1
|
Rodriguez-Mayorga M, Blase X, Duchemin I, D'Avino G. From Many-Body Ab Initio to Effective Excitonic Models: A Versatile Mapping Approach Including Environmental Embedding Effects. J Chem Theory Comput 2024; 20:8675-8688. [PMID: 39376072 DOI: 10.1021/acs.jctc.4c00756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
We present an original multistate projective diabatization scheme based on Green's function formalisms that allows the systematic mapping of many-body ab initio calculations onto effective excitonic models. This method inherits the ability of the Bethe-Salpeter equation to describe Frenkel molecular excitons and intermolecular charge-transfer states equally well, as well as the possibility for an effective description of environmental effects in a QM/MM framework. The latter is found to be a crucial element in order to obtain accurate model parameters for condensed phases and to ensure their transferability to excitonic models for extended systems. The method is presented through a series of examples illustrating its quality, robustness, and internal consistency.
Collapse
Affiliation(s)
- Mauricio Rodriguez-Mayorga
- Grenoble Alpes University, CNRS, Grenoble INP, Institut Néel, 25 rue des Martyrs, Grenoble 38042, France
| | - Xavier Blase
- Grenoble Alpes University, CNRS, Grenoble INP, Institut Néel, 25 rue des Martyrs, Grenoble 38042, France
| | - Ivan Duchemin
- Grenoble Alpes University, CEA, IRIG-MEM-L Sim, Grenoble 38054, France
| | - Gabriele D'Avino
- Grenoble Alpes University, CNRS, Grenoble INP, Institut Néel, 25 rue des Martyrs, Grenoble 38042, France
| |
Collapse
|
2
|
Zhang XE, Wei X, Cui WB, Bai JP, Matyusup A, Guo JF, Li H, Ren AM. Rational design of anthocyanidins-directed near-infrared two-photon fluorescent probes. Phys Chem Chem Phys 2024; 26:23871-23885. [PMID: 39230879 DOI: 10.1039/d4cp02067g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Recently, two-photon fluorescent probes based on anthocyanidin molecules have attracted extensive attention due to their outstanding photophysical properties. However, there are only a few two-photon excited fluorescent probes that really meet the requirements of relatively long emission wavelengths (>600 nm), large two-photon absorption (TPA) cross-sections (300 GM), significant Stokes shift (>80 nm), and high fluorescence intensity. Herein, the photophysical properties of a series of anthocyanidins with the same substituents but different fluorophore skeletons are investigated in detail. Compared with b-series molecules, a-series molecules with a six-membered ring in the backbone have a slightly higher reorganization energy. This results in more energy loss upon light excitation, enabling the reaction products to detect NTR through a larger Stokes shift. More importantly, there is very little decrease in fluorescence intensity as the Stokes shift increases. These features are extremely valuable for high-resolution NTR detection. In light of this, novel 2a-n (n = 1-5) compounds are designed, which are accomplished by inhibiting the twisted intramolecular charge transfer (TICT) effect through alkyl cyclization, azetidine ring and extending π conjugation. Among them, 2a-3 gains a long emission spectrum (λem = 691.4 nm), noticeable TPA cross-section (957 GM), and large Stokes shift (110 nm), indicating that it serves as a promising candidate for two-photon fluorescent dyes. It is hoped that this work will offer some insightful theoretical direction for the development of novel high performance anthocyanin fluorescent materials.
Collapse
Affiliation(s)
- Xiu-E Zhang
- School of Physics, Northeast Normal University, Changchun 130024, P.R. China.
| | - Xue Wei
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Liutiao Road #2, Changchun 130061, P.R. China.
| | - Wei-Bo Cui
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Liutiao Road #2, Changchun 130061, P.R. China.
| | - Jin-Pu Bai
- School of Physics, Northeast Normal University, Changchun 130024, P.R. China.
| | - Aynur Matyusup
- School of Physics, Northeast Normal University, Changchun 130024, P.R. China.
| | - Jing-Fu Guo
- School of Physics, Northeast Normal University, Changchun 130024, P.R. China.
| | - Hui Li
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Liutiao Road #2, Changchun 130061, P.R. China.
| | - Ai-Min Ren
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Liutiao Road #2, Changchun 130061, P.R. China.
| |
Collapse
|
3
|
Yang G, Shillito GE, Zens C, Dietzek-Ivanšić B, Kupfer S. The three kingdoms-Photoinduced electron transfer cascades controlled by electronic couplings. J Chem Phys 2023; 159:024109. [PMID: 37428052 DOI: 10.1063/5.0156279] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/15/2023] [Indexed: 07/11/2023] Open
Abstract
Excited states are the key species in photocatalysis, while the critical parameters that govern their applications are (i) excitation energy, (ii) accessibility, and (iii) lifetime. However, in molecular transition metal-based photosensitizers, there is a design tension between the creation of long-lived excited (triplet), e.g., metal-to-ligand charge transfer (3MLCT) states and the population of such states. Long-lived triplet states have low spin-orbit coupling (SOC) and hence their population is low. Thus, a long-lived triplet state can be populated but inefficiently. If the SOC is increased, the triplet state population efficiency is improved-coming at the cost of decreasing the lifetime. A promising strategy to isolate the triplet excited state away from the metal after intersystem crossing (ISC) involves the combination of transition metal complex and an organic donor/acceptor group. Here, we elucidate the excited state branching processes in a series of Ru(II)-terpyridyl push-pull triads by quantum chemical simulations. Scalar-relativistic time-dependent density theory simulations reveal that efficient ISC takes place along 1/3MLCT gateway states. Subsequently, competitive electron transfer (ET) pathways involving the organic chromophore, i.e., 10-methylphenothiazinyl and the terpyridyl ligands are available. The kinetics of the underlying ET processes were investigated within the semiclassical Marcus picture and along efficient internal reaction coordinates that connect the respective photoredox intermediates. The key parameter that governs the population transfer away from the metal toward the organic chromophore either by means of ligand-to-ligand (3LLCT; weakly coupled) or intra-ligand charge transfer (3ILCT; strongly coupled) states was determined to be the magnitude of the involved electronic coupling.
Collapse
Affiliation(s)
- Guangjun Yang
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Georgina E Shillito
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Clara Zens
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Benjamin Dietzek-Ivanšić
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT) e.V. Department Functional Interfaces, Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Stephan Kupfer
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| |
Collapse
|
4
|
Glebov IO, Poddubnyy VV, Khokhlov DV. Perturbative Expansion of Nonorthogonal Product Approach for Charge Transfer States. J Phys Chem A 2022; 126:5800-5813. [PMID: 35998639 DOI: 10.1021/acs.jpca.2c02612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Modeling of the excited states of multichromophoric systems is crucial for the understanding of photosynthesis functioning. The excitonic Hamiltonian method is widely used for such calculations. Excited states of the combined system are constructed from the wave functions of individual chromophores while their interactions are described by excitonic couplings. In the current study, we enhance a previously proposed nonorthogonal product approach to incorporate dynamic correlation effects accounted for by the multireference perturbation theory. We discuss the problems of constructing the excitonic Hamiltonian including charge transfer states for the molecular systems where the overlap contribution to the excitonic couplings is non-negligible. The benchmark calculations were performed for a model system. It was shown that the overlap component of the excitonic coupling is of great importance. The enhanced method provides an accurate description of the excited state energies and other properties.
Collapse
Affiliation(s)
- Ilya O Glebov
- Chemistry Department, Moscow State University, Leninskie gory 1-3, Moscow 119991, Russia
| | - Vladimir V Poddubnyy
- Chemistry Department, Moscow State University, Leninskie gory 1-3, Moscow 119991, Russia
| | - Daniil V Khokhlov
- Chemistry Department, Moscow State University, Leninskie gory 1-3, Moscow 119991, Russia
| |
Collapse
|
5
|
Cotic A, Cerfontaine S, Slep LD, Elias B, Troian-Gautier L, Cadranel A. A photoinduced mixed valence photoswitch. Phys Chem Chem Phys 2022; 24:15121-15128. [PMID: 35699139 DOI: 10.1039/d2cp01791a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ground state and photoinduced mixed valence states (GSMV and PIMV, respectively) of a dinuclear (Dp4+) ruthenium(II) complex bearing 2,2'-bipyridine ancillary ligands and a 2,2':4',4'':2'',2'''-quaterpyridine (Lp) bridging ligand were investigated using femtosecond and nanosecond transient absorption spectroscopy, electrochemistry and density functional theory. It was shown that the electronic coupling between the transiently light-generated Ru(II) and Ru(III) centers is HDA ∼ 450 cm-1 in the PIMV state, whereas the electrochemically generated GSMV state showed HDA ∼ 0 cm-1, despite virtually identical Ru-Ru distances. This stemmed from the changes in dihedral angles between the two bpy moieties of Lp, estimated at 30° and 4° for the GSMV and PIMV states, respectively, consistent with a through-bond rather than a through-space mechanism. Electronic coupling can be turned on by using visible light excitation, making Dp4+ a competitive candidate for photoswitching applications. A novel strategy to design photoinduced charge transfer molecular switches is proposed.
Collapse
Affiliation(s)
- Agustina Cotic
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina. .,CONICET - Universidad de Buenos Aires, Instituto de Química-Física de Materiales, Medio Ambiente y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Simon Cerfontaine
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348 Louvain-la-Neuve, Belgium.
| | - Leonardo D Slep
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina. .,CONICET - Universidad de Buenos Aires, Instituto de Química-Física de Materiales, Medio Ambiente y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Benjamin Elias
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348 Louvain-la-Neuve, Belgium.
| | - Ludovic Troian-Gautier
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348 Louvain-la-Neuve, Belgium.
| | - Alejandro Cadranel
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina. .,CONICET - Universidad de Buenos Aires, Instituto de Química-Física de Materiales, Medio Ambiente y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina.,Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Physical Chemistry I, Egerlandstr. 3, 91058, Erlangen, Germany.,Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Interdisciplinary Center for Molecular Materials, Egerlandstr. 3, 91058, Erlangen, Germany
| |
Collapse
|
6
|
Bezerra LF, Reis MP, Romo AI, Abreu DS, Gehlen MH, Longhinotti E, Paulo TF, Carvalho IM, Diógenes IC. Photophysical properties of push-π-pull type chromophores of aryl-substituted bipyridines in different solvents. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Cerdá J, Calbo J, Ortí E, Aragó J. Charge-Separation and Charge-Recombination Rate Constants in a Donor-Acceptor Buckybowl-Based Supramolecular Complex: Multistate and Solvent Effects. J Phys Chem A 2021; 125:9982-9994. [PMID: 34767714 PMCID: PMC8630798 DOI: 10.1021/acs.jpca.1c05740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/27/2021] [Indexed: 11/29/2022]
Abstract
The kinetics of the nonradiative photoinduced processes (charge-separation and charge-recombination) experimented in solution by a supramolecular complex formed by an electron-donating bowl-shaped truxene-tetrathiafulvalene (truxTTF) derivative and an electron-accepting fullerene fragment (hemifullerene, C30H12) has been theoretically investigated. The truxTTF·C30H12 heterodimer shows a complex decay mechanism after photoexcitation with the participation of several low-lying excited states of different nature (local and charge-transfer excitations) all close in energy. In this scenario, the absolute rate constants for all of the plausible charge-separation (CS) and charge-recombination (CR) channels have been successfully estimated using the Marcus-Levich-Jortner (MLJ) rate expression, electronic structure calculations, and a multistate diabatization method. The outcomes suggest that for a reasonable estimate of the CS and CR rate constants, it is necessary to include the following: (i) optimally tuned long-range (LC) corrected density functionals, to predict a correct energy ordering of the low-lying excited states; (ii) multistate effects, to account for the electronic couplings; and (iii) environmental solvent effects, to provide a proper stabilization of the charge-transfer excited states and accurate external reorganization energies. The predicted rate constants have been incorporated in a simple but insightful kinetic model that allows estimating global CS and CR rate constants in line with the most generalized three-state model used for the CS and CR processes. The values computed for the global CS and CR rates of the donor-acceptor truxTTF·C30H12 supramolecular complex are found to be in good agreement with the experimental values.
Collapse
Affiliation(s)
- Jesús Cerdá
- Instituto de Ciencia Molecular
(ICMol), Universidad de Valencia, Catedrático José Beltrán 2, Paterna 46980, Spain
| | - Joaquín Calbo
- Instituto de Ciencia Molecular
(ICMol), Universidad de Valencia, Catedrático José Beltrán 2, Paterna 46980, Spain
| | - Enrique Ortí
- Instituto de Ciencia Molecular
(ICMol), Universidad de Valencia, Catedrático José Beltrán 2, Paterna 46980, Spain
| | - Juan Aragó
- Instituto de Ciencia Molecular
(ICMol), Universidad de Valencia, Catedrático José Beltrán 2, Paterna 46980, Spain
| |
Collapse
|
8
|
Ren M, Zhang L, Jiao Y, Chen Z, Wu W. Extended Mulliken-Hush Method with Applications to the Theoretical Study of Electron Transfer. J Chem Theory Comput 2021; 17:6861-6875. [PMID: 34605634 DOI: 10.1021/acs.jctc.1c00603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel adiabatic-to-diabatic (ATD) transformation strategy, namely, the extended Mulliken-Hush (XMH) method, is proposed to evaluate diabatic properties including electronic couplings, potential energy surfaces, and their crossings. The XMH method is developed by adopting our recently proposed ATD transformation formula of a general vectorial physical observable, in which a useful ATD transformation is further determined by using an auxiliary dipole between localized frontier orbitals as a simple approximation of the diabatic transition dipole. The XMH method is simple and practical that provides a flexible way to construct diabatic states. To some extent, it can be regarded as an extension of the generalized Mulliken-Hush (GMH) method since the latter takes a stronger approximation, in which the diabatic transition dipole is assumed to be vanishing. Test calculations on the HeH2+ system show that the electronic couplings predicted by the XMH method are closer to the ones calculated by the valence bond block-diagonalization approach than the GMH ones since the XMH method takes into account both the magnitude and direction of the diabatic transition dipole, which is consistent with the properties of this molecule. In the study of electron transfer in the two kinds of donor-bridge-acceptor systems, the XMH method maintains the simplicity of the GMH method and gives reasonable results even when the latter fails, wherein the diabatic transition dipole is nearly perpendicular to the difference of the initial and final adiabatic dipoles. More importantly, the XMH method can be easily combined with high-level electronic structure methods, in which the properties of the ground and excited states may be more accurately calculated, and hence, one may expect that further development of the XMH method would result in a general computational model for studying electron transfer reactions.
Collapse
Affiliation(s)
- Mingxing Ren
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Lina Zhang
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yang Jiao
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhenhua Chen
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Wei Wu
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
9
|
Rumble CA, Vauthey E. Molecular Dynamics Simulations of Bimolecular Electron Transfer: the Distance-Dependent Electronic Coupling. J Phys Chem B 2021; 125:10527-10537. [PMID: 34519508 DOI: 10.1021/acs.jpcb.1c05013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding the distance dependence of the parameters underpinning Marcus theory is imperative when interpreting the results of experiments on electron transfer (ET). Unfortunately, most of these parameters are difficult or impossible to access directly with experiments, necessitating the use of computer simulations to model them. In this work, we use molecular dynamics simulations in conjunction with constrained density functional theory calculations to study the distance dependence of the electronic coupling matrix element, |HRP|, for bimolecular ET. Contrary to what is typically assumed for such intermolecular reactions, we find that the magnitude of |HRP| does not decay exponentially with the center-of-mass separation of the reactants, rCOM. The addition of other simple measures of donor/acceptor (D/A) orientation did not improve the correlation of |HRP| with rCOM. Using the minimum distance separation, rmin, of the reactants as the structural descriptor allowed the system to be partitioned into high-coupling/close-contact and low-coupling/non-contact regimes, but large fluctuations of |HRP| were still found for the close-contact reactant pairs. Despite the persistent large fluctuations of |HRP|, its mean value was found to decay piecewise exponentially with increasing rmin, which was attributed to significant changes in the average D/A pair structure. The results herein advise one to use caution when interpreting the experimental results derived from spherical reactant models of bimolecular ET.
Collapse
Affiliation(s)
- Christopher A Rumble
- Départment de Chimie Physique, Université de Genève, 30 Quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland
| | - Eric Vauthey
- Départment de Chimie Physique, Université de Genève, 30 Quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland
| |
Collapse
|
10
|
Mao Y, Montoya-Castillo A, Markland TE. Excited state diabatization on the cheap using DFT: Photoinduced electron and hole transfer. J Chem Phys 2020; 153:244111. [PMID: 33380087 DOI: 10.1063/5.0035593] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Excited state electron and hole transfer underpin fundamental steps in processes such as exciton dissociation at photovoltaic heterojunctions, photoinduced charge transfer at electrodes, and electron transfer in photosynthetic reaction centers. Diabatic states corresponding to charge or excitation localized species, such as locally excited and charge transfer states, provide a physically intuitive framework to simulate and understand these processes. However, obtaining accurate diabatic states and their couplings from adiabatic electronic states generally leads to inaccurate results when combined with low-tier electronic structure methods, such as time-dependent density functional theory, and exorbitant computational cost when combined with high-level wavefunction-based methods. Here, we introduce a density functional theory (DFT)-based diabatization scheme that directly constructs the diabatic states using absolutely localized molecular orbitals (ALMOs), which we denote as Δ-ALMO(MSDFT2). We demonstrate that our method, which combines ALMO calculations with the ΔSCF technique to construct electronically excited diabatic states and obtains their couplings with charge-transfer states using our MSDFT2 scheme, gives accurate results for excited state electron and hole transfer in both charged and uncharged systems that underlie DNA repair, charge separation in donor-acceptor dyads, chromophore-to-solvent electron transfer, and singlet fission. This framework for the accurate and efficient construction of excited state diabats and evaluation of their couplings directly from DFT thus offers a route to simulate and elucidate photoinduced electron and hole transfer in large disordered systems, such as those encountered in the condensed phase.
Collapse
Affiliation(s)
- Yuezhi Mao
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | | - Thomas E Markland
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
11
|
Lubert-Perquel D, Szumska AA, Azzouzi M, Salvadori E, Ruloff S, Kay CMW, Nelson J, Heutz S. Structure Dependence of Kinetic and Thermodynamic Parameters in Singlet Fission Processes. J Phys Chem Lett 2020; 11:9557-9565. [PMID: 33119322 DOI: 10.1021/acs.jpclett.0c02505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Singlet fission-whereby one absorbed photon generates two coupled triplet excitons-is a key process for increasing the efficiency of optoelectronic devices by overcoming the Shockley-Queisser limit. A crucial parameter is the rate of dissociation of the coupled triplets, as this limits the number of free triplets subsequently available for harvesting and ultimately the overall efficiency of the device. Here we present an analysis of the thermodynamic and kinetic parameters for this process in parallel and herringbone dimers measured by electron paramagnetic resonance spectroscopy in coevaporated films of pentacene in p-terphenyl. The rate of dissociation is higher for parallel dimers than for their herringbone counterparts, as is the rate of recombination to the ground state. DFT calculations, which provide the magnitude of the electronic coupling as well as the distribution of molecular orbitals for each geometry, suggest that weaker triplet coupling in the parallel dimer is the driving force for faster dissociation. Conversely, localization of the molecular orbitals and a stronger triplet-triplet interaction result in slower dissociation and recombination. The identification and understanding of how the intermolecular geometry promotes efficient triplet dissociation provide the basis for control of triplet coupling and thereby the optimization of one important parameter of device performance.
Collapse
Affiliation(s)
- Daphné Lubert-Perquel
- London Centre for Nanotechnology and Department of Materials, Imperial College London, Prince Consort Road, London SW7 2BP, U.K
| | - Anna A Szumska
- Department of Physics, Imperial College London, Prince Consort Road, London SW7 2BP, U.K
| | - Mohammed Azzouzi
- Department of Physics, Imperial College London, Prince Consort Road, London SW7 2BP, U.K
| | - Enrico Salvadori
- Department of Chemistry, University of Turin, Via Giuria 7, Turin 10125, Italy
| | - Stefan Ruloff
- Department of Chemistry, University of Saarland, Saarbrücken 66123, Germany
| | - Christopher M W Kay
- Department of Chemistry, University of Saarland, Saarbrücken 66123, Germany
- London Centre for Nanotechnology, University College London, 17-19 Gordon Street, London WC1H 0AH, U.K
| | - Jenny Nelson
- Department of Physics, Imperial College London, Prince Consort Road, London SW7 2BP, U.K
| | - Sandrine Heutz
- London Centre for Nanotechnology and Department of Materials, Imperial College London, Prince Consort Road, London SW7 2BP, U.K
| |
Collapse
|
12
|
Karwowski BT. The Influence of Single, Tandem, and Clustered DNA Damage on the Electronic Properties of the Double Helix: A Theoretical Study. Molecules 2020; 25:molecules25143126. [PMID: 32650559 PMCID: PMC7397046 DOI: 10.3390/molecules25143126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 12/28/2022] Open
Abstract
Oxidatively generated damage to DNA frequently appears in the human genome as the effect of aerobic metabolism or as the result of exposure to exogenous oxidizing agents, such as ionization radiation. In this paper, the electronic properties of single, tandem, and clustered DNA damage in comparison with native ds-DNA are discussed as a comparative analysis for the first time. A single lesion—8-oxo-7,8-dihydro-2′-deoxyguanosine (Goxo), a tandem lesion—(5′S) and (5′R) 5′,8-cyclo-2′-deoxyadenosine (cdA), and the presence of both of them in one helix turn as clustered DNA damage were chosen and taken into consideration. The lowest vertical and adiabatic potential (VIP ~ 5.9 and AIP ~ 5.5 eV, respectively) were found for Goxo, independently of the discussed DNA lesion type and their distribution within the double helix. Moreover, the VIP and AIP were assigned for ds-trimers, ds- dimers and single base pairs isolated from parental ds-hexamers in their neutral and cationic forms. The above results were confirmed by the charge and spin density population, which revealed that Goxo can be considered as a cation radical point of destination independently of the DNA damage type (single, tandem, or clustered). Additionally, the different influences of cdA on the charge transfer rate were found and discussed in the context of tandem and clustered lesions. Because oligonucleotide lesions are effectively produced as a result of ionization factors, the presented data in this article might be valuable in developing a new scheme of anticancer radiotherapy efficiency.
Collapse
Affiliation(s)
- Bolesław T Karwowski
- Department of Biopharmacy, Medical University of Lodz, Muszynskiego Street 1, 90-151 Lodz, Poland
| |
Collapse
|
13
|
Nakano H, Higashi M, Sato H. Uniform potential difference scheme to evaluate effective electronic couplings for superexchange electron transfer in donor-bridge-acceptor systems. J Chem Phys 2020; 152:224103. [PMID: 32534534 DOI: 10.1063/5.0010943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This article proposes an ab initio quantum chemical method to evaluate the effective electronic coupling that determines the rate of superexchange electron transfer in donor-bridge-acceptor (D-B-A) systems. The method utilizes the fragment charge difference to define electronic diabatic states and to apply an electrostatic potential in a form of a uniform potential difference that mimics solvation effects on the relative energies of the electronic states. The two-state generalized Mulliken-Hush method is used to obtain the effective electronic coupling as the nondiagonal element of the effective Hamiltonian that is derived based on the Green's function approach and the quasi-degenerate perturbation theory. A theoretical basis is provided for the dependence of the calculated effective electronic coupling on the applied potential and for how to find the optimal potential to give the desired effective electronic coupling that coincides with the result of the minimum energy splitting method. The method is applied to typical D-B-A molecules and gives the effective electronic couplings in reasonable agreement with the experimental estimates.
Collapse
Affiliation(s)
- Hiroshi Nakano
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Masahiro Higashi
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Hirofumi Sato
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| |
Collapse
|
14
|
Yu LB, Hao XL, Zhang C, He TF, Ren AM. The theory of cysteine two-photon fluorescence probes of coumarinocoumarin derivatives and kinetics of ICT and PET mechanisms of probe molecules. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
Karwowski BT. Clustered DNA Damage: Electronic Properties and Their Influence on Charge Transfer. 7,8-Dihydro-8-Oxo-2'-Deoxyguaosine Versus 5',8-Cyclo-2'-Deoxyadenosines: A Theoretical Approach. Cells 2020; 9:cells9020424. [PMID: 32059490 PMCID: PMC7072346 DOI: 10.3390/cells9020424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/02/2020] [Accepted: 02/11/2020] [Indexed: 11/18/2022] Open
Abstract
Approximately 3 × 1017 DNA damage events take place per hour in the human body. Within clustered DNA lesions, they pose a serious problem for repair proteins, especially for iron–sulfur glycosylases (MutyH), which can recognize them by the electron-transfer process. It has been found that the presence of both 5′,8-cyclo-2′-deoxyadenosine (cdA) diastereomers in the ds-DNA structure, as part of a clustered lesion, can influence vertical radical cation distribution within the proximal part of the double helix, i.e., d[~oxoGcAoxoG~] (7,8-dihydro-8-oxo-2′-deoxyguaosine - oxodG). Here, the influence of cdA, “the simplest tandem lesion”, on the charge transfer through ds-DNA was taken into theoretical consideration at the M062x/6-31+G** level of theory in the aqueous phase. It was shown that the presence of (5′S)- or (5′R)-cdA leads to a slowdown in the hole transfer by one order of magnitude between the neighboring dG→oxodG in comparison to “native” ds-DNA. Therefore, it can be concluded that such clustered lesions can lead to defective damage recognition with a subsequent slowing down of the DNA repair process, giving rise to an increase in mutations. As a result, the unrepaired, oxodG: dA base pair prior to genetic information replication can finally result in GC → TA or AT→CG transversion. This type of mutation is commonly observed in human cancer cells. Moreover, because local multiple damage sites (LMSD) are effectively produced as a result of ionization factors, the presented data in this article might be useful in developing a new scheme of radiotherapy treatment against the background of DNA repair efficiency.
Collapse
Affiliation(s)
- Boleslaw T Karwowski
- DNA Damage Laboratory of Food Science Department, Faculty of Pharmacy, Medical University of Lodz, ul. Muszynskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
16
|
Bhalekar SB, Kothavale S, Sekar N. Coumarin and Hydroxyl Decorated Viscosity Sensitive Triphenylamine Derivatives: Synthesis, Photophysical Properties, Viscosity Sensitivity, TD‐DFT, and NLO Properties. ChemistrySelect 2019. [DOI: 10.1002/slct.201903247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sulochana B. Bhalekar
- Department of Dyestuff TechnologyInstitute of Chemical Technology, Matunga, Mumbai India
| | - Shantaram Kothavale
- Department of Dyestuff TechnologyInstitute of Chemical Technology, Matunga, Mumbai India
| | - Nagaiyan Sekar
- Department of Dyestuff TechnologyInstitute of Chemical Technology, Matunga, Mumbai India
| |
Collapse
|
17
|
Homocianu M, Airinei A, Hamciuc C, Ipate AM. Nonlinear optical properties (NLO) and metal ions sensing responses of a polymer containing 1,3,4-oxadiazole and bisphenol A units. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.02.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
18
|
Eisner FD, Azzouzi M, Fei Z, Hou X, Anthopoulos TD, Dennis TJS, Heeney M, Nelson J. Hybridization of Local Exciton and Charge-Transfer States Reduces Nonradiative Voltage Losses in Organic Solar Cells. J Am Chem Soc 2019; 141:6362-6374. [DOI: 10.1021/jacs.9b01465] [Citation(s) in RCA: 208] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Flurin D. Eisner
- Department of Physics and The Centre for Plastic Electronics Imperial College London, London SW7 2AZ, U.K
| | - Mohammed Azzouzi
- Department of Physics and The Centre for Plastic Electronics Imperial College London, London SW7 2AZ, U.K
| | - Zhuping Fei
- Department of Chemistry and the Centre for Plastic Electronics Imperial College London, London SW7 2AZ, U.K
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, P.R. China
| | - Xueyan Hou
- School of Physics and Astronomy, Queen Mary University of London, London E1 4NS, U.K
| | - Thomas D. Anthopoulos
- Department of Physics and The Centre for Plastic Electronics Imperial College London, London SW7 2AZ, U.K
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Division of Physical Sciences and Engineering Thuwal 23955-6900, Saudi Arabia
| | - T. John S. Dennis
- School of Physics and Astronomy, Queen Mary University of London, London E1 4NS, U.K
| | - Martin Heeney
- Department of Chemistry and the Centre for Plastic Electronics Imperial College London, London SW7 2AZ, U.K
| | - Jenny Nelson
- Department of Physics and The Centre for Plastic Electronics Imperial College London, London SW7 2AZ, U.K
| |
Collapse
|
19
|
Kastinen T, da Silva Filho DA, Paunonen L, Linares M, Ribeiro Junior LA, Cramariuc O, Hukka TI. Electronic couplings and rates of excited state charge transfer processes at poly(thiophene-co-quinoxaline)–PC71BM interfaces: two- versus multi-state treatments. Phys Chem Chem Phys 2019; 21:25606-25625. [DOI: 10.1039/c9cp04837e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multi-state effects should be considered when calculating electronic couplings at local polymer–fullerene interfaces with the non-tuned and optimally tuned long-range corrected functionals.
Collapse
Affiliation(s)
- Tuuva Kastinen
- Chemistry and Advanced Materials
- Faculty of Engineering and Natural Sciences
- Tampere University
- FI-33014 Tampere University
- Finland
| | | | - Lassi Paunonen
- Mathematics
- Faculty of Information Technology and Communication Sciences
- Tampere University
- FI-33014 Tampere University
- Finland
| | - Mathieu Linares
- Laboratory of Organic Electronics
- ITN
- Campus Norrköping
- Linköping University
- SE-581 83 Linköping
| | | | - Oana Cramariuc
- Physics
- Faculty of Engineering and Natural Sciences
- Tampere University
- FI-33014 Tampere University
- Finland
| | - Terttu I. Hukka
- Chemistry and Advanced Materials
- Faculty of Engineering and Natural Sciences
- Tampere University
- FI-33014 Tampere University
- Finland
| |
Collapse
|
20
|
Kinetics teach that electronic coupling lowers the free-energy change that accompanies electron transfer. Proc Natl Acad Sci U S A 2018; 115:7248-7253. [PMID: 29941573 DOI: 10.1073/pnas.1722401115] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Electron-transfer theories predict that an increase in the quantum-mechanical mixing (HDA) of electron donor and acceptor wavefunctions at the instant of electron transfer drives equilibrium constants toward unity. Kinetic and equilibrium studies of four acceptor-bridge-donor (A-B-D) compounds reported herein provide experimental validation of this prediction. The compounds have two redox-active groups that differ only by the orientation of the aromatic bridge: a phenyl-thiophene bridge (p) that supports strong electronic coupling of HDA > 1,000 cm-1; and a xylyl-thiophene bridge (x) that prevents planarization and decreases HDA < 100 cm-1 without a significant change in distance. Pulsed-light excitation allowed kinetic determination of the equilibrium constant, Keq In agreement with theory, Keq(p) were closer to unity compared to Keq(x). A van't Hoff analysis provided clear evidence of an adiabatic electron-transfer pathway for p-series and a nonadiabatic pathway for x-series. Collectively, the data show that the absolute magnitude of the thermodynamic driving force for electron transfers are decreased when adiabatic pathways are operative, a finding that should be taken into account in the design of hybrid materials for solar energy conversion.
Collapse
|
21
|
Yang CH, Yam C, Wang H. Approximate DFT-based methods for generating diabatic states and calculating electronic couplings: models of two and more states. Phys Chem Chem Phys 2018; 20:2571-2584. [PMID: 29318238 DOI: 10.1039/c7cp06660k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four types of density functional theory (DFT)-based approaches are assessed in this work for the approximate construction of diabatic states and the evaluation of electronic couplings between these states. These approaches include the constrained DFT (CDFT) method, the constrained noninteracting electron (CNE) model to post-process Kohn-Sham operators, the approximate block-diagonalization (BD) of the Kohn-Sham operators, and the generalized Mulliken-Hush method. It is shown that the first three approaches provide a good description for long-distance intermolecular electron transfer (ET) reactions. On the other hand, inconsistent results were found when applying these approaches to intramolecular ET in strongly coupled, mixed-valence systems. Model analysis shows that this discrepancy is caused by the inappropriate use of the two-state model rather than the defects of the approaches themselves. The situation is much improved when more states are included in the model electronic Hamiltonian. The CNE and BD approaches can thus serve as efficient and robust alternatives for building ET models based on DFT calculations.
Collapse
Affiliation(s)
- Chou-Hsun Yang
- Beijing Computational Science Research Center, Haidian District, Beijing 100193, China
| | | | | |
Collapse
|
22
|
Wu B, Maroncelli M, Castner EW. Photoinduced Bimolecular Electron Transfer in Ionic Liquids. J Am Chem Soc 2017; 139:14568-14585. [DOI: 10.1021/jacs.7b07611] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Boning Wu
- Department of Chemistry
and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Mark Maroncelli
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Edward W. Castner
- Department of Chemistry
and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
23
|
Investigation of NLO Properties of Fluorescent BORICO Dyes: a Comprehensive Experimental and Theoretical Approach. J Fluoresc 2017; 27:2253-2262. [PMID: 28831643 DOI: 10.1007/s10895-017-2167-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/10/2017] [Indexed: 10/19/2022]
Abstract
BORICO dyes with N, N-diethyl as a strong donor and BF2 complexed iminocoumarin six member core as strong acceptor are investigated as an efficient non linear optical chromophores. Extended π-conjugation over iminocoumarin moiety is useful to make ICT character of BORICO dyes more significant and is established on the scale of Generalised Mulliken Hush analysis scale. Bond length alternation and bond order alternation values for three BORICO chromophores estimates the cyanine like framework for optimal non linear optical response. The frontier molecular orbital diagrams obtained from density functional theory calculations shows that there is charge transfer from donor to accepter as well as effective overlap between them making the basis for optimal NLO response of BORICO chromophores. The theoretical values of linear and non linear optical responses for three BORICO NLOphores obtained by using three different functionals B3LYP, CAMB3LYP and BHandHLYP with 6-311+g(d,p) basis set are quite consistent for the values of static dipole moment (μ), linear polarizability (α) and first hyperpolarizability (β). However in case of the γ values calculation, compare to the similar values obtained by CAMB3LYP and BHandHLYP functionals, B3LYP overestimates the same. The vibrational motions play decisive role in the overall non linear optical properties of BORICO chromophores.
Collapse
|
24
|
|
25
|
Voityuk AA. Electronic Couplings for Photoinduced Electron Transfer and Excitation Energy Transfer Computed Using Excited States of Noninteracting Molecules. J Phys Chem A 2017; 121:5414-5419. [DOI: 10.1021/acs.jpca.7b03924] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alexander A. Voityuk
- Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
- Institut de Química Computacional i Catàlisi (IQCC), Universitat de Girona, 17071 Girona, Spain
| |
Collapse
|
26
|
Nonlinear Optical Properties of Pyrene Based Fluorescent Hemicurcuminoid and their BF 2 Complexes -Spectroscopic and DFT Studies. J Fluoresc 2017; 27:1777-1792. [PMID: 28550418 DOI: 10.1007/s10895-017-2116-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/08/2017] [Indexed: 10/19/2022]
Abstract
The acetyl acetone and benzoyl acetone pyrene based difluoroboron scaffolds and their respective decomplexed congeners were investigated for their nonlinear optical properties in various microenvironment. The geometries of the chromophore were optimized and electronic excitation properties were estimated using time dependant density functional theory. The vertical excitation properties were found to be complimentary to the experimental results. Nolinear optical properties were evaluated using solvatochromism and Density Functional Theory. The experimental nonlinear optical properties well correlated using Mulliken Hush parameters and also compared with calculated values. CAM-B3LYP results were found to be superior over the B3LYP and BHandHLYP methods. The positive solvatochromism in emission were well explained by multilinear regression and bond length alteration.
Collapse
|
27
|
Pyrrole-thiazole based push-pull chromophores: An experimental and theoretical approach to structural, spectroscopic and NLO properties of the novel styryl dyes. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2016.10.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Cabeza de Vaca I, Acebes S, Guallar V. Ecoupling server: A tool to compute and analyze electronic couplings. J Comput Chem 2016; 37:1740-5. [DOI: 10.1002/jcc.24392] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/28/2016] [Accepted: 03/31/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Israel Cabeza de Vaca
- Joint BSC-IRB Research Program in Computational Biology, Barcelona Supercomputing Center, Life Science Department, Electronic and Atomic Modeling Group; Nexus II, C/Jordi Girona, 29 Barcelona 08034 Spain
- Department of Chemistry; Yale University; New Haven Connecticut 06520-8107
| | - Sandra Acebes
- Joint BSC-IRB Research Program in Computational Biology, Barcelona Supercomputing Center, Life Science Department, Electronic and Atomic Modeling Group; Nexus II, C/Jordi Girona, 29 Barcelona 08034 Spain
| | - Victor Guallar
- Joint BSC-IRB Research Program in Computational Biology, Barcelona Supercomputing Center, Life Science Department, Electronic and Atomic Modeling Group; Nexus II, C/Jordi Girona, 29 Barcelona 08034 Spain
- Institució Catalana De Recerca I Estudis Avançats (ICREA); Barcelona Spain
| |
Collapse
|
29
|
Song P, Li Y, Ma F, Pullerits T, Sun M. Photoinduced Electron Transfer in Organic Solar Cells. CHEM REC 2016; 16:734-53. [PMID: 26853631 DOI: 10.1002/tcr.201500244] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Indexed: 11/07/2022]
Abstract
Electron transfer (ET) is the key process in light-driven charge separation reactions in organic solar cells. The current review summarizes the progress in theoretical modelling of ET in these materials. First we give an account of ET, with a description originating from Marcus theory. We systematically go through all the relevant parameters and show how they depend on different material properties, and discuss the consequences such dependencies have for the performance of the devices. Finally, we present a set of visualization methods which have proven to be very useful in analyzing the elementary processes in absorption and charge separation events. Such visualization tools help us to understand the properties of the photochemical and photobiological systems in solar cells.
Collapse
Affiliation(s)
- Peng Song
- Department of Physics, Liaoning University, Shenyang, 110036, P. R. China.,Beijing National Laboratory for Condensed Matter Physics, Institute of Physics Chinese Academy of Science, Beijing, 100190, P. R. China.,State Key laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics Chinese Academy of Science, Dalian, 116023, P. R. China
| | - Yuanzuo Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics Chinese Academy of Science, Beijing, 100190, P. R. China.,College of Science, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Fengcai Ma
- Department of Physics, Liaoning University, Shenyang, 110036, P. R. China
| | - Tõnu Pullerits
- Department of Chemical Physics, Lund University, Box 124, Lund, 22100, Sweden.,State Key laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics Chinese Academy of Science, Dalian, 116023, P. R. China
| | - Mengtao Sun
- Department of Physics, Liaoning University, Shenyang, 110036, P. R. China.,Beijing National Laboratory for Condensed Matter Physics, Institute of Physics Chinese Academy of Science, Beijing, 100190, P. R. China
| |
Collapse
|
30
|
Cave RJ, Stanton JF. A simple quasi-diabatization scheme suitable for spectroscopic problems based on one-electron properties of interacting states. J Chem Phys 2016; 144:054110. [DOI: 10.1063/1.4940426] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Robert J. Cave
- Department of Chemistry, Harvey Mudd College, 241 Platt Blvd., Claremont, California 91711, USA
| | - John F. Stanton
- Department of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Ave., Austin, Texas 78712, USA
| |
Collapse
|
31
|
Aragó J, Troisi A. Excitonic couplings between molecular crystal pairs by a multistate approximation. J Chem Phys 2015; 142:164107. [DOI: 10.1063/1.4919241] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Juan Aragó
- Department of Chemistry and Centre for Scientific Computing, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Alessandro Troisi
- Department of Chemistry and Centre for Scientific Computing, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
32
|
You ZQ, Hung YC, Hsu CP. Calculating Electron-Transfer Coupling with Density Functional Theory: The Long-Range-Corrected Density Functionals. J Phys Chem B 2015; 119:7480-90. [DOI: 10.1021/jp511216c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhi-Qiang You
- Institute of Chemistry, Academia Sinica, 128
Section 2 Academia Road, Nankang, Taipei 11529, Taiwan
| | - Yi-Chen Hung
- Institute of Chemistry, Academia Sinica, 128
Section 2 Academia Road, Nankang, Taipei 11529, Taiwan
| | - Chao-Ping Hsu
- Institute of Chemistry, Academia Sinica, 128
Section 2 Academia Road, Nankang, Taipei 11529, Taiwan
| |
Collapse
|
33
|
Berstis L, Baldridge KK. DFT-based Green's function pathways model for prediction of bridge-mediated electronic coupling. Phys Chem Chem Phys 2015; 17:30842-53. [DOI: 10.1039/c5cp01861g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New LMO-GFM methodology enables intuitive understanding of electron tunneling in terms of through-bond and through-space interactions.
Collapse
|
34
|
Yang CH, Hsu CP. A multi-state fragment charge difference approach for diabatic states in electron transfer: extension and automation. J Chem Phys 2014; 139:154104. [PMID: 24160497 DOI: 10.1063/1.4824906] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The electron transfer (ET) rate prediction requires the electronic coupling values. The Generalized Mulliken-Hush (GMH) and Fragment Charge Difference (FCD) schemes have been useful approaches to calculate ET coupling from an excited state calculation. In their typical form, both methods use two eigenstates in forming the target charge-localized diabatic states. For problems involve three or four states, a direct generalization is possible, but it is necessary to pick and assign the locally excited or charge-transfer states involved. In this work, we generalize the 3-state scheme for a multi-state FCD without the need of manual pick or assignment for the states. In this scheme, the diabatic states are obtained separately in the charge-transfer or neutral excited subspaces, defined by their eigenvalues in the fragment charge-difference matrix. In each subspace, the Hamiltonians are diagonalized, and there exist off-diagonal Hamiltonian matrix elements between different subspaces, particularly the charge-transfer and neutral excited diabatic states. The ET coupling values are obtained as the corresponding off-diagonal Hamiltonian matrix elements. A similar multi-state GMH scheme can also be developed. We test the new multi-state schemes for the performance in systems that have been studied using more than two states with FCD or GMH. We found that the multi-state approach yields much better charge-localized states in these systems. We further test for the dependence on the number of state included in the calculation of ET couplings. The final coupling values are converged when the number of state included is increased. In one system where experimental value is available, the multi-state FCD coupling value agrees better with the previous experimental result. We found that the multi-state GMH and FCD are useful when the original two-state approach fails.
Collapse
Affiliation(s)
- Chou-Hsun Yang
- Institute of Chemistry, Academia Sinica, 128 Section 2 Academia Road, Nankang, Taipei 115, Taiwan
| | | |
Collapse
|
35
|
Butchosa C, Simon S, Blancafort L, Voityuk AA. On the performance of the Kohn–Sham orbital approach in the calculation of electron transfer parameters. The three state model. Phys Chem Chem Phys 2014; 16:17154-62. [DOI: 10.1039/c4cp02117g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electron transfer parameters for the 3-state G⋯Ind system can be obtained using an efficient Kohn–Sham orbital based scheme.
Collapse
Affiliation(s)
- C. Butchosa
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química
- Universitat de Girona
- 17071 Girona, Spain
- Department of Chemistry
- University College London
| | - S. Simon
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química
- Universitat de Girona
- 17071 Girona, Spain
| | - L. Blancafort
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química
- Universitat de Girona
- 17071 Girona, Spain
| | - A. A. Voityuk
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química
- Universitat de Girona
- 17071 Girona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)
- Barcelona, Spain
| |
Collapse
|
36
|
Cave RJ, Newton MD. Multistate treatments of the electronic coupling in donor-bridge-acceptor systems: insights and caveats from a simple model. J Phys Chem A 2013; 118:7221-34. [PMID: 24266545 DOI: 10.1021/jp408913k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We use a simple one-dimensional delta function electronic structure model (dfm) to investigate the results of a pair of multistate diabatization techniques (i.e., based on n states, with n ≥ 2) for linear DBA and DBBA (donor-bridge-acceptor) electron-transfer systems. In particular, we focus on the physical meaning of the couplings obtained from multistate methods and their relationship to two-state (n = 2) coupling elements. On the basis of the simple dfm approach, which allows exact as well as finite basis set treatment and has no many-electron effects, we conclude that for orthogonal diabatic states, it is difficult to assign clear physical significance to multistate matrix elements for coupling beyond nearest-neighbor contacts. The implications of these results for more complex multistate many-electron treatments are discussed. It is emphasized that physically meaningful coupling elements must involve states that are orthogonal, either explicitly or implicitly.
Collapse
Affiliation(s)
- Robert J Cave
- Department of Chemistry, Harvey Mudd College , Claremont, California 91711, United States
| | | |
Collapse
|
37
|
Parks JH, Semrouni D, Clavaguéra C, Ohanessian G. Relationship between Conformational Dynamics and Electron Transfer in a Desolvated Peptide. Part II. Temperature Dependence. J Phys Chem B 2013; 117:1756-69. [DOI: 10.1021/jp3078437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Joel H. Parks
- Rowland Institute at Harvard, 100 Edwin H. Land Boulevard, Cambridge,
Massachusetts 02142 United
States
| | - David Semrouni
- Laboratoire
des Mécanismes Réactionnels, Ecole Polytechnique, CNRS, 91128 Palaiseau Cedex, France
| | - Carine Clavaguéra
- Laboratoire
des Mécanismes Réactionnels, Ecole Polytechnique, CNRS, 91128 Palaiseau Cedex, France
| | - Gilles Ohanessian
- Laboratoire
des Mécanismes Réactionnels, Ecole Polytechnique, CNRS, 91128 Palaiseau Cedex, France
| |
Collapse
|
38
|
van Walree CA, van der Wiel BC, Williams RM. Photoinduced charge transport over branched conjugation pathways: donor–acceptor substituted 1,1-diphenylethene and 2,3-diphenylbutadiene. Phys Chem Chem Phys 2013; 15:15234-42. [DOI: 10.1039/c3cp52148f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
39
|
Butchosa C, Simon S, Blancafort L, Voityuk A. MS-CASPT2 Study of Hole Transfer in Guanine–Indole Complexes Using the Generalized Mulliken–Hush Method: Effective Two-State Treatment. J Phys Chem B 2012; 116:7815-20. [DOI: 10.1021/jp303675h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- C. Butchosa
- Institut de Química Computacional,
Departament de Química, Universitat de Girona, Campus de Montilivi, Girona, 17071 Spain
| | - S. Simon
- Institut de Química Computacional,
Departament de Química, Universitat de Girona, Campus de Montilivi, Girona, 17071 Spain
| | - L. Blancafort
- Institut de Química Computacional,
Departament de Química, Universitat de Girona, Campus de Montilivi, Girona, 17071 Spain
| | - A. Voityuk
- Institut de Química Computacional,
Departament de Química, Universitat de Girona, Campus de Montilivi, Girona, 17071 Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08010 Spain
| |
Collapse
|
40
|
Voityuk AA. Electronic coupling for charge transfer in donor-bridge-acceptor systems. Performance of the two-state FCD model. Phys Chem Chem Phys 2012; 14:13789-93. [PMID: 22513425 DOI: 10.1039/c2cp40579b] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Electronic coupling is a key parameter that determines the rate of electron transfer reactions and electrical conductivity of molecular wires. To examine the performance of a two-state approach based on the orthogonal transformation of adiabatic states to diabatic states, we compare the effective donor-acceptor coupling V(DA) computed with three different approaches in model donor-bridge-acceptor (D-B-A) systems. It is found that V(DA) derived with the two-state method accounts properly for both the direct and superexchange interactions. The approach becomes, however, less accurate with the increasing energy difference of the donor and acceptor states. We suggest a simple diagnostic to identify the situation when the estimated coupling might be inaccurate and consider how to improve the performance of the two-state scheme in such a case.
Collapse
Affiliation(s)
- Alexander A Voityuk
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Institute of Computational Chemistry, Department of Chemistry, Universitat de Girona, 17071 Girona, Spain.
| |
Collapse
|
41
|
Quantum Chemical Calculation of Donor–Acceptor Coupling for Charge Transfer in DNA. Top Curr Chem (Cham) 2012. [DOI: 10.1007/b94472] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Heckmann A, Lambert C. Organic Mixed-Valence Compounds: A Playground for Electrons and Holes. Angew Chem Int Ed Engl 2011; 51:326-92. [DOI: 10.1002/anie.201100944] [Citation(s) in RCA: 414] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Indexed: 11/05/2022]
|
43
|
Heckmann A, Lambert C. Organische gemischtvalente Verbindungen: ein Spielplatz für Elektronen und Löcher. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201100944] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
44
|
Kamachi T, Kouno T, Doitomi K, Yoshizawa K. Generation of adenosyl radical from S-adenosylmethionine (SAM) in biotin synthase. J Inorg Biochem 2011; 105:850-7. [DOI: 10.1016/j.jinorgbio.2011.03.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 03/16/2011] [Accepted: 03/16/2011] [Indexed: 10/18/2022]
|
45
|
Theoretical characterization of photoinduced electron transfer in rigidly linked donor–acceptor molecules: the fragment charge difference and the generalized Mulliken–Hush schemes. Mol Phys 2010. [DOI: 10.1080/00268976.2010.525538] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
You ZQ, Hsu CP. The fragment spin difference scheme for triplet-triplet energy transfer coupling. J Chem Phys 2010; 133:074105. [DOI: 10.1063/1.3467882] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
47
|
Cave RJ, Edwards ST, Kouzelos JA, Newton MD. Reduced Electronic Spaces for Modeling Donor/Acceptor Interactions. J Phys Chem B 2010; 114:14631-41. [DOI: 10.1021/jp102353q] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Robert J. Cave
- Department of Chemistry, Harvey Mudd College, Claremont, California 91711
| | - Stephen T. Edwards
- Department of Chemistry, Harvey Mudd College, Claremont, California 91711
| | - J. Andrew Kouzelos
- Department of Chemistry, Harvey Mudd College, Claremont, California 91711
| | - Marshall D. Newton
- Department of Chemistry, Brookhaven National Laboratory, Upton, New York 11973
| |
Collapse
|
48
|
Hu J, Xia B, Bao D, Ferreira A, Wan J, Jones G, Vullev VI. Long-Lived Photogenerated States of α-Oligothiophene−Acridinium Dyads Have Triplet Character. J Phys Chem A 2009; 113:3096-107. [DOI: 10.1021/jp810909v] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jingqiu Hu
- Department of Chemistry and Photonics Center, Boston University, Boston, Massachusetts 02215, and Department of Bioengineering, University of California, Riverside, California 925521
| | - Bing Xia
- Department of Chemistry and Photonics Center, Boston University, Boston, Massachusetts 02215, and Department of Bioengineering, University of California, Riverside, California 925521
| | - Duoduo Bao
- Department of Chemistry and Photonics Center, Boston University, Boston, Massachusetts 02215, and Department of Bioengineering, University of California, Riverside, California 925521
| | - Amy Ferreira
- Department of Chemistry and Photonics Center, Boston University, Boston, Massachusetts 02215, and Department of Bioengineering, University of California, Riverside, California 925521
| | - Jiandi Wan
- Department of Chemistry and Photonics Center, Boston University, Boston, Massachusetts 02215, and Department of Bioengineering, University of California, Riverside, California 925521
| | - Guilford Jones
- Department of Chemistry and Photonics Center, Boston University, Boston, Massachusetts 02215, and Department of Bioengineering, University of California, Riverside, California 925521
| | - Valentine I. Vullev
- Department of Chemistry and Photonics Center, Boston University, Boston, Massachusetts 02215, and Department of Bioengineering, University of California, Riverside, California 925521
| |
Collapse
|
49
|
Voityuk AA. Charge-on-site scheme to estimate the electronic coupling in electron transfer systems. Chem Phys Lett 2008. [DOI: 10.1016/j.cplett.2007.11.080] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
50
|
Abstract
In this study, we employ a multistate generalized Mulliken-Hush approach for calculating electronic couplings V(da) for charge transfer (CT) in DNA pi-stacks consisting of three, four, and five base pairs. In these systems the guanine donor and acceptor sites are separated by several (AT) pairs. The Hartree-Fock calculations of the stacks are carried out with the standard 6-31G basis sets. All possible superexchange pathways are accounted for. We examine electronic couplings estimated using the two-state and multistate models. Although for some systems the two-state scheme provides reasonable estimates of V(da), in general this simple model fails to reproduce the electronic couplings calculated with the multistate approach. The two-state treatment of pi-stacks with a tunneling gap less than 0.3 eV, for instance, GAAG and GAAAG, may lead to invalid estimates of V(da). We consider the dependence of V(da) on the length and composition of the bridge. The calculations show that V(da) is less sensitive to the arrangement of nucleobases in the bridge, as can be predicted on the basis of electronic couplings between adjacent base pairs.
Collapse
Affiliation(s)
- Alexander A Voityuk
- Institució Catalana de Recerca i Estudis Avançats, Institute of Computational Chemistry, Universitat de Girona, 17071 Girona, Spain
| |
Collapse
|