1
|
Abstract
Nitroxides, also known as nitroxyl radicals, are long-lived or stable radicals with the general structure R1R2N-O•. The spin distribution over the nitroxide N and O atoms contributes to the thermodynamic stability of these radicals. The presence of bulky N-substituents R1 and R2 prevents nitroxide radical dimerization, ensuring their kinetic stability. Despite their reactivity toward various transient C radicals, some nitroxides can be easily stored under air at room temperature. Furthermore, nitroxides can be oxidized to oxoammonium salts (R1R2N═O+) or reduced to anions (R1R2N-O-), enabling them to act as valuable oxidants or reductants depending on their oxidation state. Therefore, they exhibit interesting reactivity across all three oxidation states. Due to these fascinating properties, nitroxides find extensive applications in diverse fields such as biochemistry, medicinal chemistry, materials science, and organic synthesis. This review focuses on the versatile applications of nitroxides in organic synthesis. For their use in other important fields, we will refer to several review articles. The introductory part provides a brief overview of the history of nitroxide chemistry. Subsequently, the key methods for preparing nitroxides are discussed, followed by an examination of their structural diversity and physical properties. The main portion of this review is dedicated to oxidation reactions, wherein parent nitroxides or their corresponding oxoammonium salts serve as active species. It will be demonstrated that various functional groups (such as alcohols, amines, enolates, and alkanes among others) can be efficiently oxidized. These oxidations can be carried out using nitroxides as catalysts in combination with various stoichiometric terminal oxidants. By reducing nitroxides to their corresponding anions, they become effective reducing reagents with intriguing applications in organic synthesis. Nitroxides possess the ability to selectively react with transient radicals, making them useful for terminating radical cascade reactions by forming alkoxyamines. Depending on their structure, alkoxyamines exhibit weak C-O bonds, allowing for the thermal generation of C radicals through reversible C-O bond cleavage. Such thermally generated C radicals can participate in various radical transformations, as discussed toward the end of this review. Furthermore, the application of this strategy in natural product synthesis will be presented.
Collapse
Affiliation(s)
- Dirk Leifert
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| |
Collapse
|
2
|
Felber JG, Thorn-Seshold O. 40 Years of Duocarmycins: A Graphical Structure/Function Review of Their Chemical Evolution, from SAR to Prodrugs and ADCs. JACS AU 2022; 2:2636-2644. [PMID: 36590260 PMCID: PMC9795467 DOI: 10.1021/jacsau.2c00448] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/16/2022] [Accepted: 09/27/2022] [Indexed: 05/16/2023]
Abstract
Synthetic analogues of the DNA-alkylating cytotoxins of the duocarmycin class have been extensively investigated in the past 40 years, driven by their high potency, their unusual mechanism of bioactivity, and the beautiful modularity of their structure-activity relationship (SAR). This Perspective analyzes how the molecular designs of synthetic duocarmycins have evolved: from (1) early SAR studies, through to modern applications for directed cancer therapy as (2) prodrugs and (3) antibody-drug conjugates in late-stage clinical development. Analyzing 583 primary research articles and patents from 1978 to 2022, we distill out a searchable A0-format "Minard map" poster of ca. 200 key structure/function-tuning steps tracing chemical developments across these three key areas. This structure-based overview showcases the ingenious approaches to tune and target bioactivity, that continue to drive development of the elegant and powerful duocarmycin platform.
Collapse
|
3
|
Ortuzar N, Karu K, Presa D, Morais GR, Sheldrake HM, Shnyder SD, Barnieh FM, Loadman PM, Patterson LH, Pors K, Searcey M. Probing cytochrome P450 (CYP) bioactivation with chloromethylindoline bioprecursors derived from the duocarmycin family of compounds. Bioorg Med Chem 2021; 40:116167. [PMID: 33932713 DOI: 10.1016/j.bmc.2021.116167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 11/25/2022]
Abstract
The duocarmycins belong to a class of agent which has great potential for use in cancer therapy. Their exquisite potency means they are too toxic for systemic use, and targeted approaches are required to unlock their clinical potential. In this study, we have explored seco-OH-chloromethylindoline (CI) duocarmycin-based bioprecursors for their potential for cytochrome P450 (CYP)-mediated cancer cell kill. We report on synthetic and biological explorations of racemic seco-CI-MI, where MI is a 5-methoxy indole motif, and dehydroxylated analogues. We show up to a 10-fold bioactivation of de-OH CI-MI and a fluoro bioprecursor analogue in CYP1A1-transfected cells. Using CYP bactosomes, we also demonstrate that CYP1A2 but not CYP1B1 or CYP3A4 has propensity for potentiating these compounds, indicating preference for CYP1A bioactivation.
Collapse
Affiliation(s)
- Natalia Ortuzar
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Kersti Karu
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Daniela Presa
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, BD7 1DP, UK
| | - Goreti R Morais
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, BD7 1DP, UK
| | - Helen M Sheldrake
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, BD7 1DP, UK
| | - Steve D Shnyder
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, BD7 1DP, UK
| | - Francis M Barnieh
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, BD7 1DP, UK
| | - Paul M Loadman
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, BD7 1DP, UK
| | - Laurence H Patterson
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, BD7 1DP, UK
| | - Klaus Pors
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, BD7 1DP, UK.
| | - Mark Searcey
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| |
Collapse
|
4
|
Tang L, Yang Z, Yang F, Huang Y, Chen H, Cheng H, Song W, Ren B, Zhou Q. Catalyst‐Free α‐Aminoxylation of 1,3‐Dicarbonyl Compounds with TEMPO Using Selectfluor as an Oxidant. ChemistrySelect 2019. [DOI: 10.1002/slct.201903856] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Lin Tang
- College of Chemistry and Chemical EngineeringXinyang Normal University Xinyang 464000 P. R. China
| | - Zhen Yang
- College of Chemistry and Chemical EngineeringXinyang Normal University Xinyang 464000 P. R. China
| | - Fang Yang
- College of Chemistry and Chemical EngineeringXinyang Normal University Xinyang 464000 P. R. China
| | - Yifan Huang
- College of Chemistry and Chemical EngineeringXinyang Normal University Xinyang 464000 P. R. China
| | - Hanfei Chen
- College of Chemistry and Chemical EngineeringXinyang Normal University Xinyang 464000 P. R. China
| | - Hao Cheng
- College of Chemistry and Chemical EngineeringXinyang Normal University Xinyang 464000 P. R. China
| | - Weiyan Song
- College of Chemistry and Chemical EngineeringXinyang Normal University Xinyang 464000 P. R. China
| | - Bo Ren
- College of Chemistry and Chemical EngineeringXinyang Normal University Xinyang 464000 P. R. China
| | - Qiuju Zhou
- College of Chemistry and Chemical EngineeringXinyang Normal University Xinyang 464000 P. R. China
| |
Collapse
|
5
|
Sanz-Marco A, Martinez-Erro S, Martín-Matute B. Selective Synthesis of Unsymmetrical Aliphatic Acyloins through Oxidation of Iridium Enolates. Chemistry 2018; 24:11564-11567. [PMID: 29928782 DOI: 10.1002/chem.201803117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Indexed: 11/09/2022]
Abstract
The first method to access unsymmetrical aliphatic acyloins is presented. The method relies on a fast 1,3-hydride shift mediated by an IrIII complex in allylic alcohols followed by oxidation with TEMPO+ . The direct conversion of allylic alcohols into acyloins is achieved in a one-pot procedure. Further functionalization of the Cα' of the α-amino-oxylated ketone products gives access to highly functionalized unsymmetrical aliphatic ketones, which further highlights the utility of this transformation.
Collapse
Affiliation(s)
- Amparo Sanz-Marco
- Department of Organic Chemistry, Stockholm University, Stockholm, 10691, Sweden
| | | | - Belén Martín-Matute
- Department of Organic Chemistry, Stockholm University, Stockholm, 10691, Sweden
| |
Collapse
|
6
|
Boger DL. The Difference a Single Atom Can Make: Synthesis and Design at the Chemistry-Biology Interface. J Org Chem 2017; 82:11961-11980. [PMID: 28945374 PMCID: PMC5712263 DOI: 10.1021/acs.joc.7b02088] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Indexed: 01/24/2023]
Abstract
A Perspective of work in our laboratory on the examination of biologically active compounds, especially natural products, is presented. In the context of individual programs and along with a summary of our work, selected cases are presented that illustrate the impact single atom changes can have on the biological properties of the compounds. The examples were chosen to highlight single heavy atom changes that improve activity, rather than those that involve informative alterations that reduce or abolish activity. The examples were also chosen to illustrate that the impact of such single-atom changes can originate from steric, electronic, conformational, or H-bonding effects, from changes in functional reactivity, from fundamental intermolecular interactions with a biological target, from introduction of a new or altered functionalization site, or from features as simple as improvements in stability or physical properties. Nearly all the examples highlighted represent not only unusual instances of productive deep-seated natural product modifications and were introduced through total synthesis but are also remarkable in that they are derived from only a single heavy atom change in the structure.
Collapse
Affiliation(s)
- Dale L. Boger
- Department of Chemistry and
The Skaggs Research Institute, The Scripps
Research Institute, 10550
North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
7
|
Osorio-Nieto U, Chamorro-Arenas D, Quintero L, Höpfl H, Sartillo-Piscil F. Transition Metal-Free Selective Double sp3 C–H Oxidation of Cyclic Amines to 3-Alkoxyamine Lactams. J Org Chem 2016; 81:8625-32. [DOI: 10.1021/acs.joc.6b01566] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Urbano Osorio-Nieto
- Centro
de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San
Claudio, Col. San Manuel, 72570 Puebla, México
| | - Delfino Chamorro-Arenas
- Centro
de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San
Claudio, Col. San Manuel, 72570 Puebla, México
| | - Leticia Quintero
- Centro
de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San
Claudio, Col. San Manuel, 72570 Puebla, México
| | - Herbert Höpfl
- Centro
de Investigaciones Químicas, Instituto de Investigación
en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, 62209 Cuernavaca, México
| | - Fernando Sartillo-Piscil
- Centro
de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San
Claudio, Col. San Manuel, 72570 Puebla, México
| |
Collapse
|
8
|
Yu LZ, Hu XB, Xu Q, Shi M. Thermally induced formal [3+2] cyclization of ortho-aminoaryl-tethered alkylidenecyclopropanes: facile synthesis of furoquinoline and thienoquinoline derivatives. Chem Commun (Camb) 2016; 52:2701-4. [DOI: 10.1039/c5cc09218c] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Thermally induced formal [3+2] cycloaddition reactions of alkylidenecyclopropanes with the in situ generation of isocyanates and isothiocyanates have been developed.
Collapse
Affiliation(s)
- Liu-Zhu Yu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai
- China
| | - Xu-Bo Hu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai
- China
| | - Qin Xu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai
- China
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai
- China
- State Key Laboratory of Organometallic Chemistry
| |
Collapse
|
9
|
Li L, Yu Z, Shen Z. Copper-Catalyzed Aminoxylation of Different Types of Hydrocarbons with TEMPO: A Concise Route toN-Alkoxyamine Derivatives. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500544] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Stephenson MJ, Howell LA, O'Connell MA, Fox KR, Adcock C, Kingston J, Sheldrake H, Pors K, Collingwood SP, Searcey M. Solid-Phase Synthesis of Duocarmycin Analogues and the Effect of C-Terminal Substitution on Biological Activity. J Org Chem 2015; 80:9454-67. [PMID: 26356089 DOI: 10.1021/acs.joc.5b01373] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The duocarmycins are potent antitumor agents with potential for use in the development of antibody-drug conjugates (ADCs) as well as being clinical candidates in their own right. In this article, we describe the synthesis of a duocarmycin monomer (DSA) that is suitably protected for utilization in solid-phase synthesis. The synthesis was performed on a large scale, and the resulting racemic protected Fmoc-DSA subunit was separated by supercritical fluid chromatography (SFC) into the single enantiomers; its application to solid-phase synthesis methodology gave a series of monomeric and extended duocarmycin analogues with amino acid substituents. The DNA sequence selectivity was similar to that in previous reports for both the monomeric and extended compounds. Substitution at the C-terminus of duocarmycin caused a decrease in antiproliferative activity for all of the compounds studied. An extended compound containing an alanine at the C-terminus was converted to the primary amide or to an extended structure containing a terminal tertiary amine, but this had no beneficial effects on biological activity.
Collapse
Affiliation(s)
| | | | | | - Keith R Fox
- Centre for Biological Sciences, University of Southampton , Life Sciences Building 85, Southampton SO17 1BJ, United Kingdom
| | - Claire Adcock
- Novartis Institutes for Biomedical Research, Novartis Pharmaceuticals UK Limited , Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Jenny Kingston
- Novartis Institutes for Biomedical Research, Novartis Pharmaceuticals UK Limited , Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Helen Sheldrake
- Institute for Cancer Therapeutics, University of Bradford , Bradford, West Yorkshire BD7 1DP, United Kingdom
| | - Klaus Pors
- Institute for Cancer Therapeutics, University of Bradford , Bradford, West Yorkshire BD7 1DP, United Kingdom
| | - Stephen P Collingwood
- Novartis Institutes for Biomedical Research, Novartis Pharmaceuticals UK Limited , Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | | |
Collapse
|
11
|
Copper-catalyzed α-aminoxylation of 1,3-dicarbonyl compounds with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) via an aerobic oxidative sp3 C–H bond activation. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.09.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Gómez-Palomino A, Pellicena M, Romo JM, Solà R, Romea P, Urpí F, Font-Bardia M. Stereoselective Aminoxylation of Biradical Titanium Enolates with TEMPO. Chemistry 2014; 20:10153-9. [DOI: 10.1002/chem.201402127] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Indexed: 10/25/2022]
|
13
|
Abeykoon GA, Chatterjee S, Chen JS. anti-Diols from α-Oxyaldehydes: Synthesis and Stereochemical Assignment of Oxylipins from Dracontium loretense. Org Lett 2014; 16:3248-51. [DOI: 10.1021/ol501263y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Gayan A. Abeykoon
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | | | - Jason S. Chen
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
14
|
Itoh T, Shimizu Y, Kanai M. Copper-catalyzed regio- and stereoselective intermolecular three-component oxyarylation of allenes. Org Lett 2014; 16:2736-9. [PMID: 24766635 DOI: 10.1021/ol501022d] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A copper(II)-catalyzed intermolecular three-component oxyarylation of allenes using arylboronic acids as a carbon source and TEMPO as an oxygen source is described. The reaction proceeded under mild conditions with high regio- and stereoselectivity and functional group tolerance. A plausible reaction mechanism is proposed, involving carbocupration of allenes, homolysis of the intervening allylcopper(II), and a radical TEMPO trap.
Collapse
Affiliation(s)
- Taisuke Itoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo , 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
15
|
Bagryanskaya EG, Marque SRA. Scavenging of organic C-centered radicals by nitroxides. Chem Rev 2014; 114:5011-56. [PMID: 24571361 DOI: 10.1021/cr4000946] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Elena G Bagryanskaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences , Pr. Lavrentjeva 9, Novosibirsk 630090, Russia
| | | |
Collapse
|
16
|
Dinca E, Hartmann P, Smrček J, Dix I, Jones PG, Jahn U. General and Efficient α-Oxygenation of Carbonyl Compounds by TEMPO Induced by Single-Electron-Transfer Oxidation of Their Enolates. European J Org Chem 2012. [DOI: 10.1002/ejoc.201200736] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
17
|
Tebben L, Studer A. Nitroxides: applications in synthesis and in polymer chemistry. Angew Chem Int Ed Engl 2011; 50:5034-68. [PMID: 21538729 DOI: 10.1002/anie.201002547] [Citation(s) in RCA: 513] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Indexed: 01/23/2023]
Abstract
This Review describes the application of nitroxides to synthesis and polymer chemistry. The synthesis and physical properties of nitroxides are discussed first. The largest section focuses on their application as stoichiometric and catalytic oxidants in organic synthesis. The oxidation of alcohols and carbanions, as well as oxidative C-C bond-forming reactions are presented along with other typical oxidative transformations. A section is also dedicated to the extensive use of nitroxides as trapping reagents for C-centered radicals in radical chemistry. Alkoxyamines derived from nitroxides are shown to be highly useful precursors of C-centered radicals in synthesis and also in polymer chemistry. The last section discusses the basics of nitroxide-mediated radical polymerization (NMP) and also highlights new developments in the synthesis of complex polymer architectures.
Collapse
Affiliation(s)
- Ludger Tebben
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| | | |
Collapse
|
18
|
Robertson WM, Kastrinsky DB, Hwang I, Boger DL. Synthesis and evaluation of a series of C5'-substituted duocarmycin SA analogs. Bioorg Med Chem Lett 2010; 20:2722-5. [PMID: 20381346 PMCID: PMC2867475 DOI: 10.1016/j.bmcl.2010.03.078] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Revised: 03/17/2010] [Accepted: 03/19/2010] [Indexed: 10/19/2022]
Abstract
The synthesis and evaluation of a key series of analogs of duocarmycin SA, bearing a single substituent at the C5' position of the DNA binding subunit, are described.
Collapse
Affiliation(s)
- William M. Robertson
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - David B. Kastrinsky
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Inkyu Hwang
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Dale L. Boger
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
19
|
Synthesis and evaluation of duocarmycin SA analogs incorporating the methyl 1,2,8,8a-tetrahydrocyclopropa[c]oxazolo[2,3-e]indol-4-one-6-carboxylate (COI) alkylation subunit. Bioorg Med Chem Lett 2010; 20:1854-7. [PMID: 20171886 DOI: 10.1016/j.bmcl.2010.01.145] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 01/26/2010] [Accepted: 01/29/2010] [Indexed: 11/22/2022]
Abstract
The design, synthesis and evaluation of methyl 1,2,8,8a-tetrahydrocyclopropa[c]oxazolo[2,3-e]indol-4-one-6-carboxylate (COI) derivatives are detailed representing analogs of duocarmycin SA containing an oxazole replacement for the fused pyrrole found in the alkylation subunit.
Collapse
|
20
|
|
21
|
Synthesis and evaluation of a thio analogue of duocarmycin SA. Bioorg Med Chem Lett 2009; 19:6962-5. [PMID: 19879753 DOI: 10.1016/j.bmcl.2009.10.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 10/10/2009] [Accepted: 10/13/2009] [Indexed: 11/21/2022]
Abstract
The design, synthesis, and preliminary evaluation of methyl 1,2,8,8a-tetrahydrocyclopropa[c]thieno[3,2-e]indol-4-one-6-carboxylate (CTI) derivatives are detailed representing a single atom change (N to S) embedded in the duocarmycin SA alkylation subunit.
Collapse
|
22
|
MacMillan KS, Boger DL. Fundamental relationships between structure, reactivity, and biological activity for the duocarmycins and CC-1065. J Med Chem 2009; 52:5771-80. [PMID: 19639994 PMCID: PMC2755654 DOI: 10.1021/jm9006214] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Karen S MacMillan
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
23
|
Highly stereoselective construction of functionalized cyclopropanes from the reaction between acetylenic esters and C–H acids in the presence of triphenylarsine. Tetrahedron Lett 2009. [DOI: 10.1016/j.tetlet.2009.05.051] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Attanasi OA, Gianfranco Favi, Giorgi G, Mantellini F, Karapetyan V, Langer P. Regioselective synthesis of spiro-cyclopropanated 1-aminopyrrol-2-ones by Bi(OTf)3-catalyzed one-pot ‘Mukaiyama–Michael addition/cyclization/ring-contraction’ reactions of 1,2-bis(trimethylsilyloxy)cyclobutene with 1,2-diaza-1,3-butadienes. Tetrahedron 2009. [DOI: 10.1016/j.tet.2009.04.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Lyons TW, Sanford MS. Palladium (II/IV) catalyzed cyclopropanation reactions: scope and mechanism. Tetrahedron 2009; 65:3211-3221. [PMID: 20161134 PMCID: PMC2729174 DOI: 10.1016/j.tet.2008.10.107] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This report describes detailed studies of the scope and mechanism of a new Pd-catalyzed oxidation reaction for the stereospecific conversion of enynes into cyclopropyl ketones. Unlike related Pd(II/0), Au, and Pt-catalyzed cyclopropane-forming reactions, these transformations proceed with net inversion of geometry with respect to the starting alkene. This result, along with other mechanistic data, is consistent with a Pd(II/IV) mechanism in which the key cyclopropane-forming step involves nucleophilic attack of a tethered olefin onto the Pd(IV)-C bond.
Collapse
Affiliation(s)
- Thomas W Lyons
- University of Michigan, Department of Chemistry, 930 N. University Ave., Ann Arbor, MI 48109, USA
| | | |
Collapse
|
26
|
MacMillan KS, Nguyen T, Nguyen T, Hwang I, Boger DL. Total synthesis and evaluation of iso-duocarmycin SA and iso-yatakemycin. J Am Chem Soc 2009; 131:1187-94. [PMID: 19154178 DOI: 10.1021/ja808108q] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The total synthesis and evaluation of iso-duocarmycin SA (5) and iso-yatakemycin (6), representing key analogues of the corresponding natural products incorporating an isomeric alkylation subunit, are detailed. This pyrrole isomer of the natural alkylation subunit displayed an enhanced reaction regioselectivity and a 2-fold diminished stability. Although still exceptionally potent, the iso-duocarmycin SA derivatives and natural product analogues exhibited a corresponding approximate 3-5-fold reduction in cytotoxic activity [L1210 IC(50) for (+)-iso-duocarmycin SA = 50 pM and for (+)-iso-yatakemycin = 15 pM] consistent with their placement on a parabolic relationship correlating activity with reactivity. The DNA alkylation selectivity of the resulting key natural product analogues was unaltered by the structure modification in spite of the minor-groove presentation of a potential H-bond donor. Additionally, a unique ortho-spirocyclization with such derivatives was explored via the preparation, characterization, and evaluation of 34 that is incapable of the more conventional para-spirocyclization. Although 34 proved sufficiently stable for isolation and characterization, it displayed little stability in protic solvents (t(1/2) = 0.19 h at pH 3, t(1/2) = 0.20 h at pH 7), a pH-independent (H(+) independent) solvolysis rate profile at pH 3/4-7, and a much reduced cytotoxic potency, but a DNA alkylation selectivity and efficiency comparable to those of duocarmycin SA and iso-duocarmycin SA. The implications of these observations on the source of the DNA alkylation selectivity and catalysis for this class of natural products are discussed.
Collapse
Affiliation(s)
- Karen S MacMillan
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
27
|
Koike T, Akita M. Photoinduced Oxyamination of Enamines and Aldehydes with TEMPO Catalyzed by [Ru(bpy)3]2+. CHEM LETT 2009. [DOI: 10.1246/cl.2009.166] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
28
|
Tietze LF, Schuster HJ, Krewer B, Schuberth I. Synthesis and Biological Studies of Different Duocarmycin Based Glycosidic Prodrugs for Their Use in the Antibody-Directed Enzyme Prodrug Therapy. J Med Chem 2008; 52:537-43. [DOI: 10.1021/jm8009102] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lutz F. Tietze
- Institute of Organic and Biomolecular Chemistry Georg-August-University Göttingen, Tammannstrasse 2, D-37077 Göttingen, Germany
| | - Heiko J. Schuster
- Institute of Organic and Biomolecular Chemistry Georg-August-University Göttingen, Tammannstrasse 2, D-37077 Göttingen, Germany
| | - Birgit Krewer
- Institute of Organic and Biomolecular Chemistry Georg-August-University Göttingen, Tammannstrasse 2, D-37077 Göttingen, Germany
| | - Ingrid Schuberth
- Institute of Organic and Biomolecular Chemistry Georg-August-University Göttingen, Tammannstrasse 2, D-37077 Göttingen, Germany
| |
Collapse
|
29
|
Rasool N, Rashid MA, Reinke H, Fischer C, Langer P. Synthesis and reactions of functionalized spirocyclopropanes by cyclization of dilithiated β-ketosulfones, α-cyanoacetone and diethyl 2-oxopropylphosphonate with 1,1-diacetylcyclopropane. Tetrahedron 2008. [DOI: 10.1016/j.tet.2008.01.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Rasool N, Rashid MA, Adeel M, Görls H, Langer P. Synthesis and reactions of hydroxyspiro[5.2]cyclooctenones based on the cyclization of the dianions of acetone and diethyl 2-oxopropylphosphonate with 1,1-diacylcyclopropanes. Tetrahedron Lett 2008. [DOI: 10.1016/j.tetlet.2008.02.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
31
|
Rotzoll S, Reinke H, Langer P. Synthesis of heterospiranes by cyclization of dinucleophiles with 1,1-bis(tosyloxymethyl)cyclopropane and -cyclobutane. Tetrahedron Lett 2008. [DOI: 10.1016/j.tetlet.2007.11.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
32
|
Jin W, Trzupek JD, Rayl TJ, Broward MA, Vielhauer GA, Weir SJ, Hwang I, Boger DL. A unique class of duocarmycin and CC-1065 analogues subject to reductive activation. J Am Chem Soc 2007; 129:15391-7. [PMID: 18020335 PMCID: PMC2519901 DOI: 10.1021/ja075398e] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
N-Acyl O-amino phenol derivatives of CBI-TMI and CBI-indole2 are reported as prototypical members of a new class of reductively activated prodrugs of the duocarmycin and CC-1065 class of antitumor agents. The expectation being that hypoxic tumor environments, with their higher reducing capacity, carry an intrinsic higher concentration of "reducing" nucleophiles (e.g., thiols) capable of activating such derivatives (tunable N-O bond cleavage) and increasing their sensitivity to the prodrug treatment. Preliminary studies indicate the prodrugs effectively release the free drug in functional cellular assays for cytotoxic activity approaching or matching the activity of the free drug, yet remain essentially stable and unreactive to in vitro DNA alkylation conditions (<0.1-0.01% free drug release) and pH 7.0 phosphate buffer, and exhibit a robust half-life in human plasma (t1/2 = 3 h). Characterization of a representative O-(acylamino) prodrug in vivo indicates that they approach the potency and exceed the efficacy of the free drug itself (CBI-indole2), indicating that not only is the free drug effectively released from the inactive prodrug but also that they offer additional advantages related to a controlled or targeted release in vivo.
Collapse
Affiliation(s)
- Wei Jin
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, E-mail:
| | - John D. Trzupek
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, E-mail:
| | - Thomas J. Rayl
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, E-mail:
| | - Melinda A. Broward
- Office of Therapeutics, Discovery and Development, University of Kansas Cancer Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160
| | - George A. Vielhauer
- Office of Therapeutics, Discovery and Development, University of Kansas Cancer Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160
| | - Scott J. Weir
- Office of Therapeutics, Discovery and Development, University of Kansas Cancer Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160
| | - Inkyu Hwang
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, E-mail:
| | - Dale L. Boger
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, E-mail:
| |
Collapse
|
33
|
Marradi M, Brandi A, Magull J, Schill H, de Meijere A. New Highly Strained Multifunctional Heterocycles by Intramolecular Cycloadditions of Nitrones to Bicyclopropylidene Moieties. European J Org Chem 2006. [DOI: 10.1002/ejoc.200600417] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
|
35
|
Cacciari B, Romagnoli R, Baraldi PG, Ros TD, Spalluto G. CC-1065 and the duocarmycins: recent developments. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.10.12.1853] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
36
|
|
37
|
Kastrinsky DB, Boger DL. Effective Asymmetric Synthesis of 1,2,9,9a-Tetrahydrocyclopropa[c]benzo[e]indol-4-one (CBI). J Org Chem 2004; 69:2284-9. [PMID: 15049620 DOI: 10.1021/jo035465x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A short, asymmetric synthesis of the 1,2,9,9a-tetrahydrocyclopropa[c]benzo[e]indol-4-one (CBI) analogue of the CC-1065 and duocarmycin alkylation subunits is detailed that employs an effective enzymatic desymmetrization reaction of prochiral diol 12 using a commercially available Pseudomonas sp. lipase. The optically active monoacetate (S)-13 is furnished in exceptional conversions (88%) and optical purity (99% ee) and serves as an intermediate for the preparation of either enantiomer of CBI. Similarly, the Pseudomonas sp. lipase resolved the racemic intermediate 19, affording advanced intermediates of CBI in good conversions and optical purity (99% ee), and provided an alternative approach to the preparation of optically active CBI derivatives.
Collapse
Affiliation(s)
- David B Kastrinsky
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | |
Collapse
|
38
|
Parrish JP, Kastrinsky DB, Stauffer F, Hedrick MP, Hwang I, Boger DL. Establishment of substituent effects in the DNA binding subunit of CBI analogues of the duocarmycins and CC-1065. Bioorg Med Chem 2003; 11:3815-38. [PMID: 12901927 DOI: 10.1016/s0968-0896(03)00194-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
An extensive series of CBI analogues of the duocarmycins and CC-1065 exploring substituent effects within the first indole DNA binding subunit is detailed. In general, substitution at the indole C5 position led to cytotoxic potency enhancements that can be >/=1000-fold providing simplified analogues containing a single DNA binding subunit that are more potent (IC(50)=2-3 pM) than CBI-TMI, duocarmycin SA, or CC-1065.
Collapse
Affiliation(s)
- Jay P Parrish
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
39
|
Wang Y, Yuan H, Wright SC, Wang H, Larrick JW. Synthesis and preliminary cytotoxicity study of glucuronide derivatives of CC-1065 analogues. Bioorg Med Chem 2003; 11:1569-75. [PMID: 12628680 DOI: 10.1016/s0968-0896(02)00603-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Glucuronide derivatives of CBI-bearing CC-1065 analogues have been synthesized, and their cytotoxicities tested against U937 leukemia cells. The new compounds show potent antitumor activity in vitro. Compounds 1 and 2, and their corresponding glucuronides 3 and 4 have IC(50) values of 0.6, 0.1, 1.4 and 0.6 nM, respectively. Glucuronide 3 is approximately 2-fold less toxic than its hydroxyl counterpart 1, and glucuronide 4 is approximately 6-fold less toxic than its hydroxyl counterpart 2. Glucuronides 3 and 4 may have limited use in the ADEPT approach. However, they may be used as antitumor agents in a conventional way.
Collapse
Affiliation(s)
- Yuqiang Wang
- Panorama Research, Inc., 2462 Wyandotte Street, Mountain View, CA 94043, USA.
| | | | | | | | | |
Collapse
|
40
|
Wolkenberg SE, Boger DL. Mechanisms of in situ activation for DNA-targeting antitumor agents. Chem Rev 2002; 102:2477-95. [PMID: 12105933 DOI: 10.1021/cr010046q] [Citation(s) in RCA: 288] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Scott E Wolkenberg
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | |
Collapse
|
41
|
Ambroise Y, Boger DL. The DNA phosphate backbone is not involved in catalysis of the duocarmycin and CC-1065 DNA alkylation reaction. Bioorg Med Chem Lett 2002; 12:303-6. [PMID: 11814783 DOI: 10.1016/s0960-894x(01)00740-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The rates of DNA alkylation were established for the reaction of (+)-duocarmycin SA (1) with the native duplex d(G(1)TCAATTAGTC(11))*d(G(12)ACTAATTGAC(22)), an 11 bp deoxyoligonucleotide that contains a single high-affinity alkylation site that has been structurally characterized at exquisite resolution, and modified duplexes in which the four backbone phosphates proximal to the C4 carbonyl of bound 1 were replaced with methylphosphonates. All were found to react at comparable rates establishing that these backbone phosphates do not participate in catalysis of the DNA alkylation reaction.
Collapse
Affiliation(s)
- Yves Ambroise
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
42
|
Park HJ. Evidence for a common molecular basis for sequence recognition of N3-guanine and N3-adenine DNA adducts involving the covalent bonding reaction of (+)-CC-1065. Arch Pharm Res 2002; 25:11-24. [PMID: 11885687 DOI: 10.1007/bf02975255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The antitumor antibiotic (+)-CC-1065 can alkylate N3 of guanine in certain sequences. A previous high-field 1H NMR study on the (+)-CC-1065d[GCGCAATTG*CGC]2 adduct (* indicates the drug alkylation site) showed that drug modification on N3 of guanine results in protonation of the cross-strand cytosine [Park, H.-J.; Hurley, L. H. J. Am. Chem. Soc. 1997, 119, 629.]. In this contribution we describe a further analysis of the NMR data sets together with restrained molecular dynamics. This study provides not only a solution structure of the (+)-CC-1065(N3-guanine) DNA duplex adduct but also new insight into the molecular basis for the sequence-specific interaction between (+)-CC-1065 and N3-guanine in the DNA duplex. On the basis of NOESY data, we propose that the narrow minor groove at the 7T8T step and conformational kinks at the junctions of 16C17A and 18A19T are both related to DNA bending in the drugDNA adduct. Analysis of the one-dimensional 1H NMR (in H2O) data and rMD trajectories strongly suggests that hydrogen bonding linkages between the 8-OH group of the (+)-CC-1065 A-subunit and the 9G10C phosphate via a water molecule are present. All the phenomena observed here in the (+)-CC-1065(N3-guanine) adduct at 5'-AATTG* are reminiscent of those obtained from the studies on the (+)-CC-1065(N3-adenine) adduct at 5'-AGTTA*, suggesting that (+)-CC-1065 takes advantage of the conformational flexibility of the 5'-TPu step to entrap the bent structure required for the covalent bonding reaction. This study reveals a common molecular basis for (+)-CC-1065 alkylation at both 5'-TTG* and 5'-TTA*, which involves a trapping out of sequence-dependent DNA conformational flexibility as well as sequence-dependent general acid and general base catalysis by duplex DNA.
Collapse
Affiliation(s)
- Hyun-Ju Park
- College of Pharmacy, Sungkyunkwan University, Suwon, Korea.
| |
Collapse
|
43
|
Jahn U, Hartmann P, Dix I, Jones P. Oxidative Enolate Cyclizations of 6,8-Nonadienoates: Towards the Synthesis of Prostanes. European J Org Chem 2002. [DOI: 10.1002/1099-0690(200202)2002:4<718::aid-ejoc718>3.0.co;2-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
44
|
Boger DL, Brunette SR, Garbaccio RM. Synthesis and evaluation of a series of C3-substituted CBI analogues of CC-1065 and the duocarmycins. J Org Chem 2001; 66:5163-73. [PMID: 11463270 DOI: 10.1021/jo010309g] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis and evaluation of a series of C3-substituted 1,2,9,9a-tetrahydrocyclopropa[c]benz[e]indol-4-one (CBI) analogues of the CC-1065 and duocarmycin alkylation subunits are detailed, including methyl and the full series of halogens. Introduction of the key substituent was accomplished through directed metalation of the seco-CBI core followed by reaction of the resultant aryllithium with an appropriate electrophile. C3-Bromo and iodo substituents were only effectively installed on the hindered aryllithium intermediate using a novel halogen source, 1-bromo- and 1-iodophenylacetylene, that should prove generally useful beyond the studies we describe. X-ray crystal structures of the series show substantial distortion in the vinylogous amide due to unfavorable steric interactions between the C3-substituent and the N(2)-carbamate. In the halogen series, the N2-C2a bond length and the torsional angle chi(1) smoothly increase with the increasing size of the C3 substituent indicative of decreasing vinylogous amide conjugation through the series (H > F > Cl > Br > I). Unlike N-Boc-CBI, this series of substituted CBI analogues proved remarkably reactive toward solvolysis even at pH 7, where the reaction is uncatalyzed and the reactivity order (I > Br > Cl > F > H) follows a trend consistent with the extent of vinylogous amide conjugation and stabilization. The implications of these observations on the source of catalysis for the DNA alkylation reaction of the natural products are discussed.
Collapse
Affiliation(s)
- D L Boger
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
45
|
Sparks SM, Shea KJ. Vinyl imidates in cycloaddition reactions: synthesis of (±)-alloyohimbane. Tetrahedron Lett 2000. [DOI: 10.1016/s0040-4039(00)01093-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
46
|
Boger DL, Searcey M, Tse WC, Jin Q. Bifunctional alkylating agents derived from duocarmycin SA: potent antitumor activity with altered sequence selectivity. Bioorg Med Chem Lett 2000; 10:495-8. [PMID: 10743956 DOI: 10.1016/s0960-894x(00)00042-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The series of four dimers derived from head to tail coupling of the two enantiomers of the duocarmycin SA alkylation subunit are described.
Collapse
Affiliation(s)
- D L Boger
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
47
|
Boger DL, Garbaccio RM. Shape-Dependent Catalysis: Insights into the Source of Catalysis for the CC-1065 and Duocarmycin DNA Alkylation Reaction. Acc Chem Res 1999. [DOI: 10.1021/ar9800946] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dale L. Boger
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Robert M. Garbaccio
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| |
Collapse
|
48
|
Boger DL, Garbaccio RM. A Novel Class of CC-1065 and Duocarmycin Analogues Subject to Mitomycin-Related Reductive Activation. J Org Chem 1999; 64:8350-8362. [PMID: 11674758 DOI: 10.1021/jo991301y] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new class of DNA alkylating agents is described that incorporate the quinone of the mitomycins, which is thought to impart tumor cell selectivity as a result of preferential reduction and activation in hypoxic tumors, into the AT-selective binding framework of the duocarmycins capable of mitomycin-like reductive activation and duocarmycin-like spirocyclization and subsequent DNA alkylation. Consistent with this design, the quinone prodrugs fail to alkylate DNA unless reductively activated and then do so with an adenine N3 alkylation sequence selectivity identical to that of the duocarmycins. Additionally, the agents exhibit a selectivity toward DT-Diaphorase (NQO1)-containing versus DT-Diaphorase-deficient (resistant) tumor cell lines, and they were shown to be effective substrates for reduction by recombinant human DT-Diaphorase. As such, the agents constitute effective duocarmycin and CC-1065 analogues subject to reductive activation. In addition, the solvolysis pH rate dependence of a series of reactive spirocyclopropanes revealed a unique and inverted order of reactivity at pH 7 versus pH 3. This behavior and the structural features responsible for it are consistent with an acid-catalyzed reaction at pH 3, but a direct uncatalyzed S(N)2 reaction at pH 7 that is not subject to acid catalysis.
Collapse
Affiliation(s)
- Dale L. Boger
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | | |
Collapse
|
49
|
Radical cyclisations promoted by dimanganese decacarbonyl: A new and flexible approach to 5-membered N-heterocycles. Tetrahedron Lett 1999. [DOI: 10.1016/s0040-4039(99)01271-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
50
|
Boger DL, Garbaccio RM. Are the Duocarmycin and CC-1065 DNA Alkylation Reactions Acid-Catalyzed? Solvolysis pH-Rate Profiles Suggest They Are Not. J Org Chem 1999; 64:5666-5669. [PMID: 11674637 DOI: 10.1021/jo990762g] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A study of the solvolysis pH-rate profiles for two key reactive CC-1065/duocarmycin alkylation subunit analogues is detailed. Unlike the authentic alkylation subunits and N-BOC-CBI (4) which are too stable to establish complete solvolysis pH-rate profiles, the analogues N-BOC-CBQ (5) and N-BOC-CNA (6) are reactive throughout the pH range of 2-12. Moreover, they possess progressively diminished vinylogous amide conjugation resulting in a corresponding progressively increasing reactivity adopting and reflecting conformations analogous to that proposed for DNA-bound CC-1065. For both, the acid-catalyzed reaction was observed only at the lower pH of 2-5, and the uncatalyzed solvolysis reaction rate dominated at pH >/=6, indicating that the CC-1065 and duocarmycin DNA alkylation reaction observed at pH 7.4 need not be an acid-catalyzed reaction. The studies provide further strong evidence that catalysis for the DNA alkylation reaction (pH 7.4) is derived from a DNA binding-induced conformational change in the agents that disrupts the stabilizing alkylation subunit vinylogous amide conjugation activating the agents for nucleophilic attack independent of pH.
Collapse
Affiliation(s)
- Dale L. Boger
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | | |
Collapse
|