1
|
Bettens T, Alonso M, De Proft F, Hamlin TA, Bickelhaupt FM. Ambident Nucleophilic Substitution: Understanding Non-HSAB Behavior through Activation Strain and Conceptual DFT Analyses. Chemistry 2020; 26:3884-3893. [PMID: 31957943 PMCID: PMC7154642 DOI: 10.1002/chem.202000272] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Indexed: 01/31/2023]
Abstract
The ability to understand and predict ambident reactivity is key to the rational design of organic syntheses. An approach to understand trends in ambident reactivity is the hard and soft acids and bases (HSAB) principle. The recent controversy over the general validity of this principle prompted us to investigate the competing gas-phase SN 2 reaction channels of archetypal ambident nucleophiles CN- , OCN- , and SCN- with CH3 Cl (SN 2@C) and SiH3 Cl (SN 2@Si), using DFT calculations. Our combined analyses highlight the inability of the HSAB principle to correctly predict the reactivity trends of these simple, model reactions. Instead, we have successfully traced reactivity trends to the canonical orbital-interaction mechanism and the resulting nucleophile-substrate interaction energy. The HOMO-LUMO orbital interactions set the trend in both SN 2@C and SN 2@Si reactions. We provide simple rules for predicting the ambident reactivity of nucleophiles based on our Kohn-Sham molecular orbital analysis.
Collapse
Affiliation(s)
- Tom Bettens
- Eenheid Algemene Chemie (ALGC)Vrije Universiteit BrusselPleinlaan 21050BrusselsBelgium
| | - Mercedes Alonso
- Eenheid Algemene Chemie (ALGC)Vrije Universiteit BrusselPleinlaan 21050BrusselsBelgium
| | - Frank De Proft
- Eenheid Algemene Chemie (ALGC)Vrije Universiteit BrusselPleinlaan 21050BrusselsBelgium
| | - Trevor A. Hamlin
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081HVAmsterdamThe Netherlands
| | - F. Matthias Bickelhaupt
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081HVAmsterdamThe Netherlands
- Institute for Molecules and Materials (IMM)Radboud University NijmegenHeyendaalseweg 1356525AJNijmegenThe Netherlands
| |
Collapse
|
2
|
Savoo N, Laloo JZA, Rhyman L, Ramasami P, Bickelhaupt FM, Poater J. Activation Strain Analyses of Counterion and Solvent Effects on the Ion-Pair S N 2 Reaction of NH 2 - and CH 3 Cl. J Comput Chem 2019; 41:317-327. [PMID: 31713259 DOI: 10.1002/jcc.26104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 11/09/2022]
Abstract
We have computationally studied the bimolecular nucleophilic substitution (SN 2) reactions of Mn NH2 (n-1) + CH3 Cl (M+ = Li+ , Na+ , K+ , and MgCl+ ; n = 0, 1) in the gas phase and in tetrahydrofuran solution at OLYP/6-31++G(d,p) using polarizable continuum model implicit solvation. We wish to explore and understand the effect of the metal counterion M+ and of solvation on the reaction profile and the stereochemical preference, that is, backside (SN 2-b) versus frontside attack (SN 2-f). The results were compared to the corresponding ion-pair SN 2 reactions involving F- and OH- nucleophiles. Our analyses with an extended activation strain model of chemical reactivity uncover and explain various trends in SN 2 reactivity along the nucleophiles F- , OH- , and NH 2 - , including solvent and counterion effects. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nandini Savoo
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit, 80837, Mauritius
| | - Jalal Z A Laloo
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit, 80837, Mauritius
| | - Lydia Rhyman
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit, 80837, Mauritius.,Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, 2028, South Africa
| | - Ponnadurai Ramasami
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit, 80837, Mauritius.,Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, 2028, South Africa
| | - F Matthias Bickelhaupt
- Department of Theoretical Chemistry, Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, NL-1081 HV, Amsterdam, The Netherlands.,Institute for Molecules and Materials, Radboud University Nijmegen, NL-6525 AJ, Nijmegen, The Netherlands
| | - Jordi Poater
- Departament de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona, 08028, Barcelona, Spain.,ICREA, 08010, Barcelona, Spain
| |
Collapse
|
3
|
Elucidating the mechanism of cob(I)alamin mediated methylation reactions by alkyl halides: SN2 or radical mechanism? J Catal 2019. [DOI: 10.1016/j.jcat.2019.06.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Thorhallsson AT, Bjornsson R. Computational Mechanistic Study of [MoFe3S4] Cubanes for Catalytic Reduction of Nitrogenase Substrates. Inorg Chem 2019; 58:1886-1894. [DOI: 10.1021/acs.inorgchem.8b02669] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Albert Th. Thorhallsson
- Science Institute, University of Iceland, Dunhagi 3, Reykjavik 107, Iceland
- Department of Inorganic Spectroscopy, Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, Mülheim an der Ruhr 45470, Germany
| | - Ragnar Bjornsson
- Science Institute, University of Iceland, Dunhagi 3, Reykjavik 107, Iceland
- Department of Inorganic Spectroscopy, Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
5
|
Hamlin TA, Swart M, Bickelhaupt FM. Nucleophilic Substitution (S N 2): Dependence on Nucleophile, Leaving Group, Central Atom, Substituents, and Solvent. Chemphyschem 2018; 19:1315-1330. [PMID: 29542853 PMCID: PMC6001448 DOI: 10.1002/cphc.201701363] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Indexed: 11/12/2022]
Abstract
The reaction potential energy surface (PES), and thus the mechanism of bimolecular nucleophilic substitution (SN 2), depends profoundly on the nature of the nucleophile and leaving group, but also on the central, electrophilic atom, its substituents, as well as on the medium in which the reaction takes place. Here, we provide an overview of recent studies and demonstrate how changes in any one of the aforementioned factors affect the SN 2 mechanism. One of the most striking effects is the transition from a double-well to a single-well PES when the central atom is changed from a second-period (e. g. carbon) to a higher-period element (e.g, silicon, germanium). Variations in nucleophilicity, leaving group ability, and bulky substituents around a second-row element central atom can then be exploited to change the single-well PES back into a double-well. Reversely, these variations can also be used to produce a single-well PES for second-period elements, for example, a stable pentavalent carbon species.
Collapse
Affiliation(s)
- Trevor A. Hamlin
- Department of Theoretical Chemistry andAmsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
| | - Marcel Swart
- Department of Theoretical Chemistry andAmsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
- Institut de Química Computacional I Catàlisi and Department de QuímicaUniversitat de Girona17003GironaSpain
- ICREAPg. Lluís Companys 2308010BarcelonaSpain
| | - F. Matthias Bickelhaupt
- Department of Theoretical Chemistry andAmsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
- Institute of Molecules and Materials (IMM)Radboud UniversityHeyendaalseweg 1356525 AJNijmegenThe Netherlands
| |
Collapse
|
6
|
Laloo JZA, Rhyman L, Larrañaga O, Ramasami P, Bickelhaupt FM, de Cózar A. Ion-Pair S N 2 Reaction of OH - and CH 3 Cl: Activation Strain Analyses of Counterion and Solvent Effects. Chem Asian J 2018; 13:1138-1147. [PMID: 29437289 DOI: 10.1002/asia.201800082] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/12/2018] [Indexed: 11/10/2022]
Abstract
We have theoretically studied the non-identity SN 2 reactions of Mn OH(n-1) +CH3 Cl (M+ =Li+ , Na+ , K+ , and MgCl+ ; n=0, 1) in the gas phase and in THF solution at the OLYP/6-31++G(d,p) level using polarizable continuum model (PCM) implicit solvation. We want to explore and understand the effect of the metal counterion M+ and solvation on the reaction profile and the stereoselectivity of these processes. To this end, we have explored the potential energy surfaces of the backside (SN 2-b) and frontside (SN 2-f) pathways. To explain the computed trends, we have carried out analyses with an extended activation strain model (ASM) of chemical reactivity that includes the treatment of solvation effects.
Collapse
Affiliation(s)
- Jalal Z A Laloo
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit, 80837, Mauritius
| | - Lydia Rhyman
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit, 80837, Mauritius.,Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, Johannesburg, 2028, South Africa
| | - Olatz Larrañaga
- Departamento de Química Orgánica I, Facultad de Química, Universidad del País Vasco (UPV/EHU) and Donostia International Physics Center (DIPC), P. K. 1072, 20018, San Sebastián-Donostia, Spain
| | - Ponnadurai Ramasami
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit, 80837, Mauritius.,Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, Johannesburg, 2028, South Africa
| | - F Matthias Bickelhaupt
- Department of Theoretical Chemistry, Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081, HV, Amsterdam, The Netherlands.,Institute of Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands
| | - Abel de Cózar
- Departamento de Química Orgánica I, Facultad de Química, Universidad del País Vasco (UPV/EHU) and Donostia International Physics Center (DIPC), P. K. 1072, 20018, San Sebastián-Donostia, Spain.,Department of Theoretical Chemistry, Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081, HV, Amsterdam, The Netherlands.,IKERBASQUE, Basque Foundation for Science, 48013, Bilbao, Spain
| |
Collapse
|
7
|
Laloo JZA, Rhyman L, Ramasami P, Bickelhaupt FM, de Cózar A. Ion-Pair SN 2 Substitution: Activation Strain Analyses of Counter-Ion and Solvent Effects. Chemistry 2016; 22:4431-9. [PMID: 26879231 DOI: 10.1002/chem.201504456] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Indexed: 12/20/2022]
Abstract
The ion-pair SN 2 reactions of model systems MnF(n-1) +CH3Cl(M(+) =Li(+), Na(+), K(+), and MgCl(+); n=0, 1) have been quantum chemically explored by using DFT at the OLYP/6-31++G(d,p) level. The purpose of this study is threefold: 1) to elucidate how the counterion M(+) modifies ion-pair SN 2 reactivity relative to the parent reaction F(-) +CH3Cl; 2) to determine how this influences stereochemical competition between the backside and frontside attacks; and 3) to examine the effect of solvation on these ion-pair SN2 pathways. Trends in reactivity are analyzed and explained by using the activation strain model (ASM) of chemical reactivity. The ASM has been extended to treat reactivity in solution. These findings contribute to a more rational design of tailor-made substitution reactions.
Collapse
Affiliation(s)
- Jalal Z A Laloo
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit, 80837, Mauritius
| | - Lydia Rhyman
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit, 80837, Mauritius
| | - Ponnadurai Ramasami
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit, 80837, Mauritius. .,Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia.
| | - F Matthias Bickelhaupt
- Department of Theoretical Chemistry, Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands. .,Institute of Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| | - Abel de Cózar
- Department of Theoretical Chemistry, Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands. .,Departamento de Química Orgánica I, Facultad de Química, Universidad del País Vasco P. K. 1072, 200880, San Sebastián-Donostia, Spain. .,IKERBASQUE, Basque Foundation for Science, 48013, Bilbao, Spain.
| |
Collapse
|
8
|
Zhao Y, Truhlar DG. Exploring the Limit of Accuracy of the Global Hybrid Meta Density Functional for Main-Group Thermochemistry, Kinetics, and Noncovalent Interactions. J Chem Theory Comput 2015; 4:1849-68. [PMID: 26620329 DOI: 10.1021/ct800246v] [Citation(s) in RCA: 752] [Impact Index Per Article: 83.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The hybrid meta density functionals M05-2X and M06-2X have been shown to provide broad accuracy for main group chemistry. In the present article we make the functional form more flexible and improve the self-interaction term in the correlation functional to improve its self-consistent-field convergence. We also explore the constraint of enforcing the exact forms of the exchange and correlation functionals through second order (SO) in the reduced density gradient. This yields two new functionals called M08-HX and M08-SO, with different exact constraints. The new functionals are optimized against 267 diverse main-group energetic data consisting of atomization energies, ionization potentials, electron affinities, proton affinities, dissociation energies, isomerization energies, barrier heights, noncovalent complexation energies, and atomic energies. Then the M08-HX, M08-SO, M05-2X, and M06-2X functionals and the popular B3LYP functional are tested against 250 data that were not part of the original training data for any of the functionals, in particular 164 main-group energetic data in 7 databases, 39 bond lengths, 38 vibrational frequencies, and 9 multiplicity-changing electronic transition energies. These tests include a variety of new challenges for complex systems, including large-molecule atomization energies, organic isomerization energies, interaction energies in uracil trimers, and bond distances in crowded molecules (in particular, cyclophanes). The M08-HX functional performs slightly better than M08-SO and M06-2X on average, significantly better than M05-2X, and much better than B3LYP for a combination of main-group thermochemistry, kinetics, noncovalent interactions, and electronic spectroscopy. More important than the slight improvement in accuracy afforded by M08-HX is the conformation that the optimization procedure works well for data outside the training set. Problems for which the accuracy is especially improved by the new M08-HX functional include large-molecule atomization energies, noncovalent interaction energies, conformational energies in aromatic peptides, barrier heights, multiplicity-changing excitation energies, and bond lengths in crowded molecules.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Chemistry and Supercomputing Institute, University of Minnesota, 207 Pleasant Street S.E., Minneapolis, Minnesota 55455-0431
| | - Donald G Truhlar
- Department of Chemistry and Supercomputing Institute, University of Minnesota, 207 Pleasant Street S.E., Minneapolis, Minnesota 55455-0431
| |
Collapse
|
9
|
Schaefer B, Pal R, Khetrapal NS, Amsler M, Sadeghi A, Blum V, Zeng XC, Goedecker S, Wang LS. Isomerism and structural fluxionality in the Au26 and Au26(-) nanoclusters. ACS NANO 2014; 8:7413-7422. [PMID: 24960331 DOI: 10.1021/nn502641q] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Using the minima hopping global optimization method at the density functional level, we found low-energy nanostructures for neutral Au26 and its anion. The local-density and a generalized gradient approximation of the exchange–correlation functional predict different nanoscale motifs. We found a vast number of isomers within a small energy range above the respective putative global minima with each method. Photoelectron spectroscopy of Au26(-) under different experimental conditions revealed definitive evidence of the presence of multiple isomers, consistent with the theoretical predictions. Comparison between the experimental and simulated photoelectron spectra suggests that the photoelectron spectra of Au26(-) contain a mixture of three isomers, all of which are low-symmetry core–shell-type nanoclusters with a single internal Au atom. We present a disconnectivity graph for Au26(-) that has been computed completely at the density functional level. The transition states used to build this disconnectivity graph are complete enough to predict Au26(-) to have a possible fluxional shell, which facilitates the understanding of its catalytic activity.
Collapse
Affiliation(s)
- Bastian Schaefer
- Department of Physics, University of Basel , Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Zhang J, Lourderaj U, Sun R, Mikosch J, Wester R, Hase WL. Simulation studies of the Cl- + CH3I SN2 nucleophilic substitution reaction: comparison with ion imaging experiments. J Chem Phys 2013; 138:114309. [PMID: 23534641 DOI: 10.1063/1.4795495] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the previous work of Mikosch et al. [Science 319, 183 (2008)], ion imaging experiments were used to study the Cl(-) + CH3I → ClCH3 + I(-) reaction at collision energies E(rel) of 0.39, 0.76, 1.07, and 1.9 eV. For the work reported here MP2(fc)/ECP/d direct dynamics simulations were performed to obtain an atomistic understanding of the experiments. There is good agreement with the experimental product energy and scattering angle distributions for the highest three E(rel), and at these energies 80% or more of the reaction is direct, primarily occurring by a rebound mechanism with backward scattering. At 0.76 eV there is a small indirect component, with isotropic scattering, involving formation of the pre- and post-reaction complexes. All of the reaction is direct at 1.07 eV. Increasing E(rel) to 1.9 eV opens up a new indirect pathway, the roundabout mechanism. The product energy is primarily partitioned into relative translation for the direct reactions, but to CH3Cl internal energy for the indirect reactions. The roundabout mechanism transfers substantial energy to CH3Cl rotation. At E(rel) = 0.39 eV both the experimental product energy partitioning and scattering are statistical, suggesting the reaction is primarily indirect with formation of the pre- and post-reaction complexes. However, neither MP2 nor BhandH/ECP/d simulations agree with experiment and, instead, give reaction dominated by direct processes as found for the higher collision energies. Decreasing the simulation E(rel) to 0.20 eV results in product energy partitioning and scattering which agree with the 0.39 eV experiment. The sharp transition from a dominant direct to indirect reaction as E(rel) is lowered from 0.39 to 0.20 eV is striking. The lack of agreement between the simulations and experiment for E(rel) = 0.39 eV may result from a distribution of collision energies in the experiment and/or a shortcoming in both the MP2 and BhandH simulations. Increasing the reactant rotational temperature from 75 to 300 K for the 1.9 eV collisions, results in more rotational energy in the CH3Cl product and a larger fraction of roundabout trajectories. Even though a ClCH3-I(-) post-reaction complex is not formed and the mechanistic dynamics are not statistical, the roundabout mechanism gives product energy partitioning in approximate agreement with phase space theory.
Collapse
Affiliation(s)
- Jiaxu Zhang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | | | | | | | | | | |
Collapse
|
11
|
Phillips JJ, Peralta JE. Magnetic Exchange Couplings from Semilocal Functionals Evaluated Nonself-Consistently on Hybrid Densities: Insights on Relative Importance of Exchange, Correlation, and Delocalization. J Chem Theory Comput 2012; 8:3147-58. [DOI: 10.1021/ct3004904] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jordan J. Phillips
- Science of Advanced Materials, Central Michigan University, Mt. Pleasant, Michigan
48859, United States
| | - Juan E. Peralta
- Department
of Physics, Central Michigan University, Mt. Pleasant, Michigan 48859, United States
| |
Collapse
|
12
|
KROES GEERTJAN, SOMERS MARKF. SIX-DIMENSIONAL DYNAMICS OF DISSOCIATIVE CHEMISORPTION OF H2 ON METAL SURFACES. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2011. [DOI: 10.1142/s0219633605001647] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The theory of time-dependent quantum dynamics of dissociative chemisorption of hydrogen on metal surfaces is reviewed, in the framework of electronically adiabatic scattering from static surfaces. Four implementations of the time-dependent wave packet (TDWP) method are discussed. In the direct product pseudo-spectral and the spherical harmonics pseudo-spectral methods, no use is made of the symmetry associated with the surface unit cell. This symmetry is exploited by the symmetry adapted wave packet and the symmetry adapted pseudo-spectral (SAPS) method, which are efficient for scattering at normal incidence. The SAPS method can be employed for potential energy surfaces of general form. Comparison to experiment shows that the TDWP method yields good, but not yet excellent, quantitative accuracy for dissociation of (ν = 0, j = 0) H 2 if the calculations are based on accurately fitted density functional theory calculations that are performed using the generalized gradient approximation. The influence of the molecule's vibration (rotation) is well (reasonably well) described. The theory does not yet yield quantitatively accurate results for rovibrationally inelastic scattering. The theory has helped with the interpretation of existing experimental results, for instance, by solving a parodox regarding the corrugation of Pt(111) as seen by reacting and scattering H 2. The theory has also provided some exciting new predictions, for instance, concerning where on the surface of Cu(100) H2 reacts depending on its vibrational state. Future theoretical studies of H 2 reacting on metal surfaces will likely be aimed at validating GGAs for molecule-surface interactions, and understanding trends in collisions of H 2 with complex metal surfaces.
Collapse
Affiliation(s)
- GEERT-JAN KROES
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden, University, P. O. Box 9502, 2300 RA Leiden, The Netherlands
| | - MARK F. SOMERS
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden, University, P. O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
13
|
|
14
|
Buda F. Introduction to theory/modeling methods in photosynthesis. PHOTOSYNTHESIS RESEARCH 2009; 102:437-441. [PMID: 19644763 PMCID: PMC2777222 DOI: 10.1007/s11120-009-9476-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 07/13/2009] [Indexed: 05/26/2023]
Abstract
Theory and molecular modeling play an increasingly important role in complementing the experimental findings and supporting the interpretation of the data. Owing to the increase in computational power combined with the development of more efficient methods, computer simulations and modeling have emerged as primary ingredients of modern scientific inquiry. Here, we introduce the methods that in our view bring the largest promises in photosynthesis research, indicate how they have already contributed, and can in the near future assume a significant role in this field. Particular emphasis is given to density functional theory and its combination with molecular dynamics simulations. We point out the need for a multi-scale approach in facing the challenging task of describing processes which cover several orders of magnitude both in the time scale and in the size of the systems of interest.
Collapse
Affiliation(s)
- Francesco Buda
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| |
Collapse
|
15
|
Acosta-Silva C, Branchadell V. Density functional methods in the study of oxygen transfer reactions. Theor Chem Acc 2009. [DOI: 10.1007/s00214-009-0541-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Bento AP, Bickelhaupt FM. Frontside versus Backside S(N)2 substitution at group 14 atoms: origin of reaction barriers and reasons for their absence. Chem Asian J 2008; 3:1783-92. [PMID: 18712744 DOI: 10.1002/asia.200800065] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have theoretically studied the gas-phase nucleophilic substitution at group-14 atoms (S(N)2@A) in the model reactions of Cl(-)+AH(3)Cl (A=C, Si, Ge, Sn, and Pb) using relativistic density functional theory (DFT) at ZORA-OLYP/TZ2P. Firstly, we wish to explore and understand how the reaction coordinate zeta, and potential energy surfaces (PES) along zeta, vary as the center of nucleophilic attack changes from carbon to the heavier group-14 atoms. Secondly, a comparison between the more common backside reaction (S(N)2-b) and the frontside pathway (S(N)2-f) is performed. The S(N)2-b reaction is found to have a central barrier for A=C, but none for the other group-14 atoms, A=Si-Pb. Relativistic effects destabilize reactant complexes and transition species by up to 10 kcal mol(-1) (for S(N)2-f@Pb), but they do not change relative heights of barriers. We also address the nature of the transformation in the frontside S(N)2-f reactions in terms of turnstile rotation versus Berry-pseudorotation mechanism.
Collapse
Affiliation(s)
- A Patrícia Bento
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, Scheikundig Laboratorium der Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | | |
Collapse
|
17
|
van Bochove MA, Swart M, Bickelhaupt FM. Stepwise walden inversion in nucleophilic substitution at phosphorus. Phys Chem Chem Phys 2008; 11:259-67. [PMID: 19088981 DOI: 10.1039/b813152j] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have studied the mechanism of S(N)2@P reactions in the model systems X(-) + PMe(2)Y and X(-) + POR(2)Y (with R=Me, OH, OMe; and X, Y=Cl, OH, MeO) using density functional theory at OLYP/TZ2P. Our main purpose is to analyze the nature of the Walden inversion in our model nucleophilic substitution reactions. Walden inversion is well-known to proceed, in general, as a concerted umbrella motion of the substituents at the central atom. Interestingly, we find here that, in certain model reactions, Walden inversion can also proceed in a stepwise fashion in which the individual substituents of the umbrella flip, consecutively, from the educt to the product conformation via separate barriers on the reaction profile. We also examine how variation in nucleophile and leaving group may tune the pentavalent transition structure between labile transition state (TS) and stable transition complex (TC). Furthermore, we explore the various competing multistep pathways in the symmetric (X=Y) and asymmetric (X not equal Y) substitution reactions in our model reaction systems.
Collapse
Affiliation(s)
- Marc A van Bochove
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, Scheikundig Laboratorium der Vrije Universiteit, De Boelelaan 1083, NL-1081 HV Amsterdam, Netherlands
| | | | | |
Collapse
|
18
|
Janesko BG, Scuseria GE. Hartree-Fock orbitals significantly improve the reaction barrier heights predicted by semilocal density functionals. J Chem Phys 2008; 128:244112. [PMID: 18601322 DOI: 10.1063/1.2940738] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Semilocal density functional theory predictions for the barrier heights of representative hydrogen transfer, heavy-atom transfer, and nucleophilic substitution reactions are significantly improved in non-self-consistent calculations using Hartree-Fock orbitals. Orbitals from hybrid calculations yield related improvements. These results provide insight into compensating for one-electron self-interaction error in semilocal density functional theory.
Collapse
|
19
|
Bento AP, Bickelhaupt FM. Nucleophilicity and leaving-group ability in frontside and backside S(N)2 reactions. J Org Chem 2008; 73:7290-9. [PMID: 18690745 DOI: 10.1021/jo801215z] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nucleophilic substitution is ubiquitous in chemistry and well studied. Nucleophilicity and leaving-group ability have been related to various reactant properties, such as electronegativity, size, polarizability, and others. Yet, the state-of-the-art is to some extent still phenomenological. Here, we try to arrive at a straightforward, causal relationship between the reactants' electronic structure and their S(N)2 reactivity. To this end, we have explored the potential energy surfaces of the backside as well as frontside S(N)2 reactions of X(-) + CH3Y with X, Y = F, Cl, Br, and I, using relativistic density functional theory (DFT) at ZORA-OLYP/TZ2P. These explorations provide us with a consistent overview of trends, over a wide range of reactivities and pathways, which were analyzed using the activation strain model of chemical reactivity. A clear picture emerges from these analyses: nucleophilicity is determined by the electron-donor capability of the nucleophile (i.e., energy and shape of the X(-) np atomic orbital), and leaving-group ability derives directly from carbon-leaving group (C-Y) bond strength.
Collapse
Affiliation(s)
- A Patrícia Bento
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, Scheikundig Laboratorium der Vrije Universiteit, De Boelelaan 1083, NL-1081 HV Amsterdam, The Netherlands
| | | |
Collapse
|
20
|
Abstract
A new program for multilevel (QM/QM and/or QM/MM) approaches is presented that is able to combine different computational descriptions for different regions in a transparent and flexible manner. This program, designated QUILD (for QUantum-regions Interconnected by Local Descriptions), uses adapted delocalized coordinates (Int J Quantum Chem 2006, 106, 2536) for efficient geometry optimizations of equilibrium and transition-state structures, where both weak and strong coordinates may be present. The Amsterdam Density Functional (ADF) program is used for providing density functional theory and MM energies and gradients, while an interface to the ORCA program is available for including RHF, MP2, or semiempirical descriptions. The QUILD optimization setup reduces the number of geometry steps needed for the Baker test-set of 30 organic molecules by approximately 30% and for a weakly-bound test-set of 18 molecules by approximately 75% compared with the old-style optimizer in ADF, i.e., a speedup of roughly a factor four. We report two examples of using geometry optimizations with numerical gradients, for spin-orbit relativistic ZORA and for excited-state geometries. Finally, we show examples of its multilevel capabilities for a number of systems, including the multilevel boundary region of amino acid residues, an S(N)2 reaction in the gas-phase and in solvent, and a DNA duplex.
Collapse
Affiliation(s)
- Marcel Swart
- Theoretische Chemie, Scheikundig Laboratorium der Vrije Universiteit, De Boelelaan 1083, NL-1081 HV Amsterdam, The Netherlands.
| | | |
Collapse
|
21
|
Zhao Y, Truhlar DG. Construction of a generalized gradient approximation by restoring the density-gradient expansion and enforcing a tight Lieb–Oxford bound. J Chem Phys 2008; 128:184109. [DOI: 10.1063/1.2912068] [Citation(s) in RCA: 218] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
22
|
Atanasov M, Comba P, Daul CA. Combined Ligand Field and Density Functional Theory Analysis of the Magnetic Anisotropy in Oligonuclear Complexes Based on FeIII−CN−MII Exchange-Coupled Pairs. Inorg Chem 2008; 47:2449-63. [DOI: 10.1021/ic701702x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mihail Atanasov
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. Georgi Bontchev Str. Bl.11, 1113 Sofia, Bulgaria, Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany, and Département de Chimie, Université de Fribourg, Ch. du Musée 9, CH-1700 Fribourg, Switzerland
| | - Peter Comba
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. Georgi Bontchev Str. Bl.11, 1113 Sofia, Bulgaria, Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany, and Département de Chimie, Université de Fribourg, Ch. du Musée 9, CH-1700 Fribourg, Switzerland
| | - Claude A. Daul
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. Georgi Bontchev Str. Bl.11, 1113 Sofia, Bulgaria, Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany, and Département de Chimie, Université de Fribourg, Ch. du Musée 9, CH-1700 Fribourg, Switzerland
| |
Collapse
|
23
|
van Bochove MA, Swart M, Bickelhaupt FM. Nucleophilic substitution at phosphorus centers (SN2@p). Chemphyschem 2008; 8:2452-63. [PMID: 17990249 DOI: 10.1002/cphc.200700488] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have studied the characteristics of archetypal model systems for bimolecular nucleophilic substitution at phosphorus (SN2@P) and, for comparison, at carbon (SN2@C) and silicon (SN2@Si) centers. In our studies, we applied the generalized gradient approximation (GGA) of density functional theory (DFT) at the OLYP/TZ2P level. Our model systems cover nucleophilic substitution at carbon in X(-)+CH3Y (SN2@C), at silicon in X(-)+SiH3Y (SN2@Si), at tricoordinate phosphorus in X(-)+PH2Y (SN2@P3), and at tetracoordinate phosphorus in X(-)+POH2Y (SN2@P4). The main feature of going from SN2@C to SN2@P is the loss of the characteristic double-well potential energy surface (PES) involving a transition state [X--CH3--Y]- and the occurrence of a single-well PES with a stable transition complex, namely, [X--PH2--Y]- or [X--POH2--Y](-). The differences between SN2@P3 and SN2@P4 are relatively small. We explored both the symmetric and asymmetric (i.e. X, Y=Cl, OH) SN2 reactions in our model systems, the competition between backside and frontside pathways, and the dependence of the reactions on the conformation of the reactants. Furthermore, we studied the effect, on the symmetric and asymmetric SN2@P3 and S(N)2@P4 reactions, of replacing hydrogen substituents at the phosphorus centers by chlorine and fluorine in the model systems X(-)+PR2Y and X(-)+POR2Y, with R=Cl, F. An interesting phenomenon is the occurrence of a triple-well PES not only in the symmetric, but also in the asymmetric SN2@P4 reactions of X(-)+POCl2--Y.
Collapse
Affiliation(s)
- Marc A van Bochove
- Theoretische Chemie, Scheikundig Laboratorium der Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | | | | |
Collapse
|
24
|
Otyepka M, Banás P, Magistrato A, Carloni P, Damborský J. Second step of hydrolytic dehalogenation in haloalkane dehalogenase investigated by QM/MM methods. Proteins 2008; 70:707-17. [PMID: 17729274 DOI: 10.1002/prot.21523] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mechanistic studies on the hydrolytic dehalogenation catalyzed by haloalkane dehalogenases are of importance for environmental and industrial applications. Here, Car-Parrinello (CP) and ONIOM hybrid quantum-mechanical/molecular mechanics (QM/MM) are used investigate the second reaction step of the catalytic cycle, which comprises a general base-catalyzed hydrolysis of an ester intermediate (EI) to alcohol and free enzyme. We focus on the enzyme LinB from Sphingomonas paucimobilis UT26, for which the X-ray structure at atomic resolution is available. In agreement with previous proposals, our calculations suggest that a histidine residue (His272), polarized by glutamate (Glu132), acts as a base, accepting a proton from the catalytic water molecule and transferring it to an alcoholate ion. The reaction proceeds through a metastable tetrahedral intermediate, which shows an easily reversed reaction to the EI. In the formation of the products, the protonated aspartic acid (Asp108) can easily adopt conformation of the relaxed state found in the free enzyme. The overall free energy barrier of the reaction calculated by potential of the mean force integration using CP-QM/MM calculations is equal to 19.5 +/- 2 kcal . mol(-1). The lowering of the energy barrier of catalyzed reaction with respect to the water reaction is caused by strong stabilization of the reaction intermediate and transition state and their preorganization by electrostatic field of the enzyme.
Collapse
Affiliation(s)
- Michal Otyepka
- Department of Physical Chemistry and Center for Biomolecular and Complex Molecular Systems, Palacký University, Olomouc 771 46, Czech Republic
| | | | | | | | | |
Collapse
|
25
|
Comba P, Rajaraman G. Epoxidation and 1,2-Dihydroxylation of Alkenes by a Nonheme Iron Model System − DFT Supports the Mechanism Proposed by Experiment. Inorg Chem 2007; 47:78-93. [DOI: 10.1021/ic701161r] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peter Comba
- Universität Heidelberg, Anorganisch-Chemisches Institut, INF 270, D-69120 Heidelberg, Germany
| | - Gopalan Rajaraman
- Universität Heidelberg, Anorganisch-Chemisches Institut, INF 270, D-69120 Heidelberg, Germany
| |
Collapse
|
26
|
Kaupp M, Bahmann H, Arbuznikov AV. Local hybrid functionals: An assessment for thermochemical kinetics. J Chem Phys 2007; 127:194102. [DOI: 10.1063/1.2795700] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
27
|
Acosta-Silva C, Branchadell V. Comparison of density functionals for reactions of sulfur ylides with aldehydes and olefins. J Phys Chem A 2007; 111:12019-25. [PMID: 17975897 DOI: 10.1021/jp075708f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reactions of a model sulfur ylide with formaldehyde and 1,1-dicianoethylene, leading to the formation of an epoxyde and a cyclopropane, respectively, have been studied using different computational methods, and the results have been compared to those obtained with the CBS-QB3 method. The second step of these reactions presents transition states similar to that of an SN2 reaction. Depending on the degree of electron delocalization at the transition state, a different amount of exact exchange is necessary in the exchange functional to obtain accurate energy barriers. This amount is larger for the reaction of formaldehyde, in which the transition state is more delocalized, than for the reaction of 1,1-dicianoethylene. Similar results have been obtained for symmetric and non-symmetric SN2 reactions. The calculation of the reaction path has shown that the error relative to CBS-QB3 tends to increase when approaching the transition state. Among the different computational methods, PBE1PBE is the one to provide the most accurate energy barriers and reaction energies, whereas BB1K leads to the best results for the reaction path before the transition state.
Collapse
Affiliation(s)
- Carles Acosta-Silva
- Departament de Química, Universitat Autonoma de Barcelona, 08193, Bellaterra, Spain
| | | |
Collapse
|
28
|
Snow JL, Orlova G, Blagojevic V, Bohme DK. Gas-Phase Ionic Syntheses of Amino Acids: β versus α. J Am Chem Soc 2007; 129:9910-7. [PMID: 17649994 DOI: 10.1021/ja068725b] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Both theoretical and experimental studies are reported for the gas-phase reactions of protonated hydroxylamine with acetic and propanoic acids which yield protonated glycine and alanine, GlyH+ and AlaH+, respectively. The key step for these reactions is an insertion of the amino group into a C-H bond. For the formation of AlaH+, the reaction barrier for insertion into a Cbeta-H bond is ca. 5 kcal.mol-1 lower than that for the insertion into a Calpha-H bond; the product beta-AlaH+ is ca. 6 kcal mol-1 lower in energy than alpha-AlaH+. Thus, both kinetics and thermodynamics favor formation of the beta-form. The energetic preference for the beta-form is due to more efficient hydrogen bonding between the amino group and the carbonyl oxygen in the limiting transition structure and in the beta-AlaH+ product. These theoretical results are in excellent accord with selected ion flow tube measurements of the gas-phase synthesis which show striking specificity for the beta-isomer according to multi-collision-induced dissociation of the AlaH+ product ion. The results suggest that Gly and beta-Ala found in carbonaceous chondrite meteorites are products of interstellar chemistry.
Collapse
Affiliation(s)
- Jamie L Snow
- Department of Chemistry, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| | | | | | | |
Collapse
|
29
|
Proynov E, Kong J. Improved meta-GGA Correlation Functional of the Lap Family. J Chem Theory Comput 2007; 3:746-54. [DOI: 10.1021/ct600372t] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Emil Proynov
- Q-Chem Inc., The Design Center, Suite 690, 5001 Baum Boulevard, Pittsburgh, Pennsylvania 15213
| | - Jing Kong
- Q-Chem Inc., The Design Center, Suite 690, 5001 Baum Boulevard, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
30
|
Swart M, Solà M, Bickelhaupt FM. Energy landscapes of nucleophilic substitution reactions: A comparison of density functional theory and coupled cluster methods. J Comput Chem 2007; 28:1551-1560. [PMID: 17342711 DOI: 10.1002/jcc.20653] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We have carried out a detailed evaluation of the performance of all classes of density functional theory (DFT) for describing the potential energy surface (PES) of a wide range of nucleophilic substitution (SN2) reactions involving, amongst others, nucleophilic attack at carbon, nitrogen, silicon, and sulfur. In particular, we investigate the ability of the local density approximation (LDA), generalized gradient approximation (GGA), meta-GGA as well as hybrid DFT to reproduce high-level coupled cluster (CCSD(T)) benchmarks that are close to the basis set limit. The most accurate GGA, meta-GGA, and hybrid functionals yield mean absolute deviations of about 2 kcal/mol relative to the coupled cluster data, for reactant complexation, central barriers, overall barriers as well as reaction energies. For the three nonlocal DFT classes, the best functionals are found to be OPBE (GGA), OLAP3 (meta-GGA), and mPBE0KCIS (hybrid DFT). The popular B3LYP functional is not bad but performs significantly worse than the best GGA functionals. Furthermore, we have compared the geometries from several density functionals with the reference CCSD(T) data. The same GGA functionals that perform best for the energies (OPBE, OLYP), also perform best for the geometries with average absolute deviations in bond lengths of 0.06 A and 0.6 degrees, even better than the best meta-GGA and hybrid functionals. In view of the reduced computational effort of GGAs with respect to meta-GGAs and hybrid functionals, let alone coupled cluster, we recommend the use of accurate GGAs such as OPBE or OLYP for the study of SN2 reactions.
Collapse
Affiliation(s)
- Marcel Swart
- Theoretische Chemie, Scheikundig Laboratorium der Vrije Universiteit, De Boelelaan 1083, NL-1081 HV Amsterdam, The Netherlands
| | - Miquel Solà
- Institut de Química Computacional, Universitat de Girona, Campus Montilivi, E-17071 Girona, Catalunya, Spain
| | - F Matthias Bickelhaupt
- Theoretische Chemie, Scheikundig Laboratorium der Vrije Universiteit, De Boelelaan 1083, NL-1081 HV Amsterdam, The Netherlands
| |
Collapse
|
31
|
Bento AP, Bickelhaupt FM. Nucleophilic Substitution at Silicon (SN2@Si) via a Central Reaction Barrier. J Org Chem 2007; 72:2201-7. [PMID: 17300206 DOI: 10.1021/jo070076e] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
It is textbook knowledge that nucleophilic substitution at carbon (SN2@C) proceeds via a central reaction barrier which disappears in the corresponding nucleophilic substitution reaction at silicon (SN2@Si). Here, we address the question why the central barrier disappears from SN2@C to SN2@Si despite the fact that these processes are isostructural and isoelectronic. To this end, we have explored and analyzed the potential energy surfaces (PES) of various Cl-+CR3Cl (R=H, CH3) and Cl-+SiR3Cl model reactions (R=H, CH3, C2H5, and OCH3). Our results show that the nature of the SN2 reaction barrier is in essence steric, but that it can be modulated by electronic factors. Thus, simply by increasing the steric demand of the substituents R around the silicon atom, the SN2@Si mechanism changes from its regular single-well PES (with a stable intermediate transition complex, TC), via a triple-well PES (with a pre- and a post-TS before and after the central TC), to a double-well PES (with a TS; R=OCH3), which is normally encountered for SN2@C reactions.
Collapse
Affiliation(s)
- A Patrícia Bento
- Afdeling Theoretische Chemie, Scheikundig Laboratorium der Vrije Universiteit, De Boelelaan 1083, NL-1081 HV Amsterdam, The Netherlands
| | | |
Collapse
|
32
|
Zein S, Borshch SA, Fleurat-Lessard P, Casida ME, Chermette H. Assessment of the exchange-correlation functionals for the physical description of spin transition phenomena by density functional theory methods: All the same? J Chem Phys 2007; 126:014105. [PMID: 17212488 DOI: 10.1063/1.2406067] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This study aims to assess present day density functionals in the description of spin crossover iron(II) complexes. Two recently synthesized spin crossover complexes were considered. Theoretical calculations were made using 53 of the most popular exchange-correlation density functionals with triple zeta plus polarization quality basis sets. The present work shows that even though different density functionals can lead to different energy gaps between spin states, most of them are very similar for these two compounds when a comparison between energy gaps is sought. The present work shows that even though different exchange correlations can lead to different energy gaps between spin states, the difference between these gaps calculated at different geometries and that calculated at a given reference geometry is surprisingly independent of the choice of functional. The reasons for the similarities and the differences among exchange and correlation functional combinations are discussed.
Collapse
Affiliation(s)
- Samir Zein
- Laboratoire de Chimie, UMR CNRS 5182, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| | | | | | | | | |
Collapse
|
33
|
Lepetit C, Chermette H, Gicquel M, Heully JL, Chauvin R. Description of Carbo-oxocarbons and Assessment of Exchange-Correlation Functionals for the DFT Description of Carbo-mers. J Phys Chem A 2006; 111:136-49. [PMID: 17201396 DOI: 10.1021/jp064066d] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mono- and polycyclic valence isomers of carbo-[3]oxocarbon C(9)O(3) and carbo-[5]oxocarbon C(15)O(5) have been characterized on the singlet spin state potential energy surface. By contrast to their geometry, their relative stability is highly sensitive to the calculation level. The performance of LDA, GGA, meta-GGA, and hybrid functionals is compared to that of HF, post-HF, and multiconfigurational calculations. The results obtained for C(9)O(3) are compared to those obtained for hydrocarbon analogues such as &[3]pericyclyne C9(H2)3 and carbo-[3]radialene C9(CH2)3 and are analyzed on the basis of an energy decomposition scheme. The respective role of the exchange and correlation counterparts of the functional in the discrepancy of the results is discussed.
Collapse
Affiliation(s)
- Christine Lepetit
- Laboratoire de Chimie de Coordination, UPR 8241 CNRS, 205 Route de Narbonne, 31 077 Toulouse Cedex 4, France
| | | | | | | | | |
Collapse
|
34
|
Coletti C, Marrone A, Giorgi G, Sgamellotti A, Cerofolini G, Re N. Nonradical mechanisms for the uncatalyzed thermal functionalization of silicon surfaces by alkenes and alkynes: a density functional study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:9949-56. [PMID: 17106984 DOI: 10.1021/la060013b] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We propose a new concerted mechanism for the uncatalyzed hydrosilylation of terminal alkenes and alkynes, alternative to the conventional radical-based mechanism. Density functional calculations have been carried out on these and on previously proposed alternative mechanisms for the hydrosilylation of ethylene and acetylene by suitable finite size clusters as models of the thermal functionalization of -SiH3, =SiH2, and [triple bound] SiH groups in flat Si(100) and Si(111) and porous silicon surfaces by alkenes and alkynes. For each step involved in the considered hydrosilylation pathways, we optimized the geometries of reactants and products and located the corresponding transition states. The calculated activation energies for the concerted pathways of ethylene and acetylene are, respectively, 57.6 and 60.9 kcal mol(-1) on -SiH3 and in the ranges 62-63 and 58-61 kcal mol-1 on =SiH2 and 64-66 and 56-61 kcal mol(-1) on SiH. These values are much lower than the activation energies calculated for the corresponding homolytic dissociation of the Si-H bond, which is the preliminary step in the radical path, 85.6, 82-83, and 79-81 kcal mol(-1), respectively, for -SiH3, =SiH2, and [triple bound] SiH groups. Our results thus suggest that the thermal hydrosilylation of alkenes and alkynes on silicon surfaces, for which a radical-based mechanism is currently accepted, may occur through a concerted mechanism.
Collapse
Affiliation(s)
- Cecilia Coletti
- Dipartimento di Scienze del Farmaco, Università G. D'Annunzio, Via dei Vestini, I-66100 Chieti, Italy
| | | | | | | | | | | |
Collapse
|
35
|
Clary D. Surface science: excitement of molecules on surfaces. NATURE MATERIALS 2006; 5:345-6. [PMID: 16652116 DOI: 10.1038/nmat1641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
|
36
|
Nieto P, Pijper E, Barredo D, Laurent G, Olsen RA, Baerends EJ, Kroes GJ, Farías D. Reactive and Nonreactive Scattering of H2 from a Metal Surface Is Electronically Adiabatic. Science 2006; 312:86-9. [PMID: 16469880 DOI: 10.1126/science.1123057] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The Born-Oppenheimer approximation of uncoupled electronic and nuclear motion is a standard tool of the computational chemist. However, its validity for molecule-metal surface reactions, which are important to heterogeneous catalysis, has been questioned because of the possibility of electron-hole pair excitations. We have performed experiments and calculations on the scattering of molecular hydrogen from a catalytically relevant metal surface, obtaining absolute probabilities for changes in the molecule's velocity parallel to the representative Pt(111) surface. The comparison for in-plane and out-of-plane scattering and results for dissociative chemisorption in the same system show that for hydrogen-metal systems, reaction and diffractive scattering can be accurately described using the Born-Oppenheimer approximation.
Collapse
Affiliation(s)
- Pablo Nieto
- Departamento de Física de la Materia Condensada C-3 and Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Quantum chemical study of hydrogen abstraction reactions of the ethynyl radical with hydrogen compounds (C2H+HX). ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.theochem.2005.07.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
Bento AP, Solà M, Bickelhaupt FM. Ab initio and DFT benchmark study for nucleophilic substitution at carbon (SN2@C) and silicon (SN2@Si). J Comput Chem 2005; 26:1497-504. [PMID: 16092145 DOI: 10.1002/jcc.20261] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
To obtain a set of consistent benchmark potential energy surfaces (PES) for the two archetypal nucleophilic substitution reactions of the chloride anion at carbon in chloromethane (S(N)2@C) and at silicon in chlorosilane (S(N)2@Si), we have explored these PESes using a hierarchical series of ab initio methods [HF, MP2, MP4SDQ, CCSD, CCSD(T)] in combination with a hierarchical series of six Gaussian-type basis sets, up to g polarization. Relative energies of stationary points are converged to within 0.01 to 0.56 kcal/mol as a function of the basis-set size. Our best estimate, at CCSD(T)/aug-cc-pVQZ, for the relative energies of the [Cl(-), CH(3)Cl] reactant complex, the [Cl-CH(3)-Cl](-) transition state and the stable [Cl-SiH(3)-Cl](-) transition complex is -10.42, +2.52, and -27.10 kcal/mol, respectively. Furthermore, we have investigated the performance for these reactions of four popular density functionals, namely, BP86, BLYP, B3LYP, and OLYP, in combination with a large doubly polarized Slater-type basis set of triple-zeta quality (TZ2P). Best overall agreement with our CCSD(T)/aug-cc-pVQZ benchmark is obtained with OLYP and B3LYP. However, OLYP performs better for the S(N)2@C overall and central barriers, which it underestimates by 2.65 and 4.05 kcal/mol, respectively. The other DFT approaches underestimate these barriers by some 4.8 (B3LYP) to 9.0 kcal/mol (BLYP).
Collapse
Affiliation(s)
- A Patrícia Bento
- Afdeling Theoretische Chemie, Scheikundig Laboratorium der Vrije Universiteit, De Boelelaan 1083, NL-1081 HV Amsterdam, The Netherlands
| | | | | |
Collapse
|
39
|
|
40
|
Andersson S, Grüning M. Performance of Density Functionals for Calculating Barrier Heights of Chemical Reactions Relevant to Astrophysics. J Phys Chem A 2004. [DOI: 10.1021/jp040448c] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Stefan Andersson
- Leiden Observatory, P.O. Box 9513, 2300 RA Leiden, The Netherlands, Theoretical Chemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, and Section Theoretical Chemistry, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Myrta Grüning
- Leiden Observatory, P.O. Box 9513, 2300 RA Leiden, The Netherlands, Theoretical Chemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, and Section Theoretical Chemistry, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|