1
|
Hu L, Li R, Liu Y, Zhou J, Sun Z. Photocatalytic Synthesis of α-Ketonyl Glycosyl Compounds from Glycosyl Thiols and Silyl Enol Ethers. Org Lett 2024; 26:8188-8193. [PMID: 39297709 DOI: 10.1021/acs.orglett.4c03124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The synthesis of C1-ketonyl glycosyl compounds featuring α-selectivity has seldom been reported. We herein devise a glycosyl radical-based approach to facilely access stereoenriched ketonyl glycosyl compounds via an Ir photoredox-catalyzed desulfurative addition to silyl enol ethers, using in situ-generated tetrafluoropyridinyl thioglycosides from glycosyl 1-thiols as radical precursors. This protocol features readily prepared starting materials, mild conditions, excellent functional group tolerance, satisfactory scale-up, and notable amenability to late-stage modification of pharmaceutically relevant complex molecules.
Collapse
Affiliation(s)
- Lifu Hu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ruining Li
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yunqi Liu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Junliang Zhou
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhankui Sun
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Shanghai Frontiers Science Center for Drug Target Identification and Drug Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
2
|
Remmerswaal W, Elferink H, Houthuijs KJ, Hansen T, ter Braak F, Berden G, van der Vorm S, Martens J, Oomens J, van der Marel GA, Boltje TJ, Codée JDC. Anomeric Triflates versus Dioxanium Ions: Different Product-Forming Intermediates from 3-Acyl Benzylidene Mannosyl and Glucosyl Donors. J Org Chem 2024; 89:1618-1625. [PMID: 38235652 PMCID: PMC10845153 DOI: 10.1021/acs.joc.3c02262] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/19/2024]
Abstract
Minimal structural differences in the structure of glycosyl donors can have a tremendous impact on their reactivity and the stereochemical outcome of their glycosylation reactions. Here, we used a combination of systematic glycosylation reactions, the characterization of potential reactive intermediates, and in-depth computational studies to study the disparate behavior of glycosylation systems involving benzylidene glucosyl and mannosyl donors. While these systems have been studied extensively, no satisfactory explanations are available for the differences observed between the 3-O-benzyl/benzoyl mannose and glucose donor systems. The potential energy surfaces of the different reaction pathways available for these donors provide an explanation for the contrasting behavior of seemingly very similar systems. Evidence has been provided for the intermediacy of benzylidene mannosyl 1,3-dioxanium ions, while the formation of the analogous 1,3-glucosyl dioxanium ions is thwarted by a prohibitively strong flagpole interaction of the C-2-O-benzyl group with the C-5 proton in moving toward the transition state, in which the glucose ring adopts a B2,5-conformation. This study provides an explanation for the intermediacy of 1,3-dioxanium ions in the mannosyl system and an answer to why these do not form from analogous glucosyl donors.
Collapse
Affiliation(s)
- Wouter
A. Remmerswaal
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2300 RA, The Netherlands
| | - Hidde Elferink
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Kas J. Houthuijs
- Institute
for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, Nijmegen 6525 ED, The Netherlands
| | - Thomas Hansen
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2300 RA, The Netherlands
- Department
of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular
and Life Sciences (AIMMS), Vrije Universiteit
Amsterdam, De Boelelaan
1108, Amsterdam 1081 HZ, The Netherlands
| | - Floor ter Braak
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Giel Berden
- Institute
for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, Nijmegen 6525 ED, The Netherlands
| | - Stefan van der Vorm
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2300 RA, The Netherlands
| | - Jonathan Martens
- Institute
for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, Nijmegen 6525 ED, The Netherlands
| | - Jos Oomens
- Institute
for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, Nijmegen 6525 ED, The Netherlands
| | | | - Thomas J. Boltje
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Jeroen D. C. Codée
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2300 RA, The Netherlands
| |
Collapse
|
3
|
Dhara D, Mulard LA. Exploratory N-Protecting Group Manipulation for the Total Synthesis of Zwitterionic Shigella sonnei Oligosaccharides. Chemistry 2021; 27:5694-5711. [PMID: 33314456 PMCID: PMC8048667 DOI: 10.1002/chem.202003480] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/23/2020] [Indexed: 12/16/2022]
Abstract
Shigella sonnei surface polysaccharides are well-established protective antigens against this major cause of diarrhoeal disease. They also qualify as unique zwitterionic polysaccharides (ZPSs) featuring a disaccharide repeating unit made of two 1,2-trans linked rare aminodeoxy sugars, a 2-acetamido-2-deoxy-l-altruronic acid (l-AltpNAcA) and a 2-acetamido-4-amino-2,4,6-trideoxy-d-galactopyranose (AAT). Herein, the stereoselective synthesis of S. sonnei oligosaccharides comprising two, three and four repeating units is reported for the first time. Several sets of up to seven protecting groups were explored, shedding light on the singular conformational behavior of protected altrosamine and altruronic residues. A disaccharide building block equipped with three distinct N-protecting groups and featuring the uronate moiety already in place was designed to accomplish the iterative high yielding glycosylation at the axial 4-OH of the altruronate component and achieve the challenging full deprotection step. Key to the successful route was the use of a diacetyl strategy whereby the N-acetamido group of the l-AltpNAcA is masked in the form of an imide.
Collapse
Affiliation(s)
- Debashis Dhara
- Unité de Chimie des BiomoléculesUMR 3523 CNRS, Institut Pasteur28 rue du Dr Roux75015ParisFrance
| | - Laurence A. Mulard
- Unité de Chimie des BiomoléculesUMR 3523 CNRS, Institut Pasteur28 rue du Dr Roux75015ParisFrance
| |
Collapse
|
4
|
Ye W, Stevens CM, Wen P, Simmons CJ, Tang W. Mild Cu(OTf) 2-Mediated C-Glycosylation with Chelation-Assisted Picolinate as a Leaving Group. J Org Chem 2020; 85:16218-16225. [PMID: 32691596 PMCID: PMC8138965 DOI: 10.1021/acs.joc.0c01041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
C-Glycosylation reactions of glycosyl picolinates with allyltrimethylsilane or silyl enol ethers were developed. Picolinate as a chelation-assisted leaving group could be activated by Cu(OTf)2 and avoided the use of harsh Lewis acids. The glycosylations were operated under mild neutral conditions and gave the corresponding C-glycosides in up to 95% yield with moderate to excellent stereoselectivities.
Collapse
Affiliation(s)
- Wenjing Ye
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Christopher M Stevens
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Peng Wen
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Christopher J Simmons
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Weiping Tang
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
5
|
Onobun E, Crich D. Synthesis of 3-Deoxy-d- manno-oct-2-ulosonic Acid (KDO) and Pseudaminic Acid C-Glycosides. J Org Chem 2020; 85:16035-16042. [PMID: 32897074 DOI: 10.1021/acs.joc.0c01838] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The preparation of glycosyl dibutyl phosphates in the 3-deoxy-d-manno-oct-2-ulosonic acid (KDO) and pseudaminic acid series and their application to the formation of C-glycosides are described. Both donors were obtained from the corresponding thioglycosides by treatment with dibutylphosphoric acid and N-iodosuccinimide. As with the thioglycosides, both donors adopted very predominantly the strongly electron-withdrawing tg conformation of their side chains, which is reflected in the excellent equatorial selectivity of both donors in the formation of exemplary O-glycosides. With respect to C-glycoside formation on the other hand, contrasting results were observed: the KDO donor was either relatively unselective or selective for the formation of the axial C-glycoside, while the pseudaminic acid donor was selective for the formation of the equatorial C-glycoside. These observations are rationalized in terms of the greater electron-withdrawing ability of the azides in the pseudaminic acid donor compared to the corresponding acetoxy groups in the KDO series, resulting in a reaction through tighter ion pairs even at the SN1 end of the general glycosylation mechanism. The contrast in the axial versus the equatorial selectivity between C- and O-glycosylation cautions against the extrapolation of models for SN1-type glycosylation with weak nucleophiles for the explanation of O-glycosylation.
Collapse
Affiliation(s)
- Emmanuel Onobun
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States.,Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States.,Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States.,Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States.,Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| |
Collapse
|
6
|
Li Q, Levi SM, Jacobsen EN. Highly Selective β-Mannosylations and β-Rhamnosylations Catalyzed by Bis-thiourea. J Am Chem Soc 2020; 142:11865-11872. [PMID: 32527078 DOI: 10.1021/jacs.0c04255] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We report highly β-selective bis-thioureas-catalyzed 1,2-cis-O-pyranosylations employing easily accessible acetonide-protected donors. A wide variety of alcohol nucleophiles, including complex natural products, glycosides, and amino acids were β-mannosylated and β-rhamnosylated successfully using an operationally simple protocol under mild and neutral conditions. Less nucleophilic acceptors such as phenols were also glycosylated efficiently in excellent yields and with high β-selectivities.
Collapse
Affiliation(s)
- Qiuhan Li
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Samuel M Levi
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Eric N Jacobsen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
7
|
Liu M, Li BH, Li T, Wu X, Liu M, Xiong DC, Ye XS. C-Glycosylation enabled by N-(glycosyloxy)acetamides. Org Biomol Chem 2020; 18:3043-3046. [PMID: 32270159 DOI: 10.1039/d0ob00561d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The C-glycosylation of C-nucleophiles including allyltrimethylsilane, silyl enol ethers and phenols with N-(glycosyloxy)acetamides as glycosyl donors has been realized. This protocol provides a convenient and practical route for the synthesis of alkyl C-glycosides and aryl 2-deoxy-β-C-glycosides under mild reaction conditions.
Collapse
Affiliation(s)
- Miao Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Bo-Han Li
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Tian Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Xia Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Meng Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - De-Cai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
8
|
Hansen T, Lebedel L, Remmerswaal WA, van der Vorm S, Wander DPA, Somers M, Overkleeft HS, Filippov DV, Désiré J, Mingot A, Bleriot Y, van der Marel GA, Thibaudeau S, Codée JDC. Defining the S N1 Side of Glycosylation Reactions: Stereoselectivity of Glycopyranosyl Cations. ACS CENTRAL SCIENCE 2019; 5:781-788. [PMID: 31139714 PMCID: PMC6535769 DOI: 10.1021/acscentsci.9b00042] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Indexed: 05/12/2023]
Abstract
The broad application of well-defined synthetic oligosaccharides in glycobiology and glycobiotechnology is largely hampered by the lack of sufficient amounts of synthetic carbohydrate specimens. Insufficient knowledge of the glycosylation reaction mechanism thwarts the routine assembly of these materials. Glycosyl cations are key reactive intermediates in the glycosylation reaction, but their high reactivity and fleeting nature have precluded the determination of clear structure-reactivity-stereoselectivity principles for these species. We report a combined experimental and computational method that connects the stereoselectivity of oxocarbenium ions to the full ensemble of conformations these species can adopt, mapped in conformational energy landscapes (CEL), in a quantitative manner. The detailed description of stereoselective SN1-type glycosylation reactions firmly establishes glycosyl cations as true reaction intermediates and will enable the generation of new stereoselective glycosylation methodology.
Collapse
Affiliation(s)
- Thomas Hansen
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Ludivine Lebedel
- UMR-CNRS
7285, IC2MP, Equipe “Synthèse Organique”, Université de Poitiers, 4 rue Michel Brunet, TSA 51106, Poitiers Cedex 9 86073, France
| | - Wouter A. Remmerswaal
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Stefan van der Vorm
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Dennis P. A. Wander
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Mark Somers
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Herman S. Overkleeft
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Dmitri V. Filippov
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Jérôme Désiré
- UMR-CNRS
7285, IC2MP, Equipe “Synthèse Organique”, Université de Poitiers, 4 rue Michel Brunet, TSA 51106, Poitiers Cedex 9 86073, France
| | - Agnès Mingot
- UMR-CNRS
7285, IC2MP, Equipe “Synthèse Organique”, Université de Poitiers, 4 rue Michel Brunet, TSA 51106, Poitiers Cedex 9 86073, France
| | - Yves Bleriot
- UMR-CNRS
7285, IC2MP, Equipe “Synthèse Organique”, Université de Poitiers, 4 rue Michel Brunet, TSA 51106, Poitiers Cedex 9 86073, France
| | | | - Sebastien Thibaudeau
- UMR-CNRS
7285, IC2MP, Equipe “Synthèse Organique”, Université de Poitiers, 4 rue Michel Brunet, TSA 51106, Poitiers Cedex 9 86073, France
| | - Jeroen D. C. Codée
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- E-mail:
| |
Collapse
|
9
|
Adero PO, Amarasekara H, Wen P, Bohé L, Crich D. The Experimental Evidence in Support of Glycosylation Mechanisms at the S N1-S N2 Interface. Chem Rev 2018; 118:8242-8284. [PMID: 29846062 PMCID: PMC6135681 DOI: 10.1021/acs.chemrev.8b00083] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A critical review of the state-of-the-art evidence in support of the mechanisms of glycosylation reactions is provided. Factors affecting the stability of putative oxocarbenium ions as intermediates at the SN1 end of the mechanistic continuum are first surveyed before the evidence, spectroscopic and indirect, for the existence of such species on the time scale of glycosylation reactions is presented. Current models for diastereoselectivity in nucleophilic attack on oxocarbenium ions are then described. Evidence in support of the intermediacy of activated covalent glycosyl donors is reviewed, before the influences of the structure of the nucleophile, of the solvent, of temperature, and of donor-acceptor hydrogen bonding on the mechanism of glycosylation reactions are surveyed. Studies on the kinetics of glycosylation reactions and the use of kinetic isotope effects for the determination of transition-state structure are presented, before computational models are finally surveyed. The review concludes with a critical appraisal of the state of the art.
Collapse
Affiliation(s)
- Philip Ouma Adero
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Harsha Amarasekara
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Peng Wen
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Luis Bohé
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301 , Université Paris-Sud Université Paris-Saclay , 1 avenue de la Terrasse , 91198 Gif-sur-Yvette , France
| | - David Crich
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| |
Collapse
|
10
|
Parent JF, Deslongchamps P. Bent bonds (τ) and the antiperiplanar hypothesis, and the reactivity at the anomeric center in pyranosides. Org Biomol Chem 2018; 14:11183-11198. [PMID: 27834970 DOI: 10.1039/c6ob02263d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The stereoselectivity of nucleophilic addition on oxocarbenium ions derived from the bicyclic pyranoside model with or without a C2-OR group can be understood through the use of the bent-bond and the antiperiplanar hypothesis in conjunction with the concept of hyperconjugation as an alternative interpretive model of structure and reactivity.
Collapse
Affiliation(s)
- Jean-François Parent
- Département de chimie, Faculté des sciences et de génie, Université Laval, Pavillon Alexandre-Vachon, 1045 avenue de la médecine, Québec, Québec G1V 0A6, Canada.
| | - Pierre Deslongchamps
- Département de chimie, Faculté des sciences et de génie, Université Laval, Pavillon Alexandre-Vachon, 1045 avenue de la médecine, Québec, Québec G1V 0A6, Canada.
| |
Collapse
|
11
|
Abstract
Although the triflate ion is not generally perceived as a nucleophile, many examples of its behavior as such exist in the literature. This Synopsis presents an overview of such reactions, in which triflate may be either a stoichiometric or catalytic nucleophile, leading to the suggestion that nucleophilic catalysis by triflate may be more common than generally accepted, albeit hidden by the typical reactivity of organic triflates which complicates their observation as intermediates.
Collapse
Affiliation(s)
- Bibek Dhakal
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - Luis Bohé
- Institut de Chimie des Substances Naturelles, CNRS-ICSN UPR2301, Université Paris-Sud , Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - David Crich
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| |
Collapse
|
12
|
Affiliation(s)
- You Yang
- Shanghai
Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Biao Yu
- State
Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
13
|
van der Vorm S, Hansen T, Overkleeft HS, van der Marel GA, Codée JDC. The influence of acceptor nucleophilicity on the glycosylation reaction mechanism. Chem Sci 2017; 8:1867-1875. [PMID: 28553477 PMCID: PMC5424809 DOI: 10.1039/c6sc04638j] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/08/2016] [Indexed: 01/20/2023] Open
Abstract
A set of model nucleophiles of gradually changing nucleophilicity is used to probe the glycosylation reaction mechanism. Glycosylations of ethanol-based acceptors, bearing varying amounts of fluorine atoms, report on the dependency of the stereochemistry in condensation reactions on the nucleophilicity of the acceptor. Three different glycosylation systems were scrutinized, that differ in the reaction mechanism, that - putatively - prevails during the coupling reaction. It is revealed that the stereoselectivity in glycosylations of benzylidene protected glucose donors are very susceptible to acceptor nucleophilicity whereas condensations of benzylidene mannose and mannuronic acid donors represent more robust glycosylation systems in terms of diastereoselectivity. The change in stereoselectivity with decreasing acceptor nucleophilicity is related to a change in reaction mechanism shifting from the SN2 side to the SN1 side of the reactivity spectrum. Carbohydrate acceptors are examined and the reactivity-selectivity profile of these nucleophiles mirrored those of the model acceptors studied. The set of model ethanol acceptors thus provides a simple and effective "toolbox" to investigate glycosylation reaction mechanisms and report on the robustness of glycosylation protocols.
Collapse
Affiliation(s)
- S van der Vorm
- Leiden Institute of Chemistry , Leiden University , Einsteinweg 55 , 2333 CC Leiden , The Netherlands .
| | - T Hansen
- Leiden Institute of Chemistry , Leiden University , Einsteinweg 55 , 2333 CC Leiden , The Netherlands .
| | - H S Overkleeft
- Leiden Institute of Chemistry , Leiden University , Einsteinweg 55 , 2333 CC Leiden , The Netherlands .
| | - G A van der Marel
- Leiden Institute of Chemistry , Leiden University , Einsteinweg 55 , 2333 CC Leiden , The Netherlands .
| | - J D C Codée
- Leiden Institute of Chemistry , Leiden University , Einsteinweg 55 , 2333 CC Leiden , The Netherlands .
| |
Collapse
|
14
|
Abstract
Glycosylation using Tf2NH or Tf2NTMS as the catalysts and a trichloroacetimidate donor gives glycosides with inverted anomeric stereochemistry.
Collapse
Affiliation(s)
- K. Kowalska
- Department of Chemistry
- University of Copenhagen
- Universitetsparken 5
- DK-2100 Copenhagen
- Denmark
| | - C. M. Pedersen
- Department of Chemistry
- University of Copenhagen
- Universitetsparken 5
- DK-2100 Copenhagen
- Denmark
| |
Collapse
|
15
|
Hashimoto Y, Tanikawa S, Saito R, Sasaki K. β-Stereoselective Mannosylation Using 2,6-Lactones. J Am Chem Soc 2016; 138:14840-14843. [DOI: 10.1021/jacs.6b08874] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yusuke Hashimoto
- Department of Chemistry, Toho University, 2-2-1 Miyama, Funabashi 274-8510 Japan
| | - Saki Tanikawa
- Department of Chemistry, Toho University, 2-2-1 Miyama, Funabashi 274-8510 Japan
| | - Ryota Saito
- Department of Chemistry, Toho University, 2-2-1 Miyama, Funabashi 274-8510 Japan
| | - Kaname Sasaki
- Department of Chemistry, Toho University, 2-2-1 Miyama, Funabashi 274-8510 Japan
| |
Collapse
|
16
|
Fascione MA, Brabham R, Turnbull WB. Mechanistic Investigations into the Application of Sulfoxides in Carbohydrate Synthesis. Chemistry 2016; 22:3916-28. [PMID: 26744250 PMCID: PMC4794778 DOI: 10.1002/chem.201503504] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Indexed: 12/04/2022]
Abstract
The utility of sulfoxides in a diverse range of transformations in the field of carbohydrate chemistry has seen rapid growth since the first introduction of a sulfoxide as a glycosyl donor in 1989. Sulfoxides have since developed into more than just anomeric leaving groups, and today have multiple roles in glycosylation reactions. These include as activators for thioglycosides, hemiacetals, and glycals, and as precursors to glycosyl triflates, which are essential for stereoselective β-mannoside synthesis, and bicyclic sulfonium ions that facilitate the stereoselective synthesis of α-glycosides. In this review we highlight the mechanistic investigations undertaken in this area, often outlining strategies employed to differentiate between multiple proposed reaction pathways, and how the conclusions of these investigations have and continue to inform upon the development of more efficient transformations in sulfoxide-based carbohydrate synthesis.
Collapse
Affiliation(s)
- Martin A Fascione
- York Structural Biology Lab, Department of Chemistry, University of York, Heslington Road, York, YO10 5DD, UK.
| | - Robin Brabham
- York Structural Biology Lab, Department of Chemistry, University of York, Heslington Road, York, YO10 5DD, UK
| | - W Bruce Turnbull
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| |
Collapse
|
17
|
Heuckendorff M, Bols PS, Barry CB, Frihed TG, Pedersen CM, Bols M. β-Mannosylation with 4,6-benzylidene protected mannosyl donors without preactivation. Chem Commun (Camb) 2015. [PMID: 26197760 DOI: 10.1039/c5cc04716a] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Mannosylations with benzylidene protected mannosyl donors were found to be β-selective even when no preactivation was performed. It was also found that the kinetic β-product in some cases anomerizes fast to the thermodynamically favored α-anomer under typical reaction conditions.
Collapse
Affiliation(s)
- Mads Heuckendorff
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark.
| | | | | | | | | | | |
Collapse
|
18
|
Frihed TG, Bols M, Pedersen CM. Mechanisms of Glycosylation Reactions Studied by Low-Temperature Nuclear Magnetic Resonance. Chem Rev 2015; 115:4963-5013. [DOI: 10.1021/cr500434x] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Mikael Bols
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | | |
Collapse
|
19
|
Bohé L, Crich D. A propos of glycosyl cations and the mechanism of chemical glycosylation; the current state of the art. Carbohydr Res 2015; 403:48-59. [PMID: 25108484 PMCID: PMC4281519 DOI: 10.1016/j.carres.2014.06.020] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/16/2014] [Accepted: 06/19/2014] [Indexed: 12/23/2022]
Abstract
An overview of recent advances in glycosylation with particular emphasis on mechanism is presented. The mounting evidence for both the existence of glycosyl oxocarbenium ions as fleeting intermediates in some reactions, and the crucial role of the associated counterion in others is discussed. The extremes of the SN1 and SN2 manifolds for the glycosylation reaction are bridged by a continuum of mechanisms in which it appears likely that most examples are located.
Collapse
Affiliation(s)
- Luis Bohé
- Centre de Recherche de Gif, CNRS, Institut de Chimie des Substances Naturelles, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - David Crich
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI 48202, USA.
| |
Collapse
|
20
|
van Rijssel ER, van Delft P, Lodder G, Overkleeft HS, van der Marel GA, Filippov DV, Codée JDC. Furanosyl Oxocarbenium Ion Stability and Stereoselectivity. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201405477] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
van Rijssel ER, van Delft P, Lodder G, Overkleeft HS, van der Marel GA, Filippov DV, Codée JDC. Furanosyl Oxocarbenium Ion Stability and Stereoselectivity. Angew Chem Int Ed Engl 2014; 53:10381-5. [DOI: 10.1002/anie.201405477] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 06/13/2014] [Indexed: 11/09/2022]
|
22
|
Whitfield DM. In a glycosylation reaction how does a hydroxylic nucleophile find the activated anomeric carbon? Carbohydr Res 2014; 403:69-89. [PMID: 24962244 DOI: 10.1016/j.carres.2014.05.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 05/26/2014] [Accepted: 05/27/2014] [Indexed: 12/23/2022]
Abstract
The mechanism by which nucleophilic hydroxyls are attracted to activated glycopyranosyl donors is not known. Besides the intrinsic attraction of oxygen centred negative dipoles towards the developing electron deficiency at the anomeric carbon only a few suggestions have been given in the literature. By studying the effect on Density Functional Theory (DFT) modelled glycosylation reactions on the presence of polar additives as tested with acetonitrile two possible effects have been identified. One was noted in a previous publication (Carbohydr. Res.2012, 356, 180-190) and two further examples discovered here that suggest that a lone pair of a nucleophile approaching a donor with a β-leaving group from the α-face can act as the antiperiplanar lone pair that assists leaving group departure. This interaction starts at just under a nucleophile C-1 separation of 3Å and has an incipient bond angle of O-5-C-1-Nuc(O or N) of very close to 90° which can be at C-1 with the p-type orbital at C-1-O-5 of the incipient oxacarbenium ion, that is, the LUMO of the activated donor. The 2nd interaction is less well studied and is suggested to be a similar bonding interaction which moves β-face nucleophiles to O-Nuc-C-1-leaving groups angles close to 180°.
Collapse
Affiliation(s)
- Dennis M Whitfield
- National Research Council, Human Health Therapeutics, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada.
| |
Collapse
|
23
|
Suga Y, Fuwa H, Sasaki M. Stereoselective Synthesis of Medium-Sized Cyclic Ethers: Application of C-Glycosylation Chemistry to Seven- to Nine-Membered Lactone-Derived Thioacetals and Their Sulfone Counterparts. J Org Chem 2014; 79:1656-82. [DOI: 10.1021/jo4025545] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Yuto Suga
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Haruhiko Fuwa
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Makoto Sasaki
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
24
|
Heuckendorff M, Bendix J, Pedersen CM, Bols M. β-Selective mannosylation with a 4,6-silylene-tethered thiomannosyl donor. Org Lett 2014; 16:1116-9. [PMID: 24502365 DOI: 10.1021/ol403722f] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Mannosylations using the new conformationally restricted donor phenyl 2,3-di-O-benzyl-4,6-O-(di-tert-butylsilylene)-1-thio-α-D-mannopyranoside (6) have been found to be β-selective with a variety of activation conditions. The simplest activation conditions were NIS/TfOH, in which case it is proposed that the β-mannoside is formed from β-selective glycosylation of the oxocarbenium ion 25 in a B(2,5) conformation.
Collapse
Affiliation(s)
- Mads Heuckendorff
- Department of Chemistry, University of Copenhagen , Universitetsparken 5, 2100 Copenhagen Ø, Denmark
| | | | | | | |
Collapse
|
25
|
Poláková M, Jankovič Ľ, Kucková L, Kožíšek J. Application of oxone immobilized on montmorillonite for an efficient oxidation of mannose thioglycoside. MONATSHEFTE FUR CHEMIE 2013. [DOI: 10.1007/s00706-013-0964-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|