1
|
Affiliation(s)
- Christina M. Geiselhart
- Soft Matter Synthesis Laboratory, Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
- Macromolecular Architectures, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstraße 18, Karlsruhe 76128, Germany
| | - Wenwen Xue
- Soft Matter Synthesis Laboratory, Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
- Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstraße 18, Karlsruhe 76128, Germany
| | - Christopher Barner-Kowollik
- Macromolecular Architectures, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstraße 18, Karlsruhe 76128, Germany
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Hatice Mutlu
- Macromolecular Architectures, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstraße 18, Karlsruhe 76128, Germany
| |
Collapse
|
2
|
Ferrer-Gago FJ, Koh LQ. Methods and Approaches for the Solid-Phase Synthesis of Peptide Alcohols. Chempluschem 2020; 85:641-652. [PMID: 32237227 DOI: 10.1002/cplu.201900749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/10/2020] [Indexed: 11/08/2022]
Abstract
Many methods have been developed for attaching an alcohol functionality to a solid support. However, not all of these methods are used to obtain peptide alcohols. In this Minireview, we will discuss several of the most important methods and approaches for the synthesis of peptide alcohols and the attachment of hydroxy groups to a solid support for the synthesis of cyclic peptides. Some of the methods include the use of functionalized Wang resin and the attachment of an alcohol to an enol ether resin. We also discuss the use of the chlorotrityl resin, one of the most common linkers used to obtain peptide alcohols. In addition, we outline the recently developed resins with the Rink, Ramage and Sieber handles. The majority of these methods have been used to synthesize many important drugs, such as octreotide and the antibiotic peptaibols.
Collapse
Affiliation(s)
- Fernando J Ferrer-Gago
- p53 Laboratory, Agency for Science Technology and Research (A*STAR) 8A Biomedical Grove, #06-04/05 Neuros/Immunos., Singapore, 138648, Singapore
| | - Li Quan Koh
- p53 Laboratory, Agency for Science Technology and Research (A*STAR) 8A Biomedical Grove, #06-04/05 Neuros/Immunos., Singapore, 138648, Singapore
| |
Collapse
|
3
|
Walton DP, Dougherty DA. A General Strategy for Visible-Light Decaging Based on the Quinone Trimethyl Lock. J Am Chem Soc 2017; 139:4655-4658. [DOI: 10.1021/jacs.7b01548] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- David P. Walton
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Dennis A. Dougherty
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
4
|
Choi I, Bae SW, Yeo WS. Recyclable Surfaces for Amine Conjugation Chemistry via Redox Reaction. B KOREAN CHEM SOC 2017. [DOI: 10.1002/bkcs.11079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Inseong Choi
- Department of Bioscience and Biotechnology; Bio/Molecular Informatics Center, Konkuk University; Seoul 143-701 Korea
| | - Se Won Bae
- Green Materials and Process Group, Research Institute of Sustainable Manufacturing System; Korea Institute of Industrial Technology; Cheonan 31056 Korea
| | - Woon-Seok Yeo
- Department of Bioscience and Biotechnology; Bio/Molecular Informatics Center, Konkuk University; Seoul 143-701 Korea
| |
Collapse
|
5
|
Huvelle S, Alouane A, Le Saux T, Jullien L, Schmidt F. Syntheses and kinetic studies of cyclisation-based self-immolative spacers. Org Biomol Chem 2017; 15:3435-3443. [DOI: 10.1039/c7ob00121e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Photochemical activation has allowed the precise determination of the disassembly times of cyclisation-based self-immolative spacers. Results confirmed large differences with previously studied elimination-based self-immolative spacers.
Collapse
Affiliation(s)
- Steve Huvelle
- Institut Curie
- PSL Research University
- CNRS UMR3666
- INSERM U1143
- Paris
| | - Ahmed Alouane
- Institut Curie
- PSL Research University
- CNRS UMR3666
- INSERM U1143
- Paris
| | - Thomas Le Saux
- École Normale Supérieure
- PSL Research University
- UPMC Univ Paris 06
- CNRS
- Département de Chimie
| | - Ludovic Jullien
- École Normale Supérieure
- PSL Research University
- UPMC Univ Paris 06
- CNRS
- Département de Chimie
| | - Frédéric Schmidt
- Institut Curie
- PSL Research University
- CNRS UMR3666
- INSERM U1143
- Paris
| |
Collapse
|
6
|
Sabatino G, Guryanov I, Rombecchi A, Zanon J, Ricci A, Cabri W, Papini AM, Rovero P. Production of peptides as generic drugs: a patent landscape of octreotide. Expert Opin Ther Pat 2016; 26:485-95. [DOI: 10.1517/13543776.2016.1158810] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Mohammadi Ziarani G, Hassanzadeh Z, Gholamzadeh P, Asadi S, Badiei A. Advances in click chemistry for silica-based material construction. RSC Adv 2016. [DOI: 10.1039/c5ra26034e] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Click chemistry is undoubtedly the most powerful 1,3-dipolar cycloaddition reaction in organic synthesis.
Collapse
Affiliation(s)
| | | | | | - Shima Asadi
- Department of Chemistry
- Alzahra University
- Tehran
- Iran
| | - Alireza Badiei
- School of Chemistry
- College of Science
- University of Tehran
- Tehran
- Iran
| |
Collapse
|
8
|
Tao Z, Peng K, Fan Y, Liu Y, Yang H. Multi-stimuli responsive supramolecular hydrogels based on Fe3+ and diblock copolymer micelle complexation. Polym Chem 2016. [DOI: 10.1039/c5py01742d] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a multi-stimuli responsive supramolecular hydrogel with great potential for biomedical application, which was composed of the micelle-forming diblock copolymer and physically cross-linked by complexation between ferric ions and carboxylic acid groups, exhibiting gel–sol transition caused by UV irradiation, multidentate ligands (EDTA) and redox agents (Na2S2O4).
Collapse
Affiliation(s)
- Zhen Tao
- CAS Key Laboratory of Soft Matter Chemistry
- School of Chemistry and Materials Science
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Kang Peng
- CAS Key Laboratory of Soft Matter Chemistry
- School of Chemistry and Materials Science
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Yujiao Fan
- CAS Key Laboratory of Soft Matter Chemistry
- School of Chemistry and Materials Science
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Yunfei Liu
- CAS Key Laboratory of Soft Matter Chemistry
- School of Chemistry and Materials Science
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Haiyang Yang
- CAS Key Laboratory of Soft Matter Chemistry
- School of Chemistry and Materials Science
- University of Science and Technology of China
- Hefei
- P. R. China
| |
Collapse
|
9
|
Small LJ, Wheeler DR, Spoerke ED. Nanoporous membranes with electrochemically switchable, chemically stabilized ionic selectivity. NANOSCALE 2015; 7:16909-20. [PMID: 26411335 DOI: 10.1039/c5nr02939b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Nanopore size, shape, and surface charge all play important roles in regulating ionic transport through nanoporous membranes. The ability to control these parameters in situ provides a means to create ion transport systems tunable in real time. Here, we present a new strategy to address this challenge, utilizing three unique electrochemically switchable chemistries to manipulate the terminal functional group and control the resulting surface charge throughout ensembles of gold plated nanopores in ion-tracked polycarbonate membranes 3 cm(2) in area. We demonstrate the diazonium mediated surface functionalization with (1) nitrophenyl chemistry, (2) quinone chemistry, and (3) previously unreported trimethyl lock chemistry. Unlike other works, these chemistries are chemically stabilized, eliminating the need for a continuously applied gate voltage to maintain a given state and retain ionic selectivity. The effect of surface functionalization and nanopore geometry on selective ion transport through these functionalized membranes is characterized in aqueous solutions of sodium chloride at pH = 5.7. The nitrophenyl surface allows for ionic selectivity to be irreversibly switched in situ from cation-selective to anion-selective upon reduction to an aminophenyl surface. The quinone-terminated surface enables reversible changes between no ionic selectivity and a slight cationic selectivity. Alternatively, the trimethyl lock allows ionic selectivity to be reversibly switched by up to a factor of 8, approaching ideal selectivity, as a carboxylic acid group is electrochemically revealed or hidden. By varying the pore shape from cylindrical to conical, it is demonstrated that a controllable directionality can be imparted to the ionic selectivity. Combining control of nanopore geometry with stable, switchable chemistries facilitates superior control of molecular transport across the membrane, enabling tunable ion transport systems.
Collapse
Affiliation(s)
- Leo J Small
- Sandia National Laboratories, PO Box 5800, MS 1411, Albuquerque, NM, USA 87185.
| | | | | |
Collapse
|
10
|
Alouane A, Labruère R, Le Saux T, Schmidt F, Jullien L. Self-immolative spacers: kinetic aspects, structure-property relationships, and applications. Angew Chem Int Ed Engl 2015; 54:7492-509. [PMID: 26053475 DOI: 10.1002/anie.201500088] [Citation(s) in RCA: 259] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Indexed: 11/08/2022]
Abstract
Self-immolative spacers are covalent assemblies tailored to correlate the cleavage of two chemical bonds after activation of a protective part in a precursor: Upon stimulation, the protective moiety is removed, which generates a cascade of disassembling reactions leading to the temporally sequential release of smaller molecules. Originally introduced to overcome limitations for drug delivery, self-immolative spacers have gained wide interest in medicinal chemistry, analytical chemistry, and material science. For most applications, the kinetics of the disassembly of the activated self-immolative spacer governs functional properties. This Review addresses kinetic aspects of self-immolation. It provides information for selecting a particular self-immolative motif for a specific demand. Moreover, it should help researchers design kinetic experiments and fully exploit the rich perspectives of self-immolative spacers.
Collapse
Affiliation(s)
- Ahmed Alouane
- Ecole Normale Supérieure-PSL Research University, Department of Chemistry, 24, rue Lhomond, 75005 Paris (France).,Sorbonne Universités, UPMC Univ Paris 06, PASTEUR, 75005 Paris (France).,CNRS, UMR 8640 PASTEUR, 75005 Paris (France).,Institut Curie, Centre de Recherche, 26, rue d'Ulm, 75248 Paris (France).,CNRS, UMR 3666, 75248 Paris (France).,INSERM, U 1143, 75248 Paris (France)
| | - Raphaël Labruère
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR CNRS 8182, Université Paris Sud, 91405 Orsay Cedex (France)
| | - Thomas Le Saux
- Ecole Normale Supérieure-PSL Research University, Department of Chemistry, 24, rue Lhomond, 75005 Paris (France).,Sorbonne Universités, UPMC Univ Paris 06, PASTEUR, 75005 Paris (France).,CNRS, UMR 8640 PASTEUR, 75005 Paris (France)
| | - Frédéric Schmidt
- Institut Curie, Centre de Recherche, 26, rue d'Ulm, 75248 Paris (France). .,CNRS, UMR 3666, 75248 Paris (France). .,INSERM, U 1143, 75248 Paris (France).
| | - Ludovic Jullien
- Ecole Normale Supérieure-PSL Research University, Department of Chemistry, 24, rue Lhomond, 75005 Paris (France). .,Sorbonne Universités, UPMC Univ Paris 06, PASTEUR, 75005 Paris (France). .,CNRS, UMR 8640 PASTEUR, 75005 Paris (France).
| |
Collapse
|
11
|
Alouane A, Labruère R, Le Saux T, Schmidt F, Jullien L. Selbstzerlegende Spacer: kinetische Aspekte, Struktur-Eigenschafts-Beziehungen und Anwendungen. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201500088] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Kamat DP, Tilve SG, Kamat VP, Kirtany JK. Syntheses and Biological Activities of Chroman-2-ones. A Review. ORG PREP PROCED INT 2015. [DOI: 10.1080/00304948.2015.983805] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Thalluri K, Paul A, Manne SR, Dev D, Mandal B. Microwave assisted chemoselective organocatalytic peptide alcohol synthesis from C-terminal amide. RSC Adv 2014. [DOI: 10.1039/c4ra09091h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
14
|
Chern CY, Yek YL, Jan JD, Kan WM. Synthesis of the Chiral Pair of a Novel Thromboxane Antagonist, 3-[2-(3-Benzenesulfonylamino-7-oxabicyclo[2.2.1]hept-2-yl-methyl)phenyl] Propionic Acid. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.200100132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Reddy MVR, Mallireddigari MR, Pallela VR, Cosenza SC, Billa VK, Akula B, Subbaiah DRCV, Bharathi EV, Padgaonkar A, Lv H, Gallo JM, Reddy EP. Design, synthesis, and biological evaluation of (E)-N-aryl-2-arylethenesulfonamide analogues as potent and orally bioavailable microtubule-targeted anticancer agents. J Med Chem 2013; 56:5562-86. [PMID: 23750455 DOI: 10.1021/jm400575x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A series of novel (E)-N-aryl-2-arylethenesulfonamides (6) were synthesized and evaluated for their anticancer activity. Some of the compounds in this series showed potent cytotoxicity against a wide spectrum of cancer cell-lines (IC50 values ranging from 5 to 10 nM) including all drug resistant cell-lines. Nude mice xenograft assays with compound (E)-N-(3-amino-4-methoxyphenyl)-2-(2',4',6'-trimethoxyphenyl)ethenesulfonamide (6t) showed dramatic reduction in tumor size, indicating their in vivo potential as anticancer agents. A preliminary drug development study with compound 6t is predicted to have increased blood-brain barrier permeability relative to many clinically used antimitotic agents. Mechanistic studies indicate that 6t and some other analogues disrupted microtubule formation, formation of mitotic spindles, and arrest of cells in mitotic phase. Compound 6t inhibited purified tubulin polymerization in vitro and in vivo and circumvented drug resistance mediated by P-glycoprotein. Compound 6t specifically competed with colchicine binding to tubulin and with similar avidity as podophylltoxin, indicating its binding site on tubulin.
Collapse
Affiliation(s)
- M V Ramana Reddy
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai , 1425 Madison Avenue, New York, New York 10029-6514, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ciampi S, James M, Choudhury MH, Darwish NA, Gooding JJ. The detailed characterization of electrochemically switchable molecular assemblies on silicon electrodes. Phys Chem Chem Phys 2013; 15:9879-90. [DOI: 10.1039/c3cp50355k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Levine MN, Raines RT. Trimethyl lock: A trigger for molecular release in chemistry, biology, and pharmacology. Chem Sci 2012; 3:2412-2420. [PMID: 23181187 PMCID: PMC3501758 DOI: 10.1039/c2sc20536j] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The trimethyl lock is an o-hydroxydihydrocinnamic acid derivative in which unfavorable steric interactions between three pendant methyl groups encourage lactonization to form a hydrocoumarin. This reaction is extremely rapid, even when the electrophile is an amide and the leaving group is an amino group of a small-molecule drug, fluorophore, peptide, or nucleic acid. O-Acylation of the phenolic hydroxyl group prevents reaction, providing a trigger for the reaction. Thus, the release of an amino group from an amide can be coupled to the hydrolysis of a designated ester (or to another chemical reaction that regenerates the hydroxyl group). Trimethyl lock conjugates are easy to synthesize, making the trimethyl lock a highly versatile module for chemical biology and related fields.
Collapse
Affiliation(s)
- Michael N. Levine
- Department of Biochemistry, University of Wisconsin–Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Ronald T. Raines
- Department of Biochemistry, University of Wisconsin–Madison, 433 Babcock Drive, Madison, WI 53706, USA
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, WI 53706, USA
| |
Collapse
|
18
|
Cho H, Bae J, Garripelli VK, Anderson JM, Jun HW, Jo S. Redox-sensitive polymeric nanoparticles for drug delivery. Chem Commun (Camb) 2012; 48:6043-5. [DOI: 10.1039/c2cc31463k] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Ciampi S, James M, Le Saux G, Gaus K, Justin Gooding J. Electrochemical “Switching” of Si(100) Modular Assemblies. J Am Chem Soc 2011; 134:844-7. [DOI: 10.1021/ja210048x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Simone Ciampi
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052,
Australia
| | - Michael James
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052,
Australia
- Bragg Institute, Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - Guillaume Le Saux
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052,
Australia
| | - Katharina Gaus
- Centre for Vascular Research, The University of New South Wales, Sydney, NSW 2052,
Australia
| | - J. Justin Gooding
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052,
Australia
| |
Collapse
|
20
|
Blencowe CA, Russell AT, Greco F, Hayes W, Thornthwaite DW. Self-immolative linkers in polymeric delivery systems. Polym Chem 2011. [DOI: 10.1039/c0py00324g] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
21
|
Tailhades J, Gidel MA, Grossi B, Lécaillon J, Brunel L, Subra G, Martinez J, Amblard M. Synthesis of Peptide Alcohols on the Basis of an O-N Acyl-Transfer Reaction. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200904276] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Tailhades J, Gidel MA, Grossi B, Lécaillon J, Brunel L, Subra G, Martinez J, Amblard M. Synthesis of Peptide Alcohols on the Basis of an O-N Acyl-Transfer Reaction. Angew Chem Int Ed Engl 2009; 49:117-20. [DOI: 10.1002/anie.200904276] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Blanche EA, Maskell L, Colucci MA, Whatmore JL, Moody CJ. Synthesis of potential prodrug systems for reductive activation. Prodrugs for anti-angiogenic isoflavones and VEGF receptor tyrosine kinase inhibitory oxindoles. Tetrahedron 2009. [DOI: 10.1016/j.tet.2009.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
24
|
Abstract
An exciting new direction in responsive liposome research is endogenous triggering of liposomal payload release by overexpressed enzyme activity in affected tissues and offers the unique possibility of active and site-specific release. Bringing to fruition the fully expected capabilities of this new class of triggered liposomal delivery system requires a collection of liposome systems that respond to different upregulated enzymes; however, a relatively small number currently exist. Here we show that stable, approximately 100 nm diameter liposomes can be made from previously unreported quinone-dioleoyl phosphatidylethanolamine (Q-DOPE) lipids, and complete payload release (quenched fluorescent dye) from Q-DOPE liposomes occurs upon their redox activation when the quinone headgroup possesses specific substituents. The key component of the triggerable, contents-releasing Q-DOPE liposomes is a "trimethyl-locked" quinone redox switch attached to the N-terminus of DOPE lipids that undergoes a cleavage event upon two-electron reduction. Payload release by aggregation and leakage of "uncapped" Q-DOPE liposomes is supported by results from liposomes wherein deliberate alteration of the "trimethyl-locked" switch completely deactivates the redox-destructible phenomena (liposome opening). We expect that Q-DOPE liposomes and their variants will be important in treatment of diseases with associated tissues that overexpress quinone reductases, such as cancers and inflammatory diseases, because the quinone redox switch is a known substrate for this group of reductases.
Collapse
Affiliation(s)
- Winston Ong
- Department of Chemistry and Center for Biomodular Multiscale Systems, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | | | | |
Collapse
|
25
|
Zhou W, Andrews C, Liu J, Shultz JW, Valley MP, Cali JJ, Hawkins EM, Klaubert DH, Bulleit RF, Wood KV. Self-Cleavable Bioluminogenic Luciferin Phosphates as Alkaline Phosphatase Reporters. Chembiochem 2008; 9:714-8. [DOI: 10.1002/cbic.200700644] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Crosby IT, Pietersz GA, Ripper JA. Synthesis of Succinimidoalkylbenzaldehyde Analogues: Potential Bifunctional Linkers for Bioconjugation. Aust J Chem 2008. [DOI: 10.1071/ch07404] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A series of novel 4-substituted benzaldehydes containing a succinimide moiety were synthesized as potential bifunctional linkers for the purpose of binding therapeutic drugs to antibodies raised against cancer cells. These potential benzaldehyde linkers varied in the nature of the para functionality so as to provide a range of potential acid labilities. Synthesis of the linkers involved a Williamson ether formation to make the ether linker 1, a Sonagoshira palladium-catalyzed coupling to synthesize the skeleton of the alkyl linker 2, and formation of an amide bond directly from a methyl ester gave the 4-substituted amide linker 3. As an example of the type of acetal that can be produced using these linkers, uridine was used as an analogue of the cytotoxic compound 5-fluorouridine to give the cyclic acetals 19–21.
Collapse
|
27
|
Maskell L, Blanche EA, Colucci MA, Whatmore JL, Moody CJ. Synthesis and evaluation of prodrugs for anti-angiogenic pyrrolylmethylidenyl oxindoles. Bioorg Med Chem Lett 2007; 17:1575-8. [PMID: 17254788 DOI: 10.1016/j.bmcl.2006.12.108] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Revised: 12/21/2006] [Accepted: 12/26/2006] [Indexed: 11/24/2022]
Abstract
Potential prodrugs of inhibitors of VEGF-induced angiogenesis have been investigated. The prodrug systems studied were the 4-nitrobenzyl, 2-nitrophenylacetyl and 3-methyl-3-(3,6-dimethylbenzo-1,4-quinon-2-yl)butanoyl groups, readily attached to acidic OH or NH groups in drug molecules, and released upon bioreductive activation. The anti-angiogenic compounds studied were the pyrrolylmethylidenyl oxindole SU5416 (semaxanib) and its novel 6-hydroxy derivative. The potentially pro-anti-angiogenic compounds were assayed for their ability to block VEGF-induced angiogenesis in HUVECS in comparison to the free agents.
Collapse
Affiliation(s)
- Lesley Maskell
- Peninsula Medical School, St. Luke's Campus, Exeter EX1 2LU, UK
| | | | | | | | | |
Collapse
|
28
|
Yeo WS, Mrksich M. Electroactive self-assembled monolayers that permit orthogonal control over the adhesion of cells to patterned substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:10816-20. [PMID: 17129065 PMCID: PMC2536489 DOI: 10.1021/la061212y] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
This article describes an electroactive substrate that displays two independent dynamic functions for controlling the adhesion of cells. The approach is based on self-assembled monolayers on gold that are patterned into regions presenting the Arg-Gly-Asp peptide cell adhesion ligand. The patterned regions differ in the electrochemical properties of the linkers that tether the peptides to the monolayer. In this work, three distinct chemistries are employed that provide for release of the ligand on application of a negative potential, release of the ligand on application of a positive potential, and no change in response to a potential. Cells were allowed to attach to a monolayer patterned into circular regions comprising the three chemistries. Treatment with electric potentials of 650 or -650 mV resulted in the selective release of adherent cells only from regions that display the relevant electroactive groups. This example establishes the preparation of dynamic substrates with multiple functions and will be important to preparing model cultures derived from multiple cell types, with control over the temporal interactions of each cell population.
Collapse
Affiliation(s)
- Woon-Seok Yeo
- Department of Chemistry and Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | | |
Collapse
|
29
|
Rohde RD, Agnew HD, Yeo WS, Bailey RC, Heath JR. A non-oxidative approach toward chemically and electrochemically functionalizing Si(111). J Am Chem Soc 2006; 128:9518-25. [PMID: 16848489 PMCID: PMC3695602 DOI: 10.1021/ja062012b] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A general method for the non-oxidative functionalization of single-crystal silicon(111) surfaces is described. The silicon surface is fully acetylenylated using two-step chlorination/alkylation chemistry. A benzoquinone-masked primary amine is attached to this surface via Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition ("click" chemistry). The benzoquinone is electrochemically reduced, resulting in quantitative cleavage of the molecule and exposing the amine terminus. Molecules presenting a carboxylic acid have been immobilized to the exposed amine sites. X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), cyclic voltammetry (CV), and contact angle goniometry were utilized to characterize and quantitate each step in the functionalization process. This work represents a strategy for providing a general platform that can incorporate organic and biological molecules on Si(111) with minimal oxidation of the silicon surface.
Collapse
Affiliation(s)
- Rosemary D. Rohde
- Division of Chemistry and Chemical Engineering, MC 127-72, California Institute of Technology, Pasadena, California 91125 Fax: 626-395-2355; Phone: 626-395-6079
| | - Heather D. Agnew
- Division of Chemistry and Chemical Engineering, MC 127-72, California Institute of Technology, Pasadena, California 91125 Fax: 626-395-2355; Phone: 626-395-6079
| | - Woon-Seok Yeo
- Division of Chemistry and Chemical Engineering, MC 127-72, California Institute of Technology, Pasadena, California 91125 Fax: 626-395-2355; Phone: 626-395-6079
| | - Ryan C. Bailey
- Division of Chemistry and Chemical Engineering, MC 127-72, California Institute of Technology, Pasadena, California 91125 Fax: 626-395-2355; Phone: 626-395-6079
| | - James R. Heath
- Division of Chemistry and Chemical Engineering, MC 127-72, California Institute of Technology, Pasadena, California 91125 Fax: 626-395-2355; Phone: 626-395-6079
| |
Collapse
|
30
|
Yan C, Matsuda W, Pepperberg DR, Zimmerman SC, Leckband DE. Synthesis and characterization of an electroactive surface that releases gamma-aminobutyric acid (GABA). J Colloid Interface Sci 2005; 296:165-77. [PMID: 16168426 DOI: 10.1016/j.jcis.2005.08.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2005] [Revised: 08/15/2005] [Accepted: 08/16/2005] [Indexed: 11/25/2022]
Abstract
We report the synthesis and characterization of a new electroactive surface capable of releasing the neurotransmitter gamma-aminobutyric acid (GABA) upon reduction. The GABA was anchored to an alkanethiol via electrochemically active quinone (abbreviation, TM-GABA). The quinone unit, upon reduction to the hydroquinone, cyclizes to release GABA into solution. The half-life is 99 s. The self-assembled monolayer (SAM) of TM-GABA on gold was prepared and characterized with several surface sensitive techniques. X-ray photoelectron spectroscopy (XPS) explored the SAM formation of TM-GABA on Au surfaces. Cyclic voltammograms showed the ability to electrochemically control the quinone unit at the distal end of the chain. GABA was selectively released upon electrochemical reduction at a potential of -700 mV. The functional GABA terminal group was detected by surface plasmon resonance measurements of anti-GABA antibody binding.
Collapse
Affiliation(s)
- Chun Yan
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA.
| | | | | | | | | |
Collapse
|
31
|
Abstract
Solid-phase synthesis of biomolecules, of which peptides are the principal example, is well established. However, synthetic peptides containing modifications at the carboxy termini are often desired because of their potential therapeutic properties. As a result, there is a necessity for effective solid-phase strategies for the preparation of peptides with C-terminal end groups other than the usual carboxylic acid and carboxamide functionalities. The present article primarily reviews literature reports on methods for solid-phase synthesis of C-terminal modified peptides. In addition, general information about biological activities and/or synthetic applications of each individual class of peptide is also provided.
Collapse
Affiliation(s)
- Jordi Alsina
- Department of Chemistry, Indiana University-Purdue University Indianapolis, 402 North Blackford Street, Indianapolis, IN 46202, USA.
| | | |
Collapse
|
32
|
|
33
|
Li WR, Lin YS, Hsu NM. New phenanthridine linkers for the solid-phase synthesis of acid-containing compounds. JOURNAL OF COMBINATORIAL CHEMISTRY 2001; 3:634-43. [PMID: 11703162 DOI: 10.1021/cc0100464] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two novel, reusable phenanthridine linkers that use cerium ammonium nitrate as a cleavage reagent are described. These linkers are based on a disubstituted amide and are designed for the release of carboxylic acids but tolerate exposure to acidic, basic, and reductive reaction conditions. Application of these linkers to solid-phase organic synthesis affords products in excellent yields and high purities.
Collapse
Affiliation(s)
- W R Li
- Department of Chemistry, National Central University, Chung-Li, Taiwan 32054, ROC.
| | | | | |
Collapse
|
34
|
Affiliation(s)
- W S Yeo
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue Chicago, IL 60637, USA
| | | | | |
Collapse
|
35
|
|
36
|
Abstract
Nowadays it is rare to find an issue of a major chemistry journal without at least one article on solid-phase synthesis. This is hardly surprising: the technique promises an end to arduous work-up procedures and the ability to facilitate the creation of vast libraries of compounds using combinatorial techniques. No longer is the technique only of interest to those involved in peptide synthesis: an enormous variety of product classes have now been prepared on and isolated from the solid phase. It is the "linker" which is the focus of this article. The linker's ultimate function is to release a product from the support into solution: it does this, without exception, with a chemical change to the product at the former linkage site. Some linkers, apparently, are "traceless". But what, in fact, is "tracelessness"? Twenty years ago, in a climate where cleavage of a linker resulted in formation of a polar carboxylic acid as the vestige of the support, the concept was attractive. Today the chemist is faced with a myriad of novel linkers which have the ability to release products bearing most major functionalities at the former linkage site and we will argue here that the term "traceless", although currently in widespread use, is meaningless. Instead, we propose a new categorization of linkers based on the functionality they release upon cleavage, and suggest a nomenclature to underpin this categorization. We anticipate that the article will also serve to highlight areas of linker technology in need of further research.
Collapse
Affiliation(s)
- Alex C. Comely
- Department of Chemistry King's College, London, Strand London, WC2R 2LS (UK)
| | | |
Collapse
|
37
|
Guillier F, Orain D, Bradley M. Linkers and cleavage strategies in solid-phase organic synthesis and combinatorial chemistry. Chem Rev 2000; 100:2091-158. [PMID: 11749285 DOI: 10.1021/cr980040+] [Citation(s) in RCA: 389] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- F Guillier
- Department of Chemistry, Southampton University, Highfield, Southampton SO17 1BJ, U.K., and Alanex Division of Agouron Pharmaceuticals, A Werner Lambert Company, 3550 General Atomic Courts, San Diego, California 92121
| | | | | |
Collapse
|