1
|
Rusydi F, Aisyah ND, Fadilla RN, Dipojono HK, Ahmad F, Mudasir, Puspitasari I, Rusydi A. The transition state conformational effect on the activation energy of ethyl acetate neutral hydrolysis. Heliyon 2019; 5:e02409. [PMID: 31528745 PMCID: PMC6742842 DOI: 10.1016/j.heliyon.2019.e02409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 08/12/2019] [Accepted: 08/29/2019] [Indexed: 11/25/2022] Open
Abstract
We report a first-principles study on ethyl acetate neutral hydrolysis in which we focus on the activation energy variation resulting from the conformational effect in the transition state. We use the conformers of ethyl formate, ethyl acetate, ethyl fluoroacetate, and ethyl chloroacetate as the ester models and one water molecule with a one-step reaction mechanism. We also consider the long-range interaction and the surrounding water in the form of PCM. Our results show that the various conformers yield a significant range of activation energy. Moreover, the gauche conformer has lower activation energy than the trans conformer. The activation energy in its own right is lowered by the halogen atoms. Finally, we remark that the long-range correction and PCM stabilize the transition state geometry but raise the activation energy.
Collapse
Affiliation(s)
- Febdian Rusydi
- Department of Physics, Faculty of Science and Technology, Universitas Airlangga, Jl. Mulyorejo, Surabaya 60115, Indonesia
- Research Center for Quantum Engineering Design, Faculty of Science and Technology, Universitas Airlangga, Jl. Mulyorejo, Surabaya 60115, Indonesia
- Visiting Researcher at Precision Sciences & Technology and Applied Physics, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - Nufida D. Aisyah
- Research Center for Quantum Engineering Design, Faculty of Science and Technology, Universitas Airlangga, Jl. Mulyorejo, Surabaya 60115, Indonesia
- Department of Engineering Physics, Faculty of Industrial Engineering, Institut Teknologi Bandung, Bandung 40132, Indonesia
| | - Rizka N. Fadilla
- Research Center for Quantum Engineering Design, Faculty of Science and Technology, Universitas Airlangga, Jl. Mulyorejo, Surabaya 60115, Indonesia
- Department of Engineering Physics, Faculty of Industrial Engineering, Institut Teknologi Bandung, Bandung 40132, Indonesia
| | - Hermawan K. Dipojono
- Department of Engineering Physics, Faculty of Industrial Engineering, Institut Teknologi Bandung, Bandung 40132, Indonesia
| | - Faozan Ahmad
- Department of Physics, Faculty of Mathematics and Science, Institut Pertanian Bogor, Bogor 16680, Indonesia
| | - Mudasir
- Department of Chemistry, Faculty of Mathematics and Science, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Ira Puspitasari
- Research Center for Quantum Engineering Design, Faculty of Science and Technology, Universitas Airlangga, Jl. Mulyorejo, Surabaya 60115, Indonesia
- Information System Study Program, Faculty of Science and Technology, Universitas Airlangga, Jl. Mulyorejo, Surabaya 60115, Indonesia
| | - Andrivo Rusydi
- Department of Physics, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| |
Collapse
|
2
|
Wong KY, Xu Y, Xu L. Pitfall in Free-Energy Simulations on Simplest Systems. ChemistrySelect 2017. [DOI: 10.1002/slct.201601160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kin-Yiu Wong
- Department of Physics; High Performance Cluster Computing Centre; Institute of Computational and Theoretical Studies; Hong Kong Baptist University; 224 Waterloo Road Kowloon Tong Hong Kong
- Institute of Research and Continuing Education; Hong Kong Baptist University (Shenzhen); Shenzhen China
| | - Yuqing Xu
- Department of Physics; High Performance Cluster Computing Centre; Institute of Computational and Theoretical Studies; Hong Kong Baptist University; 224 Waterloo Road Kowloon Tong Hong Kong
- Institute of Research and Continuing Education; Hong Kong Baptist University (Shenzhen); Shenzhen China
| | - Liang Xu
- Department of Physics; High Performance Cluster Computing Centre; Institute of Computational and Theoretical Studies; Hong Kong Baptist University; 224 Waterloo Road Kowloon Tong Hong Kong
| |
Collapse
|
3
|
Grigorenko BL, Knyazeva MA, Nemukhin AV. Analysis of proton wires in the enzyme active site suggests a mechanism of c-di-GMP hydrolysis by the EAL domain phosphodiesterases. Proteins 2016; 84:1670-1680. [PMID: 27479508 DOI: 10.1002/prot.25108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/30/2016] [Accepted: 07/25/2016] [Indexed: 11/08/2022]
Abstract
We report for the first time a hydrolysis mechanism of the cyclic dimeric guanosine monophosphate (c-di-GMP) by the EAL domain phosphodiesterases as revealed by molecular simulations. A model system for the enzyme-substrate complex was prepared on the base of the crystal structure of the EAL domain from the BlrP1 protein complexed with c-di-GMP. The nucleophilic hydroxide generated from the bridging water molecule appeared in a favorable position for attack on the phosphorus atom of c-di-GMP. The most difficult task was to find a pathway for a proton transfer to the O3' atom of c-di-GMP to promote the O3'P bond cleavage. We show that the hydrogen bond network extended over the chain of water molecules in the enzyme active site and the Glu359 and Asp303 side chains provides the relevant proton wires. The suggested mechanism is consistent with the structural, mutagenesis, and kinetic experimental studies on the EAL domain phosphodiesterases. Proteins 2016; 84:1670-1680. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bella L Grigorenko
- Chemistry Department, M.V. Lomonosov Moscow State University, 1-3 Leninskiye Gory, Moscow, 119991, Russia.,N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow, 119334, Russia
| | - Marina A Knyazeva
- Chemistry Department, M.V. Lomonosov Moscow State University, 1-3 Leninskiye Gory, Moscow, 119991, Russia
| | - Alexander V Nemukhin
- Chemistry Department, M.V. Lomonosov Moscow State University, 1-3 Leninskiye Gory, Moscow, 119991, Russia. .,N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow, 119334, Russia.
| |
Collapse
|
4
|
Abstract
To accurately predict the free energy barrier for urea elimination in aqueous solution, we examined the reaction coordinates for the direct and water-assisted elimination pathways, and evaluated the corresponding free energy barriers by using the surface and volume polarization for electrostatics (SVPE) model-based first-principles electronic-structure calculations. Based on the computational results, the water-assisted elimination pathway is dominant for urea elimination in aqueous solution, and the corresponding free energy barrier is 25.3 kcal/mol. The free energy barrier of 25.3 kcal/mol predicted for the dominant reaction pathway of urea elimination in aqueous solution is in good agreement with available experimental kinetic data.
Collapse
|
5
|
Yao M, Tu W, Chen X, Zhan CG. Reaction pathways and free energy profiles for spontaneous hydrolysis of urea and tetramethylurea: unexpected substituent effects. Org Biomol Chem 2014; 11:7595-605. [PMID: 24097048 DOI: 10.1039/c3ob41055b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It has been difficult to directly measure the spontaneous hydrolysis rate of urea and, thus, 1,1,3,3-tetramethylurea (Me4U) was used as a model to determine the "experimental" rate constant for urea hydrolysis. The use of Me4U was based on an assumption that the rate of urea hydrolysis should be 2.8 times that of Me4U hydrolysis because the rate of acetamide hydrolysis is 2.8 times that of N,N-dimethyl-acetamide hydrolysis. The present first-principles electronic-structure calculations on the competing non-enzymatic hydrolysis pathways have demonstrated that the dominant pathway is the neutral hydrolysis via the CN addition for both urea (when pH < ~11.6) and Me4U (regardless of pH), unlike the non-enzymatic hydrolysis of amides where alkaline hydrolysis is dominant. Based on the computational data, the substituent shift of the free energy barrier calculated for the neutral hydrolysis is remarkably different from that for the alkaline hydrolysis, and the rate constant for the urea hydrolysis should be ~1.3 × 10(9)-fold lower than that (4.2 × 10(-12) s(-1)) measured for the Me4U hydrolysis. As a result, the rate enhancement and catalytic proficiency of urease should be 1.2 × 10(25) and 3 × 10(27) M(-1), respectively, suggesting that urease surpasses proteases and all other enzymes in its power to enhance the rate of reaction. All of the computational results are consistent with available experimental data for Me4U, suggesting that the computational prediction for urea is reliable.
Collapse
Affiliation(s)
- Min Yao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | | | | | | |
Collapse
|
6
|
Deglmann P, Schenk S. Thermodynamics of chemical reactions with COSMO-RS: the extreme case of charge separation or recombination. J Comput Chem 2012; 33:1304-20. [PMID: 22430261 DOI: 10.1002/jcc.22961] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 02/03/2012] [Accepted: 02/07/2012] [Indexed: 11/09/2022]
Abstract
Many technically relevant chemical processes in the condensed phase involve as elementary reactive steps the formation of ions from neutral species or, as the opposite, recombination of ions. Such reactions that generate or annihilate charge defy the standard gas phase quantum chemical treatment, and also continuum solvation models are only partially able to account for the right amount of stabilization in solution. In this work, for such types of reaction, a solvation treatment involving the COSMO-RS method is assessed, which leads to improved results, i.e., errors of only around 10 kJ/mol for both protic and aprotic solvents. The examples discussed here comprise protolysis reactions and organo halide heterolysis, for both of which a comparison with reliable experimental data is possible. It is observed that for protolysis, the quality of results does not strongly depend on the quantum chemical method used for energy calculation. In contrast, in the case of heterolytic carbon-chlorine bond cleavage, clearly better results are obtained for higher correlated (coupled cluster) methods or the density functional M06-2X, which is well known for its accuracy if applied to organic chemistry. This hints at least that the right answer is obtained for the right reason and not due to a compensation of errors from gas phase thermodynamics with those from the solvation treatment. Problems encountered with certain critical solvents or upon decomposing Gibbs free energies into heats or entropies of reaction are found to relate mostly to the parameterization of the H-bonding term within COSMO-RS.
Collapse
Affiliation(s)
- Peter Deglmann
- BASF SE, Polymer Physics and Analytics, Carl-Bosch-Str. 38, 67056 Ludwigshafen, Germany.
| | | |
Collapse
|
7
|
Morozov D, Khrenova M, Andrijchenko N, Grigorenko B, Nemukhin A. Minimum energy reaction profiles for the hydrolysis reaction of the cyclic guanosine monophosphate in water: Comparison of the results of two QM/MM approaches. COMPUT THEOR CHEM 2012. [DOI: 10.1016/j.comptc.2012.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Xia F, Zhu H. Density functional calculations on the effect of sulfur substitution for 2'-hydroxypropyl-p-nitrophenyl phosphate: C-O vs. P-O bond cleavage. Bioorg Chem 2011; 40:99-107. [PMID: 22000806 DOI: 10.1016/j.bioorg.2011.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 09/10/2011] [Indexed: 10/17/2022]
Abstract
Density functional theory calculations have been used to investigate the intra-molecular attack of 2'-hydroxypropyl-p-nitrophenyl phosphate (HPpNP) and its analogous compound 2-thiouridyl-p-nitrophenyl phosphate (s-2'pNP). Bulk solvent effect has been tested at the geometry optimization level with the polarized continuum model. It is found that the P-path involving the intra-molecular attack at the phosphorus atom and C-path involving the attack at the beta carbon atom proceed through the S(N)2-type mechanism for HPpNP and s-2'pNP. The calculated results indicate that the P-path with the free energy barrier of about 11 kcal/mol is more accessible than the C-path for the intra-molecular attack of HPpNP, which favors the formation of the five-membered phosphate diester. While for s-2'pNP, the C-path with the free energy barrier of about 21 kcal/mol proceeds more favorably than the P-path. The calculated energy barriers of the favorable pathways for HPpNP and s-2'pNP are both in agreement with the experimental results.
Collapse
Affiliation(s)
- Futing Xia
- School of Chemistry, Sichuan University, Chengdu 610064, China
| | - Hua Zhu
- School of Chemistry, Sichuan University, Chengdu 610064, China; State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
9
|
Abstract
Molecular dynamics simulations employing a combined quantum mechanical and molecular mechanical potential have been carried out to elucidate the reaction mechanism of the hydrolysis of a cyclic nucleotide cAMP substrate by phosphodiesterase 4B (PDE4B). PDE4B is a member of the PDE superfamily of enzymes that play crucial roles in cellular signal transduction. We have determined a two-dimensional potential of mean force (PMF) for the coupled phosphoryl bond cleavage and proton transfer through a general acid catalysis mechanism in PDE4B. The results indicate that the ring-opening process takes place through an S(N)2 reaction mechanism, followed by a proton transfer to stabilize the leaving group. The computed free energy of activation for the PDE4B-catalyzed cAMP hydrolysis is about 13 kcal·mol(-1) and an overall reaction free energy is about -17 kcal·mol(-1), both in accord with experimental results. In comparison with the uncatalyzed reaction in water, the enzyme PDE4B provides a strong stabilization of the transition state, lowering the free energy barrier by 14 kcal·mol(-1). We found that the proton transfer from the general acid residue His234 to the O3' oxyanion of the ribosyl leaving group lags behind the nucleophilic attack, resulting in a shallow minimum on the free energy surface. A key contributing factor to transition state stabilization is the elongation of the distance between the divalent metal ions Zn(2+) and Mg(2+) in the active site as the reaction proceeds from the Michaelis complex to the transition state.
Collapse
Affiliation(s)
- Kin-Yiu Wong
- Department of Chemistry, Digital Technology Center, University of Minnesota, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
10
|
Xia F, Zhu H. Alkaline hydrolysis of ethylene phosphate: an ab initio study by supermolecule model and polarizable continuum approach. J Comput Chem 2011; 32:2545-54. [PMID: 21598282 DOI: 10.1002/jcc.21834] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 02/26/2011] [Accepted: 10/20/2011] [Indexed: 11/06/2022]
Abstract
The alkaline hydrolysis reaction of ethylene phosphate (EP) has been investigated using a supermolecule model, in which several explicit water molecules are included. The structures and single-point energies for all of the stationary points are calculated in the gas phase and in solution at the B3LYP/6-31++G(df,p) and MP2/6-311++G(df,2p) levels. The effect of water bulk solvent is introduced by the polarizable continuum model (PCM). Water attack and hydroxide attack pathways are taken into account for the alkaline hydrolysis of EP. An associative mechanism is observed for both of the two pathways with a kinetically insignificant intermediate. The water attack pathway involves a water molecule attacking and a proton transfer from the attacking water to the hydroxide in the first step, followed by an endocyclic bond cleavage to the leaving group. While in the first step of the hydroxide attack pathway the nucleophile is the hydroxide anion. The calculated barriers in aqueous solution for the water attack and hydroxide attack pathways are all about 22 kcal/mol. The excellent agreement between the calculated and observed values demonstrates that both of the two pathways are possible for the alkaline hydrolysis of EP.
Collapse
Affiliation(s)
- Futing Xia
- School of Chemistry, Sichuan University, Chengdu, China
| | | |
Collapse
|
11
|
Zhao X, Chen X, Yang GF, Zhan CG. Structural assignment of 6-oxy purine derivatives through computational modeling, synthesis, X-ray diffraction, and spectroscopic analysis. J Phys Chem B 2010; 114:6968-72. [PMID: 20433186 PMCID: PMC2884186 DOI: 10.1021/jp100039p] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
6-Oxy purine derivatives have been considered as potential therapeutic agents in various drug discovery efforts reported in the literature. However, the structural assignment of this important class of compounds has been controversial concerning the specific position of a hydrogen atom in the structure. To theoretically determine the most favorable type of tautomeric form of 6-oxy purine derivatives, we have carried out first-principles electronic structure calculations on the possible tautomeric forms (A, B, and C) and their relative stability of four representative 6-oxy purine derivatives (compounds 1-4). The computational results in both the gas phase and aqueous solution clearly reveal that the most favorable type of tautomeric form of these compounds is A, in which a hydrogen atom bonds with the N1 atom on the purine ring. To examine the computational results, one of the 6-oxy purine derivatives (i.e., compound 4) has been synthesized and its structure has been characterized by X-ray diffraction and spectroscopic analysis. All of the obtained computational and experimental data are consistent with the conclusion that the 6-oxy purine derivative exists in tautomer A. The conclusive structural assignment reported here is expected to be valuable for future computational studies on 6-oxy purine derivative binding with proteins and for computational drug design involving this type of compounds.
Collapse
Affiliation(s)
- Xinyun Zhao
- Key Laboratory of Pesticide and Chemical Biology of the Ministry of Education of China, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 725 Rose Street, Lexington, KY 40536
| | - Xi Chen
- Key Laboratory of Pesticide and Chemical Biology of the Ministry of Education of China, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 725 Rose Street, Lexington, KY 40536
| | - Guang-Fu Yang
- Key Laboratory of Pesticide and Chemical Biology of the Ministry of Education of China, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 725 Rose Street, Lexington, KY 40536
| |
Collapse
|
12
|
Tiwari S, Chand Mishra P. Urocanic acid as an efficient hydroxyl radical scavenger: a quantum theoretical study. J Mol Model 2010; 17:59-72. [DOI: 10.1007/s00894-010-0699-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 02/25/2010] [Indexed: 11/30/2022]
|
13
|
Liu J, Kelly CP, Goren AC, Marenich AV, Cramer CJ, Truhlar DG, Zhan CG. Free Energies of Solvation with Surface, Volume, and Local Electrostatic Effects and Atomic Surface Tensions to Represent the First Solvation Shell. J Chem Theory Comput 2010; 6:1109-1117. [PMID: 20419072 PMCID: PMC2856966 DOI: 10.1021/ct100025j] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Building on the SVPE (surface and volume polarization for electrostatics) model for electrostatic contributions to the free energy of solvation with explicit consideration of both surface and volume polarization effects, on the SMx approach to including first-solvation-shell contributions, and on the linear relationship between the electric field and short-range electrostatic contributions found by Chipman, we have developed a new method for computing absolute aqueous solvation free energies by combining the SVPE method with semiempirical terms that account for effects beyond bulk electrostatics. The new method is called SMVLE, and the elements it contains are denoted by SVPE-CDSL where SVPE denotes accounting for bulk electrostatic interactions between solute and solvent with both surface and volume contributions, CDS denotes the inclusion of solvent cavitation, changes in dispersion energy, and possible changes in local solvent structure by a semiempirical term utilizing geometry-dependent atomic surface tensions as implemented in SMx models, and L represents the local electrostatic effect derived from the outward-directed normal electric field on the cavity surface. The semiempirical CDS and L terms together represent the deviation of short-range contributions to the free energy of solvation from those accounted for by the SVPE term based on the bulk solvent dielectric constant. A solute training set containing a broad range of molecules used previously in the development of SM6 is used here for SMVLE model calibration. The aqueous solvation free energies predicted by the parameterized SMVLE model correlate exceedingly well with experimental values. The square of the correlation coefficient is 0.9949 and the slope is 1.0079. Comparison of the final SMVLE model against the earlier SMx solvation model shows that the parameterized SMVLE model not only yields good accuracy for neutrals but also significantly increases the accuracy for ions, making it the best implicit solvation model to date for aqueous solvation free energies of ions. The semiempirical terms associated with the outward-directed electric field account in a physical way for the improvement in the predictive accuracy for ions. The SMVLE method greatly decreases the need to include explicit water molecules for accurate modeling of solvation free energies of ions.
Collapse
Affiliation(s)
- Junjun Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 725 Rose Street, Lexington, KY 40536
| | - Casey P. Kelly
- Department of Chemistry and Supercomputing Institute, 207 Pleasant Street SE, University of Minnesota, Minneapolis, Minnesota 55455
| | - Alan C. Goren
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 725 Rose Street, Lexington, KY 40536
- Division of Natural Sciences & Mathematics, Transylvania University, 300 North Broadway, Lexington, KY 40508
| | - Aleksandr V. Marenich
- Department of Chemistry and Supercomputing Institute, 207 Pleasant Street SE, University of Minnesota, Minneapolis, Minnesota 55455
| | - Christopher J. Cramer
- Department of Chemistry and Supercomputing Institute, 207 Pleasant Street SE, University of Minnesota, Minneapolis, Minnesota 55455
| | - Donald G. Truhlar
- Department of Chemistry and Supercomputing Institute, 207 Pleasant Street SE, University of Minnesota, Minneapolis, Minnesota 55455
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 725 Rose Street, Lexington, KY 40536
| |
Collapse
|
14
|
Ferreira DEC, Florentino BPD, Rocha WR, Nome F. Quantum Mechanical/Effective Fragment Potential (QM/EFP) Study of Phosphate Monoester Aminolysis in Aqueous Solution. J Phys Chem B 2009; 113:14831-6. [DOI: 10.1021/jp907014r] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Dalva E. C. Ferreira
- LQC-MM: Laboratório de Química Computacional e Modelagem Molecular, Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Campus Universitário, Pampulha, Belo Horizonte, MG 31270-901, Brazil, and LACFI: Laboratório de Catálise e Fenômenos Interfaciais Departamento de Química, Universidade Federal de Santa Catarina, Campus Trindade, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Bruno P. D. Florentino
- LQC-MM: Laboratório de Química Computacional e Modelagem Molecular, Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Campus Universitário, Pampulha, Belo Horizonte, MG 31270-901, Brazil, and LACFI: Laboratório de Catálise e Fenômenos Interfaciais Departamento de Química, Universidade Federal de Santa Catarina, Campus Trindade, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Willian R. Rocha
- LQC-MM: Laboratório de Química Computacional e Modelagem Molecular, Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Campus Universitário, Pampulha, Belo Horizonte, MG 31270-901, Brazil, and LACFI: Laboratório de Catálise e Fenômenos Interfaciais Departamento de Química, Universidade Federal de Santa Catarina, Campus Trindade, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Faruk Nome
- LQC-MM: Laboratório de Química Computacional e Modelagem Molecular, Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Campus Universitário, Pampulha, Belo Horizonte, MG 31270-901, Brazil, and LACFI: Laboratório de Catálise e Fenômenos Interfaciais Departamento de Química, Universidade Federal de Santa Catarina, Campus Trindade, Florianópolis, Santa Catarina 88040-900, Brazil
| |
Collapse
|
15
|
First-Principles Determination of Molecular Conformations of Indolizidine (-)-235B' in Solution. Theor Chem Acc 2009; 124:269-278. [PMID: 20161506 DOI: 10.1007/s00214-009-0607-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Indolizidine (-)-235B' is a particularly interesting natural product, as it is the currently known, most potent and subtype-selective open-channel blocker of the alpha4beta2 nicotinic acetylcholine receptor (nAChR). In the current study, extensive first-principles electronic structure calculations have been carried out in order to determine the stable molecular conformations and their relative free energies of the protonated and deprotonated states of (-)-235B' in the gas phase, in chloroform, and in aqueous solution. The (1)H and (13)C NMR chemical shifts calculated using the computationally determined dominant molecular conformation of the deprotonated state are all consistent with available experimental NMR spectra of (-)-235B' in chloroform, which suggests that the computationally determined molecular conformations are reasonable. Our computational results reveal for the first time that two geminal H atoms on carbon-3 (C3) of (-)-235B' have remarkably different chemical shifts (i.e. 3.24 and 2.03 ppm). The computational results help one to better understand and analyze the experimental (1)H NMR spectra of (-)-235B'. The finding of remarkably different chemical shifts of two C3 geminal H atoms in a certain molecular conformation of (-)-235B' may also be valuable in analysis of NMR spectra of other related ring-containing compounds. In addition, the pK(a) of (-)-235B' in aqueous solution is predicted to be ~9.7. All of the computational results provide a solid basis for future studies of the microscopic and phenomenological binding of various receptor proteins with the protonated and deprotonated structures of this unique open-channel blocker of alpha4beta2 nAChRs. This computational study also demonstrates how one can appropriately use computational modeling and spectroscopic analysis to address the structural and spectroscopic problems that cannot be addressed by experiments alone.
Collapse
|
16
|
Chen X, Zhan CG. First-principles determination of molecular conformations of cyclic adenosine 3',5'-monophosphate in gas phase and aqueous solution. J Phys Chem B 2009; 112:16851-9. [PMID: 19367986 DOI: 10.1021/jp806702d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Extensive first-principles electronic structure calculations were performed in this study to explore the possible molecular structures and their concentration distribution of an intracellular second messenger, that is, cyclic adenosine 3',5'-monophosphate (cAMP), and its protonated form (cAMPH) in the gas phase and aqueous solution. The calculations resulted in prediction of four different stable conformers of cAMP and eight different stable conformers of cAMPH and their relative Gibbs free energies in the gas phase and aqueous solution. All of the computational results consistently demonstrate that the predominant conformers of cAMP and cAMPH are always the cAMP-chair-anti and cAMPH-chair2-syn conformers, respectively, in both the gas phase and aqueous solution. It has been demonstrated that the free energy barriers calculated for the intertransformation reactions between different conformers are very low (below approximately 6 kcal/mol) such that the intertransformation reactions between different conformers are very fast so that the concentration distribution of the system can quickly reach the thermodynamic equilibration during the process of binding with a protein. The calculated phenomenological pKa of 3.66 is in good agreement with the experimental pKa of 3.9 reported in literature, suggesting that the computational predictions resulted from this study are reasonable.
Collapse
Affiliation(s)
- Xi Chen
- Key Laboratory of Pesticide and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | | |
Collapse
|
17
|
Ferreira DEC, De Almeida WB, Neves A, Rocha WR. Theoretical investigation of the reaction mechanism for the phosphate diester hydrolysis using an asymmetric dinuclear metal complex as a biomimetic model of the purple acid phosphatase enzyme. Phys Chem Chem Phys 2008; 10:7039-46. [DOI: 10.1039/b809189g] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Lu H, Chen X, Zhan CG. First-principles calculation of pKa for cocaine, nicotine, neurotransmitters, and anilines in aqueous solution. J Phys Chem B 2007; 111:10599-605. [PMID: 17691837 PMCID: PMC2882246 DOI: 10.1021/jp072917r] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The absolute pKa values of 24 representative amine compounds, including cocaine, nicotine, 10 neurotransmitters, and 12 anilines, in aqueous solution were calculated by performing first-principles electronic structure calculations that account for the solvent effects using four different solvation models, i.e., the surface and volume polarization for electrostatic interaction (SVPE) model, the standard polarizable continuum model (PCM), the integral equation formalism for the polarizable continuum model (IEFPCM), and the conductor-like screening solvation model (COSMO). Within the examined computational methods, the calculations using the SVPE model lead to the absolute pKa values with the smallest root-mean-square-deviation (rmsd) value (1.18). When the SVPE model was replaced by the PCM, IEFPCM, and COSMO, the rmsd value of the calculated absolute pKa values became 3.21, 2.72, and 3.08, respectively. All types of calculated pKa values linearly correlate with the experimental pKa values very well. With the empirical corrections using the linear correlation relationships, the theoretical pKa values are much closer to the corresponding experimental data and the rmsd values become 0.51-0.83. The smallest rmsd value (0.51) is also associated with the SVPE model. All of the results suggest that the first-principles electronic structure calculations using the SVPE model are a reliable approach to the pKa prediction for the amine compounds.
Collapse
Affiliation(s)
- Haiting Lu
- Key Laboratory of Pesticide & Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 725 Rose Street, Lexington, KY 40536
| | - Xi Chen
- Key Laboratory of Pesticide & Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 725 Rose Street, Lexington, KY 40536
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 725 Rose Street, Lexington, KY 40536
| |
Collapse
|
19
|
Xiong Y, Zhan CG. Theoretical studies of the transition-state structures and free energy barriers for base-catalyzed hydrolysis of amides. J Phys Chem A 2007; 110:12644-52. [PMID: 17107116 PMCID: PMC2892839 DOI: 10.1021/jp063140p] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The transition-state structures and free energy barriers for the rate-determining step (i.e. the formation of a tetrahedral intermediate) of base-catalyzed hydrolysis of a series of amides in aqueous solution have been studied by performing first-principle electronic structure calculations using a hybrid supermolecule-polarizable continuum approach. The calculated results and a revisit of recently reported experimental proton inventory data reveal that the favorable transition-state structure optimized for the tetrahedral intermediate formation of hydroxide ion-catalyzed hydrolysis of formamide may have three solvating water molecules remaining on the attacking hydroxide oxygen and two additional water molecules attached to the carbonyl oxygen of formamide. The calculated results have also demonstrated interesting substituent effects on the optimized transition-state geometries, on the transition-state stabilization, and on the calculated free energy barriers for the base-catalyzed hydrolysis of amides. When some or all of the hydrogen atoms of formamide are replaced by methyl groups, the total number of water molecules hydrogen-bonding with the attacking hydroxide in the transition state decreases from three for formamide to two for N-methylacetamide, N,N-dimethylformamide (DMF), and N,N-dimethylacetamide (DMA). The larger substituents of the amide hinder the solvent water molecules approaching the attacking hydroxide oxygen in the transition state and, therefore, destabilize the transition-state structure and increase the free energy barrier. By using the optimized most favorable transition-state structures, the calculated free energy barriers, i.e., 21.6 (or 21.7), 22.7, 23.1, and 26.0 kcal/mol for formamide, N-methylacetamide, DMF, and DMA, respectively, are in good agreement with the available experimental free energy barriers, i.e., 21.2, 21.5, 22.6, and 24.1 kcal/mol for formamide, N-methylacetamide, DMF, and DMA, respectively.
Collapse
Affiliation(s)
| | - Chang-Guo Zhan
- Corresponding author. Correspondence: Chang-Guo Zhan, Ph.D., Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 725 Rose Street, Lexington, KY 40536, TEL: 859-323-3943, FAX: 859-323-3575,
| |
Collapse
|
20
|
Gomez-Tagle P, Vargas-Zúñiga I, Taran O, Yatsimirsky AK. Solvent Effects and Alkali Metal Ion Catalysis in Phosphodiester Hydrolysis. J Org Chem 2006; 71:9713-22. [PMID: 17168589 DOI: 10.1021/jo061780i] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The kinetics of the alkaline hydrolysis of bis(p-nitrophenyl) phosphate (BNPP) have been studied in aqueous DMSO, dioxane, and MeCN. In all solvent mixtures the reaction rate steadily decreases to half of its value in pure water in the range of 0-70 vol % of organic cosolvent and sharply increases in mixtures with lower water content. Correlations based on different scales of solvent empirical parameters failed to describe the solvent effect in this system, but it can be satisfactorily treated in terms of a simplified stepwise solvent-exchange model. Alkali metal ions catalyze the BNPP hydrolysis but do not affect the rate of hydrolysis of neutral phosphotriester p-nitrophenyl diphenyl phosphate in DMSO-rich mixtures. The catalytic activity decreases in the order Li+ > Na+ > K+ > Rb+ > Cs+. For all cations except Na+, the reaction rate is first-order in metal ion. With Na+, both first- and second-order kinetics in metal ions are observed. Binding constants of cations to the dianionic transition state of BNPP alkaline hydrolysis are of the same order of magnitude and show a similar trend as their binding constants to p-nitrophenyl phosphate dianion employed as a transition-state model. The appearance of alkali metal ion catalysis in a medium, which solvates metal ions stronger than water, is attributed to the increased affinity of cations to dianions, which undergo a strong destabilization in the presence of an aprotic dipolar cosolvent.
Collapse
Affiliation(s)
- Paola Gomez-Tagle
- Facultad de Química, Universidad Nacional Autónoma de México, 04510 México D.F., México
| | | | | | | |
Collapse
|
21
|
Huang X, Zheng F, Crooks PA, Dwoskin L, Zhan CG. Modeling multiple species of nicotine and deschloroepibatidine interacting with alpha4beta2 nicotinic acetylcholine receptor: from microscopic binding to phenomenological binding affinity. J Am Chem Soc 2005; 127:14401-14. [PMID: 16218635 PMCID: PMC3182463 DOI: 10.1021/ja052681+] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A variety of molecular modeling, molecular docking, and first-principles electronic structure calculations were performed to study how the alpha4beta2 nicotinic acetylcholine receptor (nAChR) binds with different species of two typical agonists, (S)-(-)-nicotine and (R)-(-)-deschloroepibatidine, each of which is distinguished by different free bases and protonation states. On the basis of these results, predictions were made regarding the corresponding microscopic binding free energies. Hydrogen-bonding and cation-pi interactions between the receptor and the respective ligands were found to be the dominant factors differentiating the binding strengths of different microscopic binding species. The calculated results and analyses demonstrate that, for each agonist, all the species are interchangeable and can quickly achieve a thermodynamic equilibrium in solution and at the nAChR binding site. This allows quantitation of the equilibrium concentration distributions of the free ligand species and the corresponding microscopic ligand-receptor binding species, their pH dependence, and their contributions to the phenomenological binding affinity. The predicted equilibrium concentration distributions, pK(a) values, absolute phenomenological binding affinities, and their pH dependence are all in good agreement with available experimental data, suggesting that the computational strategy from the microscopic binding species and affinities to the phenomenological binding affinity is reliable for studying alpha4beta2 nAChR-ligand binding. This should provide valuable information for future rational design of drugs targeting nAChRs. The general strategy of the "from-microscopic-to-phenomenological" approach for studying interactions of alpha4beta2 nAChRs with (S)-(-)-nicotine and (R)-(-)-deschloroepibatidine may also be useful in studying other types of ligand-protein interactions involving multiple molecular species of a ligand and in associated rational drug design.
Collapse
Affiliation(s)
- Xiaoqin Huang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 725 Rose Street, Lexington, Kentucky 40536
| | - Fang Zheng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 725 Rose Street, Lexington, Kentucky 40536
| | - Peter A. Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 725 Rose Street, Lexington, Kentucky 40536
| | - Linda Dwoskin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 725 Rose Street, Lexington, Kentucky 40536
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 725 Rose Street, Lexington, Kentucky 40536
| |
Collapse
|
22
|
Zhan CG, Deng SX, Skiba JG, Hayes BA, Tschampel SM, Shields GC, Landry DW. First-principle studies of intermolecular and intramolecular catalysis of protonated cocaine. J Comput Chem 2005; 26:980-6. [PMID: 15880781 PMCID: PMC2875688 DOI: 10.1002/jcc.20241] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have performed a series of first-principles electronic structure calculations to examine the reaction pathways and the corresponding free energy barriers for the ester hydrolysis of protonated cocaine in its chair and boat conformations. The calculated free energy barriers for the benzoyl ester hydrolysis of protonated chair cocaine are close to the corresponding barriers calculated for the benzoyl ester hydrolysis of neutral cocaine. However, the free energy barrier calculated for the methyl ester hydrolysis of protonated cocaine in its chair conformation is significantly lower than for the methyl ester hydrolysis of neutral cocaine and for the dominant pathway of the benzoyl ester hydrolysis of protonated cocaine. The significant decrease of the free energy barrier, approximately 4 kcal/mol, is attributed to the intramolecular acid catalysis of the methyl ester hydrolysis of protonated cocaine, because the transition state structure is stabilized by the strong hydrogen bond between the carbonyl oxygen of the methyl ester moiety and the protonated tropane N. The relative magnitudes of the free energy barriers calculated for different pathways of the ester hydrolysis of protonated chair cocaine are consistent with the experimental kinetic data for cocaine hydrolysis under physiologic conditions. Similar intramolecular acid catalysis also occurs for the benzoyl ester hydrolysis of (protonated) boat cocaine in the physiologic condition, although the contribution of the intramolecular hydrogen bonding to transition state stabilization is negligible. Nonetheless, the predictability of the intramolecular hydrogen bonding could be useful in generating antibody-based catalysts that recruit cocaine to the boat conformation and an analog that elicited antibodies to approximate the protonated tropane N and the benzoyl O more closely than the natural boat conformer might increase the contribution from hydrogen bonding. Such a stable analog of the transition state for intramolecular catalysis of cocaine benzoyl-ester hydrolysis was synthesized and used to successfully elicit a number of anticocaine catalytic antibodies.
Collapse
Affiliation(s)
- Chang-Guo Zhan
- Division of Clinical Pharmacology and Experimental Therapeutics, College of Physicians & Surgeons, Columbia University, 630 West 168th Street, New York, New York 10032, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Xiong Y, Zhan CG. Reaction Pathways and Free Energy Barriers for Alkaline Hydrolysis of Insecticide 2-Trimethylammonioethyl Methylphosphonofluoridate and Related Organophosphorus Compounds: Electrostatic and Steric Effects. J Org Chem 2004; 69:8451-8. [PMID: 15549820 DOI: 10.1021/jo0487597] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reaction pathways and free energy barriers for alkaline hydrolysis of the highly neurotoxic insecticide 2-trimethylammonioethyl methylphosphonofluoridate and related organophosphorus compounds were studied by performing first-principles electronic structure calculations on representative methylphosphonofluoridates, (RO)CH3P(O)F, in which R = CH2CH2N+(CH3)3, CH3, CH2CH2C(CH3)3, CH2CH2CH(CH3)2, CH(CH3)CH2N+(CH3)3, and CH(CH3)CH2N(CH3)2. The dominant reaction pathway was found to be associated with a transition state in which the attacking nucleophile OH- and the leaving group F- are positioned on opposite sides of the plane formed by the three remaining atoms attached to the phosphorus in order to minimize the electrostatic repulsion between these two groups. The free energy barriers calculated for the rate-determining step of the dominant pathway are 12.5 kcal/mol when R = CH2CH2N+(CH3)3, 15.5 kcal/mol when R = CH3, 17.9 kcal/mol when R = CH2CH2C(CH3)3, 16.5 kcal/mol when R = CH2CH2CH(CH3)2, 13.4 kcal/mol when R = CH(CH3)CH2N+(CH3)3, and 18.7 kcal/mol when R = CH(CH(3))CH(2)N(CH(3))(2). The calculated free energy barriers are in good agreement with available experimentally derived activation free energies, i.e. 14.7 kcal/mol when R = CH(3), 13.4 kcal/mol when R = CH2CH2N+(CH3)3, and 13.9 kcal/mol when R = CH(CH3)CH2N+(CH3)3. A detailed analysis of the calculated energetic results and available experimental data suggests that the net charge of the molecule (M) being hydrolyzed is a prominent factor affecting the free energy barrier (DeltaG) for the alkaline hydrolysis of phosphodiesters, phosphonofluoridates, and related organophosphorus compounds. The electrostatic interactions between the attacking nucleophile OH- and the molecule M being hydrolyzed favor such an order of the free energy barrier: DeltaG(M(+)+OH-) < DeltaG(M0+OH-) < DeltaG(M(-)+OH-), where M+, M0, and M- represent the cationic, neutral, and anionic molecules, respectively. The change of the substituent R in (RO)CH(3)P(O)F from CH3 to CH2CH2N+(CH3)3 is associated with both the electrostatic and steric effects on the free energy barrier, but the electrostatic effect dominates the substituent shift of the free energy barrier. This helps to better understand why the alkaline hydrolysis of (RO)CH3P(O)F with R = CH2CH2N+(CH3)3 and CH(CH3)CH2N+(CH3)3 is significantly faster than that with R = CH3. The effect of electrostatic interaction also helps to understand why the rate constants for the alkaline hydrolysis of phosphodiesters, such as intramolecular second messenger adenosine 3',5'-phosphate (cAMP), are generally smaller than those for the alkaline hydrolysis of the phosphonofluoridates and related phosphotriesters.
Collapse
Affiliation(s)
- Ying Xiong
- Key Laboratory of Pesticide & Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | | |
Collapse
|
24
|
Chen X, Zhan CG. Theoretical Determination of Activation Free Energies for Alkaline Hydrolysis of Cyclic and Acyclic Phosphodiesters in Aqueous Solution. J Phys Chem A 2004. [DOI: 10.1021/jp049938v] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xi Chen
- College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 907 Rose Street, Lexington, Kentucky 40536
| | - Chang-Guo Zhan
- College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 907 Rose Street, Lexington, Kentucky 40536
| |
Collapse
|