1
|
Escaja N, Mir B, Garavís M, González C. Non-G Base Tetrads. Molecules 2022; 27:5287. [PMID: 36014524 PMCID: PMC9414646 DOI: 10.3390/molecules27165287] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Tetrads (or quartets) are arrangements of four nucleobases commonly involved in the stability of four-stranded nucleic acids structures. Four-stranded or quadruplex structures have attracted enormous attention in the last few years, being the most extensively studied guanine quadruplex (G-quadruplex). Consequently, the G-tetrad is the most common and well-known tetrad. However, this is not the only possible arrangement of four nucleobases. A number of tetrads formed by the different nucleobases have been observed in experimental structures. In most cases, these tetrads occur in the context of G-quadruplex structures, either inserted between G-quartets, or as capping elements at the sides of the G-quadruplex core. In other cases, however, non-G tetrads are found in more unusual four stranded structures, such as i-motifs, or different types of peculiar fold-back structures. In this report, we review the diversity of these non-canonical tetrads, and the structural context in which they have been found.
Collapse
Affiliation(s)
- Núria Escaja
- Organic Chemistry Section, Inorganic and Organic Chemistry Department, University of Barcelona, Martí i Franquès 1–11, 08028 Barcelona, Spain
- Institute of Biomedicine, University of Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain
| | - Bartomeu Mir
- Organic Chemistry Section, Inorganic and Organic Chemistry Department, University of Barcelona, Martí i Franquès 1–11, 08028 Barcelona, Spain
- Institute of Biomedicine, University of Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain
| | - Miguel Garavís
- Instituto de Química Física ‘Rocasolano’, CSIC, Serrano 119, 28006 Madrid, Spain
| | - Carlos González
- Instituto de Química Física ‘Rocasolano’, CSIC, Serrano 119, 28006 Madrid, Spain
| |
Collapse
|
2
|
Ruggiero E, Lavezzo E, Grazioli M, Zanin I, Marušič M, Plavec J, Richter SN, Toppo S. Human Virus Genomes Are Enriched in Conserved Adenine/Thymine/Uracil Multiple Tracts That Pause Polymerase Progression. Front Microbiol 2022; 13:915069. [PMID: 35722311 PMCID: PMC9198555 DOI: 10.3389/fmicb.2022.915069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
The DNA secondary structures that deviate from the classic Watson and Crick base pairing are increasingly being reported to form transiently in the cell and regulate specific cellular mechanisms. Human viruses are cell parasites that have evolved mechanisms shared with the host cell to support their own replication and spreading. Contrary to human host cells, viruses display a diverse array of nucleic acid types, which include DNA or RNA in single-stranded or double-stranded conformations. This heterogeneity improves the possible occurrence of non-canonical nucleic acid structures. We have previously shown that human virus genomes are enriched in G-rich sequences that fold in four-stranded nucleic acid secondary structures, the G-quadruplexes.Here, by extensive bioinformatics analysis on all available genomes, we showed that human viruses are enriched in highly conserved multiple A (and T or U) tracts, with such an array that they could in principle form quadruplex structures. By circular dichroism, NMR, and Taq polymerase stop assays, we proved that, while A/T/U-quadruplexes do not form, these tracts still display biological significance, as they invariably trigger polymerase pausing within two bases from the A/T/U tract. “A” bases display the strongest effect. Most of the identified A-tracts are in the coding strand, both at the DNA and RNA levels, suggesting their possible relevance during viral translation. This study expands on the presence and mechanism of nucleic acid secondary structures in human viruses and provides a new direction for antiviral research.
Collapse
Affiliation(s)
| | - Enrico Lavezzo
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Marco Grazioli
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Irene Zanin
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Maja Marušič
- Slovenian NMR Centre, National Institute of Chemistry, Ljubljana, Slovenia
| | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry, Ljubljana, Slovenia
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Stefano Toppo
- Department of Molecular Medicine, University of Padua, Padua, Italy.,CRIBI Biotechnology Center, University of Padua, Padua, Italy
| |
Collapse
|
3
|
Andrałojć W, Pasternak K, Sarzyńska J, Zielińska K, Kierzek R, Gdaniec Z. The origin of the high stability of 3'-terminal uridine tetrads: contributions of hydrogen bonding, stacking interactions, and steric factors evaluated using modified oligonucleotide analogs. RNA (NEW YORK, N.Y.) 2020; 26:2000-2016. [PMID: 32967936 PMCID: PMC7668245 DOI: 10.1261/rna.076539.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/17/2020] [Indexed: 05/09/2023]
Abstract
RNA G-quadruplexes fold almost exclusively into parallel-stranded structures and thus display much less structural diversity than their DNA counterparts. However, also among RNA G-quadruplexes peculiar structural elements can be found which are capable of reshaping the physico-chemical properties of the folded structure. A striking example is provided by a uridine tetrad (U-tetrad) placed on the 3'-terminus of the tetramolecular G-quadruplex. In this context, the U-tetrad adopts a unique conformation involving chain reversal and is responsible for a tremendous stabilization of the G-quadruplex (ΔTm up to 30°C). In this report, we attempt to rationalize the origin of this stabilizing effect by concurrent structural, thermal stability, and molecular dynamics studies of a series of G-quadruplexes with subtle chemical modifications at their 3'-termini. Our results provide detailed insights into the energetics of the "reversed" U-tetrad motif and the requirements for its formation. They point to the importance of the 2'OH to phosphate hydrogen bond and preferential stacking interactions for the formation propensity and stability of the motif.
Collapse
Affiliation(s)
- Witold Andrałojć
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Karol Pasternak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Joanna Sarzyńska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Karolina Zielińska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Ryszard Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Zofia Gdaniec
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| |
Collapse
|
4
|
Andrałojć W, Małgowska M, Sarzyńska J, Pasternak K, Szpotkowski K, Kierzek R, Gdaniec Z. Unraveling the structural basis for the exceptional stability of RNA G-quadruplexes capped by a uridine tetrad at the 3' terminus. RNA (NEW YORK, N.Y.) 2019; 25:121-134. [PMID: 30341177 PMCID: PMC6298561 DOI: 10.1261/rna.068163.118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/16/2018] [Indexed: 05/24/2023]
Abstract
Uridine tetrads (U-tetrads) are a structural element encountered in RNA G-quadruplexes, for example, in the structures formed by the biologically relevant human telomeric repeat RNA. For these molecules, an unexpectedly strong stabilizing influence of a U-tetrad forming at the 3' terminus of a quadruplex was reported. Here we present the high-resolution solution NMR structure of the r(UGGUGGU)4 quadruplex which, in our opinion, provides an explanation for this stabilization. Our structure features a distinctive, abrupt chain reversal just prior to the 3' uridine tetrad. Similar "reversed U-tetrads" were already observed in the crystalline phase. However, our NMR structure coupled with extensive explicit solvent molecular dynamics (MD) simulations identifies some key features of this motif that up to now remained overlooked. These include the presence of an exceptionally stable 2'OH to phosphate hydrogen bond, as well as the formation of an additional K+ binding pocket in the quadruplex groove.
Collapse
Affiliation(s)
- Witold Andrałojć
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Magdalena Małgowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Joanna Sarzyńska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Karol Pasternak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Kamil Szpotkowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Ryszard Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Zofia Gdaniec
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| |
Collapse
|
5
|
Yeole SD, Khire SS, Sarode CH, Patil KD. On the cation– $$\uppi $$ π interactions in 1,2-dihydro-1,2-azaborine. J CHEM SCI 2018. [DOI: 10.1007/s12039-018-1500-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Hui WQB, Sherman JC. Self-assembly of a thymine quartet and quadruplex via an organic template. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.01.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Aviñó A, Portella G, Ferreira R, Gargallo R, Mazzini S, Gabelica V, Orozco M, Eritja R. Specific loop modifications of the thrombin-binding aptamer trigger the formation of parallel structures. FEBS J 2014; 281:1085-99. [PMID: 24304855 DOI: 10.1111/febs.12670] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/11/2013] [Accepted: 11/27/2013] [Indexed: 01/31/2023]
Abstract
Guanine-rich sequences show large structural variability, with folds ranging from duplex to triplex and quadruplex helices. Quadruplexes are polymorphic, and can show multiple stoichiometries, parallel and antiparallel strand alignments, and different topological arrangements. We analyze here the equilibrium between intramolecular antiparallel and intermolecular parallel G-quadruplexes in the thrombin-binding aptamer (TBA) sequence. Our theoretical and experimental studies demonstrate that an apparently simple modification at the loops of TBA induces a large change in the monomeric antiparallel structure of TBA to yield a parallel G-quadruplex showing a novel T-tetrad. The present results illustrate the extreme polymorphism of G-quadruplexes and the ease with which their conformation in solution can be manipulated by nucleotide modification.
Collapse
Affiliation(s)
- Anna Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Hui BWQ, Sherman JC. A Template-Assembled Synthetic U-Quadruplex. Chembiochem 2012; 13:1865-8. [DOI: 10.1002/cbic.201200442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Indexed: 01/23/2023]
|
9
|
Mg2+/Ca2+ binding to DNA bases: a quantum chemical method and ABEEMσπ/MM fluctuating charge model study. Theor Chem Acc 2012. [DOI: 10.1007/s00214-012-1098-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
10
|
Hui BWQ, Sherman JC. Synthesis and characterization of a template-assembled synthetic U-quartet. Chem Commun (Camb) 2012; 48:109-11. [DOI: 10.1039/c1cc15608j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
11
|
Nucleobase assemblies supported by uranyl cation coordination and other non-covalent interactions. J CHEM SCI 2011. [DOI: 10.1007/s12039-011-0164-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
12
|
Ali OY, Fridgen TD. Structures and Fragmentation of [Cu(Uracil-H)(Uracil)]+ in the Gas Phase. Chemphyschem 2011; 13:588-96. [DOI: 10.1002/cphc.201100661] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 11/15/2011] [Indexed: 11/10/2022]
|
13
|
Rao JS, Zipse H, Sastry GN. Explicit Solvent Effect on Cation−π Interactions: A First Principle Investigation. J Phys Chem B 2009; 113:7225-36. [DOI: 10.1021/jp900013e] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- J. Srinivasa Rao
- Molecular Modeling Group, Indian Institute of Chemical Technology, Tarnaka, Hyderabad - 500 607, India, and Department Chemie and Biochemie, LMU München, Butenandtstrasse 5-13, D-81377, München, Germany
| | - Hendrik Zipse
- Molecular Modeling Group, Indian Institute of Chemical Technology, Tarnaka, Hyderabad - 500 607, India, and Department Chemie and Biochemie, LMU München, Butenandtstrasse 5-13, D-81377, München, Germany
| | - G. Narahari Sastry
- Molecular Modeling Group, Indian Institute of Chemical Technology, Tarnaka, Hyderabad - 500 607, India, and Department Chemie and Biochemie, LMU München, Butenandtstrasse 5-13, D-81377, München, Germany
| |
Collapse
|
14
|
Rao JS, Sastry GN. Structural and Energetic Preferences of π, σ, and Bidentate Cation Binding (Li+, Na+, and Mg2+) to Aromatic Amines (Ph−(CH2)n−NH2, n = 2−5): A Theoretical Study. J Phys Chem A 2009; 113:5446-54. [DOI: 10.1021/jp811124g] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- J. Srinivasa Rao
- Molecular Modeling Group, Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 607, India
| | - G. Narahari Sastry
- Molecular Modeling Group, Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 607, India
| |
Collapse
|
15
|
Abstract
The structures and the relative energies of six possible tautomers of the thymine base have been studied by density functional theory (DFT) using the B3LYP and BP86 functionals. The keto-thymine (T1) is predicted to be the most stable thymine tautomer, which is consistent with the other theoretical results and experimental data. The corresponding thymine cations and anions are studied using the same level of theory with double-ζ plus polarization and diffuse functions (DZP++) basis sets. The ionization potentials (IPs), the electron affinities (EAs), and proton affinities (PAs) for different protonation sites in thymine base are obtained. T1 has the largest ionization potential and the lowest proton affinity among all the considered thymine tautomers.
Collapse
Affiliation(s)
- Dongsheng Jiao
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, P.R. China
- College of Sciences, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Hongyan Wang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, P.R. China
- College of Sciences, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Yanlan Zhang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, P.R. China
- College of Sciences, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Yu Tang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, P.R. China
- College of Sciences, Southwest Jiaotong University, Chengdu 610031, P.R. China
| |
Collapse
|
16
|
Trujillo C, Lamsabhi AM, Mó O, Yáñez M, Salpin JY. Interaction of Ca2+ with uracil and its thio derivatives in the gas phase. Org Biomol Chem 2008; 6:3695-702. [DOI: 10.1039/b810418b] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
Reddy AS, Zipse H, Sastry GN. Cation−π Interactions of Bare and Coordinatively Saturated Metal Ions: Contrasting Structural and Energetic Characteristics. J Phys Chem B 2007; 111:11546-53. [PMID: 17850069 DOI: 10.1021/jp075768l] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the present work, we address an apparent disparity in the structural parameters of the X-ray structures and theoretical models of cation-pi complexes in biological and chemical recognition. Hydrated metal ion (Li+, Na+, K+, Mg2+, Ca2+) complexes with benzene (cation-pi) are considered as model systems to perform quantum mechanical calculations in evaluating the geometrical parameters and interaction energies of these complexes. The computations disclose that there is a variation in the structural parameters as well as in the interaction energies of these complexes with the multiple additions of water molecules. The distance between the cation and the pi-system increases with the addition of water molecules, delineating the influence of solvent or the neighborhood atoms on the structural parameters of cation-pi systems present in crystal structures.
Collapse
Affiliation(s)
- A Srinivas Reddy
- Molecular Modeling Group, Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India
| | | | | |
Collapse
|
18
|
Meyer M, Steinke T, Sühnel J. Density functional study of isoguanine tetrad and pentad sandwich complexes with alkali metal ions. J Mol Model 2006; 13:335-45. [PMID: 17013632 DOI: 10.1007/s00894-006-0148-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 06/26/2006] [Indexed: 11/30/2022]
Abstract
Isoguanine tetraplexes and pentaplexes contain two or more stacked polyads with intercalating metal ions. We report here the results of a density functional study of sandwiched isoguanine tetrad and pentad complexes consisting of two polyads with Na(+), K(+) and Rb(+) ions at the B3LYP level. In comparison to single polyad metal ion complexes, there is a trend towards increased non-planarity of the polyads in the sandwich complexes. In general, the pentad sandwiches have relatively planar polyad structures, whereas the tetrad complexes contain highly non-planar polyad building blocks. As in other sandwich complexes and in metal ion complexes with single polyads, the metal ion-base interaction energy plays an essential role. In iG sandwich structures, this interaction energy is slightly larger than in the corresponding guanine sandwich complexes. Because the base-base interaction energy is even more increased in passing from guanine to isoguanine, the isoguanine sandwiches are thus far the only examples where the base-base interaction energy is larger than the base-metal ion interaction energy. Stacking interactions have been studied in smaller models consisting of two bases, retaining the geometry from the complete complex structures. From the data obtained at the B3LYP and BH&H levels and with Møller-Plesset perturbation theory, one can conclude that the B3LYP method overestimates the repulsion in stacked base dimers. For the complexes studied in this work, this is only of minor importance because the direct inter-tetrad or inter-pentad interaction is supplemented by a strong metal ion-base interaction. Using a microsolvation model, the metal ion preference K(+) approximately Rb(+) > Na(+) is found for tetrad complexes. On the other hand, for pentads the ordering is Rb(+) > K(+) > Na(+). In the latter case experimental data are available that agree with this prediction.
Collapse
Affiliation(s)
- Michael Meyer
- Revotar Biopharmaceuticals AG, Neuendorfstrasse 24a, 16761, Hennigsdorf, Germany.
| | | | | |
Collapse
|
19
|
|
20
|
Reddy AS, Sastry GN. Cation [M = H+, Li+, Na+, K+, Ca2+, Mg2+, NH4+, and NMe4+] Interactions with the Aromatic Motifs of Naturally Occurring Amino Acids: A Theoretical Study. J Phys Chem A 2005; 109:8893-903. [PMID: 16834293 DOI: 10.1021/jp0525179] [Citation(s) in RCA: 231] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ab initio (HF, MP2, and CCSD(T)) and DFT (B3LYP) calculations were done in modeling the cation (H(+), Li(+), Na(+), K(+), Ca(2+), Mg(2+), NH(4)(+), and NMe(4)(+)) interaction with aromatic side chain motifs of four amino acids (viz., phenylalanine, tyrosine, tryptophan and histidine). As the metal ion approaches the pi-framework of the model systems, they form strongly bound cation-pi complexes, where the metal ion is symmetrically disposed with respect to all ring atoms. In contrast, proton prefers to bind covalently to one of the ring carbons. The NH(4)(+) and NMe(4)(+) ions have shown N-H...pi interaction and C-H...pi interaction with the aromatic motifs. The interaction energies of N-H...pi and C-H...pi complexes are higher than hydrogen bonding interactions; thus, the orientation of aromatic side chains in protein is effected in the presence of ammonium ions. However, the regioselectivity of metal ion complexation is controlled by the affinity of the site of attack. In the imidazole unit of histidine the ring nitrogen has much higher metal ion (as well as proton) affinity as compared to the pi-face, facilitating the in-plane complexation of the metal ions. The interaction energies increase in the order of 1-M < 2-M < 3-M < 4-M < 5-M for all the metal ion considered. Similarly, the complexation energies with the model systems decrease in the following order: Mg(2+) > Ca(2+) > Li(+) > Na(+) > K(+) congruent with NH(4)(+) > NMe(4)(+). The variation of the bond lengths and the extent of charge transfer upon complexation correlate well with the computed interaction energies.
Collapse
Affiliation(s)
- A Srinivas Reddy
- Molecular Modeling Group, Organic Chemical Sciences, Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India
| | | |
Collapse
|
21
|
Meyer M, Hocquet A, Sühnel J. Interaction of sodium and potassium ions with sandwiched cytosine-, guanine-, thymine-, and uracil-base tetrads. J Comput Chem 2005; 26:352-64. [PMID: 15648098 DOI: 10.1002/jcc.20176] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Nucleic acid tetraplexes and lipophilic self-assembling G-quadruplexes contain stacked base tetrads with intercalated metal ions as basic building blocks. Thus far, quantum-chemical studies have been used to explore the geometric and energetic properties of base tetrads with and without metal ions. Recently, for the first time, work on a sandwiched G-tetrad complex has been studied. We report here results of a systematic B3LYP density functional study on sandwiched G-, C-, U-, and T-tetrads with Na+ and K+ at different symmetries that substantially extend the recent work. The results include detailed information on total energies as well as on metal ion tetrad and base-base interaction energies. The geometrical parameters of the sandwiched metal ion complexes are compared to both experimental structures and to calculated geometries of complexes of single tetrads with metal ions. A microsolvation model explains the ion selectivity preference of K+ over Na+ in a qualitative sense.
Collapse
Affiliation(s)
- Michael Meyer
- Revotar Biopharmaceuticals AG, Neuendorfstrasse 24a, D-16761 Hennigsdorf, Germany.
| | | | | |
Collapse
|
22
|
Wang H, Meng F, Xu W, Liu C. The effects of incorporating 2,4-dithiouracil into uracil tetrad: a theoretical study. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.theochem.2004.12.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
Meyer M, Sühnel J. Interaction of cyclic cytosine-, guanine-, thymine-, uracil- and mixed guanine-cytosine base tetrads with K+, Na+ and Li+ ions -- a density functional study. J Biomol Struct Dyn 2003; 20:507-17. [PMID: 12529150 DOI: 10.1080/07391102.2003.10506868] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
We have carried out B3LYP hybrid density functional studies of complexes formed by cyclic cytosine-, guanine-, thymine-, uracil- and mixed guanine cytosine-tetrads with Li+, Na+ and K+ ions to determine their structures and interaction energies. The conformations studied have been restricted to a hydrogen bond pattern closely related to the tetrads observed in experimental nucleic acid structures. A comparison of the alkali metal ion/tetrad complexes with the tetrads without cations indicates that alkali metal ions modulate the tetrad structures significantly and that even the hydrogen bond pattern may change. Guanine-tetrad cation complexes show the strongest interaction energy compared to other tetrads that occur less frequently in experimental structures. The most stable G-tetrad/metal ion structure adopts a nearly planar geometry that is especially suitable for tetraplex formation, which requires approximately parallel tetrad planes. In the cytosine-tetrad there is a very large central cavity suitable for cation recognition, but the complexes adopt a non-planar structure unsuitable for stacking, except possibly for ions with very large radii. Uracil and thymine tetrads show a significant different characteristics which may contribute to the differences between DNA and RNA
Collapse
Affiliation(s)
- Michael Meyer
- Revotar Biopharmaceuticals AG, Neuendorfstrasse 24a, D-16761, Hennigsdorf, Germany.
| | | |
Collapse
|
24
|
Sherer EC, York DM, Cramer CJ. Fast approximate methods for calculating nucleic acid base pair interaction energies. J Comput Chem 2003; 24:57-67. [PMID: 12483675 DOI: 10.1002/jcc.10150] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Interaction enthalpies for six base pairs have been computed at a variety of efficient levels of electronic structure theory and compared to experiment. In addition to previously defined levels of theory, modified Hamiltonians with adjusted parameters in hybrid Hartree-Fock/density functionals and semiempirical neglect-of-diatomic-differential-overlap models were examined. Of the pure and hybrid density functional levels, mPWPW91/MIDI! performed most satisfactorily, as judged by comparison not only to the available experimental data, but also to data from more robust electronic structure methods for 22 additional base pairs. The low computational cost of the mPWPW91/MIDI! model was further exploited in an investigation of various base trimers, tetramers, and one base pentamer. A carefully reparameterized semiempirical model, PM3(BP), was able to achieve similar levels of accuracy at a still greater savings in terms of computational effort.
Collapse
Affiliation(s)
- Edward C Sherer
- Department of Chemistry and Supercomputer Institute, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431, USA
| | | | | |
Collapse
|
25
|
|