1
|
Hu H, Qian S, Shi Q, Du M, Sun N, Ding Y, Li J, Luo Q, Li Z, He L, Sun Y, Li Y. Cu-phen Coordination Enabled Selective Electrocatalytic Reduction of CO 2 to Methane. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22025-22034. [PMID: 38634322 DOI: 10.1021/acsami.4c02810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Manipulation of selectivity in the catalytic electrochemical carbon dioxide reduction reaction (eCO2RR) poses significant challenges due to inevitable structure reconstruction. One approach is to develop effective strategies for controlling reaction pathways to gain a deeper understanding of mechanisms in robust CO2RR systems. In this work, by precise introduction of 1,10-phenanthroline as a bidentate ligand modulator, the electronic property of the copper site was effectively regulated, thereby directing selectivity switch. By modification of [Cu3(btec)(OH)2]n, the use of [Cu2(btec)(phen)2]n·(H2O)n achieved the selectivity switch from ethylene (faradaic efficiency (FE) = 41%, FEC2+ = 67%) to methane (FECH4 = 69%). Various in situ spectroscopic characterizations revealed that [Cu2(btec)(phen)2]n·(H2O)n promoted the hydrogenation of *CO intermediates, leading to methane generation instead of dimerization to form C2+ products. Acting as a delocalized π-conjugation scaffold, 1,10-phenanthroline in [Cu2(btec)(phen)2]n·(H2O)n helps stabilize Cuδ+. This work presents a novel approach to regulate the coordination environment of active sites with the aim of selectively modulating the CO2RR.
Collapse
Affiliation(s)
- Haiyan Hu
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization; State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. China
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shiting Qian
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Institute of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, Anhui P. R. China
| | - Qin Shi
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization; State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Minxing Du
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization; State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Ning Sun
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yong Ding
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization; State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. China
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jun Li
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Qiquan Luo
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Institute of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, Anhui P. R. China
| | - Zhen Li
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization; State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Lin He
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization; State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Yuxia Sun
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization; State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Yuehui Li
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization; State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
2
|
Ma J, Low J, Wu D, Gong W, Liu H, Liu D, Long R, Xiong Y. Cu and Si co-doping on TiO 2 nanosheets to modulate reactive oxygen species for efficient photocatalytic methane conversion. NANOSCALE HORIZONS 2022; 8:63-68. [PMID: 36385645 DOI: 10.1039/d2nh00457g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this study, we successfully construct Cu and Si co-doped ultrathin TiO2 nanosheets. As confirmed by comprehensive characterizations, Cu and Si co-doping can rationally tailor the electronic structure of TiO2 to maneuver reactive oxygen species for effective photocatalytic methane conversion. In addition, this co-doping greatly enhances the utilization efficiency of photogenerated charges. Furthermore, it is revealed that Cu and Si co-doping can significantly boost the adsorption and activation of methane on TiO2 nanosheets. As a result, the optimized catalyst achieves a C2H6 production rate of 33.8 μmol g-1 h-1 with a selectivity of 88.4%. This work provides insights into nanocatalyst design toward efficient photocatalytic methane conversion into value-added compounds.
Collapse
Affiliation(s)
- Jun Ma
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Jingxiang Low
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Di Wu
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Wanbing Gong
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Hengjie Liu
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Dong Liu
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Ran Long
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Yujie Xiong
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
3
|
Wang Z, Yang Z, Kadirova ZC, Guo M, Fang R, He J, Yan Y, Ran J. Photothermal functional material and structure for photothermal catalytic CO2 reduction: Recent advance, application and prospect. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Maarisetty D, Mary R, Hang DR, Mohapatra P, Baral SS. The role of material defects in the photocatalytic CO2 reduction: Interfacial properties, thermodynamics, kinetics and mechanism. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
He Y, Chen C, Liu Y, Yang Y, Li C, Shi Z, Han Y, Feng S. Quantitative Evaluation of Carrier Dynamics in Full-Spectrum Responsive Metallic ZnIn 2S 4 with Indium Vacancies for Boosting Photocatalytic CO 2 Reduction. NANO LETTERS 2022; 22:4970-4978. [PMID: 35678583 DOI: 10.1021/acs.nanolett.2c01666] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The influence of defects on quantitative carrier dynamics is still unclear. Therefore, full-spectrum responsive metallic ZnIn2S4 (VIn-rich-ZIS) rich in indium vacancies and exhibiting high CO2 photoreduction efficiency was synthesized for the first time. The influence of the defects on the carrier dynamic parameters was studied quantitatively; the results showed that the minority carrier diffusion length (LD) is closely related to the catalytic performance. In situ infrared spectroscopy and theoretical calculations revealed that the presence of indium vacancies lowers the energy barrier for CO2 to CO conversion via the COOH* intermediate. Hence, the high rate of CO evolution reaches 298.0 μmol g-1 h-1, a nearly 28-fold enhancement over that with ZnIn2S4 (VIn-poor-ZIS), which is not rich in indium vacancies. This work fills the gaps between the catalytic performance of defective photocatalysts and their carrier dynamics and may offer valuable insight for understanding the mechanism of photocatalysis and designing more efficient defective photocatalysts.
Collapse
Affiliation(s)
- Yiqiang He
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Cailing Chen
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Yuxin Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Yilin Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Chunguang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Zhan Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Yu Han
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
6
|
Wang H, Hou Y, Zhang Y, Cui M, Chen F, Huang X, Yang J, Feng Z. SO42–-modified La, Y-doped ceria-zirconia with high oxygen storage capacity and its application in Pd-only three-way catalysts. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2021.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Verma P, Rahimi FA, Samanta D, Kundu A, Dasgupta J, Maji TK. Visible-Light-Driven Photocatalytic CO 2 Reduction to CO/CH 4 Using a Metal-Organic "Soft" Coordination Polymer Gel. Angew Chem Int Ed Engl 2022; 61:e202116094. [PMID: 35129254 DOI: 10.1002/anie.202116094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Indexed: 12/11/2022]
Abstract
The self-assembly of a well-defined and astutely designed, low-molecular weight gelator (LMWG) based linker with a suitable metal ion is a promising method for preparing photocatalytically active coordination polymer gels. Here, we report the design, synthesis, and gelation behaviour of a tetrapodal LMWG based on a porphyrin core connected to four terpyridine units (TPY-POR) through amide linkages. The self-assembly of TPY-POR LMWG with RuII ions results in a Ru-TPY-POR coordination polymer gel (CPG), with a nanoscroll morphology. Ru-TPY-POR CPG exhibits efficient CO2 photoreduction to CO (3.5 mmol g-1 h-1 ) with >99 % selectivity in the presence of triethylamine (TEA) as a sacrificial electron donor. Interestingly, in the presence of 1-benzyl-1,4-dihydronicotinamide (BNAH) with TEA as the sacrificial electron donor, the 8e- /8H+ photoreduction of CO2 to CH4 is realized with >95 % selectivity (6.7 mmol g-1 h-1 ). In CPG, porphyrin acts as a photosensitizer and covalently attached [Ru(TPY)2 ]2+ acts as a catalytic center as demonstrated by femtosecond transient absorption (TA) spectroscopy. Further, combining information from the in situ DRIFT spectroscopy and DFT calculation, a possible reaction mechanism for CO2 reduction to CO and CH4 was outlined.
Collapse
Affiliation(s)
- Parul Verma
- Molecular Materials Laboratory, School of Advanced Materials (SAMat), Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Faruk Ahamed Rahimi
- Molecular Materials Laboratory, School of Advanced Materials (SAMat), Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Debabrata Samanta
- Molecular Materials Laboratory, School of Advanced Materials (SAMat), Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Arup Kundu
- Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai, 400005, India
| | - Jyotishman Dasgupta
- Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai, 400005, India
| | - Tapas Kumar Maji
- Molecular Materials Laboratory, School of Advanced Materials (SAMat), Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| |
Collapse
|
8
|
Time-resolved infrared absorption spectroscopy applied to photoinduced reactions: how and why. Photochem Photobiol Sci 2022; 21:557-584. [DOI: 10.1007/s43630-022-00180-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/28/2022] [Indexed: 10/19/2022]
|
9
|
Verma P, Rahimi FA, Samanta D, Kundu A, Dasgupta J, Maji TK. Visible‐Light‐Driven Photocatalytic CO
2
Reduction to CO/CH
4
Using a Metal–Organic “Soft” Coordination Polymer Gel. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Parul Verma
- Molecular Materials Laboratory School of Advanced Materials (SAMat) Chemistry and Physics of Materials Unit Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore 560064 India
| | - Faruk Ahamed Rahimi
- Molecular Materials Laboratory School of Advanced Materials (SAMat) Chemistry and Physics of Materials Unit Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore 560064 India
| | - Debabrata Samanta
- Molecular Materials Laboratory School of Advanced Materials (SAMat) Chemistry and Physics of Materials Unit Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore 560064 India
| | - Arup Kundu
- Department of Chemical Sciences Tata Institute of Fundamental Research (TIFR) Mumbai 400005 India
| | - Jyotishman Dasgupta
- Department of Chemical Sciences Tata Institute of Fundamental Research (TIFR) Mumbai 400005 India
| | - Tapas Kumar Maji
- Molecular Materials Laboratory School of Advanced Materials (SAMat) Chemistry and Physics of Materials Unit Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore 560064 India
| |
Collapse
|
10
|
Liu YY, Zhu HL, Zhao ZH, Huang NY, Liao PQ, Chen XM. Insight into the Effect of the d-Orbital Energy of Copper Ions in Metal–Organic Frameworks on the Selectivity of Electroreduction of CO2 to CH4. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04805] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yuan-Yuan Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hao-Lin Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhen-Hua Zhao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ning-Yu Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Pei-Qin Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiao-Ming Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
11
|
Abstract
CO2 reutilization processes contribute to the mitigation of CO2 as a potent greenhouse gas (GHG) through reusing and converting it into economically valuable chemical products including methanol, dimethyl ether, and methane. Solar thermochemical conversion and photochemical and electrochemical CO2 reduction processes are emerging technologies in which solar energy is utilized to provide the energy required for the endothermic dissociation of CO2. Owing to the surface-dependent nature of these technologies, their performance is significantly reliant on the solid reactant/catalyst accessible surface area. Solid porous structures either entirely made from the catalyst or used as a support for coating the catalyst/solid reactants can increase the number of active reaction sites and, thus, the kinetics of CO2 reutilization reactions. This paper reviews the principles and application of porous materials for CO2 reutilization pathways in solar thermochemical, photochemical, and electrochemical reduction technologies. Then, the state of the development of each technology is critically reviewed and evaluated with the focus on the use of porous materials. Finally, the research needs and challenges are presented to further advance the implementation of porous materials in the CO2 reutilization processes and the commercialization of the aforementioned technologies.
Collapse
|
12
|
Cheng L, Yue X, Wang L, Zhang D, Zhang P, Fan J, Xiang Q. Dual-Single-Atom Tailoring with Bifunctional Integration for High-Performance CO 2 Photoreduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2105135. [PMID: 34622513 DOI: 10.1002/adma.202105135] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/22/2021] [Indexed: 06/13/2023]
Abstract
Single-atom photocatalysis has been demonstrated as a novel strategy to promote heterogeneous reactions. There is a diversity of monoatomic metal species with specific functions; however, integrating representative merits into dual-single-atoms and regulating cooperative photocatalysis remain a pressing challenge. For dual-single-atom catalysts, enhanced photocatalytic activity would be realized through integrating bifunctional properties and tuning the synergistic effect. Herein, dual-single-atoms supported on conjugated porous carbon nitride polymer are developed for effective photocatalytic CO2 reduction, featuring the function of cobalt (Co) and ruthenium (Ru). A series of in situ characterizations and theoretical calculations are conducted for quantitative analysis of structure-performance correlation. It is concluded that the active Co sites facilitate dynamic charge transfer, while the Ru sites promote selective CO2 surface-bound interaction during CO2 photoreduction. The combination of atom-specific traits and the synergy between Co and Ru lead to the high photocatalytic CO2 conversion with corresponding apparent quantum efficiency (AQE) of 2.8% at 385 nm, along with a high turnover number (TON) of more than 200 without addition of any sacrificial agent. This work presents an example of identifying the roles of different single-atom metals and regulating the synergy, where the two metals with unique properties collaborate to further boost the photocatalytic performance.
Collapse
Affiliation(s)
- Lei Cheng
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P. R. China
| | - Xiaoyang Yue
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P. R. China
| | - Linxi Wang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, P. R. China
| | - Dainan Zhang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Peng Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Jiajie Fan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Quanjun Xiang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P. R. China
| |
Collapse
|
13
|
Bellardita M, Loddo V, Parrino F, Palmisano L. (Photo)electrocatalytic Versus Heterogeneous Photocatalytic Carbon Dioxide Reduction. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100030] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Vittorio Loddo
- Engineering Department University of Palermo Palermo Italy
| | - Francesco Parrino
- Department of Industrial Engineering University of Trento Trento Italy
| | | |
Collapse
|
14
|
Modulating electron density of vacancy site by single Au atom for effective CO 2 photoreduction. Nat Commun 2021; 12:1675. [PMID: 33723264 PMCID: PMC7960986 DOI: 10.1038/s41467-021-21925-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/19/2021] [Indexed: 11/22/2022] Open
Abstract
The surface electron density significantly affects the photocatalytic efficiency, especially the photocatalytic CO2 reduction reaction, which involves multi-electron participation in the conversion process. Herein, we propose a conceptually different mechanism for surface electron density modulation based on the model of Au anchored CdS. We firstly manipulate the direction of electron transfer by regulating the vacancy types of CdS. When electrons accumulate on vacancies instead of single Au atoms, the adsorption types of CO2 change from physical adsorption to chemical adsorption. More importantly, the surface electron density is manipulated by controlling the size of Au nanostructures. When Au nanoclusters downsize to single Au atoms, the strong hybridization of Au 5d and S 2p orbits accelerates the photo-electrons transfer onto the surface, resulting in more electrons available for CO2 reduction. As a result, the product generation rate of AuSA/Cd1−xS manifests a remarkable at least 113-fold enhancement compared with pristine Cd1−xS. The electron density of reactive sites significantly affects catalytic performances. Here, authors demonstrate the electron density of different reactive sites can be modulated by regulating the type of vacancy and the size of Au, leading to effective CO2 photoreduction.
Collapse
|
15
|
Li H, Sun J. Highly Selective Photocatalytic CO 2 Reduction to CH 4 by Ball-Milled Cubic Silicon Carbide Nanoparticles under Visible-Light Irradiation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:5073-5078. [PMID: 33480244 PMCID: PMC7877699 DOI: 10.1021/acsami.0c19945] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/12/2021] [Indexed: 05/08/2023]
Abstract
The ultimate goal of photocatalytic CO2 reduction is to achieve high selectivity for a single product with high efficiency. One of the most significant challenges is that expensive catalysts prepared through complex processes are usually used. Herein, gram-scale cubic silicon carbide (3C-SiC) nanoparticles are prepared through a top-down ball-milling approach from low-priced 3C-SiC powders. This facile mechanical milling strategy ensures large-scale production of 3C-SiC nanoparticles with an amorphous silicon oxide (SiOx) shell and simultaneously induces abundant surface states. The surface states are demonstrated to trap the photogenerated carriers, thus remarkably enhancing the charge separation, while the thin SiOx shell prevents 3C-SiC from corrosion under visible light. The unique electronic structure of 3C-SiC tackles the challenge associated with low selectivity of photocatalytic CO2 reduction to C1 compounds. In conjugation with efficient water oxidation, 3C-SiC nanoparticles can reduce CO2 into CH4 with selectivity over 90%.
Collapse
Affiliation(s)
- Hao Li
- Department of Physics, Chemistry
and Biology (IFM), Linköping University, 58183 Linköping, Sweden
| | - Jianwu Sun
- Department of Physics, Chemistry
and Biology (IFM), Linköping University, 58183 Linköping, Sweden
| |
Collapse
|
16
|
Jelmy EJ, Thomas N, Mathew DT, Louis J, Padmanabhan NT, Kumaravel V, John H, Pillai SC. Impact of structure, doping and defect-engineering in 2D materials on CO2 capture and conversion. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00214g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
2D material based strategies for adsorption and conversion of CO2 to value-added products.
Collapse
Affiliation(s)
- E. J. Jelmy
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kerala, India
| | - Nishanth Thomas
- Nanotechnology and Bio-engineering Research Group, Department of Environmental Science, Institute of Technology Sligo, Sligo, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Sligo, Ireland
| | - Dhanu Treasa Mathew
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kerala, India
| | - Jesna Louis
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kerala, India
- Inter University Centre for Nanomaterials and Devices, Cochin University of Science and Technology, Kerala, India
| | - Nisha T. Padmanabhan
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kerala, India
| | - Vignesh Kumaravel
- Nanotechnology and Bio-engineering Research Group, Department of Environmental Science, Institute of Technology Sligo, Sligo, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Sligo, Ireland
| | - Honey John
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kerala, India
- Inter University Centre for Nanomaterials and Devices, Cochin University of Science and Technology, Kerala, India
| | - Suresh C. Pillai
- Nanotechnology and Bio-engineering Research Group, Department of Environmental Science, Institute of Technology Sligo, Sligo, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Sligo, Ireland
| |
Collapse
|
17
|
Pan H, Heagy MD. Photons to Formate-A Review on Photocatalytic Reduction of CO 2 to Formic Acid. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2422. [PMID: 33291520 PMCID: PMC7761832 DOI: 10.3390/nano10122422] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 01/20/2023]
Abstract
Rising levels of atmospheric carbon dioxide due to the burning and depletion of fossil fuels is continuously raising environmental concerns about global warming and the future of our energy supply. Renewable energy, especially better utilization of solar energy, is a promising method for CO2 conversion and chemical storage. Research in the solar fuels area is focused on designing novel catalysts and developing new conversion pathways. In this review, we focus on the photocatalytic reduction of CO2 primarily in its neutral pH species of carbonate to formate. The first two-electron photoproduct of carbon dioxide, a case for formate (or formic acid) is made in this review based on its value as; an important chemical feedstock, a hydrogen storage material, an intermediate to methanol, a high-octane fuel and broad application in fuel cells. This review focuses specifically on the following photocatalysts: semiconductors, phthalocyanines as photosensitizers and membrane devices and metal-organic frameworks.
Collapse
|
18
|
Sun X, Wang R, Ould-Chikh S, Osadchii D, Li G, Aguilar A, Hazemann JL, Kapteijn F, Gascon J. Structure-activity relationships in metal organic framework derived mesoporous nitrogen-doped carbon containing atomically dispersed iron sites for CO2 electrochemical reduction. J Catal 2019. [DOI: 10.1016/j.jcat.2019.09.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
Zhu S, Guo L, Li P, Zhang B, Zhao G, He T. A computational study on linear and bent adsorption of CO2 on different surfaces for its photoreduction. Catal Today 2019. [DOI: 10.1016/j.cattod.2018.11.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Kreft S, Schoch R, Schneidewind J, Rabeah J, Kondratenko EV, Kondratenko VA, Junge H, Bauer M, Wohlrab S, Beller M. Improving Selectivity and Activity of CO2 Reduction Photocatalysts with Oxygen. Chem 2019. [DOI: 10.1016/j.chempr.2019.04.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
21
|
Jin X, Lv C, Zhou X, Ye L, Xie H, Liu Y, Su H, Zhang B, Chen G. Oxygen Vacancy Engineering of Bi 24 O 31 Cl 10 for Boosted Photocatalytic CO 2 Conversion. CHEMSUSCHEM 2019; 12:2740-2747. [PMID: 30941909 DOI: 10.1002/cssc.201900621] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/24/2019] [Indexed: 06/09/2023]
Abstract
Unearthing an ideal model to describe the role of defect sites for boosting photocatalytic CO2 reduction is rational and necessary, but it still remains a significant challenge. Herein, oxygen vacancies are introduced on the surface of Bi24 O31 Cl10 photocatalyst (Bi24 O31 Cl10 -OV) for fine-tuning the photocatalytic efficiency. The formation of oxygen vacancies leads to a new donor level near the conduction band minimum, which enables a faster charge transfer and higher carrier density. Moreover, oxygen vacancies can considerably reduce the energy for the formation of COOH* intermediates during CO2 conversion. As a result, the activity of Bi24 O31 Cl10 -OV for selective photoreduction of CO2 to CO is significantly improved, with a CO generation rate of 0.9 μmol h-1 g-1 , which is nearly 4 times higher than that of pristine Bi24 O31 Cl10 . This study reinforces our understanding of defect engineering in Bi-based photocatalysts and underscores the potential importance of implanting oxygen vacancies as an effective strategy for solar energy conversion.
Collapse
Affiliation(s)
- Xiaoli Jin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P.R. China
| | - Chade Lv
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P.R. China
| | - Xin Zhou
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P.R. China
| | - Liqun Ye
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, P. R. China
| | - Haiquan Xie
- Engineering Technology Research Center of Henan Province for Solar Catalysis, Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, P.R. China
| | - Yue Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P.R. China
| | - Huan Su
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P.R. China
| | - Biao Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P.R. China
| | - Gang Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P.R. China
| |
Collapse
|
22
|
Zhang H, Itoi T, Konishi T, Izumi Y. Dual Photocatalytic Roles of Light: Charge Separation at the Band Gap and Heat via Localized Surface Plasmon Resonance To Convert CO2 into CO over Silver–Zirconium Oxide. J Am Chem Soc 2019; 141:6292-6301. [DOI: 10.1021/jacs.8b13894] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hongwei Zhang
- Department of Chemistry, Graduate School of Science, Chiba University, Yayoi 1-33, Inage-ku, Chiba 263-8522, Japan
| | - Takaomi Itoi
- Department of Mechanical Engineering, Graduate School of Engineering, Chiba University, Yayoi 1-33, Inage-ku, Chiba 263-8522, Japan
| | - Takehisa Konishi
- Department of Chemistry, Graduate School of Science, Chiba University, Yayoi 1-33, Inage-ku, Chiba 263-8522, Japan
| | - Yasuo Izumi
- Department of Chemistry, Graduate School of Science, Chiba University, Yayoi 1-33, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
23
|
Fresno F, Villar-García IJ, Collado L, Alfonso-González E, Reñones P, Barawi M, de la Peña O'Shea VA. Mechanistic View of the Main Current Issues in Photocatalytic CO 2 Reduction. J Phys Chem Lett 2018; 9:7192-7204. [PMID: 30532979 DOI: 10.1021/acs.jpclett.8b02336] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
After 40 years of research on photocatalytic CO2 reduction, there are still many unknowns about its mechanistic aspects even for the most common TiO2-based photocatalytic systems. These uncertainties include the pathways inducing visible-light activity in wide-band gap semiconductors, the charge transfer between semiconductors and plasmonic metal nanoparticles, the unambiguous determination of the origin of C-bearing products, the very first step in the activation of the CO2 molecule, the factors determining the selectivity, the reasons for photocatalyst deactivation, the closure of the catalytic cycle by the hole-scavenging reagent, and the detailed reaction pathways and the most suitable techniques for their determination. This Perspective discusses these controversial issues based on the most relevant investigations reported so far. For that purpose, we have tried to view the complex CO2 reduction in a holistic manner, considering today's state-of-the-art approaches, strategies, and techniques for the study of one of the hottest topics in energy research.
Collapse
Affiliation(s)
- Fernando Fresno
- Photoactivated Processes Unit , IMDEA Energy Institute , Avda. Ramón de la Sagra 3 , Parque Tecnológico de Móstoles, 28935 Móstoles , Madrid , Spain
| | - Ignacio J Villar-García
- Photoactivated Processes Unit , IMDEA Energy Institute , Avda. Ramón de la Sagra 3 , Parque Tecnológico de Móstoles, 28935 Móstoles , Madrid , Spain
| | - Laura Collado
- Photoactivated Processes Unit , IMDEA Energy Institute , Avda. Ramón de la Sagra 3 , Parque Tecnológico de Móstoles, 28935 Móstoles , Madrid , Spain
| | - Elena Alfonso-González
- Photoactivated Processes Unit , IMDEA Energy Institute , Avda. Ramón de la Sagra 3 , Parque Tecnológico de Móstoles, 28935 Móstoles , Madrid , Spain
| | - Patricia Reñones
- Photoactivated Processes Unit , IMDEA Energy Institute , Avda. Ramón de la Sagra 3 , Parque Tecnológico de Móstoles, 28935 Móstoles , Madrid , Spain
| | - Mariam Barawi
- Photoactivated Processes Unit , IMDEA Energy Institute , Avda. Ramón de la Sagra 3 , Parque Tecnológico de Móstoles, 28935 Móstoles , Madrid , Spain
| | - Víctor A de la Peña O'Shea
- Photoactivated Processes Unit , IMDEA Energy Institute , Avda. Ramón de la Sagra 3 , Parque Tecnológico de Móstoles, 28935 Móstoles , Madrid , Spain
| |
Collapse
|
24
|
Liquid vs. Gas Phase CO2 Photoreduction Process: Which Is the Effect of the Reaction Medium? ENERGIES 2017. [DOI: 10.3390/en10091394] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Ion-Exchange of Cu2+ Promoted Layered Perovskite K2La2Ti3O10 for Photocatalytic Degradation Chlorobenzene under Simulated Solar Light Irradiation. Catalysts 2017. [DOI: 10.3390/catal7050126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The layered perovskite, K2La2Ti3O10 was prepared by sol-gel method. Ion-exchange of Cu2+ was prepared to improve the photocatalytic activity of K2La2Ti3O10 for chlorobenzene degradation under simulated solar light irradiation. The original K2La2Ti3O10 and Cu2+/K2La2Ti3O10 were characterized by power X-ray diffraction, UV-visible diffuse reflectance spectroscopy, and specific surface area measurement. The XRD analysis shows that Cu2+ ions is incorporated in place of K+ ions and the grain growth is inhibited by ion-exchange. With the rise of calcination temperature, more interlayer Cu2+ was converted into new crystal phase CuO. The degradation ratio reaches 51.1% on Cu2+/K2La2Ti3O10 calcined at 500 °C in air, which is higher 16.9% than the original K2La2Ti3O10. It should be ascribed to the narrow interlayer distance, the formation of CuO, smaller grain size, and the high visible light absorption on the surface of Cu2+/K2La2Ti3O10 calcined at 500 °C. It is found that the exposure of CO2 could promote the photocatalytic activity of Cu2+/K2La2Ti3O10. It also suggests that CO2 is involved in the reduction to form benzaldehyde during decomposition of chlorobenzene.
Collapse
|
26
|
Li K, Peng B, Peng T. Recent Advances in Heterogeneous Photocatalytic CO2 Conversion to Solar Fuels. ACS Catal 2016. [DOI: 10.1021/acscatal.6b02089] [Citation(s) in RCA: 804] [Impact Index Per Article: 100.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kan Li
- College of Chemistry and
Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Bosi Peng
- College of Chemistry and
Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Tianyou Peng
- College of Chemistry and
Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
27
|
The Effect of Excess Electron and hole on CO2 Adsorption and Activation on Rutile (110) surface. Sci Rep 2016; 6:23298. [PMID: 26984417 PMCID: PMC4794741 DOI: 10.1038/srep23298] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/03/2016] [Indexed: 12/02/2022] Open
Abstract
CO2 capture and conversion into useful chemical fuel attracts great attention from many different fields. In the reduction process, excess electron is of key importance as it participates in the reaction, thus it is essential to know whether the excess electrons or holes affect the CO2 conversion. Here, the first-principles calculations were carried out to explore the role of excess electron on adsorption and activation of CO2 on rutile (110) surface. The calculated results demonstrate that CO2 can be activated as CO2 anions or CO2 cation when the system contains excess electrons and holes. The electronic structure of the activated CO2 is greatly changed, and the lowest unoccupied molecular orbital of CO2 can be even lower than the conduction band minimum of TiO2, which greatly facilities the CO2 reduction. Meanwhile, the dissociation process of CO2 undergoes an activated CO2− anion in bend configuration rather than the linear, while the long crossing distance of proton transfer greatly hinders the photocatalytic reduction of CO2 on the rutile (110) surface. These results show the importance of the excess electrons on the CO2 reduction process.
Collapse
|
28
|
Pougin A, Dilla M, Strunk J. Identification and exclusion of intermediates of photocatalytic CO2 reduction on TiO2 under conditions of highest purity. Phys Chem Chem Phys 2016; 18:10809-17. [DOI: 10.1039/c5cp07148h] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
On TiO2 P25, CO is not an intermediate in photocatalytic CO2 reduction; instead, a mechanism involving C2 intermediates is likely.
Collapse
Affiliation(s)
- Anna Pougin
- Laboratory of Industrial Chemistry
- Ruhr-University Bochum
- Germany
| | - Martin Dilla
- Max-Planck-Institute for Chemical Energy Conversion
- Mülheim/Ruhr
- Germany
| | - Jennifer Strunk
- Max-Planck-Institute for Chemical Energy Conversion
- Mülheim/Ruhr
- Germany
- Center for Nanointegration Duisburg-Essen
- University of Duisburg-Essen
| |
Collapse
|
29
|
Kim W, McClure BA, Edri E, Frei H. Coupling carbon dioxide reduction with water oxidation in nanoscale photocatalytic assemblies. Chem Soc Rev 2016; 45:3221-43. [DOI: 10.1039/c6cs00062b] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Closing the photosynthetic cycle on the nanometer scale under membrane separation of the half reactions for developing scalable artificial photosystems.
Collapse
Affiliation(s)
- Wooyul Kim
- Molecular Biophysics and Integrated Bioimaging Division
- Lawrence Berkeley National Laboratory
- University of California
- Berkeley
- USA
| | - Beth Anne McClure
- Molecular Biophysics and Integrated Bioimaging Division
- Lawrence Berkeley National Laboratory
- University of California
- Berkeley
- USA
| | - Eran Edri
- Molecular Biophysics and Integrated Bioimaging Division
- Lawrence Berkeley National Laboratory
- University of California
- Berkeley
- USA
| | - Heinz Frei
- Molecular Biophysics and Integrated Bioimaging Division
- Lawrence Berkeley National Laboratory
- University of California
- Berkeley
- USA
| |
Collapse
|
30
|
White JL, Baruch MF, Pander JE, Hu Y, Fortmeyer IC, Park JE, Zhang T, Liao K, Gu J, Yan Y, Shaw TW, Abelev E, Bocarsly AB. Light-Driven Heterogeneous Reduction of Carbon Dioxide: Photocatalysts and Photoelectrodes. Chem Rev 2015; 115:12888-935. [DOI: 10.1021/acs.chemrev.5b00370] [Citation(s) in RCA: 1148] [Impact Index Per Article: 127.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- James L. White
- Department
of Chemistry, Princeton University
, Princeton, New Jersey
08544, United States
| | - Maor F. Baruch
- Department
of Chemistry, Princeton University
, Princeton, New Jersey
08544, United States
| | - James E. Pander
- Department
of Chemistry, Princeton University
, Princeton, New Jersey
08544, United States
| | - Yuan Hu
- Department
of Chemistry, Princeton University
, Princeton, New Jersey
08544, United States
| | - Ivy C. Fortmeyer
- Department
of Chemistry, Princeton University
, Princeton, New Jersey
08544, United States
| | - James Eujin Park
- Department
of Chemistry, Princeton University
, Princeton, New Jersey
08544, United States
| | - Tao Zhang
- Department
of Chemistry, Princeton University
, Princeton, New Jersey
08544, United States
| | - Kuo Liao
- Department
of Chemistry, Princeton University
, Princeton, New Jersey
08544, United States
| | - Jing Gu
- Chemical
and Materials Science Center, National Renewable Energy Laboratory
, Golden, Colorado
80401, United States
| | - Yong Yan
- Chemical
and Materials Science Center, National Renewable Energy Laboratory
, Golden, Colorado
80401, United States
| | - Travis W. Shaw
- Department
of Chemistry, Princeton University
, Princeton, New Jersey
08544, United States
| | - Esta Abelev
- Department
of Chemistry, Princeton University
, Princeton, New Jersey
08544, United States
| | - Andrew B. Bocarsly
- Department
of Chemistry, Princeton University
, Princeton, New Jersey
08544, United States
| |
Collapse
|
31
|
Bordiga S, Lamberti C, Bonino F, Travert A, Thibault-Starzyk F. Probing zeolites by vibrational spectroscopies. Chem Soc Rev 2015; 44:7262-341. [PMID: 26435467 DOI: 10.1039/c5cs00396b] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review addresses the most relevant aspects of vibrational spectroscopies (IR, Raman and INS) applied to zeolites and zeotype materials. Surface Brønsted and Lewis acidity and surface basicity are treated in detail. The role of probe molecules and the relevance of tuning both the proton affinity and the steric hindrance of the probe to fully understand and map the complex site population present inside microporous materials are critically discussed. A detailed description of the methods needed to precisely determine the IR absorption coefficients is given, making IR a quantitative technique. The thermodynamic parameters of the adsorption process that can be extracted from a variable-temperature IR study are described. Finally, cutting-edge space- and time-resolved experiments are reviewed. All aspects are discussed by reporting relevant examples. When available, the theoretical literature related to the reviewed experimental results is reported to support the interpretation of the vibrational spectra on an atomic level.
Collapse
Affiliation(s)
- Silvia Bordiga
- Department of Chemistry, NIS and INSTM Reference Centers, University of Torino, Via Quarello 15, I-10135 Torino, Italy
| | | | | | | | | |
Collapse
|
32
|
Kim W, Frei H. Directed Assembly of Cuprous Oxide Nanocatalyst for CO2 Reduction Coupled to Heterobinuclear ZrOCoII Light Absorber in Mesoporous Silica. ACS Catal 2015. [DOI: 10.1021/acscatal.5b01306] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wooyul Kim
- Physical Biosciences Division,
Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, United States
| | - Heinz Frei
- Physical Biosciences Division,
Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, United States
| |
Collapse
|
33
|
Yin WJ, Krack M, Wen B, Ma SY, Liu LM. CO2 Capture and Conversion on Rutile TiO2(110) in the Water Environment: Insight by First-Principles Calculations. J Phys Chem Lett 2015; 6:2538-45. [PMID: 26266731 DOI: 10.1021/acs.jpclett.5b00798] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The conversion of CO2 by the virtue of sunlight has the great potential to produce useful fuels or valuable chemicals while decreasing CO2 emission from the traditional fossil fuels. Here, we use the first-principles calculations combined with the periodic continuum solvation model (PCSM) to explore the adsorption and reactivity of CO2 on rutile TiO2(110) in the water environment. The results exhibit that both adsorption structures and reactivity of CO2 are greatly affected by water coadsorption on rutile TiO2(110). In particular, the solvation effect can change the most stable adsorption configuration of CO2 and H2O on rutile TiO2(110). In addition, the detailed conversion mechanism of CO2 reduction is further explored in the water environment. The results reveal that the solvation effect cannot only greatly decrease the energy barrier of CO2 reduction but also affect the selectivity of the reaction processes. These results presented here show the importance of the aqueous solution, which should be helpful to understand the detailed reaction processes of photocatalysts.
Collapse
Affiliation(s)
- Wen-Jin Yin
- †Beijing Computational Science Research Center, Beijing 100094, China
| | - Matthias Krack
- ‡Paul Scherrer Institute, CH-5232 Villigen-PSI, Switzerland
| | - Bo Wen
- †Beijing Computational Science Research Center, Beijing 100094, China
| | - Shang-Yi Ma
- †Beijing Computational Science Research Center, Beijing 100094, China
| | - Li-Min Liu
- †Beijing Computational Science Research Center, Beijing 100094, China
| |
Collapse
|
34
|
Linares N, Silvestre-Albero AM, Serrano E, Silvestre-Albero J, García-Martínez J. Mesoporous materials for clean energy technologies. Chem Soc Rev 2015; 43:7681-717. [PMID: 24699503 DOI: 10.1039/c3cs60435g] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Alternative energy technologies are greatly hindered by significant limitations in materials science. From low activity to poor stability, and from mineral scarcity to high cost, the current materials are not able to cope with the significant challenges of clean energy technologies. However, recent advances in the preparation of nanomaterials, porous solids, and nanostructured solids are providing hope in the race for a better, cleaner energy production. The present contribution critically reviews the development and role of mesoporosity in a wide range of technologies, as this provides for critical improvements in accessibility, the dispersion of the active phase and a higher surface area. Relevant examples of the development of mesoporosity by a wide range of techniques are provided, including the preparation of hierarchical structures with pore systems in different scale ranges. Mesoporosity plays a significant role in catalysis, especially in the most challenging processes where bulky molecules, like those obtained from biomass or highly unreactive species, such as CO2 should be transformed into most valuable products. Furthermore, mesoporous materials also play a significant role as electrodes in fuel and solar cells and in thermoelectric devices, technologies which are benefiting from improved accessibility and a better dispersion of materials with controlled porosity.
Collapse
Affiliation(s)
- Noemi Linares
- Laboratorio de Nanotecnología Molecular, Departamento de Química Inorgánica, Universidad de Alicante, Ap. 99, E-03080 Alicante, Spain.
| | | | | | | | | |
Collapse
|
35
|
Teramura K, Tatsumi H, Wang Z, Hosokawa S, Tanaka T. Photocatalytic Conversion of CO2 by H2O over Ag-Loaded SrO-Modified Ta2O5. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2015. [DOI: 10.1246/bcsj.20140385] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kentaro Teramura
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST)
| | - Hiroyuki Tatsumi
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University
| | - Zheng Wang
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University
| | - Saburo Hosokawa
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University
| | - Tsunehiro Tanaka
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University
| |
Collapse
|
36
|
|
37
|
Ramesha GK, Brennecke JF, Kamat PV. Origin of Catalytic Effect in the Reduction of CO2 at Nanostructured TiO2 Films. ACS Catal 2014. [DOI: 10.1021/cs500730w] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ganganahalli K. Ramesha
- Radiation Laboratory, ‡Department of Chemical
and Biomolecular Engineering, §Department of Chemistry
and Biochemistry, University of Notre Dame, South Bend, Indiana 46556, United States
| | - Joan F. Brennecke
- Radiation Laboratory, ‡Department of Chemical
and Biomolecular Engineering, §Department of Chemistry
and Biochemistry, University of Notre Dame, South Bend, Indiana 46556, United States
| | - Prashant V. Kamat
- Radiation Laboratory, ‡Department of Chemical
and Biomolecular Engineering, §Department of Chemistry
and Biochemistry, University of Notre Dame, South Bend, Indiana 46556, United States
| |
Collapse
|
38
|
Kim W, Yuan G, McClure BA, Frei H. Light Induced Carbon Dioxide Reduction by Water at Binuclear ZrOCoII Unit Coupled to Ir Oxide Nanocluster Catalyst. J Am Chem Soc 2014; 136:11034-42. [DOI: 10.1021/ja504753g] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Wooyul Kim
- Physical
Biosciences Division,
Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, United States
| | - Guangbi Yuan
- Physical
Biosciences Division,
Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, United States
| | - Beth Anne McClure
- Physical
Biosciences Division,
Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, United States
| | - Heinz Frei
- Physical
Biosciences Division,
Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, United States
| |
Collapse
|
39
|
|
40
|
|
41
|
Mei B, Wiktor C, Turner S, Pougin A, van Tendeloo G, Fischer RA, Muhler M, Strunk J. Evidence for Metal–Support Interactions in Au Modified TiOx/SBA-15 Materials Prepared by Photodeposition. ACS Catal 2013. [DOI: 10.1021/cs400964k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bastian Mei
- Department
of Chemistry and Biochemistry, Laboratory of Industrial Chemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Christian Wiktor
- Department
of Chemistry and Biochemistry, Inorganic Chemistry II, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
- Electron
Microscopy for Materials Science (EMAT), Antwerp University, Groenenborgerlaan, 171, 2020 Antwerpen, Belgium
| | - Stuart Turner
- Electron
Microscopy for Materials Science (EMAT), Antwerp University, Groenenborgerlaan, 171, 2020 Antwerpen, Belgium
| | - Anna Pougin
- Department
of Chemistry and Biochemistry, Laboratory of Industrial Chemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Gustaaf van Tendeloo
- Electron
Microscopy for Materials Science (EMAT), Antwerp University, Groenenborgerlaan, 171, 2020 Antwerpen, Belgium
| | - Roland A. Fischer
- Department
of Chemistry and Biochemistry, Inorganic Chemistry II, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Martin Muhler
- Department
of Chemistry and Biochemistry, Laboratory of Industrial Chemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Jennifer Strunk
- Department
of Chemistry and Biochemistry, Laboratory of Industrial Chemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| |
Collapse
|
42
|
Wu YT, Yu YH, Nguyen VH, Wu JCS. In-situ FTIR spectroscopic study of the mechanism of photocatalytic reduction of NO with methane over Pt/TiO2 photocatalysts. RESEARCH ON CHEMICAL INTERMEDIATES 2013. [DOI: 10.1007/s11164-013-1337-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
43
|
Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew Chem Int Ed Engl 2013; 52:7372-408. [PMID: 23765842 DOI: 10.1002/anie.201207199] [Citation(s) in RCA: 1268] [Impact Index Per Article: 115.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 12/21/2012] [Indexed: 02/06/2023]
Abstract
Rising atmospheric levels of carbon dioxide and the depletion of fossil fuel reserves raise serious concerns about the ensuing effects on the global climate and future energy supply. Utilizing the abundant solar energy to convert CO2 into fuels such as methane or methanol could address both problems simultaneously as well as provide a convenient means of energy storage. In this Review, current approaches for the heterogeneous photocatalytic reduction of CO2 on TiO2 and other metal oxide, oxynitride, sulfide, and phosphide semiconductors are presented. Research in this field is focused primarily on the development of novel nanostructured photocatalytic materials and on the investigation of the mechanism of the process, from light absorption through charge separation and transport to CO2 reduction pathways. The measures used to quantify the efficiency of the process are also discussed in detail.
Collapse
Affiliation(s)
- Severin N Habisreutinger
- Department für Physik und Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität (LMU) München, Amalienstrasse 54, 80799 München, Germany
| | | | | |
Collapse
|
44
|
Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK. Photokatalytische Reduktion von CO2an TiO2und anderen Halbleitern. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201207199] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
45
|
Application of photo catalysis for mitigation of carbon dioxide. RESEARCH ON CHEMICAL INTERMEDIATES 2012. [DOI: 10.1007/s11164-012-0783-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
46
|
|
47
|
Liu L, Zhao H, Andino JM, Li Y. Photocatalytic CO2 Reduction with H2O on TiO2 Nanocrystals: Comparison of Anatase, Rutile, and Brookite Polymorphs and Exploration of Surface Chemistry. ACS Catal 2012. [DOI: 10.1021/cs300273q] [Citation(s) in RCA: 625] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lianjun Liu
- Department
of Mechanical Engineering, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
53211, United States
| | - Huilei Zhao
- Department
of Mechanical Engineering, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
53211, United States
| | | | - Ying Li
- Department
of Mechanical Engineering, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
53211, United States
| |
Collapse
|
48
|
He H, Liu C, Dubois KD, Jin T, Louis ME, Li G. Enhanced Charge Separation in Nanostructured TiO2 Materials for Photocatalytic and Photovoltaic Applications. Ind Eng Chem Res 2012. [DOI: 10.1021/ie300510n] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- He He
- Department
of Chemistry and Materials Science Program, University of New Hampshire, Durham, New Hampshire
03824, United States
| | - Chao Liu
- Department
of Chemistry and Materials Science Program, University of New Hampshire, Durham, New Hampshire
03824, United States
| | - Kevin D. Dubois
- Department
of Chemistry and Materials Science Program, University of New Hampshire, Durham, New Hampshire
03824, United States
| | - Tong Jin
- Department
of Chemistry and Materials Science Program, University of New Hampshire, Durham, New Hampshire
03824, United States
| | - Michael E. Louis
- Department
of Chemistry and Materials Science Program, University of New Hampshire, Durham, New Hampshire
03824, United States
| | - Gonghu Li
- Department
of Chemistry and Materials Science Program, University of New Hampshire, Durham, New Hampshire
03824, United States
| |
Collapse
|
49
|
Yang CC, Vernimmen J, Meynen V, Cool P, Mul G. Mechanistic study of hydrocarbon formation in photocatalytic CO2 reduction over Ti-SBA-15. J Catal 2011. [DOI: 10.1016/j.jcat.2011.08.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
50
|
Mechanistic and Adsorption Studies of Relevance to Photocatalysts on Titanium Grafted Mesoporous Silicalites. Catal Letters 2011. [DOI: 10.1007/s10562-011-0644-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|