1
|
Dodd RJ, Blundell CD, Sattelle BM, Enghild JJ, Milner CM, Day AJ. Chemical modification of hyaluronan oligosaccharides differentially modulates hyaluronan-hyaladherin interactions. J Biol Chem 2024; 300:107668. [PMID: 39128716 PMCID: PMC11460632 DOI: 10.1016/j.jbc.2024.107668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024] Open
Abstract
The glycosaminoglycan hyaluronan (HA) is a ubiquitous, nonsulfated polysaccharide with diverse biological roles mediated through its interactions with HA-binding proteins (HABPs). Most HABPs belong to the Link module superfamily, including the major HA receptor, CD44, and secreted protein TSG-6, which catalyzes the covalent transfer of heavy chains from inter-α-inhibitor onto HA. The structures of the HA-binding domains (HABDs) of CD44 (HABD_CD44) and TSG-6 (Link_TSG6) have been determined and their interactions with HA extensively characterized. The mechanisms of binding are different, with Link_TSG6 interacting with HA primarily via ionic and CH-π interactions, whereas HABD_CD44 binds solely via hydrogen bonds and van der Waals forces. Here, we exploit these differences to generate HA oligosaccharides, chemically modified at their reducing ends, that bind specifically and differentially to these target HABPs. Hexasaccharides (HA6AN) modified with 2- or 3-aminobenzoic acid (HA6-2AA, HA6-3AA) or 2-amino-4-methoxybenzoic acid (HA6-2A4MBA), had increased affinities for Link_TSG6 compared to unmodified HA6AN. These modifications did not increase the affinity for CD44_HABD. A model of HA6-2AA (derived from the solution dynamic 3D structure of HA4-2AA) was docked into the Link_TSG6 structure, providing evidence that the 2AA-carboxyl forms a salt bridge with Arginine-81. These modeling results informed a second series of chemical modifications for HA oligosaccharides, which again showed differential binding to the two proteins. Several modifications to HA4 and HA6 were found to convert the oligosaccharide into substrates for heavy chain transfer, whereas unmodified HA4 and HA6 are not. This study has generated valuable research tools to further understand HA biology.
Collapse
Affiliation(s)
- Rebecca J Dodd
- Wellcome Centre for Cell Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | | | | | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Caroline M Milner
- Wellcome Centre for Cell Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom; Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
| | - Anthony J Day
- Wellcome Centre for Cell Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom; Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
2
|
Yu M, Guo X, Zhang K, Kang X, Zhang S, Qian L. Hyaluronic Acid Unveiled: Exploring the Nanomechanics and Water Retention Properties at the Single-Molecule Level. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2616-2623. [PMID: 38251884 DOI: 10.1021/acs.langmuir.3c02961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Hyaluronic acid (HA), a vital glycosaminoglycan in living organisms, possesses remarkable mechanical and viscoelastic properties that have garnered significant attention in therapeutic, biomedical, and cosmetic applications. However, a comprehensive picture of the physicochemical and biocharacterization of HA at the single-molecule level remains elusive. In this work, atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) and molecular dynamics (MD) simulation were used to investigate the nanomechanics and water retention properties of HA at the single-molecule level. The present study aims to unravel the intricate details of the influence of molecular structure on HA behavior and shed light on its unique attributes. According to the force measurements, the energy used to stretch a HA chain in water is 8.45 kJ/mol, significantly surpassing that of Curdlan (3.45 kJ/mol) and chitin (2.23 kJ/mol), both of which possess molecular structures partially similar to that of HA. Intriguingly, the strength of the intrachain interaction of HA (5.54 kJ/mol) was considerably weaker compared to Curdlan (11.06 kJ/mol) and chitin (or cellulose, 10.76 kJ/mol). This result indicates that HA exhibits a preference for interacting with water rather than with itself, thereby showing enhanced water affinity. Moreover, the force measurements demonstrated that changing the glycosidic bond from β-(1-3) (Curdlan) or β-(1-4) (chitin or cellulose) to β-(1-3) + β-(1-4) (HA) resulted in polysaccharides displaying improved water affinity and more extended conformation. These conclusions were further verified by molecular dynamics (MD) simulations. Overall, our work sheds new light on the nanomechanics and water retention properties of HA at the single-molecule level, offering valuable insights for future research in this field.
Collapse
Affiliation(s)
- Miao Yu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
- Yibin Industrial Technology Research Institute of Sichuan University, Yibin 644000, China
| | - Xin Guo
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
- Yibin Industrial Technology Research Institute of Sichuan University, Yibin 644000, China
| | - Kai Zhang
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
- Yibin Industrial Technology Research Institute of Sichuan University, Yibin 644000, China
| | - Xiaomin Kang
- School of Mechanical Engineering, University of South China, Hengyang 421001, China
| | - Song Zhang
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, Guizhou, China
| | - Lu Qian
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
3
|
Adsorption/desorption behavior of hyaluronic acid fragments at charged hydrophobic surface. Carbohydr Polym 2022; 277:118831. [PMID: 34893248 DOI: 10.1016/j.carbpol.2021.118831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/11/2022]
Abstract
This work reveals the growing potential of novel electrochemical methods that are applicable for polysaccharides. It was shown for the first time that the molecules of hyaluronic acid (HA) exhibit electrochemical response using phase-sensitive alternating current (AC) voltammetry in phase-out mode. Adsorption and desorption processes of HA fragments at a charged interface of mercury electrode were observed in buffered HA solutions. Electrostatic and hydrophobic manners of interactions were distinguished for native hyaluronan fragments in a wide electric potential range. The AC voltammetry response depended on the temperature, concentration, and length of HA chains. Results of this work open possibilities for further structural characterization of widely used HA fragments and understanding manners of interactions with charged hydrophobic surfaces that could be useful in the future for understanding HA interactions at biological levels.
Collapse
|
4
|
Giubertoni G, Burla F, Bakker HJ, Koenderink GH. Connecting the Stimuli-Responsive Rheology of Biopolymer Hydrogels to Underlying Hydrogen-Bonding Interactions. Macromolecules 2020; 53:10503-10513. [PMID: 33335340 PMCID: PMC7735748 DOI: 10.1021/acs.macromol.0c01742] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/04/2020] [Indexed: 11/29/2022]
Abstract
Many biopolymer hydrogels are environmentally responsive because they are held together by physical associations that depend on pH and temperature. Here, we investigate how the pH and temperature responses of the rheology of hyaluronan hydrogels are connected to the underlying molecular interactions. Hyaluronan is an essential structural biopolymer in the human body with many applications in biomedicine. Using two-dimensional infrared spectroscopy, we show that hyaluronan chains become connected by hydrogen bonds when the pH is changed from 7.0 to 2.5 and that the bond density at pH 2.5 is independent of temperature. Temperature-dependent rheology measurements show that because of this hydrogen bonding the stress relaxation at pH 2.5 is strongly slowed down in comparison to pH 7.0, consistent with the sticky reptation model of associative polymers. From the flow activation energy, we conclude that each polymer is cross-linked by multiple (5-15) hydrogen bonds to others, causing slow macroscopic stress relaxation, despite the short time scale of breaking and reformation of each individual hydrogen bond. Our findings can aid the design of stimuli-responsive hydrogels with tailored viscoelastic properties for biomedical applications.
Collapse
Affiliation(s)
| | - Federica Burla
- AMOLF, Science Park 104, Amsterdam 1098 XG, The Netherlands
| | - Huib J. Bakker
- AMOLF, Science Park 104, Amsterdam 1098 XG, The Netherlands
| | - Gijsje H. Koenderink
- AMOLF, Science Park 104, Amsterdam 1098 XG, The Netherlands
- Department of Bionanoscience, Kavli Institute
of Nanoscience Delft, Delft University of
Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| |
Collapse
|
5
|
Jugl A, Hurčíková A, Pekař M. Hysteresis during heating and cooling of hyaluronan solutions in water observed by means of ultrasound velocimetry. Int J Biol Macromol 2020; 165:2419-2424. [DOI: 10.1016/j.ijbiomac.2020.10.165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/14/2020] [Accepted: 10/21/2020] [Indexed: 10/23/2022]
|
6
|
Effect of aggrecan degradation on the nanomechanics of hyaluronan in extra-fibrillar matrix of annulus fibrosus: A molecular dynamics investigation. J Mech Behav Biomed Mater 2020; 107:103752. [PMID: 32278311 DOI: 10.1016/j.jmbbm.2020.103752] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 12/19/2022]
Abstract
Intervertebral Disc (IVD) Degeneration is one of the primary causes of low back pain among the adult population - the most significant cause being the degradation of aggrecan present in the extra-fibrillar matrix (EFM). Aggrecan degradation is closely associated with loss of water content leading to an alteration in the mechanical behaviour of the IVD. The loss in water content has a significant impact on the chemo-mechanical interplay of IVD biochemical constituents at the fundamental level. This work presents a mechanistic understanding of the effect of hydration, closely associated with aggrecan degradation, on the nanoscale mechanical behaviour of the hyaluronan present in the EFM of the Annulus Fibrosus. For this purpose, explicit three-dimensional molecular dynamics analyses of tensile and compressive tests are performed on a representative atomistic model of the hyaluronan present in the EFM. To account for the degradation of aggrecan, hydration levels are varied from 0 to 75% by weight of water. Analyses show that an increase in the hydration levels decreases the elastic modulus of hyaluronan in tension from ~4.6 GPa to ~2.1 GPa. On the other hand, the increase in hydration level increases the elastic moduli in axial compression from ~1.6 GPa in un-hydrated condition to ~6 GPa in 50% hydrated condition. But as the hydration levels increase to 75%, the elastic modulus reduces to ~3.5 GPa signifying a shift in load-bearing characteristic, from the solid hyaluronan component to the fluid component. Furthermore, analyses show a reduction in the intermolecular energy between hyaluronan and water, under axial tensile loading, indicating a nanoscale intermolecular debonding between hyaluronan and water molecules. This is attributed to the ability of hyaluronan to form stabilizing intra-molecular hydrogen bonds between adjacent residues. Compressive loading, on the other hand, causes intensive coiling of hyaluronan molecule, which traps more water through hydrogen bonding and aids in bearing compressive loads. Overall, study shows that hydration level has a strong influence on the atomistic level interactions between hyaluronan molecules and hyaluronan and water molecules in the EFM which influences the nanoscale mechanics of the Annulus Fibrosus.
Collapse
|
7
|
Giubertoni G, Koenderink GH, Bakker HJ. Direct Observation of Intrachain Hydrogen Bonds in Aqueous Hyaluronan. J Phys Chem A 2019; 123:8220-8225. [PMID: 31478665 PMCID: PMC6767362 DOI: 10.1021/acs.jpca.9b06462] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
We use two-dimensional
infrared spectroscopy to study the interactions
between the amide and carboxylate anion groups of hyaluronan polymers
at neutral pH. The spectra reveal the presence of intrachain hydrogen
bonds between the amide and carboxylate anion groups in aqueous solution.
We determine the relative orientation of the amide and carboxylate
anion groups when forming this hydrogen bond and quantify the fraction
of amide groups that participate in hydrogen bonding. We find that
a variation of the pH and/or temperature has a negligible effect on
this fraction, whereas the persistence length of the hyaluronan chains
and the associated viscosity of hyaluronan solutions are known to
change significantly. We conclude that the hydrogen bonding between
the amide and carboxylate anion groups does not significantly contribute
to the chain rigidity of hyaluronan polymers.
Collapse
Affiliation(s)
| | | | - Huib J Bakker
- AMOLF , Science Park 104 , 1098 XG Amsterdam , The Netherlands
| |
Collapse
|
8
|
Smith P, Ziolek RM, Gazzarrini E, Owen DM, Lorenz CD. On the interaction of hyaluronic acid with synovial fluid lipid membranes. Phys Chem Chem Phys 2019; 21:9845-9857. [PMID: 31032510 DOI: 10.1039/c9cp01532a] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
All-atom molecular dynamics simulations have been used to investigate the adsorption of low molecular weight hyaluronic acid to lipid membranes. We have determined the interactions that govern the adsorption of three different molecular weight hyaluronic acid molecules (0.4, 3.8 & 15.2 kDa) to lipid bilayers that are representative of the surface-active phospholipid bilayers found in synovial joints. We have found that both direct hydrogen bonds and water-mediated interactions with the lipid headgroups play a key role in the binding of hyaluronic acid to the lipid bilayer. The water-mediated interactions become increasingly important in stabilising the adsorbed hyaluronic acid molecules as the molecular weight of hyaluronic acid increases. We also observe a redistribution of ions around bound hyaluronic acid molecules and the associated lipid headgroups, and that the degree of redistribution increases with the molecular weight of hyaluronic acid. By comparing this behaviour to that observed in simulations of the charge-neutral polysaccharide dextran (MW ∼ 15 kDa), we show that this charge redistribution leads to an increased alignment of the lipid headgroups with the membrane normal, and therefore to more direct and water-mediated interactions between hyaluronic acid and the lipid membrane. These findings provide a detailed understanding of the general structure of hyaluronic acid-lipid complexes that have recently been presented experimentally, as well as a potential mechanism for their enhanced tribological properties.
Collapse
Affiliation(s)
- Paul Smith
- Biological Physics & Soft Matter Group, Department of Physics, King's College London, London, UK.
| | | | | | | | | |
Collapse
|
9
|
Chen X, Richter RP. Effect of calcium ions and pH on the morphology and mechanical properties of hyaluronan brushes. Interface Focus 2019; 9:20180061. [PMID: 30842869 PMCID: PMC6388027 DOI: 10.1098/rsfs.2018.0061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2018] [Indexed: 01/13/2023] Open
Abstract
Hyaluronan (HA) is a linear, regular polysaccharide that plays as a chief structural and functional component in peri- and extracellular matrices, thus contributing significantly to many basic cellular processes. To understand more comprehensively the response of the supramolecular organization of HA polymers to changes in their aqueous environment, we study the effects of Ca2+ concentration and pH on the morphology and rigidity of films of end-grafted HA polymers on planar supports (HA brushes), as a well-defined in vitro model system of HA-rich matrices, by reflection interference contrast microscopy and quartz crystal microbalance. The thickness and softness of HA brushes decrease significantly with Ca2+ concentration but do not change with pH, within the physiological ranges of these parameters. The effect of Ca2+ on HA brush thickness is virtually identical to the effect of Na+ at 10-fold higher concentrations. Moreover, the thickness and softness of HA brushes decrease appreciably upon HA protonation at pH less than 6. Effects of pH and calcium ions are fully reversible over large parameter ranges. These findings are relevant for understanding the supramolecular organization and dynamics of HA-rich matrices in biological systems and will also benefit the rational design of synthetic HA-rich materials with tailored properties.
Collapse
Affiliation(s)
| | - Ralf P. Richter
- CIC biomaGUNE, San Sebastian, Spain
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- School of Physics and Astronomy, Faculty of Mathematics and Physical Sciences, University of Leeds, Leeds, UK
- Astbury Centre of Structural Molecular Biology, University of Leeds, Leeds, UK
| |
Collapse
|
10
|
Qiao C, Ma X, Zhang J, Yao J. Effect of hydration on water state, glass transition dynamics and crystalline structure in chitosan films. Carbohydr Polym 2019; 206:602-608. [DOI: 10.1016/j.carbpol.2018.11.045] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 09/15/2018] [Accepted: 11/15/2018] [Indexed: 10/27/2022]
|
11
|
Aguirre Montesdeoca V, Bakker J, Boom R, Janssen AE, Van der Padt A. Ultrafiltration of non-spherical molecules. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.10.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Innes-Gold SN, Morgan IL, Saleh OA. Surface-induced effects in fluctuation-based measurements of single-polymer elasticity: A direct probe of the radius of gyration. J Chem Phys 2018; 148:123314. [DOI: 10.1063/1.5009049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sarah N. Innes-Gold
- Materials Department, University of California, Santa Barbara, California 93106, USA
| | - Ian L. Morgan
- BMSE Program, University of California, Santa Barbara, California 93106, USA
| | - Omar A. Saleh
- Materials Department, University of California, Santa Barbara, California 93106, USA
- BMSE Program, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
13
|
Cai Z, Zhang F, Wei Y, Zhang H. Freeze–Thaw-Induced Gelation of Hyaluronan: Physical Cryostructuration Correlated with Intermolecular Associations and Molecular Conformation. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01264] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Zhixiang Cai
- Advanced Rheology Institute, Department
of Polymer Science and Engineering, School of Chemistry and Chemical
Technology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Fei Zhang
- Advanced Rheology Institute, Department
of Polymer Science and Engineering, School of Chemistry and Chemical
Technology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Yue Wei
- Advanced Rheology Institute, Department
of Polymer Science and Engineering, School of Chemistry and Chemical
Technology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Hongbin Zhang
- Advanced Rheology Institute, Department
of Polymer Science and Engineering, School of Chemistry and Chemical
Technology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| |
Collapse
|
14
|
Nestor G, Sandström C. NMR study of hydroxy and amide protons in hyaluronan polymers. Carbohydr Polym 2017; 157:920-928. [DOI: 10.1016/j.carbpol.2016.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 11/26/2022]
|
15
|
Berezney JP, Saleh OA. Electrostatic Effects on the Conformation and Elasticity of Hyaluronic Acid, a Moderately Flexible Polyelectrolyte. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02166] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- John P. Berezney
- Materials
Department and ‡BMSE Program, University of California, Santa Barbara, Santa
Barbara, California 93106, United States
| | - Omar A. Saleh
- Materials
Department and ‡BMSE Program, University of California, Santa Barbara, Santa
Barbara, California 93106, United States
| |
Collapse
|
16
|
Bano F, Banerji S, Howarth M, Jackson DG, Richter RP. A single molecule assay to probe monovalent and multivalent bonds between hyaluronan and its key leukocyte receptor CD44 under force. Sci Rep 2016; 6:34176. [PMID: 27679982 PMCID: PMC5040960 DOI: 10.1038/srep34176] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/08/2016] [Indexed: 01/31/2023] Open
Abstract
Glycosaminoglycans (GAGs), a category of linear, anionic polysaccharides, are ubiquitous in the extracellular space, and important extrinsic regulators of cell function. Despite the recognized significance of mechanical stimuli in cellular communication, however, only few single molecule methods are currently available to study how monovalent and multivalent GAG·protein bonds respond to directed mechanical forces. Here, we have devised such a method, by combining purpose-designed surfaces that afford immobilization of GAGs and receptors at controlled nanoscale organizations with single molecule force spectroscopy (SMFS). We apply the method to study the interaction of the GAG polymer hyaluronan (HA) with CD44, its receptor in vascular endothelium. Individual bonds between HA and CD44 are remarkably resistant to rupture under force in comparison to their low binding affinity. Multiple bonds along a single HA chain rupture sequentially and independently under load. We also demonstrate how strong non-covalent bonds, which are versatile for controlled protein and GAG immobilization, can be effectively used as molecular anchors in SMFS. We thus establish a versatile method for analyzing the nanomechanics of GAG·protein interactions at the level of single GAG chains, which provides new molecular-level insight into the role of mechanical forces in the assembly and function of GAG-rich extracellular matrices.
Collapse
Affiliation(s)
- Fouzia Bano
- CIC biomaGUNE, Paseo Miramon 182, 20009 Donostia-San Sebastian, Spain
| | - Suneale Banerji
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX39DS, UK
| | - Mark Howarth
- Department of Biochemistry, University of Oxford, Oxford, OX13QU, UK
| | - David G Jackson
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX39DS, UK
| | - Ralf P Richter
- CIC biomaGUNE, Paseo Miramon 182, 20009 Donostia-San Sebastian, Spain.,Université Grenoble Alpes - CNRS, Laboratoire Interdisciplinaire de Physique (LIPhy), BP 87, 38402 Saint Martin d'Hères, France.,University of Leeds, School of Biomedical Sciences and School of Physics and Astronomy, Leeds, LS2 9JT, UK
| |
Collapse
|
17
|
Bano F, Carril M, Di Gianvincenzo P, Richter RP. Interaction of Hyaluronan with Cationic Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:8411-8420. [PMID: 26146006 DOI: 10.1021/acs.langmuir.5b01505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The polysaccharide hyaluronan (HA) is a main component of peri- and extracellular matrix, and an attractive molecule for materials design in tissue engineering and nanomedicine. Here, we study the morphology of complexes that form upon interaction of nanometer-sized amine-coated gold particles with this anionic, linear, and regular biopolymer in solution and grafted to a surface. We find that cationic nanoparticles (NPs) have profound effects on HA morphology on the molecular and supramolecular scale. Quartz crystal microbalance (QCM-D) shows that depending on their relative abundance, cationic NPs promote either strong compaction or swelling of films of surface-grafted HA polymers (HA brushes). Transmission electron and atomic force microscopy reveal that the NPs do also give rise to complexes of distinct morphologies-compact nanoscopic spheres and extended microscopic fibers-upon interaction with HA polymers in solution. In particular, stable and hydrated spherical complexes of single HA polymers with NPs can be prepared when balancing the ionizable groups on HA and NPs. The observed self-assembly phenomena could be useful for the design of drug delivery vehicles and a better understanding of the reorganization of HA-rich synthetic or biological matrices.
Collapse
Affiliation(s)
- Fouzia Bano
- †CIC biomaGUNE, Paseo Miramon 182, 20009 Donostia - San Sebastian, Spain
| | - Mónica Carril
- †CIC biomaGUNE, Paseo Miramon 182, 20009 Donostia - San Sebastian, Spain
- §Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain
| | - Paolo Di Gianvincenzo
- †CIC biomaGUNE, Paseo Miramon 182, 20009 Donostia - San Sebastian, Spain
- ‡CIBER-BNN, Paseo Miramon 182, 20009 Donostia - San Sebastian, Spain
| | - Ralf P Richter
- †CIC biomaGUNE, Paseo Miramon 182, 20009 Donostia - San Sebastian, Spain
- ∥Université Grenoble Alpes, Grenoble 38041 Cedex 9, France
- ⊥CNRS, DCM, BP 53, Grenoble 38041 Cedex 9, France
- #Max-Planck-Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| |
Collapse
|
18
|
Higman VA, Briggs DC, Mahoney DJ, Blundell CD, Sattelle BM, Dyer DP, Green DE, DeAngelis PL, Almond A, Milner CM, Day AJ. A refined model for the TSG-6 link module in complex with hyaluronan: use of defined oligosaccharides to probe structure and function. J Biol Chem 2014; 289:5619-34. [PMID: 24403066 PMCID: PMC3937638 DOI: 10.1074/jbc.m113.542357] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Indexed: 11/25/2022] Open
Abstract
Tumor necrosis factor-stimulated gene-6 (TSG-6) is an inflammation-associated hyaluronan (HA)-binding protein that contributes to remodeling of HA-rich extracellular matrices during inflammatory processes and ovulation. The HA-binding domain of TSG-6 consists solely of a Link module, making it a prototypical member of the superfamily of proteins that interacts with this high molecular weight polysaccharide composed of repeating disaccharides of D-glucuronic acid and N-acetyl-D-glucosamine (GlcNAc). Previously we modeled a complex of the TSG-6 Link module in association with an HA octasaccharide based on the structure of the domain in its HA-bound conformation. Here we have generated a refined model for a HA/Link module complex using novel restraints identified from NMR spectroscopy of the protein in the presence of 10 distinct HA oligosaccharides (from 4- to 8-mers); the model was then tested using unique sugar reagents, i.e. chondroitin/HA hybrid oligomers and an octasaccharide in which a single sugar ring was (13)C-labeled. The HA chain was found to make more extensive contacts with the TSG-6 surface than thought previously, such that a D-glucuronic acid ring makes stacking and ionic interactions with a histidine and lysine, respectively. Importantly, this causes the HA to bend around two faces of the Link module (resembling the way that HA binds to CD44), potentially providing a mechanism for how TSG-6 can reorganize HA during inflammation. However, the HA-binding site defined here may not play a role in TSG-6-mediated transfer of heavy chains from inter-α-inhibitor onto HA, a process known to be essential for ovulation.
Collapse
Affiliation(s)
- Victoria A. Higman
- From the Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - David C. Briggs
- Wellcome Trust Centre for Cell Matrix Research
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT United Kingdom, and
| | - David J. Mahoney
- From the Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Charles D. Blundell
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT United Kingdom, and
| | - Benedict M. Sattelle
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT United Kingdom, and
| | - Douglas P. Dyer
- Wellcome Trust Centre for Cell Matrix Research
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT United Kingdom, and
| | - Dixy E. Green
- the Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Paul L. DeAngelis
- the Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Andrew Almond
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT United Kingdom, and
| | - Caroline M. Milner
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT United Kingdom, and
| | - Anthony J. Day
- Wellcome Trust Centre for Cell Matrix Research
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT United Kingdom, and
| |
Collapse
|
19
|
Shan P, Shen JW, Xu DH, Shi LY, Gao J, Lan YW, Wang Q, Wei XH. Molecular dynamics study on the interaction between doxorubicin and hydrophobically modified chitosan oligosaccharide. RSC Adv 2014. [DOI: 10.1039/c4ra01199f] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Both π–π interactions and hydrophobic interactions were found to be essential for the loading of doxorubicin on hydrophobically modified chitosan oligosaccharides.
Collapse
Affiliation(s)
- Peng Shan
- School of Medicine
- Hangzhou Normal University
- Hangzhou 310036, PR China
- College of Material
- Chemistry and Chemical Engineering
| | - Jia-Wei Shen
- School of Medicine
- Hangzhou Normal University
- Hangzhou 310036, PR China
| | - Dong-Hang Xu
- Second Affiliated Hospital
- College of Medicine
- Zhejiang University
- Hangzhou 310009, PR China
| | - Li-Yun Shi
- School of Medicine
- Hangzhou Normal University
- Hangzhou 310036, PR China
| | - Jie Gao
- Soft Matter Research Center and Department of Chemistry
- Zhejiang University
- Hangzhou 310027, PR China
| | - Ya-Wei Lan
- Soft Matter Research Center and Department of Chemistry
- Zhejiang University
- Hangzhou 310027, PR China
| | - Qi Wang
- Soft Matter Research Center and Department of Chemistry
- Zhejiang University
- Hangzhou 310027, PR China
| | - Xiao-Hong Wei
- School of Medicine
- Hangzhou Normal University
- Hangzhou 310036, PR China
| |
Collapse
|
20
|
Attili S, Richter RP. Self-assembly and elasticity of hierarchical proteoglycan–hyaluronan brushes ††Electronic supplementary information (ESI) available: Variations in areal mass density upon SLB and SAv monolayer formation determined by SE (Fig. S1). See DOI: 10.1039/c3sm51213dClick here for additional data file. . SOFT MATTER 2013; 9. [PMCID: PMC4080815 DOI: 10.1039/c3sm51213d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We assemble aggrecan-containing hyaluronan brushes to study how the supramolecular structure and dynamics relate to material properties in hyaluronan-rich pericellular matrices.
Spatially confined yet strongly hydrated assemblies made from the proteoglycan aggrecan and the polysaccharide hyaluronan (HA) are major, functionally important components of the pericellular space around chondrocytes, and in cartilage. To better understand, how mechanical properties arise from the supramolecular structure and dynamics of such assemblies, we have studied the effect of aggrecan on the physico-chemical properties of well-defined, planar HA brushes. From interaction studies by quartz crystal microbalance with dissipation monitoring and spectroscopic ellipsometry, and compression studies by combined colloidal probe atomic force/reflection interference contrast microscopy, we find that aggrecan readily intercalates into HA brushes in a reversible manner. Aggrecan induces a drastic swelling of HA brushes, generating self-assembled films of several micrometers in thickness that are highly hydrated (>99%), elastic and very soft. The Young modulus in the linear compression regime is well below 100 Pa, and reaches several kPa at strong compression. The implications of these findings for biological function are discussed.
Collapse
Affiliation(s)
- Seetharamaiah Attili
- CIC biomaGUNE , Biosurfaces Unit , Paseo Miramon 182 , 20009 San Sebastian , Spain . ; Tel: +34 943 0053 29
- Max Planck Institute for Intelligent Systems , Heisenbergstraße 3 , 70569 Stuttgart , Germany
| | - Ralf P. Richter
- CIC biomaGUNE , Biosurfaces Unit , Paseo Miramon 182 , 20009 San Sebastian , Spain . ; Tel: +34 943 0053 29
- Max Planck Institute for Intelligent Systems , Heisenbergstraße 3 , 70569 Stuttgart , Germany
- J. Fourier University , Department of Molecular Chemistry , Laboratory I2BM , 570 Rue de la Chimie , 38041 Grenoble Cedex 9 , France
- University of the Basque Country , Department of Biochemistry and Molecular Biology , Barrio Sarriena s/n , 48940 Leioa , Spain
| |
Collapse
|
21
|
Lopez-Rodriguez E, Cruz A, Richter RP, Taeusch HW, Pérez-Gil J. Transient exposure of pulmonary surfactant to hyaluronan promotes structural and compositional transformations into a highly active state. J Biol Chem 2013; 288:29872-81. [PMID: 23983120 DOI: 10.1074/jbc.m113.493957] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pulmonary surfactant is a lipid-protein complex that lowers surface tension at the respiratory air-liquid interface, stabilizing the lungs against physical forces tending to collapse alveoli. Dysfunction of surfactant is associated with respiratory pathologies such as acute respiratory distress syndrome or meconium aspiration syndrome where naturally occurring surfactant-inhibitory agents such as serum, meconium, or cholesterol reach the lung. We analyzed the effect of hyaluronan (HA) on the structure and surface behavior of pulmonary surfactant to understand the mechanism for HA-promoted surfactant protection in the presence of inhibitory agents. In particular, we found that HA affects structural properties such as the aggregation state of surfactant membranes and the size, distribution, and order/packing of phase-segregated lipid domains. These effects do not require a direct interaction between surfactant complexes and HA and are accompanied by a compositional reorganization of large surfactant complexes that become enriched with saturated phospholipid species. HA-exposed surfactant reaches very high efficiency in terms of rapid and spontaneous adsorption of surfactant phospholipids at the air-liquid interface and shows significantly improved resistance to inactivation by serum or cholesterol. We propose that physical effects pertaining to the formation of a meshwork of interpenetrating HA polymer chains are responsible for the changes in surfactant structure and composition that enhance surfactant function and, thus, resistance to inactivation. The higher resistance of HA-exposed surfactant to inactivation persists even after removal of the polymer, suggesting that transient exposure of surfactant to polymers like HA could be a promising strategy for the production of more efficient therapeutic surfactant preparations.
Collapse
Affiliation(s)
- Elena Lopez-Rodriguez
- From the Departamento de Bioquimica y Biologia Molecular, Facultad de Biologia, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
22
|
Molecular dynamics of paclitaxel encapsulated by salicylic acid-grafted chitosan oligosaccharide aggregates. Biomaterials 2013; 34:1843-51. [DOI: 10.1016/j.biomaterials.2012.11.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 11/15/2012] [Indexed: 12/17/2022]
|
23
|
Hunger J, Bernecker A, Bakker HJ, Bonn M, Richter RP. Hydration dynamics of hyaluronan and dextran. Biophys J 2012; 103:L10-2. [PMID: 22828349 DOI: 10.1016/j.bpj.2012.05.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/12/2012] [Accepted: 05/17/2012] [Indexed: 11/29/2022] Open
Abstract
Hyaluronan is a polysaccharide, which is ubiquitous in vertebrates and has been reported to be strongly hydrated in a biological environment. We study the hydration of hyaluronan in solution using the rotational dynamics of water as a probe. We measure these dynamics with polarization-resolved femtosecond-infrared and terahertz time-domain spectroscopies. Both experiments reveal that a subensemble of water molecules is slowed down in aqueous solutions of hyaluronan amounting to ∼15 water molecules per disaccharide unit. This quantity is consistent with what would be expected for the first hydration shell. Comparison of these results to the water dynamics in aqueous dextran solution, a structurally similar polysaccharide, yields remarkably similar results. This suggests that the observed interaction with water is a common feature for hydrophilic polysaccharides and is not specific to hyaluronan.
Collapse
|
24
|
Chiapponi C, Di Bari MT, Gerelli Y, Deriu A, Chiessi E, Finelli I, Paradossi G, Russina M, Izaola Z, Sakai VG. Water dynamics in physical hydrogels based on partially hydrophobized hyaluronic acid. J Phys Chem B 2012; 116:12915-21. [PMID: 23067014 DOI: 10.1021/jp303657a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The dynamics of hyaluronate-based hydrogels has been investigated by quasielastic neutron scattering (QENS). Hyaluronate (HYA) has been compared, in the same conditions of temperature and polymer concentration, to a chemically modified form, HYADD, in which the backbone has been grafted with a hexadecyl (C(16)) side-chain with a degree of substitution of about 2% (mol/mol). This modification increases the hydrophobicity of the polysaccharide and leads to a stable gel already at polymer concentration of 0.3% (w/v), yielding a viscosupplementation with less quantity of polysaccharide. The time-scale covered by our measurements probes both water and segmental biopolymer motions. In both systems, the local dynamics of the network in the ps time-scale is mostly due to local reorientational motions of side groups. Such motions are not significantly affected by the small amount of aliphatic chains forming the hydrophobic junctions in HYADD. The diffusivity of water in both HYA and HYADD coincides with that of pure water within the experimental uncertainty. This result confirms previous ones on the dynamics of water in HYA solutions and it is of relevance for biomedical applications of hyaluronate-based systems because it affects the diffusive processes of metabolites and their interaction with tissues.
Collapse
Affiliation(s)
- Chiara Chiapponi
- Dipartimento di Fisica e Scienze della Terra, Università di Parma and CNISM, Parma, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Przybylski C, Gonnet F, Buchmann W, Daniel R. Critical parameters for the analysis of anionic oligosaccharides by desorption electrospray ionization mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2012; 47:1047-1058. [PMID: 22899514 DOI: 10.1002/jms.3052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Sulfated oligosaccharides derived from glycosaminoglycans (GAGs) are fragile compounds, highly polar and anionic. We report here on the rare but successful application of desorption electrospray ionization (DESI) - LTQ-Orbitrap mass spectrometry (MS) to the high-resolution analysis of anionic and sulfated oligosaccharides derived from the GAGs hyaluronic acid and heparin. For that purpose, key parameters affecting DESI performance, comprising the geometric parameters of the DESI source, the probed surface and the spraying conditions, applied spray voltage, flow rates and solvent composition were investigated. Under suitable conditions, the DESI technique allows the preservation of the structural integrity of such fragile compounds. DESI enabled the sensitive detection of anionic hyaluronic acid and heparin oligosaccharides with a limit of detection (LOD) down to 5 fmol (≈10 pg) for the hyaluronic acid decasaccharide. Detection of hyaluronic acid oligosaccharides in urine sample was also successfully achieved with LOD values inferior to the ng range. Multistage tandem mass spectrometry (MS(n) ) through the combination of the DESI source with a hybrid linear ion trap-orbitrap mass spectrometer allowed the discrimination of isomeric sulfated oligosaccharides and the sequence determination of a hyaluronic acid decasaccharide. These results open promising ways in glycomic and glycobiology fields where structure-activity relationships of bioactive carbohydrates are currently questioned.
Collapse
Affiliation(s)
- Cédric Przybylski
- CNRS UMR 8587, Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, F-91025, Evry, France
| | | | | | | |
Collapse
|
26
|
Attili S, Borisov OV, Richter RP. Films of End-Grafted Hyaluronan Are a Prototype of a Brush of a Strongly Charged, Semiflexible Polyelectrolyte with Intrinsic Excluded Volume. Biomacromolecules 2012; 13:1466-77. [DOI: 10.1021/bm3001759] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Seetharamaiah Attili
- Biosurfaces Unit, CIC biomaGUNE, Paseo Miramon 182, 20009
Donostia - San Sebastian, Spain
- Max-Planck-Institute for Intelligent Systems, Heisenbergstrasse 3, 70569
Stuttgart, Germany
| | - Oleg V. Borisov
- Institut Pluridisciplinaire de Recherche sur l’Environnement et les Matériaux, UMR 5254 CNRS UPPA, 2 Avenue Pierre Angot, 64053 Pau, France
| | - Ralf P. Richter
- Biosurfaces Unit, CIC biomaGUNE, Paseo Miramon 182, 20009
Donostia - San Sebastian, Spain
- Max-Planck-Institute for Intelligent Systems, Heisenbergstrasse 3, 70569
Stuttgart, Germany
| |
Collapse
|
27
|
Wolfshorndl MP, Baskin R, Dhawan I, Londergan CH. Covalently Bound Azido Groups Are Very Specific Water Sensors, Even in Hydrogen-Bonding Environments. J Phys Chem B 2012; 116:1172-9. [DOI: 10.1021/jp209899m] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Marta P. Wolfshorndl
- Department of Chemistry, Haverford College, 370 Lancaster Avenue, Haverford, Pennsylvania 19041-1392, United States
| | - Rachel Baskin
- Department of Chemistry, Haverford College, 370 Lancaster Avenue, Haverford, Pennsylvania 19041-1392, United States
| | - Ishita Dhawan
- Department of Chemistry, Haverford College, 370 Lancaster Avenue, Haverford, Pennsylvania 19041-1392, United States
| | - Casey H. Londergan
- Department of Chemistry, Haverford College, 370 Lancaster Avenue, Haverford, Pennsylvania 19041-1392, United States
| |
Collapse
|
28
|
Köwitsch A, Yang Y, Ma N, Kuntsche J, Mäder K, Groth T. Bioactivity of immobilized hyaluronic acid derivatives regarding protein adsorption and cell adhesion. Biotechnol Appl Biochem 2011; 58:376-89. [DOI: 10.1002/bab.41] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 07/13/2011] [Indexed: 11/08/2022]
|
29
|
|
30
|
Nestor G, Kenne L, Sandström C. Experimental evidence of chemical exchange over the β(1→3) glycosidic linkage and hydrogen bonding involving hydroxy protons in hyaluronan oligosaccharides by NMR spectroscopy. Org Biomol Chem 2010; 8:2795-802. [DOI: 10.1039/b927159g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Ramadugu SK, Chung YH, Xia J, Margulis CJ. When sugars get wet. A comprehensive study of the behavior of water on the surface of oligosaccharides. J Phys Chem B 2009; 113:11003-15. [PMID: 19588947 DOI: 10.1021/jp904981v] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this article, we characterize the behavior of water on the surface of a diverse group of carbohydrates and attempt to determine the role of saccharide size, linkage, and branching as well as secondary structure on the dynamics and structure of water at the surface. In order to better understand the similarities and differences in the behavior of the solvent on the carbohydrate surface, we explore residence times, rotational correlation functions, local solvent occupancy numbers, and diffusivities. We find that due to the differences in secondary structure water residence times are longer and translational and rotational dynamics are retarded when in contact with wide helices and branched sugars. In the case of extended helices and smaller oligosaccharides, water dynamics is faster and less hindered. This indicates that branching, the type of linkage between monomers, and the anomeric configuration all play a major role in determining the structure and dynamics of water on the surface of carbohydrates.
Collapse
|
32
|
Matteini P, Dei L, Carretti E, Volpi N, Goti A, Pini R. Structural behavior of highly concentrated hyaluronan. Biomacromolecules 2009; 10:1516-22. [PMID: 19358524 DOI: 10.1021/bm900108z] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
When investigated under high concentration conditions, hyaluronan (HA) solutions in physiological saline are shown to generate stable superstructures. An abrupt change in the rheological properties observed on increasing the temperature suggests the breaking of certain cooperative bonds. The thermal disruption of the HA superstructure is accompanied by a sharp transition from a long- to a restricted-connectivity water structuring, which is interpreted as a concurrent transition from a stable to a temporary polymer network. The intermolecular associations are considered to be originated by hydrophobic interactions between the nonpolar groups of the polymer backbones.
Collapse
Affiliation(s)
- Paolo Matteini
- Institute of Applied Physics Nello Carrara, National Research Council, Florence, Italy
| | | | | | | | | | | |
Collapse
|
33
|
Conformational properties of the disaccharide building units of hyaluronan. Carbohydr Res 2009; 344:1745-52. [DOI: 10.1016/j.carres.2009.05.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 05/22/2009] [Accepted: 05/31/2009] [Indexed: 11/24/2022]
|
34
|
|
35
|
Almond A, Deangelis PL, Blundell CD. Hyaluronan: The Local Solution Conformation Determined by NMR and Computer Modeling is Close to a Contracted Left-handed 4-Fold Helix. J Mol Biol 2006; 358:1256-69. [PMID: 16584748 DOI: 10.1016/j.jmb.2006.02.077] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Revised: 01/27/2006] [Accepted: 02/28/2006] [Indexed: 11/27/2022]
Abstract
The polysaccharide hyaluronan (HA) is a ubiquitous component of the vertebrate extracellular matrix with diverse physiological roles from space-filling to acting as a scaffold for other macromolecules. The molecular interactions responsible for these solution properties have been the subject of much debate and, primarily due to the lack of residue-specific experimental data, no consensus model for the three-dimensional conformation nor dynamics of HA in solution has emerged. Here, the solution conformation of HA is investigated using molecular dynamics (MD) simulations and high-field nuclear magnetic resonance (NMR). In contrast to previous studies, MD simulations incorporated explicit water molecules and sodium ions, while NMR experiments utilized (15)N-enriched oligosaccharides to allow residue-specific information to be obtained. The resultant average conformation is predicted to be almost a contracted left-handed 4-fold helix; i.e. similar to that observed for sodium hyaluronate fibers by X-ray diffraction, but with the acetamido side-chain trans to H(2). The glycosidic linkages and acetamido side-chains are predicted to have standard deviation rotations of 13 degrees and 18 degrees around their mean conformations in free solution, respectively, and are not observed to be stabilized by strong intramolecular hydrogen bonds as X-ray fiber diffraction refinements describe for the solid-state. Rather, weak and transient hydrogen bonds that are in rapid interchange with solvent molecules are predicted. These predictions are quantitatively consistent with demanding residue-specific NMR data and correspond to an HA molecule that is rod-like as an oligosaccharide and behaves as a stiffened random coil at large molecular mass, in close agreement with previous hydrodynamic observations. This new description of the solution conformation of HA is consistent with all available experimental data and accounts for its viscoelastic space-filling properties. This representation can be used as a basis for modeling the association between HA and proteins, which will elucidate important aspects of extracellular matrix assembly.
Collapse
Affiliation(s)
- Andrew Almond
- Faculty of Life Sciences, University of Manchester, Manchester Interdisciplinary Biocentre, Princess Street, Manchester, M1 7ND, UK.
| | | | | |
Collapse
|
36
|
Affiliation(s)
- Robert Stern
- Department of Pathology and Comprehensive Cancer Center, School of Medicine, University of California, San Francisco, CA 94143-0511, USA
| | - Mark J. Jedrzejas
- Children’s Hospital Oakland Research Institute, Oakland, CA 94609, USA
- To whom correspondence should be addressed: Children’s Hospital Oakland Research Institute, 5700 Martin Luther King, Jr. Way, Oakland, California 94609, USA, Phone: +1 510-450-7932, Fax +1 510-450-7914, e-mail: , Web: www.chori.org/investigators/jedrzejas.html
| |
Collapse
|
37
|
Abstract
In this paper, we have examined the behavior of hyaluronan solutions at different pH values. A slight degradation is observed in acidic conditions (pH = 1.6) and basic medium (pH = 12.6) from molecular weight distribution analysis, but the rheological behavior is relatively not influenced much by the pH at the exclusion of two domains: around pH = 2.5, a gel-like behavior is shown and is attributed to cooperative interchain interactions due to the reduction of the polymer net charge and may be the protonation of the acetamido groups; for pH > 12, the decrease of viscosity is mainly attributed to a reduction of the stiffness of the polymeric backbone in alkaline conditions due to the partial breakage of the H-bond network.
Collapse
Affiliation(s)
- Iuliana Gatej
- Centre de Recherches sur les Macromolécules Végétales, CNRS, affiliated to Joseph Fourier University, BP 53, 38041 Grenoble Cedex 9, France
| | | | | |
Collapse
|
38
|
Blundell CD, Almond A, Mahoney DJ, DeAngelis PL, Campbell ID, Day AJ. Towards a Structure for a TSG-6·Hyaluronan Complex by Modeling and NMR Spectroscopy. J Biol Chem 2005; 280:18189-201. [PMID: 15718240 DOI: 10.1074/jbc.m414343200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Link module from human TSG-6, a hyaladherin with roles in ovulation and inflammation, has a hyaluronan (HA)-binding groove containing two adjacent tyrosine residues that are likely to form CH-pi stacking interactions with sequential rings in the sugar. We have used this observation to construct a model of a protein.HA complex, which was then tested against existing experimental information and by acquisition of new NMR data sets of [(13)C, (15)N]HA (8-mer) complexed with unlabeled protein. A major finding of this analysis was that acetamido side chains of two GlcNAc rings fit into hydrophobic pockets on either side of the adjacent tyrosines, providing a selectivity mechanism of HA over other polysaccharides. Furthermore, two basic residues have a separation that matches that of glucuronic acids in the sugar, consistent with the formation of salt bridges; NMR experiments at a range of pH values identified protein groups that titrate due to their proximity to a free carboxylate in HA. Sequence alignment and construction of homology models for all human Link modules in their HA-bound states revealed that many of these features are conserved across the superfamily, thus allowing the prediction of functionally important residues. In the case of cartilage link protein, its two Link modules were docked together (using bound HA as a guide), identifying hydrophobic residues likely to form an intra-Link module interface as well as amino acids that could be involved in supporting intermolecular interactions between link proteins and chondroitin sulfate proteoglycans. Here, we propose a mechanism for ternary complex formation that generates higher order helical structures, as may exist in cartilage aggregates.
Collapse
Affiliation(s)
- Charles D Blundell
- Medical Research Council Immunochemistry Unit, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
This review addresses the area of study that defines the field of surface modification of biomedical materials and devices by hyaluronan (HA), as related to the exploitation of HA biological properties. To provide a comprehensive view of the subject matter, initial sections give a quick introduction to basic information on HA-protein and HA-cell interactions, together with some discussion on the bioactive role of HA in wound healing and related phenomena. This is followed by a description of current theories that correlate HA properties to its molecular structure in aqueous media, underlying how HA molecular details are crucial for its biological interaction and role. Finally, existing approaches to surface modification by HA are reviewed, stressing the need for HA-surface engineering founded on the knowledge and control of the surface-linked HA molecular conformation at the solid/aqueous interface.
Collapse
Affiliation(s)
- Marco Morra
- Nobil Bio Ricerche s.r.l., Str. S. Rocco 36, 14018 Villafranca d'Asti, Italy
| |
Collapse
|
40
|
Almond A. Towards understanding the interaction between oligosaccharides and water molecules. Carbohydr Res 2005; 340:907-20. [PMID: 15780256 DOI: 10.1016/j.carres.2005.01.014] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Accepted: 01/10/2005] [Indexed: 11/19/2022]
Abstract
Complex carbohydrates are implicated in many important biological processes, and have a strong interaction with water. This close interplay with molecular water through multiple hydroxyls may be an integral part of their emergent structure and dynamics, as selected during evolution. Using molecular dynamics simulations with explicit water the interactions at the linkages within a variety of oligosaccharides are investigated and contrasted, in order to establish correlations between linkage orientation, sugar epimerization, and water interaction. In particular, interactions at alpha linkages, and between mannose and glucose residues, that are common in oligosaccharides are considered. Sugars joined by alpha linkages at the 2-, 3-, and 6-position were found to interact via a combination of weak hydrogen-bonds and water-bridges, which is dependent on the epimerization state of the sugars. Due to their three-dimensional structure, they are also likely to interact with noncontiguous sugar residues in an oligosaccharide, which can lead to ordered structures through the exclusion of water. On the other hand, beta linkages (to 3- and 4-position) maintain strong hydrogen-bonds, have a limited ability to be involved in water-bridges, and predominantly interact with the directly attached sugars. Therefore, sequences of alpha-linked sugars form compact, branched structures that have conformational flexibility, and beta linkages form extended, relatively rigid structures, suitable for structural molecules, and at the termini of protein bound oligosaccharides. These results provide further tentative ties between chemical structure, water interactions, and the emergent form and function of specific sugars and linkages in oligosaccharides.
Collapse
Affiliation(s)
- Andrew Almond
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.
| |
Collapse
|
41
|
Furlan S, La Penna G, Perico A, Cesàro A. Hyaluronan chain conformation and dynamics. Carbohydr Res 2005; 340:959-70. [PMID: 15780260 DOI: 10.1016/j.carres.2005.01.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2004] [Accepted: 01/25/2005] [Indexed: 11/20/2022]
Abstract
An overview of the present state of research in the field of hyaluronan chain conformational aspects is presented. The relationship between structure and dynamics are illustrated for a series of hyaluronan oligomers. Conformational characteristics of hyaluronan chains are discussed, together with the dynamic chain patterns, evaluated by using a theoretical approach to diffusive polymer dynamics. The dependence of correlation times and NMR relaxation parameters from the chain dimension are investigated. Topological features and dimensional properties are related to the structural determinants by using classical computational methods of molecular mechanics and Monte Carlo simulation.
Collapse
Affiliation(s)
- Sara Furlan
- Department of Biochemistry, Biophysics and Macromolecular Chemistry, UdR INSTM, University of Trieste, I-34127 Trieste, Italy
| | | | | | | |
Collapse
|
42
|
Bathe M, Rutledge GC, Grodzinsky AJ, Tidor B. A coarse-grained molecular model for glycosaminoglycans: application to chondroitin, chondroitin sulfate, and hyaluronic acid. Biophys J 2005; 88:3870-87. [PMID: 15805173 PMCID: PMC1305620 DOI: 10.1529/biophysj.104.058800] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A coarse-grained molecular model is presented for the study of the equilibrium conformation and titration behavior of chondroitin (CH), chondroitin sulfate (CS), and hyaluronic acid (HA)-glycosaminoglycans (GAGs) that play a central role in determining the structure and biomechanical properties of the extracellular matrix of articular cartilage. Systematic coarse-graining from an all-atom description of the disaccharide building blocks retains the polyelectrolytes' specific chemical properties while enabling the simulation of high molecular weight chains that are inaccessible to all-atom representations. Results are presented for the characteristic ratio, the ionic strength-dependent persistence length, the pH-dependent expansion factor for the end-to-end distance, and the titration behavior of the GAGs. Although 4-sulfation of the N-acetyl-D-galactosamine residue is found to increase significantly the intrinsic stiffness of CH with respect to 6-sulfation, only small differences in the titration behavior of the two sulfated forms of CH are found. Persistence length expressions are presented for each type of GAG using a macroscopic (wormlike chain-based) and a microscopic (bond vector correlation-based) definition. Model predictions agree quantitatively with experimental conformation and titration measurements, which support use of the model in the investigation of equilibrium solution properties of GAGs.
Collapse
Affiliation(s)
- Mark Bathe
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | | | | | | |
Collapse
|
43
|
Cowman MK, Spagnoli C, Kudasheva D, Li M, Dyal A, Kanai S, Balazs EA. Extended, relaxed, and condensed conformations of hyaluronan observed by atomic force microscopy. Biophys J 2004; 88:590-602. [PMID: 15489305 PMCID: PMC1305036 DOI: 10.1529/biophysj.104.049361] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The conformation of the polysaccharide hyaluronan (HA) has been investigated by tapping mode atomic force microscopy in air. HA deposited on a prehydrated mica surface favored an extended conformation, attributed to molecular combing and inhibition of subsequent chain recoil by adhesion to the structured water layer covering the surface. HA deposited on freshly cleaved mica served as a defect in a partially structured water layer, and favored relaxed, weakly helical, coiled conformations. Intramolecularly condensed forms of HA were also observed, ranging from pearl necklace forms to thick rods. The condensation is attributed to weak adhesion to the mica surface, counterion-mediated attractive electrostatic interactions between polyelectrolytes, and hydration effects. Intermolecular association of both extended and condensed forms of HA was observed to result in the formation of networks and twisted fibers, in which the chain direction is not necessarily parallel to the fiber direction. Whereas the relaxed coil and partially condensed conformations of HA are relevant to the native structure of liquid connective tissues, fully condensed rods may be more relevant for HA tethered to a cell surface or intracellular HA, and fibrous forms may be relevant for HA subjected to shear flow in tight intercellular spaces or in protein-HA complexes.
Collapse
Affiliation(s)
- Mary K Cowman
- Othmer Department of Chemical and Biological Sciences and Engineering, Polytechnic University, Brooklyn, New York 11201, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Furlan S, La Penna G, Perico A, Cesàro A. Conformational Dynamics of Hyaluronan Oligomers in Solution. 3. Molecular Dynamics from Monte Carlo Replica-Exchange Simulations and Mode-Coupling Diffusion Theory. Macromolecules 2004. [DOI: 10.1021/ma049641v] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Blundell CD, DeAngelis PL, Day AJ, Almond A. Use of 15N-NMR to resolve molecular details in isotopically-enriched carbohydrates: sequence-specific observations in hyaluronan oligomers up to decasaccharides. Glycobiology 2004; 14:999-1009. [PMID: 15215231 DOI: 10.1093/glycob/cwh117] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The glycosaminoglycan hyaluronan is a vital structural component of extracellular matrices with diverse biological functions, a molecular understanding of which requires a detailed description of secondary and tertiary solution structures. Various models of these structures have been proposed on the basis of 1H and 13C natural-abundance nuclear magnetic resonance (NMR) experiments, but resonance overlap limits further progress with these techniques. We have therefore produced 15N- and 13C- isotopically-labeled hyaluronan oligosaccharides and applied triple-resonance and 3D experiments to overcome this restriction. Spectra recorded on oligosaccharides (of lengths 4, 6, 8, 10, and 12 sugar rings), reveal that the 15N nucleus allows resolution of the amide groups in a decamer at high magnetic field, whereas 13C natural-abundance NMR can only resolve internal groups up to hexamers. Complete 13N sequence- specific assignments of these oligosaccharides indicate that the chemical shift dispersion can be explained by end-effects, which are seen even in the middle of octamers. Triple- resonance and 15N-edited 3D experiments, among the first of their kind in oligosaccharides, have been used to achieve resolution of ring 1H and 13C nuclei where not possible previously. The subtle chemical shift perturbations resolved suggest that different conformations and dynamics occur at the ends, which may contribute to the range of biological activities displayed by varying lengths of hyaluronan. 15N-NMR in carbohydrates has not received much attention before, however, this study demonstrates it has clear advantages for achieving resolution and assessing dynamic motion. These conclusions are likely to be applicable to the study of the structure and dynamics of other nitrogen-containing carbohydrates.
Collapse
Affiliation(s)
- Charles D Blundell
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1, 3QU, UK
| | | | | | | |
Collapse
|
46
|
Haxaire K, Maréchal Y, Milas M, Rinaudo M. Hydration of polysaccharide hyaluronan observed by IR spectrometry. I. Preliminary experiments and band assignments. Biopolymers 2004; 72:10-20. [PMID: 12400087 DOI: 10.1002/bip.10245] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This article is the first one in a series dedicated to the study of hyaluronan as observed by IR spectrometry. The goal is to determine its hydration mechanism and the structural changes this mechanism implies. Hyaluronan is a natural polysaccharide that is widely used in biomedical applications and cosmetics. Its macroscopic properties are significantly dependent on its degree of hydration. In this article we record the IR spectrum of a several micron thick dried film and deduce that four or five residual H(2)O molecules remain around each disaccharide repeat unit in the dried film. We then compare the spectra of sodium hyaluronan and its acid form to assign vibrational bands linked to the carboxylate group. We proceed with a qualitative analysis of the spectral changes induced by changes of temperature and hygroscopicity, two independent parameters that act by modifying the hydrogen bond network of the sample. This enables us to assign most of the vibrational bands of the hydrophilic groups and to distinguish the bands that are due to these hydrophilic groups when they are or are not hydrogen bonded. It constitutes a prerequisite for the quantitative analysis of hydration spectra that will be described in the following articles of this series.
Collapse
Affiliation(s)
- K Haxaire
- Centre de Recherches sur les Macromolécules Végétales (CNRS), Joseph Fourier University of Grenoble, France
| | | | | | | |
Collapse
|
47
|
Blundell CD, Mahoney DJ, Almond A, DeAngelis PL, Kahmann JD, Teriete P, Pickford AR, Campbell ID, Day AJ. The link module from ovulation- and inflammation-associated protein TSG-6 changes conformation on hyaluronan binding. J Biol Chem 2003; 278:49261-70. [PMID: 12972412 DOI: 10.1074/jbc.m309623200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The solution structure of the Link module from human TSG-6, a hyaladherin with important roles in inflammation and ovulation, has been determined in both its free and hyaluronan-bound conformations. This reveals a well defined hyaluronan-binding groove on one face of the Link module that is closed in the absence of ligand. The groove is lined with amino acids that have been implicated in mediating the interaction with hyaluronan, including two tyrosine residues that appear to form essential intermolecular hydrogen bonds and two basic residues capable of supporting ionic interactions. This is the first structure of a non-enzymic hyaladherin in its active state, and identifies a ligand-induced conformational change that is likely to be conserved across the Link module superfamily. NMR and isothermal titration calorimetry experiments with defined oligosaccharides have allowed us to infer the minimum length of hyaluronan that can be accommodated within the binding site and its polarity in the groove; these data have been used to generate a model of the complex formed between the Link module and a hyaluronan octasaccharide.
Collapse
Affiliation(s)
- Charles D Blundell
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Rigden DJ, Jedrzejas MJ. Structures of Streptococcus pneumoniae Hyaluronate Lyase in Complex with Chondroitin and Chondroitin Sulfate Disaccharides. J Biol Chem 2003; 278:50596-606. [PMID: 14523022 DOI: 10.1074/jbc.m307596200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Streptococcus pneumoniae hyaluronate lyase is a surface enzyme of this Gram-positive bacterium. The enzyme degrades hyaluronan and chondroitin/chondroitin sulfates by cleaving the beta1,4-glycosidic linkage between the glycan units of these polymeric substrates. This degradation helps spreading of this bacterial organism throughout the host tissues and facilitates the disease process caused by pneumococci. The mechanism of this degradative process is based on beta-elimination, is termed proton acceptance and donation, and involves selected residues of a well defined catalytic site of the enzyme. The degradation of hyaluronan alone is thought to proceed through a processive mode of action. The structures of complexes between the enzyme and chondroitin as well as chondroitin sulfate disaccharides allowed for the first detailed insights into these interactions and the mechanism of action on chondroitins. This degradation of chondroitin/chondroitin sulfates is nonprocessive and is selective for the chondroitin sulfates only with certain sulfation patterns. Chondroitin sulfation at the 4-position on the nonreducing site of the linkage to be cleaved or 2-sulfation prevent degradation due to steric clashes with the enzyme. Evolutionary studies suggest that hyaluronate lyases evolved from chondroitin lyases and still retained chondroitin/chondroitin sulfate degradation abilities while being specialized in the degradation of hyaluronan. The more efficient processive degradation mechanism has come to be preferred for the unsulfated substrate hyaluronan.
Collapse
Affiliation(s)
- Daniel J Rigden
- Children's Hospital Oakland Research Institute, Oakland, California 94609, USA
| | | |
Collapse
|
49
|
|
50
|
Affiliation(s)
- Anthony J Day
- Medical Research Council Immunochemistry Unit, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom.
| | | |
Collapse
|