1
|
Andrés CMC, de la Lastra JMP, Juan CA, Plou FJ, Pérez-Lebeña E. Chemical Insights into Oxidative and Nitrative Modifications of DNA. Int J Mol Sci 2023; 24:15240. [PMID: 37894920 PMCID: PMC10607741 DOI: 10.3390/ijms242015240] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
This review focuses on DNA damage caused by a variety of oxidizing, alkylating, and nitrating species, and it may play an important role in the pathophysiology of inflammation, cancer, and degenerative diseases. Infection and chronic inflammation have been recognized as important factors in carcinogenesis. Under inflammatory conditions, reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated from inflammatory and epithelial cells, and result in the formation of oxidative and nitrative DNA lesions, such as 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-nitroguanine. Cellular DNA is continuously exposed to a very high level of genotoxic stress caused by physical, chemical, and biological agents, with an estimated 10,000 modifications occurring every hour in the genetic material of each of our cells. This review highlights recent developments in the chemical biology and toxicology of 2'-deoxyribose oxidation products in DNA.
Collapse
Affiliation(s)
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. AstrofísicoFco. Sánchez, 3, 38206 La Laguna, Spain
| | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain;
| | - Francisco J. Plou
- Institute of Catalysis and Petrochemistry, CSIC-Spanish Research Council, 28049 Madrid, Spain;
| | | |
Collapse
|
2
|
Lespade L, Bercion S. First principle molecular dynamics of hydroxyl radical induced oxidation of guanine and 2′-deoxyguanosine 5′-monophosphate in a cluster of water molecules. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2021.111386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Sørensen LN, Sauer SP. Implicit and explicit solvent models have opposite effects on radiation damage rate constant for thymine. ADVANCES IN QUANTUM CHEMISTRY 2022. [DOI: 10.1016/bs.aiq.2021.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
4
|
Sharafdini R, Ramazani S. A theoretical study on the role of stability of cytosine and its tautomers in DNA (deoxyribonucleic acid), and investigation of interactions of Na +, K +, Mg 2+, Ca 2+, Zn 2+ metal ions and OH radical with cytosine tautomers. J Biomol Struct Dyn 2020; 40:3819-3836. [PMID: 33252005 DOI: 10.1080/07391102.2020.1850526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In the present study, 21 cytosine tautomers were investigated so that some tautomers were reported for the first time in the gas phase and aqueous solution. C3 tautomer was the most stable tautomer in gas phase but C1 was the most stable structure in aqueous solution. The potential energy surface of all trajectories was determined for 21 tautomers and 22 transition states. Also, interactions of cytosine tautomers with Na+, K+, Mg2+, Ca2+ and Zn2+ metal ions were studied in gas phase and aqueous solution. Three types of interactions among metal ions and (N1 and O10), (N3 and O10) and (N3 and N9) of cytosine tautomers were investigated. The study of interaction energies of all complexes showed the stability of complexes in which interactions among Mg2+ and Zn2+ with tautomers were stronger than interactions among Ca2+, Na+ and K+ with tautomers, respectively. Some interactions of metal ions with cytosine tautomers made the most stable tautomers. So, the stability of rare tutomeric forms had a significant effect on stabilization of anomalous DNA (deoxyribonucleic acid) double helix and spontaneous mutations. Also, one of the most important causes of mutations in DNA (deoxyribonucleic acid) was the reaction of OH radical with nucleotide bases. So, interactions of OH radical with cytosine and its tautomers were investigated in gas phase and aqueous solution.Communicated by Ramaswamy H. Sarma.
Collapse
|
5
|
Milovanović B, Ilić J, Stanković IM, Popara M, Petković M, Etinski M. A simulation of free radicals induced oxidation of dopamine in aqueous solution. Chem Phys 2019. [DOI: 10.1016/j.chemphys.2019.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
An P, Wang Y, Li S, Zhou L. Repair of Oxidizing Hydroxyl Adduct Radicals of DNA Bases by Hydroxyl‐
trans
‐Stilbenes via Single Electron Transfer. ChemistrySelect 2019. [DOI: 10.1002/slct.201803802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ping An
- College of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 P.R.China
| | - Yuyue Wang
- College of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 P.R.China
| | - Shujin Li
- College of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 P.R.China
| | - Liping Zhou
- College of PhysicsOptoelectronics and EnergySoochow University Suzhou 215006 P.R.China
| |
Collapse
|
7
|
Fraile A, Smyth M, Kohanoff J, Solov'yov AV. First principles simulation of damage to solvated nucleotides due to shock waves. J Chem Phys 2019; 150:015101. [PMID: 30621408 DOI: 10.1063/1.5028451] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We present a first-principles molecular dynamics study of the effect of shock waves (SWs) propagating in a model biological medium. We find that the SW can cause chemical modifications through varied and complex mechanisms, in particular, phosphate-sugar and sugar-base bond breaks. In addition, the SW promotes the dissociation of water molecules, thus enhancing the ionic strength of the medium. Freed protons can hydrolyze base and sugar rings previously opened by the shock. However, many of these events are only temporary, and bonds reform rapidly. Irreversible damage is observed for pressures above 15-20 GPa. These results are important to gain a better understanding of the microscopic damage mechanisms underlying cosmic-ray irradiation in space and ion-beam cancer therapy.
Collapse
Affiliation(s)
- Alberto Fraile
- Atomistic Simulation Centre, Queen's University Belfast, Belfast BT7 1NN, Northern Ireland, United Kingdom
| | - Maeve Smyth
- Atomistic Simulation Centre, Queen's University Belfast, Belfast BT7 1NN, Northern Ireland, United Kingdom
| | - Jorge Kohanoff
- Atomistic Simulation Centre, Queen's University Belfast, Belfast BT7 1NN, Northern Ireland, United Kingdom
| | - Andrey V Solov'yov
- MBN Research Center, Altenhöferallee 3, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
8
|
Zhang H, Gattuso H, Dumont E, Cai W, Monari A, Chipot C, Dehez F. Accurate Estimation of the Standard Binding Free Energy of Netropsin with DNA. Molecules 2018; 23:molecules23020228. [PMID: 29370096 PMCID: PMC6017086 DOI: 10.3390/molecules23020228] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 01/14/2018] [Accepted: 01/19/2018] [Indexed: 12/12/2022] Open
Abstract
DNA is the target of chemical compounds (drugs, pollutants, photosensitizers, etc.), which bind through non-covalent interactions. Depending on their structure and their chemical properties, DNA binders can associate to the minor or to the major groove of double-stranded DNA. They can also intercalate between two adjacent base pairs, or even replace one or two base pairs within the DNA double helix. The subsequent biological effects are strongly dependent on the architecture of the binding motif. Discriminating between the different binding patterns is of paramount importance to predict and rationalize the effect of a given compound on DNA. The structural characterization of DNA complexes remains, however, cumbersome at the experimental level. In this contribution, we employed all-atom molecular dynamics simulations to determine the standard binding free energy of DNA with netropsin, a well-characterized antiviral and antimicrobial drug, which associates to the minor groove of double-stranded DNA. To overcome the sampling limitations of classical molecular dynamics simulations, which cannot capture the large change in configurational entropy that accompanies binding, we resort to a series of potentials of mean force calculations involving a set of geometrical restraints acting on collective variables.
Collapse
Affiliation(s)
- Hong Zhang
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
| | - Hugo Gattuso
- UMR 7019, Theoretical Physics and Chemistry Department (LPCT), Université de Lorraine-Nancy, 54506 Vandoeuvre-lès-Nancy, France.
- UMR 7019, Theoretical Physics and Chemistry Department (LPCT), CNRS, 54506 Vandeouvre-lès-Nancy, France.
| | - Elise Dumont
- Univ Lyon, Ens de Lyon, CNRS UMR 5182, Laboratoire de Chimie, Université Claude Bernard Lyon 1, F-69342 Lyon, France.
| | - Wensheng Cai
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
- Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Antonio Monari
- UMR 7019, Theoretical Physics and Chemistry Department (LPCT), Université de Lorraine-Nancy, 54506 Vandoeuvre-lès-Nancy, France.
- UMR 7019, Theoretical Physics and Chemistry Department (LPCT), CNRS, 54506 Vandeouvre-lès-Nancy, France.
| | - Christophe Chipot
- UMR 7019, Theoretical Physics and Chemistry Department (LPCT), Université de Lorraine-Nancy, 54506 Vandoeuvre-lès-Nancy, France.
- UMR 7019, Theoretical Physics and Chemistry Department (LPCT), CNRS, 54506 Vandeouvre-lès-Nancy, France.
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Champaign, Illinois, 54506 Vandeouvre-lès-Nancy, France.
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801, USA.
| | - François Dehez
- UMR 7019, Theoretical Physics and Chemistry Department (LPCT), Université de Lorraine-Nancy, 54506 Vandoeuvre-lès-Nancy, France.
- UMR 7019, Theoretical Physics and Chemistry Department (LPCT), CNRS, 54506 Vandeouvre-lès-Nancy, France.
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Champaign, Illinois, 54506 Vandeouvre-lès-Nancy, France.
| |
Collapse
|
9
|
Kohanoff J, McAllister M, Tribello GA, Gu B. Interactions between low energy electrons and DNA: a perspective from first-principles simulations. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:383001. [PMID: 28617676 DOI: 10.1088/1361-648x/aa79e3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
DNA damage caused by irradiation has been studied for many decades. Such studies allow us to better assess the dangers posed by radiation, and to increase the efficiency of the radiotherapies that are used to combat cancer. A full description of the irradiation process involves multiple size and time scales. It starts with the interaction of radiation-either photons or swift ions-and the biological medium, which causes electronic excitation and ionisation. The two main products of ionising radiation are thus electrons and radicals. Both of these species can cause damage to biological molecules, in particular DNA. In the long run, this molecular level damage can prevent cells from replicating and can hence lead to cell death. For a long time it was assumed that the main actors in the damage process were the radicals. However, experiments in a seminal paper by the group of Leon Sanche in 2000 showed that low-energy electrons (LEE), such as those generated when ionising biological targets, can also cause bond breaks in biomolecules, and strand breaks in plasmid DNA in particular (Boudaiffa et al 2000 Science 287 1658-60). These results prompted a significant amount of experimental and theoretical work aimed at elucidating the role played by LEE in DNA damage. In this Topical Review we provide a general overview of the problem. We discuss experimental findings and theoretical results hand in hand with the aim of describing the physics and chemistry that occurs during the process of radiation damage, from the initial stages of electronic excitation, through the inelastic propagation of electrons in the medium, the interaction of electrons with DNA, and the chemical end-point effects on DNA. A very important aspect of this discussion is the consideration of a realistic, physiological environment. The role played by the aqueous solution and the amino acids from the histones in chromatin must be considered. Moreover, thermal fluctuations must be incorporated when studying these phenomena. Hence, a special place in this Topical Review is occupied by our recent first-principles molecular dynamics simulations that address the issue of how the environment favours or prevents LEEs from causing damage to DNA. We finish by summarising the conclusions achieved so far, and by suggesting a number of possible directions for further study.
Collapse
Affiliation(s)
- Jorge Kohanoff
- Atomistic Simulation Centre, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | | | | | | |
Collapse
|
10
|
Grüber R, Aranda J, Bellili A, Tuñón I, Dumont E. Free energy profiles for two ubiquitous damaging agents: methylation and hydroxylation of guanine in B-DNA. Phys Chem Chem Phys 2017; 19:14695-14701. [PMID: 28537602 DOI: 10.1039/c6cp07966k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DNA methylation and hydroxylation are two ubiquitous reactions in DNA damage induction, yet insights are scarce concerning the free energy of activation within B-DNA. We resort to multiscale simulations to investigate the attack of a hydroxyl radical and of the primary diazonium onto a guanine embedded in a solvated dodecamer. Reaction free energy profiles characterize two strongly exergonic processes, yet allow unprecedented quantification of the barrier towards this damage reaction, not higher than 6 kcal mol-1 and sometimes inexistent, and of the exergonicities. In the case of the [G(C8)-OH]˙ intermediate, we challenge the functional dependence of such simulations: recently-proposed functionals, such as M06-2X and LC-BLYP, agree on a ∼4 kcal mol-1 barrier, whereas the hybrid GGA B3LYP functional predicts a barrier-less pathway. In the long term, multiscale approaches can help build up a unified panorama of DNA lesion induction. These results stress the importance of DFT/MM-MD simulations involving new functionals towards the sound modelling of biomolecule damage even in the ground state.
Collapse
Affiliation(s)
- R Grüber
- Univ. Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F-69342 Lyon, France.
| | | | | | | | | |
Collapse
|
11
|
Jie J, Liu K, Wu L, Zhao H, Song D, Su H. Capturing the radical ion-pair intermediate in DNA guanine oxidation. SCIENCE ADVANCES 2017; 3:e1700171. [PMID: 28630924 PMCID: PMC5457143 DOI: 10.1126/sciadv.1700171] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/06/2017] [Indexed: 05/28/2023]
Abstract
Although the radical ion pair has been frequently invoked as a key intermediate in DNA oxidative damage reactions and photoinduced electron transfer processes, the unambiguous detection and characterization of this species remain formidable and unresolved due to its extremely unstable nature and low concentration. We use the strategy that, at cryogenic temperatures, the transient species could be sufficiently stabilized to be detectable spectroscopically. By coupling the two techniques (the cryogenic stabilization and the time-resolved laser flash photolysis spectroscopy) together, we are able to capture the ion-pair transient G+•⋯Cl- in the chlorine radical-initiated DNA guanine (G) oxidation reaction, and provide direct evidence to ascertain the intricate type of addition/charge separation mechanism underlying guanine oxidation. The unique spectral signature of the radical ion-pair G+•⋯Cl- is identified, revealing a markedly intense absorption feature peaking at 570 nm that is distinctive from G+• alone. Moreover, the ion-pair spectrum is found to be highly sensitive to the protonation equilibria within guanine-cytosine base pair (G:C), which splits into two resolved bands at 480 and 610 nm as the acidic proton transfers along the central hydrogen bond from G+• to C. We thus use this exquisite sensitivity to track the intrabase-pair proton transfer dynamics in the double-stranded DNA oligonucleotides, which is of critical importance for the description of the proton-coupled charge transfer mechanisms in DNA.
Collapse
Affiliation(s)
- Jialong Jie
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kunhui Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lidan Wu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hongmei Zhao
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Di Song
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hongmei Su
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemistry, Beijing Normal University, Beijing 100875, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Jin L, Zhao C, Liu C, Min S, Zhang T, Wang Z, Wang W, Zhang Q. The multi-channel reaction of the OH radical with 5-hydroxymethylcytosine: a computational study. RSC Adv 2016. [DOI: 10.1039/c5ra24293b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The hydroxyl radical may attack the new cytosine derivative 5-hydroxymethylcytosine (5-hmCyt), causing DNA oxidative damage. Two distinct mechanisms have been explored and our results provide some evidence between 5-hmCyt and tumor development.
Collapse
Affiliation(s)
- Lingxia Jin
- Shaanxi Province Key Laboratory of Catalytic Fundamentals & Applications
- Shaanxi Key Laboratory for Resource Biology
- Vitamin D Research Institute
- School of Chemical & Environment Science
- Shaanxi University of Technology
| | - Caibin Zhao
- Shaanxi Province Key Laboratory of Catalytic Fundamentals & Applications
- Shaanxi Key Laboratory for Resource Biology
- Vitamin D Research Institute
- School of Chemical & Environment Science
- Shaanxi University of Technology
| | - Cunfang Liu
- Shaanxi Province Key Laboratory of Catalytic Fundamentals & Applications
- Shaanxi Key Laboratory for Resource Biology
- Vitamin D Research Institute
- School of Chemical & Environment Science
- Shaanxi University of Technology
| | - Suotian Min
- Shaanxi Province Key Laboratory of Catalytic Fundamentals & Applications
- Shaanxi Key Laboratory for Resource Biology
- Vitamin D Research Institute
- School of Chemical & Environment Science
- Shaanxi University of Technology
| | - Tianlei Zhang
- Shaanxi Province Key Laboratory of Catalytic Fundamentals & Applications
- Shaanxi Key Laboratory for Resource Biology
- Vitamin D Research Institute
- School of Chemical & Environment Science
- Shaanxi University of Technology
| | - Zhiyin Wang
- Shaanxi Province Key Laboratory of Catalytic Fundamentals & Applications
- Shaanxi Key Laboratory for Resource Biology
- Vitamin D Research Institute
- School of Chemical & Environment Science
- Shaanxi University of Technology
| | - Wenliang Wang
- Key Laboratory for Macromolecular Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710062
- China
| | - Qiang Zhang
- Shaanxi Province Key Laboratory of Catalytic Fundamentals & Applications
- Shaanxi Key Laboratory for Resource Biology
- Vitamin D Research Institute
- School of Chemical & Environment Science
- Shaanxi University of Technology
| |
Collapse
|
13
|
|
14
|
Oxidatively induced DNA damage and its repair in cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 763:212-45. [PMID: 25795122 DOI: 10.1016/j.mrrev.2014.11.002] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 12/28/2022]
Abstract
Oxidatively induced DNA damage is caused in living organisms by endogenous and exogenous reactive species. DNA lesions resulting from this type of damage are mutagenic and cytotoxic and, if not repaired, can cause genetic instability that may lead to disease processes including carcinogenesis. Living organisms possess DNA repair mechanisms that include a variety of pathways to repair multiple DNA lesions. Mutations and polymorphisms also occur in DNA repair genes adversely affecting DNA repair systems. Cancer tissues overexpress DNA repair proteins and thus develop greater DNA repair capacity than normal tissues. Increased DNA repair in tumors that removes DNA lesions before they become toxic is a major mechanism for development of resistance to therapy, affecting patient survival. Accumulated evidence suggests that DNA repair capacity may be a predictive biomarker for patient response to therapy. Thus, knowledge of DNA protein expressions in normal and cancerous tissues may help predict and guide development of treatments and yield the best therapeutic response. DNA repair proteins constitute targets for inhibitors to overcome the resistance of tumors to therapy. Inhibitors of DNA repair for combination therapy or as single agents for monotherapy may help selectively kill tumors, potentially leading to personalized therapy. Numerous inhibitors have been developed and are being tested in clinical trials. The efficacy of some inhibitors in therapy has been demonstrated in patients. Further development of inhibitors of DNA repair proteins is globally underway to help eradicate cancer.
Collapse
|
15
|
Curchod BFE, Rothlisberger U, Tavernelli I. Trajectory-Based Nonadiabatic Dynamics with Time-Dependent Density Functional Theory. Chemphyschem 2013; 14:1314-40. [DOI: 10.1002/cphc.201200941] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Indexed: 11/11/2022]
|
16
|
Adhikary A, Kumar A, Heizer AN, Palmer BJ, Pottiboyina V, Liang Y, Wnuk SF, Sevilla MD. Hydroxyl ion addition to one-electron oxidized thymine: unimolecular interconversion of C5 to C6 OH-adducts. J Am Chem Soc 2013; 135:3121-35. [PMID: 23362972 PMCID: PMC3616772 DOI: 10.1021/ja310650n] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work, addition of OH(-) to one-electron oxidized thymidine (dThd) and thymine nucleotides in basic aqueous glasses is investigated. At pHs ca. 9-10 where the thymine base is largely deprotonated at N3, one-electron oxidation of the thymine base by Cl(2)(•-) at ca. 155 K results in formation of a neutral thyminyl radical, T(-H)·. Assignment to T(-H)· is confirmed by employing (15)N substituted 5'-TMP. At pH ≥ ca. 11.5, formation of the 5-hydroxythymin-6-yl radical, T(5OH)·, is identified as a metastable intermediate produced by OH(-) addition to T(-H)· at C5 at ca. 155 K. Upon further annealing to ca. 170 K, T(5OH)· readily converts to the 6-hydroxythymin-5-yl radical, T(6OH)·. One-electron oxidation of N3-methyl-thymidine (N3-Me-dThd) by Cl(2)(•-) at ca. 155 K produces the cation radical (N3-Me-dThd(•+)) for which we find a pH dependent competition between deprotonation from the methyl group at C5 and addition of OH(-) to C5. At pH 7, the 5-methyl deprotonated species is found; however, at pH ca. 9, N3-Me-dThd(•+) produces T(5OH)· that on annealing up to 180 K forms T(6OH)·. Through use of deuterium substitution at C5' and on the thymine base, that is, specifically employing [5',5"-D,D]-5'-dThd, [5',5"-D,D]-5'-TMP, [CD(3)]-dThd and [CD(3),6D]-dThd, we find unequivocal evidence for T(5OH)· formation and its conversion to T(6OH)·. The addition of OH(-) to the C5 position in T(-H)· and N3-Me-dThd(•+) is governed by spin and charge localization. DFT calculations predict that the conversion of the "reducing" T(5OH)· to the "oxidizing" T(6OH)· occurs by a unimolecular OH group transfer from C5 to C6 in the thymine base. The T(5OH)· to T(6OH)· conversion is found to occur more readily for deprotonated dThd and its nucleotides than for N3-Me-dThd. In agreement, calculations predict that the deprotonated thymine base has a lower energy barrier (ca. 6 kcal/mol) for OH transfer than its corresponding N3-protonated thymine base (14 kcal/mol).
Collapse
Affiliation(s)
- Amitava Adhikary
- Department of Chemistry, Oakland University, Rochester, MI 48309
| | - Anil Kumar
- Department of Chemistry, Oakland University, Rochester, MI 48309
| | - Alicia N. Heizer
- Department of Chemistry, Oakland University, Rochester, MI 48309
| | - Brian J. Palmer
- Department of Chemistry, Oakland University, Rochester, MI 48309
| | | | - Yong Liang
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199
| | - Stanislaw F. Wnuk
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199
| | | |
Collapse
|
17
|
López-Tarifa P, Gaigeot MP, Vuilleumier R, Tavernelli I, Alcamí M, Martín F, Hervé du Penhoat MA, Politis MF. Ultrafast Damage Following Radiation-Induced Oxidation of Uracil in Aqueous Solution. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201208038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
López-Tarifa P, Gaigeot MP, Vuilleumier R, Tavernelli I, Alcamí M, Martín F, Hervé du Penhoat MA, Politis MF. Ultrafast damage following radiation-induced oxidation of uracil in aqueous solution. Angew Chem Int Ed Engl 2013; 52:3160-3. [PMID: 23355195 DOI: 10.1002/anie.201208038] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/27/2012] [Indexed: 11/09/2022]
Affiliation(s)
- Pablo López-Tarifa
- Laboratoire de Chimie et Biochimie Computationelle, EPFL, 1015 Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Kumar A, Pottiboyina V, Sevilla MD. One-electron oxidation of neutral sugar radicals of 2'-deoxyguanosine and 2'-deoxythymidine: a density functional theory (DFT) study. J Phys Chem B 2012; 116:9409-16. [PMID: 22793263 DOI: 10.1021/jp3059068] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One electron oxidation of neutral sugar radicals has recently been suggested to lead to important intermediates in the DNA damage process culminating in DNA strand breaks. In this work, we investigate sugar radicals in a DNA model system to understand the energetics of sugar radical formation and oxidation. The geometries of neutral sugar radicals C(1')(•), C(2')(•), C(3')(•), C(4')(•), and C(5')(•) of 2'-deoxyguanosine (dG) and 2'-deoxythymidine (dT) were optimized in the gas phase and in solution using the B3LYP and ωB97x functionals and 6-31++G(d) basis set. Their corresponding cations (C(1')(+), C(2')(+), C(3')(+), C(4')(+), and C(5')(+)) were generated by removing an electron (one-electron oxidation) from the neutral sugar radicals, and their geometries were also optimized using the same methods and basis set. The calculation predicts the relative stabilities of the neutral sugar radicals in the order C(1')(•) > C(4')(•) > C(5')(•) > C(3')(•) > C(2')(•), respectively. Of the neutral sugar radicals, C(1')(•) has the lowest vertical ionization potential (IP(vert)), ca. 6.33 eV in the gas phase and 4.71 eV in solution. C(2')(•) has the highest IP(vert), ca. 8.02 eV, in the gas phase, and the resultant C(2') cation is predicted to undergo a barrierless hydride transfer from the C(1') site to produce the C(1') cation. One electron oxidation of C(2')(•) in dG is predicted to result in a low lying triplet state consisting of G(+•) and C(2')(•). The 5',8-cyclo-2'-deoxyguanosin-7-yl radical formed by intramolecular bonding between C(5')(•) and C(8) of guanine transfers spin density from C(5') site to guanine, and this structure has IP(vert) 6.25 and 5.48 eV in the gas phase and in solution.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Chemistry, Oakland University, Rochester, Michigan 48309, USA
| | | | | |
Collapse
|
20
|
Abstract
Endogenous and exogenous sources cause free radical-induced DNA damage in living organisms by a variety of mechanisms. The highly reactive hydroxyl radical reacts with the heterocyclic DNA bases and the sugar moiety near or at diffusion-controlled rates. Hydrated electron and H atom also add to the heterocyclic bases. These reactions lead to adduct radicals, further reactions of which yield numerous products. These include DNA base and sugar products, single- and double-strand breaks, 8,5'-cyclopurine-2'-deoxynucleosides, tandem lesions, clustered sites and DNA-protein cross-links. Reaction conditions and the presence or absence of oxygen profoundly affect the types and yields of the products. There is mounting evidence for an important role of free radical-induced DNA damage in the etiology of numerous diseases including cancer. Further understanding of mechanisms of free radical-induced DNA damage, and cellular repair and biological consequences of DNA damage products will be of outmost importance for disease prevention and treatment.
Collapse
Affiliation(s)
- Miral Dizdaroglu
- Biochemical Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| | | |
Collapse
|
21
|
Abolfath RM, Biswas PK, Rajnarayanam R, Brabec T, Kodym R, Papiez L. Multiscale QM/MM molecular dynamics study on the first steps of guanine damage by free hydroxyl radicals in solution. J Phys Chem A 2012; 116:3940-5. [PMID: 22397677 PMCID: PMC3356683 DOI: 10.1021/jp300258n] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Understanding the damage of DNA bases from hydrogen abstraction by free OH radicals is of particular importance to understanding the indirect effect of ionizing radiation. Previous studies address the problem with truncated DNA bases as ab initio quantum simulations required to study such electronic-spin-dependent processes are computationally expensive. Here, for the first time, we employ a multiscale and hybrid quantum mechanical-molecular mechanical simulation to study the interaction of OH radicals with a guanine-deoxyribose-phosphate DNA molecular unit in the presence of water, where all of the water molecules and the deoxyribose-phosphate fragment are treated with the simplistic classical molecular mechanical scheme. Our result illustrates that the presence of water strongly alters the hydrogen-abstraction reaction as the hydrogen bonding of OH radicals with water restricts the relative orientation of the OH radicals with respect to the DNA base (here, guanine). This results in an angular anisotropy in the chemical pathway and a lower efficiency in the hydrogen-abstraction mechanisms than previously anticipated for identical systems in vacuum. The method can easily be extended to single- and double-stranded DNA without any appreciable computational cost as these molecular units can be treated in the classical subsystem, as has been demonstrated here.
Collapse
Affiliation(s)
- Ramin M Abolfath
- School of Natural Sciences and Mathematics, University of Texas at Dallas, Richardson, Texas 75080, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Dizdaroglu M. Oxidatively induced DNA damage: mechanisms, repair and disease. Cancer Lett 2012; 327:26-47. [PMID: 22293091 DOI: 10.1016/j.canlet.2012.01.016] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 12/23/2011] [Accepted: 01/11/2012] [Indexed: 12/12/2022]
Abstract
Endogenous and exogenous sources cause oxidatively induced DNA damage in living organisms by a variety of mechanisms. The resulting DNA lesions are mutagenic and, unless repaired, lead to a variety of mutations and consequently to genetic instability, which is a hallmark of cancer. Oxidatively induced DNA damage is repaired in living cells by different pathways that involve a large number of proteins. Unrepaired and accumulated DNA lesions may lead to disease processes including carcinogenesis. Mutations also occur in DNA repair genes, destabilizing the DNA repair system. A majority of cancer cell lines have somatic mutations in their DNA repair genes. In addition, polymorphisms in these genes constitute a risk factor for cancer. In general, defects in DNA repair are associated with cancer. Numerous DNA repair enzymes exist that possess different, but sometimes overlapping substrate specificities for removal of oxidatively induced DNA lesions. In addition to the role of DNA repair in carcinogenesis, recent evidence suggests that some types of tumors possess increased DNA repair capacity that may lead to therapy resistance. DNA repair pathways are drug targets to develop DNA repair inhibitors to increase the efficacy of cancer therapy. Oxidatively induced DNA lesions and DNA repair proteins may serve as potential biomarkers for early detection, cancer risk assessment, prognosis and for monitoring therapy. Taken together, a large body of accumulated evidence suggests that oxidatively induced DNA damage and its repair are important factors in the development of human cancers. Thus this field deserves more research to contribute to the development of cancer biomarkers, DNA repair inhibitors and treatment approaches to better understand and fight cancer.
Collapse
Affiliation(s)
- Miral Dizdaroglu
- Biochemical Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| |
Collapse
|
23
|
Farah K, Müller-Plathe F, Böhm MC. Classical Reactive Molecular Dynamics Implementations: State of the Art. Chemphyschem 2012; 13:1127-51. [DOI: 10.1002/cphc.201100681] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Indexed: 11/09/2022]
|
24
|
Kumar A, Pottiboyina V, Sevilla MD. Hydroxyl radical (OH•) reaction with guanine in an aqueous environment: a DFT study. J Phys Chem B 2011; 115:15129-37. [PMID: 22050033 PMCID: PMC3240735 DOI: 10.1021/jp208841q] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The reaction of hydroxyl radical (OH(•)) with DNA accounts for about half of radiation-induced DNA damage in living systems. Previous literature reports point out that the reaction of OH(•) with DNA proceeds mainly through the addition of OH(•) to the C═C bonds of the DNA bases. However, recently it has been reported that the principal reaction of OH(•) with dGuo (deoxyguanosine) is the direct hydrogen atom abstraction from its exocyclic amine group rather than addition of OH(•) to the C═C bonds. In the present work, these two reaction pathways of OH(•) attack on guanine (G) in the presence of water molecules (aqueous environment) are investigated using the density functional theory (DFT) B3LYP method with 6-31G* and 6-31++G** basis sets. The calculations show that the initial addition of the OH(•) at C(4)═C(5) double bond of guanine is barrier free and the adduct radical (G-OH(•)) has only a small activation barrier of ca. 1-6 kcal/mol leading to the formation of a metastable ion-pair intermediate (G(•+)---OH(-)). The formation of ion-pair is a result of the highly oxidizing nature of the OH(•) in aqueous media. The resulting ion-pair (G(•+)---OH(-)) deprotonates to form H(2)O and neutral G radicals favoring G(N(1)-H)(•) with an activation barrier of ca. 5 kcal/mol. The overall process from the G(C(4))-OH(•) (adduct) to G(N(1)-H)(•) and water is found to be exothermic in nature by more than 13 kcal/mol. (G-OH(•)), (G(•+)---OH(-)), and G(N(1)-H)(•) were further characterized by the CAM-B3LYP calculations of their UV-vis spectra and good agreement between theory and experiment is achieved. Our calculations for the direct hydrogen abstraction pathway from N(1) and N(2) sites of guanine by the OH(•) show that this is also a competitive route to produce G(N(2)-H)(•), G(N(1)-H)(•) and H(2)O.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Chemistry, Oakland University, Rochester, Michigan 48309, United States
| | | | | |
Collapse
|
25
|
Abolfath RM, van Duin ACT, Brabec T. Reactive molecular dynamics study on the first steps of DNA damage by free hydroxyl radicals. J Phys Chem A 2011; 115:11045-9. [PMID: 21882859 DOI: 10.1021/jp204894m] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We employ a large scale molecular simulation based on bond-order ReaxFF to simulate the chemical reaction and study the damage to a large fragment of DNA molecule in the solution by ionizing radiation. We illustrate that the randomly distributed clusters of diatomic OH radicals that are primary products of megavoltage ionizing radiation in water-based systems are the main source of hydrogen abstraction as well as formation of carbonyl and hydroxyl groups in the sugar moiety that create holes in the sugar rings. These holes grow up slowly between DNA bases and DNA backbone, and the damage collectively propagates to a DNA single and double strand break.
Collapse
Affiliation(s)
- Ramin M Abolfath
- School of Natural Sciences and Mathematics and Department of Materials Science, University of Texas at Dallas, Richardson, Texas 75080, USA
| | | | | |
Collapse
|
26
|
|
27
|
Cheng Q, Gu J, Compaan KR, Schaefer HF. Hydroxyl Radical Reactions with Adenine: Reactant Complexes, Transition States, and Product Complexes. Chemistry 2010; 16:11848-58. [DOI: 10.1002/chem.201001236] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Qianyi Cheng
- Center for Computational Quantum Chemistry, University of Georgia, Athens, GA 30602 (USA), Fax: (+1) 706‐542‐0406
| | - Jiande Gu
- Discovery Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, CAS, Shanghai 201203 (P. R. China)
| | - Katherine R. Compaan
- Center for Computational Quantum Chemistry, University of Georgia, Athens, GA 30602 (USA), Fax: (+1) 706‐542‐0406
| | - Henry F. Schaefer
- Center for Computational Quantum Chemistry, University of Georgia, Athens, GA 30602 (USA), Fax: (+1) 706‐542‐0406
| |
Collapse
|
28
|
Abolfath RM, Brabec T. DNA-backbone radio resistivity induced by spin blockade effect. J Comput Chem 2010; 31:2601-6. [DOI: 10.1002/jcc.21554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Du S, Francisco JS, Kais S. Study of electronic structure and dynamics of interacting free radicals influenced by water. J Chem Phys 2009; 130:124312. [PMID: 19334835 DOI: 10.1063/1.3100549] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a study of electronic structure, stability, and dynamics of interaction and recombination of free radicals such as HO(2) and OH influenced by water. As simple model calculations, we performed ab initio and density functional calculations for the interaction of HO(2) and OH in the presence of water cluster. Results indicate that a significant interaction, overcoming the repulsive Columbic barrier, occurs at a separation distance between the radicals of 5.7 A. This confirms early predictions of the minimum size of molecular dianions stable in the gas phase. It is well known that atomic dianions are unstable in the gas phase but molecular dianions are stable when the size of the molecule is larger than 5.7 A. Ab initio molecular dynamics calculations with Car-Parrinello scheme show that the reaction is very fast and occurs on a time scale of about 1.5 ps. The difference in stability and dynamics of the interacting free radicals on singlet and triplet potential energy surfaces is also discussed.
Collapse
Affiliation(s)
- Shiyu Du
- Department of Chemistry, Purdue University, West Lafayette, Indiano 47907, USA
| | | | | |
Collapse
|
30
|
Affiliation(s)
- Ramin M. Abolfath
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
31
|
Schyman P, Eriksson LA, Zhang RB, Laaksonen A. Hydroxyl radical – Thymine adduct induced DNA damages. Chem Phys Lett 2008. [DOI: 10.1016/j.cplett.2008.04.086] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
von Sonntag C. Free-Radical-Induced DNA Damage as Approached by Quantum-Mechanical and Monte Carlo Calculations: An Overview from the Standpoint of an Experimentalist. ADVANCES IN QUANTUM CHEMISTRY 2007. [DOI: 10.1016/s0065-3276(06)52002-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
33
|
Du S, Francisco JS, Schenter GK, Iordanov TD, Garrett BC, Dupuis M, Li J. The OH radical-H2O molecular interaction potential. J Chem Phys 2006; 124:224318. [PMID: 16784285 DOI: 10.1063/1.2200701] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The OH radical is one of the most important oxidants in the atmosphere due to its high reactivity. The study of hydrogen-bonded complexes of OH with the water molecules is a topic of significant current interest. In this work, we present the development of a new analytical functional form for the interaction potential between the rigid OH radical and H(2)O molecules. To do this we fit a selected functional form to a set of high level ab initio data. Since there is a low-lying excited state for the H(2)O.OH complex, the impact of the excited state on the chemical behavior of the OH radical can be very important. We perform a potential energy surface scan using the CCSD(T)/aug-cc-pVTZ level of electronic structure theory for both excited and ground states. To model the physics of the unpaired electron in the OH radical, we develop a tensor polarizability generalization of the Thole-type all-atom polarizable rigid potential for the OH radical, which effectively describes the interaction of OH with H(2)O for both ground and excited states. The stationary points of (H(2)O)(n)OH clusters were identified as a benchmark of the potential.
Collapse
Affiliation(s)
- Shiyu Du
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-1393, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Kirchner B. Cooperative versus dispersion effects: What is more important in an associated liquid such as water? J Chem Phys 2005; 123:204116. [PMID: 16351249 DOI: 10.1063/1.2126977] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We implemented the quantum cluster equilibrium theory in our postprocessing program PEACEMAKER. This program may be run in conjunction with the very efficient vibrational frequency analysis code SNF and can therefore provide access to all electronic structure programs combined with this program. We applied the quantum cluster equilibrium theory in order to investigate the influence of a wide range of electronic structure models on the description of the liquid state. This investigation revealed much about the relevance of approximations in modern simulations of associated liquids such as water. While it is often claimed that the use of density-functional theory in condensed matter is leading to gravely erroneous results, we found that, contrary to these assertions, the exact exchange functional B3LYP and the gradient-corrected functional BP perform very well in combination with sizable basis sets as compared to second-order Moller-Plesset perturbation theory employing the same basis set. The use of density-functional theory with smaller basis sets does, in fact, lead to better results in the liquid state than the use of second-order Moller-Plesset perturbation theory in combination with these small basis sets. Most importantly, the neglect of cooperative effects disturbs a good description much more evenly if we apply second-order Moller-Plesset perturbation theory in combination with large basis sets than density-functional theory including cooperativity with smaller basis sets or Hartree-Fock using a very small basis set.
Collapse
Affiliation(s)
- Barbara Kirchner
- Theoretische Chemie, Institut für Physikalische und Theoretische Chemie, Universität Bonn, Wegelerstrasse 12, D-53115 Bonn, Germany.
| |
Collapse
|