India
| | | | - Sundarababu Baskaran
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-, 600036, India.
| |
Collapse
|
19
|
Abstract
![]()
The
first automated solution-phase synthesis of β-1,4-mannuronate
and β-1,4-mannan oligomers has been accomplished by using a
β-directing C-5 carboxylate strategy. By utilizing fluorous-tag
assisting purification after repeated reaction cycles, β-1,4-mannuronate
was synthesized up to a hexasaccharide with limited loading of a glycosyl
donor (up to 3.5 equiv) for each glycosylation cycle due to the homogeneous
solution-phase reaction condition. After a global reduction of the
uronates, the β-1,4-mannan hexasaccharide was obtained, thereby
demonstrating a new approach to β-mannan synthesis.
Collapse
Affiliation(s)
- Shu-Lun Tang
- †Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Nicola L B Pohl
- †Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.,‡Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
20
|
Frihed TG, Bols M, Pedersen CM. Mechanisms of Glycosylation Reactions Studied by Low-Temperature Nuclear Magnetic Resonance. Chem Rev 2015; 115:4963-5013. [DOI: 10.1021/cr500434x] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Mikael Bols
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | | |
Collapse
|
21
|
Böge M, Fowelin C, Bednarski P, Heck J. Diaminohexopyranosides as Ligands in Half-Sandwich Ruthenium(II), Rhodium(III), and Iridium(III) Complexes. Organometallics 2015. [DOI: 10.1021/om5013117] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Matthias Böge
- Institute
of Inorganic and Applied Chemistry, Department of Chemistry, Hamburg University, Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany
| | - Christian Fowelin
- Institute
of Inorganic and Applied Chemistry, Department of Chemistry, Hamburg University, Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany
| | - Patrick Bednarski
- Institute
of Pharmacy, Ernst-Moritz-Arndt University Greifswald, D-17489 Greifswald, Germany
| | - Jürgen Heck
- Institute
of Inorganic and Applied Chemistry, Department of Chemistry, Hamburg University, Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany
| |
Collapse
|
22
|
Pfister HB, Mulard LA. Synthesis of the zwitterionic repeating unit of the O-antigen from Shigella sonnei and chain elongation at both ends. Org Lett 2014; 16:4892-5. [PMID: 25210812 DOI: 10.1021/ol502395k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Shigella sonnei O-antigen features a zwitterionic disaccharide repeat encompassing two rare monosaccharides. The synthesis of the AB repeat and of trisaccharides ABA' and B'AB, which validates chain elongation at either end, is reported. All targets were synthesized using a postglycosylation oxidation strategy in combination with imidate chemistry. Precursors to residue A were obtained from L-glucose. The AAT (B) donor and acceptor were obtained from D-glucosamine. A one-step Pd(OH)2/C-mediated deprotection provided the propyl glycoside targets.
Collapse
Affiliation(s)
- Hélène B Pfister
- Institut Pasteur, Unité de Chimie des Biomolécules, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | | |
Collapse
|
23
|
Moumé-Pymbock M, Furukawa T, Mondal S, Crich D. Probing the influence of a 4,6-O-acetal on the reactivity of galactopyranosyl donors: verification of the disarming influence of the trans-gauche conformation of C5-C6 bonds. J Am Chem Soc 2013; 135:14249-55. [PMID: 23984633 PMCID: PMC3814037 DOI: 10.1021/ja405588x] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The effect of a 4,6-O-alkylidene acetal on the rate of acid-catalyzed hydrolysis of methyl galactopyranosides and of spontaneous hydrolysis of 2,4-dinitrophenyl galactopyranosides has been studied through the synthesis and hydrolysis of analogs in which O6 is replaced by a methoxymethylene unit in which the methoxy group adopts either an equatorial or an axial position according to the configuration. Consistent with earlier studies under both acid-catalyzed and spontaneous hydrolysis conditions, the alkylidene acetal, or its 7-carba analog, retards hydrolysis with respect to comparable systems lacking the cyclic protecting group. The configuration at C6 in the 7-carba analogs does not influence the rate of acid-catalyzed hydrolysis but has a minor influence on the rate of spontaneous hydrolysis of the 2,4-dinitrophenyl galactosides, confirming earlier studies on the role played by the hydroxymethyl group conformation on glycoside reactivity. The benzylidene acetal is found to stabilize the α-anomer of galactopyranose derivatives relative to monocyclic analogs. Reasons for the α-selectivity of 4,6-O-benzylidene-protected galactopyranosyl donors bearing neighboring group-active protecting groups at O2 are discussed.
Collapse
Affiliation(s)
- Myriame Moumé-Pymbock
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202
| | - Takayuki Furukawa
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202
| | - Sujit Mondal
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202
| | - David Crich
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202
| |
Collapse
|
24
|
Walvoort MTC, van der Marel GA, Overkleeft HS, Codée JDC. On the reactivity and selectivity of donor glycosides in glycochemistry and glycobiology: trapped covalent intermediates. Chem Sci 2013. [DOI: 10.1039/c2sc21610h] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
25
|
Hevey R, Ling CC. Evidence of cation-coordination involvement in directing the regioselective di-inversion reaction of vicinal di-sulfonate esters. Org Biomol Chem 2013; 11:1887-95. [DOI: 10.1039/c3ob27336a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
26
|
Kumar R, Whitfield DM. Could Diastereoselectivity in the Presence of O-2 Chiral Nonparticipating Groups Be an Indicator of Glycopyranosyl Oxacarbenium Ions in Glycosylation Reactions? J Org Chem 2012; 77:3724-39. [DOI: 10.1021/jo202563f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Rishi Kumar
- National Research Council, Institute for Biological Sciences, 100 Sussex Drive, Ottawa, Ontario,
Canada K1A 0R6
| | - Dennis M. Whitfield
- National Research Council, Institute for Biological Sciences, 100 Sussex Drive, Ottawa, Ontario,
Canada K1A 0R6
| |
Collapse
|
27
|
Codée JDC, Walvoort MTC, de Jong AR, Lodder G, Overkleeft HS, van der Marel GA. Mannuronic Acids: Reactivity and Selectivity. J Carbohydr Chem 2011. [DOI: 10.1080/07328303.2011.624284] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Jeroen D. C. Codée
- a Leiden Institute of Chemistry , Leiden University , P.O. Box 9502, 2300 RA, Leiden , The Netherlands
| | - Marthe T. C. Walvoort
- a Leiden Institute of Chemistry , Leiden University , P.O. Box 9502, 2300 RA, Leiden , The Netherlands
| | - Ana-Rae de Jong
- a Leiden Institute of Chemistry , Leiden University , P.O. Box 9502, 2300 RA, Leiden , The Netherlands
| | - Gerrit Lodder
- a Leiden Institute of Chemistry , Leiden University , P.O. Box 9502, 2300 RA, Leiden , The Netherlands
| | - Herman S. Overkleeft
- a Leiden Institute of Chemistry , Leiden University , P.O. Box 9502, 2300 RA, Leiden , The Netherlands
| | - Gijsbert A. van der Marel
- a Leiden Institute of Chemistry , Leiden University , P.O. Box 9502, 2300 RA, Leiden , The Netherlands
| |
Collapse
|