1
|
Golio N, Sen I, Yu X, Kondratyuk P, Gellman AJ. H 2-D 2 Exchange Activity and Electronic Structure of Ag x Pd 1-x Alloy Catalysts Spanning Composition Space. ACS Catal 2024; 14:11014-11025. [PMID: 39050898 PMCID: PMC11264212 DOI: 10.1021/acscatal.4c02309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/23/2024] [Accepted: 06/23/2024] [Indexed: 07/27/2024]
Abstract
Many computational studies of catalytic surface reaction kinetics have demonstrated the existence of linear scaling relationships between physical descriptors of catalysts and reaction barriers on their surfaces. In this work, the relationship between catalyst activity, electronic structure, and alloy composition was investigated experimentally using a Ag x Pd1-x Composition Spread Alloy Film (CSAF) and a multichannel reactor array that allows measurement of steady-state reaction kinetics at 100 alloy compositions simultaneously. Steady-state H2-D2 exchange kinetics were measured at atmospheric pressure on Ag x Pd1-x catalysts over a temperature range of 333-593 K and a range of inlet H2 and D2 partial pressures. X-ray photoelectron spectroscopy (XPS) was used to characterize the CSAF by determining the local surface compositions and the valence band electronic structure at each composition. The valence band photoemission spectra showed that the average energy of the valence band, ε̅v, shifts linearly with composition from -6.2 eV for pure Ag to -3.4 eV for pure Pd. At all reaction conditions, the H2-D2 exchange activity was found to be highest on pure Pd and gradually decreased as the alloy was diluted with Ag until no activity was observed for compositions with x Pd < 0.58. Measured H2-D2 exchange rates across the CSAF were fit using the Dual Subsurface Hydrogen (2H') mechanism to extract estimates for the activation energy barriers to dissociative adsorption, ΔE ads ‡, associative desorption, ΔE des ‡, and the surface-to-subsurface diffusion energy, ΔE ss, as a function of alloy composition, x Pd. The 2H' mechanism predicts ΔE ads ‡ = 0-10 kJ/mol, ΔE des ‡ = 30-65 kJ/mol, and ΔE ss = 20-30 kJ/mol for all alloy compositions with x Pd ≥ 0.64, including for the pure Pd catalyst (i.e., x Pd = 1). For these Pd-rich catalysts, ΔE des ‡ and ΔE ss appeared to increase by ∼5 kJ/mol with decreasing x Pd. However, due to the coupling of kinetic parameters in the 2H' mechanism, we are unable to exclude the possibility that the kinetic parameters predicted when x Pd ≥ 0.64 are identical to those predicted for pure Pd. This suggests that H2-D2 exchange occurs only on bulk-like Pd domains, presumably due to the strong interactions between H2 and Pd. In this case, the decrease in catalytic activity with decreasing x Pd can be explained by a reduction in the availability of surface Pd at high Ag compositions.
Collapse
Affiliation(s)
- Nicholas Golio
- Department
of Chemical Engineering and W.E. Scott Institute for Energy
Innovation, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Irem Sen
- Department
of Chemical Engineering and W.E. Scott Institute for Energy
Innovation, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xiaoxiao Yu
- Department
of Chemical Engineering and W.E. Scott Institute for Energy
Innovation, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Petro Kondratyuk
- Department
of Chemical Engineering and W.E. Scott Institute for Energy
Innovation, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Andrew J. Gellman
- Department
of Chemical Engineering and W.E. Scott Institute for Energy
Innovation, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
2
|
Okafor A, Shelton WA, Xu Y. Hydrogen Adsorption on Ordered and Disordered Pt-Fe and Pt-Co Alloys. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:11145-11158. [PMID: 39015416 PMCID: PMC11247490 DOI: 10.1021/acs.jpcc.4c01308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024]
Abstract
The bulk properties and surface chemical reactivity of compositionally disordered Pt-Fe and Pt-Co alloys in the fcc A1 phase have been investigated theoretically in comparison to the ordered alloys of the same compositions. The results are analyzed together with our previously reported findings for Pt-Ni. Nonlinear variation is observed in lattice constant, d band center, magnetic moment, and hydrogen adsorption energy across the composition range (0-100 atomic % of Pt, x Pt). The Pt 5d states are strongly perturbed by the 3d states of the base metals, leading to notable density of states above the Fermi level and residual magnetic moments at high x Pt. Surface reactivity in terms of average H adsorption energy varies continuously with composition between the monometallic Fe-Pt and Co-Pt limits, going through a maximum around x Pt = 0.5-0.75. Close inspection reveals a significant variation in site reactivity at x Pt < 0.75, particularly with disordered Pt-Fe alloys due in part to the inherent disparity in chemical reactivity between Fe and Pt. Furthermore, the strong interaction between Fe and Pt causes Pt-rich sites to be less reactive toward H than Pt-rich sites on disordered Pt-Ni alloy surfaces, despite less compressive strain caused. These results provide theoretical underpinnings for conceptualizing and understanding the performance of these Pt-base metal alloys in key catalytic applications and for efforts to tailor Pt-alloys as catalysts.
Collapse
Affiliation(s)
- Andrew Okafor
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton Rouge, Louisiana 70803, United States
| | - William A. Shelton
- Department
of Physics and Astronomy, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - Ye Xu
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
3
|
Yu H, Díaz A, Lu X, Sun B, Ding Y, Koyama M, He J, Zhou X, Oudriss A, Feaugas X, Zhang Z. Hydrogen Embrittlement as a Conspicuous Material Challenge─Comprehensive Review and Future Directions. Chem Rev 2024; 124:6271-6392. [PMID: 38773953 PMCID: PMC11117190 DOI: 10.1021/acs.chemrev.3c00624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Hydrogen is considered a clean and efficient energy carrier crucial for shaping the net-zero future. Large-scale production, transportation, storage, and use of green hydrogen are expected to be undertaken in the coming decades. As the smallest element in the universe, however, hydrogen can adsorb on, diffuse into, and interact with many metallic materials, degrading their mechanical properties. This multifaceted phenomenon is generically categorized as hydrogen embrittlement (HE). HE is one of the most complex material problems that arises as an outcome of the intricate interplay across specific spatial and temporal scales between the mechanical driving force and the material resistance fingerprinted by the microstructures and subsequently weakened by the presence of hydrogen. Based on recent developments in the field as well as our collective understanding, this Review is devoted to treating HE as a whole and providing a constructive and systematic discussion on hydrogen entry, diffusion, trapping, hydrogen-microstructure interaction mechanisms, and consequences of HE in steels, nickel alloys, and aluminum alloys used for energy transport and storage. HE in emerging material systems, such as high entropy alloys and additively manufactured materials, is also discussed. Priority has been particularly given to these less understood aspects. Combining perspectives of materials chemistry, materials science, mechanics, and artificial intelligence, this Review aspires to present a comprehensive and impartial viewpoint on the existing knowledge and conclude with our forecasts of various paths forward meant to fuel the exploration of future research regarding hydrogen-induced material challenges.
Collapse
Affiliation(s)
- Haiyang Yu
- Division
of Applied Mechanics, Department of Materials Science and Engineering, Uppsala University, SE-75121 Uppsala, Sweden
| | - Andrés Díaz
- Department
of Civil Engineering, Universidad de Burgos,
Escuela Politécnica Superior, 09006 Burgos, Spain
| | - Xu Lu
- Department
of Mechanical and Industrial Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Binhan Sun
- School of
Mechanical and Power Engineering, East China
University of Science and Technology, Shanghai 200237, China
| | - Yu Ding
- Department
of Structural Engineering, Norwegian University
of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Motomichi Koyama
- Institute
for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Jianying He
- Department
of Structural Engineering, Norwegian University
of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Xiao Zhou
- State Key
Laboratory of Metal Matrix Composites, School of Materials Science
and Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Abdelali Oudriss
- Laboratoire
des Sciences de l’Ingénieur pour l’Environnement, La Rochelle University, CNRS UMR 7356, 17042 La Rochelle, France
| | - Xavier Feaugas
- Laboratoire
des Sciences de l’Ingénieur pour l’Environnement, La Rochelle University, CNRS UMR 7356, 17042 La Rochelle, France
| | - Zhiliang Zhang
- Department
of Structural Engineering, Norwegian University
of Science and Technology (NTNU), Trondheim 7491, Norway
| |
Collapse
|
4
|
Pei C, Chen S, Fu D, Zhao ZJ, Gong J. Structured Catalysts and Catalytic Processes: Transport and Reaction Perspectives. Chem Rev 2024; 124:2955-3012. [PMID: 38478971 DOI: 10.1021/acs.chemrev.3c00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The structure of catalysts determines the performance of catalytic processes. Intrinsically, the electronic and geometric structures influence the interaction between active species and the surface of the catalyst, which subsequently regulates the adsorption, reaction, and desorption behaviors. In recent decades, the development of catalysts with complex structures, including bulk, interfacial, encapsulated, and atomically dispersed structures, can potentially affect the electronic and geometric structures of catalysts and lead to further control of the transport and reaction of molecules. This review describes comprehensive understandings on the influence of electronic and geometric properties and complex catalyst structures on the performance of relevant heterogeneous catalytic processes, especially for the transport and reaction over structured catalysts for the conversions of light alkanes and small molecules. The recent research progress of the electronic and geometric properties over the active sites, specifically for theoretical descriptors developed in the recent decades, is discussed at the atomic level. The designs and properties of catalysts with specific structures are summarized. The transport phenomena and reactions over structured catalysts for the conversions of light alkanes and small molecules are analyzed. At the end of this review, we present our perspectives on the challenges for the further development of structured catalysts and heterogeneous catalytic processes.
Collapse
Affiliation(s)
- Chunlei Pei
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Sai Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Donglong Fu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Zhi-Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, China
| |
Collapse
|
5
|
Karimadom BR, Sermiagin A, Meyerstein D, Zidki T, Mizrahi A, Bar-Ziv R, Kornweitz H. Hydrogen adsorption on various transition metal (111) surfaces in water: a DFT forecast. Phys Chem Chem Phys 2024; 26:7647-7657. [PMID: 38369914 DOI: 10.1039/d3cp05884k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The hydrogen adsorption and hydrogen evolution at the M(111), (M = Ag, Au Cu, Pt, Pd, Ni & Co) surfaces of various transition metals in aqueous suspensions were studied computationally using the DFT methods. The hydrogens are adsorbed dissociatively on all surfaces except on Ag(111) and Au(111) surfaces. The results are validated by reported experimental and computational studies. Hydrogen atoms have large mobility on M(111) surfaces due to the small energy barriers for diffusion on the surface. The hydrogen evolution via the Tafel mechanism is considered at different surface coverage ratios of hydrogen atoms and is used as a descriptor for the hydrogen adsorption capacity on M(111) surfaces. All calculations are performed without considering how the hydrogen atoms are formed on the surface. The hydrogen adsorption energies decrease with the increase in the surface coverage of hydrogen atoms. The surface coverage for the H2 evolution depends on each M(111) surface. Among the considered M(111) surfaces, Au(111) has the least hydrogen adsorption capacity and Ni, Co and Pd have the highest. Furthermore, experiments proving that after the H2 evolution reaction (HER) on Au0-NPs, and Ag0-NPs surfaces some reducing capacity remains on the M0-NPs is presented.
Collapse
Affiliation(s)
- Basil Raju Karimadom
- Chemical Sciences Department and The Radical Reactions Research Center, Ariel University, Ariel, Israel.
| | - Alina Sermiagin
- Chemical Sciences Department and The Radical Reactions Research Center, Ariel University, Ariel, Israel.
| | - Dan Meyerstein
- Chemical Sciences Department and The Radical Reactions Research Center, Ariel University, Ariel, Israel.
- Chemistry Department, Ben-Gurion University, Beer-Sheva, Israel
| | - Tomer Zidki
- Chemical Sciences Department and The Radical Reactions Research Center, Ariel University, Ariel, Israel.
| | - Amir Mizrahi
- Chemistry Department, Nuclear Research Centre Negev, Beer-Sheva, Israel
| | - Ronen Bar-Ziv
- Chemistry Department, Nuclear Research Centre Negev, Beer-Sheva, Israel
| | - Haya Kornweitz
- Chemical Sciences Department and The Radical Reactions Research Center, Ariel University, Ariel, Israel.
| |
Collapse
|
6
|
Singh AP, Ghosh S. BaRuO 3 coated Ti plate as an efficient and stable electro-catalyst for water splitting reaction in alkaline medium. Heliyon 2023; 9:e20870. [PMID: 37867895 PMCID: PMC10585303 DOI: 10.1016/j.heliyon.2023.e20870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/28/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023] Open
Abstract
Water splitting using an electrochemical device to produce hydrogen fuel is a green and economic approach to solve the energy and environmental crisis. The realistic design of durable electro-catalysts and their synthesis using a simplistic technique is a great challenge to produce hydrogen by water electrolysis. Herein, we report a stable highly active barium ruthenium oxide (BRO) electro-catalysts over Ti plate using a soft chemical method at low temperature. The synthesized material shows facile hydrogen evolution reaction (HER) as well as oxygen evolution reaction (OER) in alkaline medium with over-potentials of 195 mV and 300 mV, respectively at a current density of 10 mA cm-2. The excellent stability lasts for at least 24 h without any degradation for both the HER and OER at the current density of 10 mA cm-2, inferring the practical applications of the material toward production of green hydrogen energy. Certainly, the synthesized catalyst is capable adequately for the overall water splitting at a cell voltage of 1.60 V at a current density of 10 mA cm-2 with an impressive stability for at least 24 h, showing a minimum loss of potential. Thus the present work contributes to the rational design of stable and efficient electro-catalysts for overall water splitting reaction in alkaline media.
Collapse
Affiliation(s)
- Alok Pratap Singh
- Integrated Science Education and Research Centre, Siksha Bhavana, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Susanta Ghosh
- Integrated Science Education and Research Centre, Siksha Bhavana, Visva-Bharati (A Central University), Santiniketan, 731235, India
| |
Collapse
|
7
|
Zhu Y, Wang J, Patel SB, Li C, Head AR, Boscoboinik JA, Zhou G. Tuning the surface reactivity of oxides by peroxide species. Proc Natl Acad Sci U S A 2023; 120:e2215189120. [PMID: 36943886 PMCID: PMC10068848 DOI: 10.1073/pnas.2215189120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/21/2023] [Indexed: 03/23/2023] Open
Abstract
The Mars-van Krevelen mechanism is the foundation for oxide-catalyzed oxidation reactions and relies on spatiotemporally separated redox steps. Herein, we demonstrate the tunability of this separation with peroxide species formed by excessively adsorbed oxygen, thereby modifying the catalytic activity and selectivity of the oxide. Using CuO as an example, we show that a surface layer of peroxide species acts as a promotor to significantly enhance CuO reducibility in favor of H2 oxidation but conversely as an inhibitor to suppress CuO reduction against CO oxidation. Together with atomistic modeling, we identify that this opposite effect of the peroxide on the two oxidation reactions stems from its modification on coordinately unsaturated sites of the oxide surface. By differentiating the chemical functionality between lattice oxygen and peroxide, these results are closely relevant to a wide range of catalytic oxidation reactions using excessively adsorbed oxygen to activate lattice oxygen and tune the activity and selectivity of redox sites.
Collapse
Affiliation(s)
- Yaguang Zhu
- Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York, Binghamton, NY13902
| | - Jianyu Wang
- Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York, Binghamton, NY13902
| | - Shyam Bharatkumar Patel
- Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York, Binghamton, NY13902
| | - Chaoran Li
- Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York, Binghamton, NY13902
| | - Ashley R. Head
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY11973
| | | | - Guangwen Zhou
- Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York, Binghamton, NY13902
| |
Collapse
|
8
|
Supported metal clusters: Nix/CuZnAl catalysts effectively improve the performance of hydrogen evolution from methylcyclohexane dehydrogenation. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
9
|
Zhang Y, Zhan S, Liu K, Qiao M, Liu N, Qin R, Xiao L, You P, Jing W, Zheng N. Heterogeneous Hydrogenation with Hydrogen Spillover Enabled by Nitrogen Vacancies on Boron Nitride-Supported Pd Nanoparticles. Angew Chem Int Ed Engl 2023; 62:e202217191. [PMID: 36573904 DOI: 10.1002/anie.202217191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Indexed: 12/28/2022]
Abstract
Heterogeneous hydrogenation with hydrogen spillover has been demonstrated as an effective route to achieve high selectivity towards target products. More effort should be paid to understand the complicated correlation between the nature of supports and hydrogenation involving hydrogen spillover. Herein, we report the development of the hydrogenation system of hexagonal boron nitride (h-BN)-supported Pd nanoparticles for the hydrogenation of aldehydes/ketones to alcohols with hydrogen spillover. Nitrogen vacancies in h-BN determine the feasibility of hydrogen spillover from Pd to h-BN. The hydrogenation of aldehydes/ketones with hydrogen spillover from Pd proceeds on nitrogen vacancies on h-BN. The weak adsorption of alcohols to h-BN inhibits the deep hydrogenation of aldehydes/ketones, thus leading to high catalytic selectivity to alcohols. Moreover, the hydrogen spillover-based hydrogenation mechanism makes the catalyst system exhibit a high tolerance to CO poisoning.
Collapse
Affiliation(s)
- Yazhou Zhang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Shaoqi Zhan
- Department of Chemistry-BMC, Uppsala University, BMC Box 576, 75123, Uppsala, Sweden.,Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, UK
| | - Kunlong Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Mengfei Qiao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ning Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ruixuan Qin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Liangping Xiao
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Jiujiang Research Institute, Fujian Provincial Key Laboratory for Soft Functional Materials, Xiamen University, Xiamen, 361005, China
| | - Pengyao You
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Wentong Jing
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.,Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361102, China
| |
Collapse
|
10
|
Wang G, Batista ER, Yang P. N 2-to-NH 3 conversion by excess electrons trapped in point vacancies on 5 f-element dioxide surfaces. Front Chem 2023; 10:1051496. [PMID: 36688046 PMCID: PMC9849761 DOI: 10.3389/fchem.2022.1051496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/09/2022] [Indexed: 01/07/2023] Open
Abstract
Ammonia (NH3) is one of the basic chemicals in artificial fertilizers and a promising carbon-free energy storage carrier. Its industrial synthesis is typically realized via the Haber-Bosch process using traditional iron-based catalysts. Developing advanced catalysts that can reduce the N2 activation barrier and make NH3 synthesis more efficient is a long-term goal in the field. Most heterogeneous catalysts for N2-to-NH3 conversion are multicomponent systems with singly dispersed metal clusters on supporting materials to activate N2 and H2 molecules. Herein, we report single-component heterogeneous catalysts based on 5f actinide dioxide surfaces (ThO2 and UO2) with oxygen vacancies for N2-to-NH3 conversion. The reaction cycle we propose is enabled by a dual-site mechanism, where N2 and H2 can be activated at different vacancy sites on the same surface; NH3 is subsequently formed by H- migration on the surface via associative pathways. Oxygen vacancies recover to their initial states after the release of two molecules of NH3, making it possible for the catalytic cycle to continue. Our work demonstrates the catalytic activities of oxygen vacancies on 5f actinide dioxide surfaces for N2 activation, which may inspire the search for highly efficient, single-component catalysts that are easy to synthesize and control for NH3 conversion.
Collapse
Affiliation(s)
- Gaoxue Wang
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Enrique R. Batista
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Ping Yang
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| |
Collapse
|
11
|
Hydrogen Evolution Volcano(es)—From Acidic to Neutral and Alkaline Solutions. Catalysts 2022. [DOI: 10.3390/catal12121541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
As the global energy crisis continues, efficient hydrogen production is one of the hottest topics these days. In this sense, establishing catalytic trends for hydrogen production is essential for choosing proper H2 generation technology and catalytic material. Volcano plots for hydrogen evolution in acidic media are well-known, while a volcano plot in alkaline media was constructed ten years ago using theoretically calculated hydrogen binding energies. Here, for the first time, we show that the volcano-type relationships are largely maintained in a wide range of pH values, from acidic to neutral and alkaline solutions. We do this using theoretically calculated hydrogen binding energies on clean metallic surfaces and experimentally measured hydrogen evolution overpotentials. When metallic surfaces are exposed to high anodic potentials, hydrogen evolution can be boosted or significantly impeded, depending on the type of metal and the electrolyte in which the reaction occurs. Such effects are discussed here and can be used to properly tailor catalytic materials for hydrogen production via different water electrolysis technologies.
Collapse
|
12
|
Critical role of hydrogen sorption kinetics in electrocatalytic CO2 reduction revealed by on-chip in situ transport investigations. Nat Commun 2022; 13:6911. [PMCID: PMC9663515 DOI: 10.1038/s41467-022-34685-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
AbstractPrecise understanding of interfacial metal−hydrogen interactions, especially under in operando conditions, is crucial to advancing the application of metal catalysts in clean energy technologies. To this end, while Pd-based catalysts are widely utilized for electrochemical hydrogen production and hydrogenation, the interaction of Pd with hydrogen during active electrochemical processes is complex, distinct from most other metals, and yet to be clarified. In this report, the hydrogen surface adsorption and sub-surface absorption (phase transition) features of Pd and its alloy nanocatalysts are identified and quantified under operando electrocatalytic conditions via on-chip electrical transport measurements, and the competitive relationship between electrochemical carbon dioxide reduction (CO2RR) and hydrogen sorption kinetics is investigated. Systematic dynamic and steady-state evaluations reveal the key impacts of local electrolyte environment (such as proton donors with different pKa) on the hydrogen sorption kinetics during CO2RR, which offer additional insights into the electrochemical interfaces and optimization of the catalytic systems.
Collapse
|
13
|
Effects of Site Geometry and Local Composition on Hydrogenation of Surface Carbon to Methane on Ni, Co, and NiCo Catalysts. Catalysts 2022. [DOI: 10.3390/catal12111380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Surface carbon deposits deactivate Ni and Co catalysts in reactions involving hydrocarbons and COx. Electronic properties, adsorption energies of H, C, and CHx species, and the energetics of the hydrogenation of surface C atom to methane are studied for (100) and (111) surfaces of monometallic Ni and Co, and bimetallic NiCo. The bimetallic catalyst exhibits a Co→Ni electron donation and a concomitant increase in the magnetization of Co atoms. The CHx species resulting from sequential hydrogenation are more stable on Co than on Ni atoms of the NiCo surfaces due to more favorable (C-H)–Co agostic interactions. These interactions and differences between Co and Ni sites are more significant for (111) than for (100) bimetallic surfaces. On (111) surfaces, CH is the most stable species, and the first hydrogenation of C atom exhibits the highest barrier, followed by the CH3 hydrogenation steps. In contrast, on (100) surfaces, surface C atom is the most stable species and CH2 or *CH3 hydrogenations exhibit the highest barriers. The Gibbs free energy profiles suggest that C removal on (111) surfaces is thermodynamically favorable and exhibits a lower barrier than on the (100) surfaces. Thus, the (100) surfaces, especially Ni(100), are more prone to C poisoning. The NiCo(100) surfaces exhibit weaker binding of C and CHx species than Ni(100) and Co(100), which improves C poisoning resistance and lowers hydrogenation barriers. These results show that the electronic effects of alloying Ni and Co strongly depend on the local site composition and geometry.
Collapse
|
14
|
Vandermause J, Xie Y, Lim JS, Owen CJ, Kozinsky B. Active learning of reactive Bayesian force fields applied to heterogeneous catalysis dynamics of H/Pt. Nat Commun 2022; 13:5183. [PMID: 36055982 PMCID: PMC9440250 DOI: 10.1038/s41467-022-32294-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 07/21/2022] [Indexed: 11/08/2022] Open
Abstract
Atomistic modeling of chemically reactive systems has so far relied on either expensive ab initio methods or bond-order force fields requiring arduous parametrization. Here, we describe a Bayesian active learning framework for autonomous "on-the-fly" training of fast and accurate reactive many-body force fields during molecular dynamics simulations. At each time-step, predictive uncertainties of a sparse Gaussian process are evaluated to automatically determine whether additional ab initio training data are needed. We introduce a general method for mapping trained kernel models onto equivalent polynomial models whose prediction cost is much lower and independent of the training set size. As a demonstration, we perform direct two-phase simulations of heterogeneous H2 turnover on the Pt(111) catalyst surface at chemical accuracy. The model trains itself in three days and performs at twice the speed of a ReaxFF model, while maintaining much higher fidelity to DFT and excellent agreement with experiment.
Collapse
Affiliation(s)
- Jonathan Vandermause
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA.
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
| | - Yu Xie
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Jin Soo Lim
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Cameron J Owen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Boris Kozinsky
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
- Robert Bosch LLC, Research and Technology Center, Cambridge, MA, 02139, USA.
| |
Collapse
|
15
|
Schwarzer M, Hertl N, Nitz F, Borodin D, Fingerhut J, Kitsopoulos TN, Wodtke AM. Adsorption and Absorption Energies of Hydrogen with Palladium. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:14500-14508. [PMID: 36081903 PMCID: PMC9442642 DOI: 10.1021/acs.jpcc.2c04567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Thermal recombinative desorption rates of HD on Pd(111) and Pd(332) are reported from transient kinetic experiments performed between 523 and 1023 K. A detailed kinetic model accurately describes the competition between recombination of surface-adsorbed hydrogen and deuterium atoms and their diffusion into the bulk. By fitting the model to observed rates, we derive the dissociative adsorption energies (E 0, ads H2 = 0.98 eV; E 0, ads D2 = 1.00 eV; E 0, ads HD = 0.99 eV) as well as the classical dissociative binding energy ϵads = 1.02 ± 0.03 eV, which provides a benchmark for electronic structure theory. In a similar way, we obtain the classical energy required to move an H or D atom from the surface to the bulk (ϵsb = 0.46 ± 0.01 eV) and the isotope specific energies, E 0, sb H = 0.41 eV and E 0, sb D = 0.43 eV. Detailed insights into the process of transient bulk diffusion are obtained from kinetic Monte Carlo simulations.
Collapse
Affiliation(s)
- Michael Schwarzer
- Institute
for Physical Chemistry, Georg-August University
Goettingen, Tammannstraße 6, Goettingen 37077, Germany
| | - Nils Hertl
- Department
of Dynamics at Surfaces, Max Planck Institute
for Multidisciplinary Sciences, Am Fassberg 11, Goettingen 37077, Germany
| | - Florian Nitz
- Institute
for Physical Chemistry, Georg-August University
Goettingen, Tammannstraße 6, Goettingen 37077, Germany
| | - Dmitriy Borodin
- Institute
for Physical Chemistry, Georg-August University
Goettingen, Tammannstraße 6, Goettingen 37077, Germany
- Department
of Dynamics at Surfaces, Max Planck Institute
for Multidisciplinary Sciences, Am Fassberg 11, Goettingen 37077, Germany
| | - Jan Fingerhut
- Institute
for Physical Chemistry, Georg-August University
Goettingen, Tammannstraße 6, Goettingen 37077, Germany
| | - Theofanis N. Kitsopoulos
- Institute
for Physical Chemistry, Georg-August University
Goettingen, Tammannstraße 6, Goettingen 37077, Germany
- Department
of Dynamics at Surfaces, Max Planck Institute
for Multidisciplinary Sciences, Am Fassberg 11, Goettingen 37077, Germany
- Department
of Chemistry, University of Crete, Heraklion 71003, Greece
- Institute
of Electronic Structure and Laser − FORTH, Heraklion 71110, Greece
| | - Alec M. Wodtke
- Institute
for Physical Chemistry, Georg-August University
Goettingen, Tammannstraße 6, Goettingen 37077, Germany
- Department
of Dynamics at Surfaces, Max Planck Institute
for Multidisciplinary Sciences, Am Fassberg 11, Goettingen 37077, Germany
- International
Center for Advanced Studies of Energy Conversion, Georg-August University Goettingen, Tammannstraße 6, Goettingen 37077, Germany
| |
Collapse
|
16
|
Li D, Chen Z, Ren K, Zhao S, Xu H, Cao D. Rational design of non-noble-metal-based alloy catalysts for hydrogen activation: a density functional theory study. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2108092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Danyang Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, People’s Republic of China
| | - Zhili Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, People’s Republic of China
| | - Kui Ren
- Research Institute of Petroleum Processing, Beijing, People’s Republic of China
| | - Shuang Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, People’s Republic of China
| | - Haoxiang Xu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, People’s Republic of China
| | - Dapeng Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, People’s Republic of China
| |
Collapse
|
17
|
Montserrat-Sisó G, Wickman B. PdNi thin films for hydrogen oxidation reaction and oxygen reduction reaction in alkaline media. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Surface engineering improving selective hydrogenation of p-chloronitrobenzene over AuPt alloy/SnNb2O6 ultrathin nanosheets under visible light. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Hong W, Swann WA, Yadav V, Li CW. Haptophilicity and Substrate-Directed Reactivity in Diastereoselective Heterogeneous Hydrogenation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wei Hong
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - William A. Swann
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Vamakshi Yadav
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christina W. Li
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
20
|
Affiliation(s)
- Divakar R. Aireddy
- Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Kunlun Ding
- Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
21
|
Yang Z, Gao W. Applications of Machine Learning in Alloy Catalysts: Rational Selection and Future Development of Descriptors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2106043. [PMID: 35229986 PMCID: PMC9036033 DOI: 10.1002/advs.202106043] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/02/2022] [Indexed: 05/28/2023]
Abstract
At present, alloys have broad application prospects in heterogeneous catalysis, due to their various catalytic active sites produced by their vast element combinations and complex geometric structures. However, it is the diverse variables of alloys that lead to the difficulty in understanding the structure-property relationship for conventional experimental and theoretical methods. Fortunately, machine learning methods are helpful to address the issue. Machine learning can not only deal with a large number of data rapidly, but also help establish the physical picture of reactions in multidimensional heterogeneous catalysis. The key challenge in machine learning is the exploration of suitable general descriptors to accurately describe various types of alloy catalysts, which help reasonably design catalysts and efficiently screen candidates. In this review, several kinds of machine learning methods commonly used in the design of alloy catalysts is introduced, and the applications of various reactivity descriptors corresponding to different alloy systems is summarized. Importantly, this work clarifies the existing understanding of physical picture of heterogeneous catalysis, and emphasize the significance of rational selection of universal descriptors. Finally, the development of heterogeneous catalytic descriptors for machine learning are presented.
Collapse
Affiliation(s)
- Ze Yang
- School of Materials Science and EngineeringJilin UniversityChangchun130022P. R. China
| | - Wang Gao
- School of Materials Science and EngineeringJilin UniversityChangchun130022P. R. China
| |
Collapse
|
22
|
Wu D, Zhu Y, Shan W, Wang J, Liu Q, Zhou G. Revealing an Intermediate Cu-O/OH Superstructure on Cu(110). J Phys Chem Lett 2022; 13:2396-2403. [PMID: 35257576 DOI: 10.1021/acs.jpclett.1c04145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Identifying the atomic structure and formation mechanism of intermediates during chemical transformations is challenging because of their short-lived nature. With a combination of microscopic and spectroscopic measurements and first-principles calculations, herein we report the formation of a metastable intermediate Cu-O/OH superstructure during the reaction of hydrogen with oxygen-covered Cu(110). This superstructure resembles the parent c(6 × 2)-O phase and can be termed as c(6 × 2)-(4O+2OH) with OH groups occupying the missing Cu sites between isolated Cu atoms. Using atomistic calculations, we elucidate the reaction pathways leading to the c(6 × 2)-(4O+2OH) formation via both molecular and dissociative H2 adsorption. These results demonstrate the complex surface dynamics resulting from the parallel reaction pathways and may open up the possibility of directing the reaction dynamics by deliberately manipulating transient surface structure and composition.
Collapse
Affiliation(s)
- Dongxiang Wu
- Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York, Binghamton, New York 13902, United States
| | - Yaguang Zhu
- Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York, Binghamton, New York 13902, United States
| | - Weitao Shan
- Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York, Binghamton, New York 13902, United States
| | - Jianyu Wang
- Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York, Binghamton, New York 13902, United States
| | - Qianqian Liu
- Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York, Binghamton, New York 13902, United States
| | - Guangwen Zhou
- Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York, Binghamton, New York 13902, United States
| |
Collapse
|
23
|
Reversible writing/deleting of magnetic skyrmions through hydrogen adsorption/desorption. Nat Commun 2022; 13:1350. [PMID: 35292656 PMCID: PMC8924161 DOI: 10.1038/s41467-022-28968-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 02/17/2022] [Indexed: 11/09/2022] Open
Abstract
Magnetic skyrmions are topologically nontrivial spin textures with envisioned applications in energy-efficient magnetic information storage. Toggling the presence of magnetic skyrmions via writing/deleting processes is essential for spintronics applications, which usually require the application of a magnetic field, a gate voltage or an electric current. Here we demonstrate the reversible field-free writing/deleting of skyrmions at room temperature, via hydrogen chemisorption/desorption on the surface of Ni and Co films. Supported by Monte-Carlo simulations, the skyrmion creation/annihilation is attributed to the hydrogen-induced magnetic anisotropy change on ferromagnetic surfaces. We also demonstrate the role of hydrogen and oxygen on magnetic anisotropy and skyrmion deletion on other magnetic surfaces. Our results open up new possibilities for designing skyrmionic and magneto-ionic devices. To use skyrmions to store information, an effective method for writing and deleting them is required. Here, Chen et al demonstrate the writing and deleting of skyrmions at room temperature by using hydrogen adsorption to change the magnetic anisotropy of the metallic multilayer hosting the skyrmions.
Collapse
|
24
|
Kinetic Parameter Estimation for Catalytic H2–D2 Exchange on Pd. Catal Letters 2022. [DOI: 10.1007/s10562-022-03961-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Marcella N, Lim JS, Płonka AM, Yan G, Owen CJ, van der Hoeven JES, Foucher AC, Ngan HT, Torrisi SB, Marinkovic NS, Stach EA, Weaver JF, Aizenberg J, Sautet P, Kozinsky B, Frenkel AI. Decoding reactive structures in dilute alloy catalysts. Nat Commun 2022; 13:832. [PMID: 35149699 PMCID: PMC8837610 DOI: 10.1038/s41467-022-28366-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/04/2022] [Indexed: 11/09/2022] Open
Abstract
Rational catalyst design is crucial toward achieving more energy-efficient and sustainable catalytic processes. Understanding and modeling catalytic reaction pathways and kinetics require atomic level knowledge of the active sites. These structures often change dynamically during reactions and are difficult to decipher. A prototypical example is the hydrogen-deuterium exchange reaction catalyzed by dilute Pd-in-Au alloy nanoparticles. From a combination of catalytic activity measurements, machine learning-enabled spectroscopic analysis, and first-principles based kinetic modeling, we demonstrate that the active species are surface Pd ensembles containing only a few (from 1 to 3) Pd atoms. These species simultaneously explain the observed X-ray spectra and equate the experimental and theoretical values of the apparent activation energy. Remarkably, we find that the catalytic activity can be tuned on demand by controlling the size of the Pd ensembles through catalyst pretreatment. Our data-driven multimodal approach enables decoding of reactive structures in complex and dynamic alloy catalysts.
Collapse
Affiliation(s)
- Nicholas Marcella
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Jin Soo Lim
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Anna M Płonka
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - George Yan
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Cameron J Owen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Jessi E S van der Hoeven
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Alexandre C Foucher
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hio Tong Ngan
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Steven B Torrisi
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - Nebojsa S Marinkovic
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Eric A Stach
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jason F Weaver
- Department of Chemical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Joanna Aizenberg
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Philippe Sautet
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Boris Kozinsky
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
- Robert Bosch LLC, Research and Technology Center, Cambridge, MA, 02139, USA.
| | - Anatoly I Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA.
- Chemistry Division, Brookhaven National Laboratory, Upton, NY, 11973, USA.
| |
Collapse
|
26
|
|
27
|
Shangguan J, Hensley AJ, Morgenstern L, Li Z, McEwen JS, Ma W, Cathy China YH. Brønsted Acidity of H-adatoms at Protic Solvent-Transition Metal Interfaces and its Kinetic Consequences in Electrophilic Addition Reactions. J Catal 2021. [DOI: 10.1016/j.jcat.2021.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
Li G, Zhao Z, Mou T, Tan Q, Wang B, Resasco D. Experimental and computational kinetics study of the liquid-phase hydrogenation of C C and C O bonds. J Catal 2021. [DOI: 10.1016/j.jcat.2021.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Metzroth LJT, Miller EM, Norman AG, Yazdi S, Carroll GM. Accelerating Hydrogen Absorption and Desorption Rates in Palladium Nanocubes with an Ultrathin Surface Modification. NANO LETTERS 2021; 21:9131-9137. [PMID: 34676756 DOI: 10.1021/acs.nanolett.1c02903] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Exploiting the high surface-area-to-volume ratio of nanomaterials to store energy in the form of electrochemical alloys is an exceptionally promising route for achieving high-rate energy storage and delivery. Nanoscale palladium hydride is an excellent model system for understanding how nanoscale-specific properties affect the absorption and desorption of energy carrying equivalents. Hydrogen absorption and desorption in shape-controlled Pd nanostructures does not occur uniformly across the entire nanoparticle surface. Instead, hydrogen absorption and desorption proceed selectively through high-activity sites at the corners and edges. Such a mechanism hinders the hydrogen absorption rates and greatly reduces the benefit of nanoscaling the dimensions of the palladium. To solve this, we modify the surface of palladium with an ultrathin platinum shell. This modification nearly removes the barrier for hydrogen absorption (89 kJ/mol without a Pt shell and 1.8 kJ/mol with a Pt shell) and enables diffusion through the entire Pd/Pt surface.
Collapse
Affiliation(s)
- Lucy J T Metzroth
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Elisa M Miller
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Andrew G Norman
- Materials Science Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Sadegh Yazdi
- Renewable & Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Materials Science & Engineering Program, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| | - Gerard Michael Carroll
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| |
Collapse
|
30
|
Zheng H, Li H, Luo L, Zhao Z, Henkelman G. Factors that influence hydrogen binding at metal-atop sites. J Chem Phys 2021; 155:024703. [PMID: 34266273 DOI: 10.1063/5.0056774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The d-band model has proven to be effective for understanding trends in the chemisorption of various adsorbates on transition metal surfaces. However, hydrogen adsorption at the atop site of transition metals and their bimetallic alloy surfaces do not always correlate well with the d-band center of the adsorption site. Additionally, the d-band model cannot explain the disappearance of the local minima for H adsorption at the hollow site on the potential energy surface of 5d single-atom element doped Au and Ag(111) surfaces. Here, we use a simple model with factors, including the d-band center, filling of the d-band, renormalized adsorbate states, coupling matrix elements, and surface-adsorbate bond lengths, to correlate with the density functional theory calculated H binding energies on both mono- and bimetallic (111) surfaces. Our results suggest that H adsorption at metal-atop sites is determined by all these factors, not only by the d-band center. The strong adsorption of H at the atop sites of 5d metal surfaces can be explained by their lower repulsive contribution.
Collapse
Affiliation(s)
- Huiling Zheng
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum-Beijing, Changping District, Beijing 102249, China
| | - Hao Li
- Department of Chemistry and the Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712-0231, USA
| | - Long Luo
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | - Zhen Zhao
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum-Beijing, Changping District, Beijing 102249, China
| | - Graeme Henkelman
- Department of Chemistry and the Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712-0231, USA
| |
Collapse
|
31
|
Fu X, Liu J, Kanchanakungwankul S, Hu X, Yue Q, Truhlar DG, Hupp JT, Kang Y. Two-Dimensional Pd Rafts Confined in Copper Nanosheets for Selective Semihydrogenation of Acetylene. NANO LETTERS 2021; 21:5620-5626. [PMID: 34170691 DOI: 10.1021/acs.nanolett.1c01124] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of highly selective and active catalysts to catalyze an industrially important semihydrogenation reaction remains an open challenge. Here, we report the design of a bimetallic Pd/Cu(111) catalyst with Pd rafts confined in a Cu nanosheet, which exhibits desirable catalytic performance for acetylene semihydrogenation to ethylene with the selectivity of >90%. Theory calculations show that Pd atoms replacing neighboring Cu atoms in Cu(111) can improve the catalytic activity by reducing the energy barrier of the semihydrogenation reaction, as compared to unsubstituted Cu(111), and can improve the selectivity by weakening the adsorption of C2H4, as compared to a Pd(111) surface. The presence of Pd rafts confined in Cu nanosheets effectively turns on Cu nanosheets for semihydrogenation of acetylene with high activity and selectivity under mild reaction conditions. This work offers a well-defined nanostructured Pd/Cu(111) model catalyst that bridges the pressure and materials' gap between surface-science catalysis and practical catalysis.
Collapse
Affiliation(s)
- Xianbiao Fu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
- Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208, United States
| | - Jian Liu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Siriluk Kanchanakungwankul
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Xiaobing Hu
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Qin Yue
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Yijin Kang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
- Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
32
|
Szilvási T, Yu H, Gold JI, Bao N, Wolter TJ, Twieg RJ, Abbott NL, Mavrikakis M. Coupling the chemical reactivity of bimetallic surfaces to the orientations of liquid crystals. MATERIALS HORIZONS 2021; 8:2050-2056. [PMID: 34846482 DOI: 10.1039/d1mh00035g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of responsive soft materials with tailored functional properties based on the chemical reactivity of atomically precise inorganic interfaces has not been widely explored. In this communication, guided by first-principles calculations, we design bimetallic surfaces comprised of atomically thin Pd layers deposited onto Au that anchor nematic liquid crystalline phases of 4'-n-pentyl-4-biphenylcarbonitrile (5CB) and demonstrate that the chemical reactivity of these bimetallic surfaces towards Cl2 gas can be tuned by specification of the composition of the surface alloy. Specifically, we use underpotential deposition to prepare submonolayer to multilayers of Pd on Au and employ X-ray photoelectron and infrared spectroscopy to validate computational predictions that binding of 5CB depends strongly on the Pd coverage, with ∼0.1 monolayer (ML) of Pd sufficient to cause the liquid crystal (LC) to adopt a perpendicular binding mode. Computed heats of dissociative adsorption of Cl2 on PdAu alloy surfaces predict displacement of 5CB from these surfaces, a result that is also confirmed by experiments revealing that 1 ppm Cl2 triggers orientational transitions of 5CB. By decreasing the coverage of Pd on Au from 1.8 ± 0.2 ML to 0.09 ± 0.02 ML, the dynamic response of 5CB to 1 ppm Cl2 is accelerated 3X. Overall, these results demonstrate the promise of hybrid designs of responsive materials based on atomically precise interfaces formed between hard bimetallic surfaces and soft matter.
Collapse
Affiliation(s)
- Tibor Szilvási
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
On the relationship between potential of zero charge and solvent dynamics in the reversible hydrogen electrode. J Catal 2021. [DOI: 10.1016/j.jcat.2021.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
|
35
|
Tang YL, Chen W, Xu ML, Wei Z, Cai J, Chen YX. Unravelling hydrogen adsorption kinetics on Ir(111) electrode in acid solutions by impedance spectroscopy. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2006105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Yan-li Tang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Wei Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Mian-le Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Zhen Wei
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Jun Cai
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yan-xia Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
36
|
Ge J, Yin P, Chen Y, Cheng H, Liu J, Chen B, Tan C, Yin PF, Zheng HX, Li QQ, Chen S, Xu W, Wang X, Wu G, Sun R, Shan XH, Hong X, Zhang H. Ultrathin Amorphous/Crystalline Heterophase Rh and Rh Alloy Nanosheets as Tandem Catalysts for Direct Indole Synthesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006711. [PMID: 33491810 DOI: 10.1002/adma.202006711] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Heterogeneous noble-metal-based catalysis plays an essential role in the production of fine chemicals. Rh-based catalysts are one of the most active candidates for indole synthesis. However, it is still highly desired to develop heterogeneous Rh-based catalysts with high activity and selectivity. In this work, a general, facile wet-chemical method is reported to synthesize ultrathin amorphous/crystalline heterophase Rh and Rh-based bimetallic alloy nanosheets (NSs), including RhCu, RhZn, and RhRu. Impressively, the amorphous/crystalline heterophase Rh NSs exhibit enhanced catalytic activity toward the direct synthesis of indole compared to the crystalline counterpart. Importantly, the obtained amorphous/crystalline heterophase RhCu alloy NSs can further enhance the selectivity to indole of >99.9% and the conversion is 100%. This work demonstrates the importance of phase engineering and metal alloying in the rational design and synthesis of tandem heterogeneous catalysts toward fine chemical synthesis.
Collapse
Affiliation(s)
- Jingjie Ge
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Peiqun Yin
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Center of Advanced Nanocatalysis (CAN), Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
- School of Chemistry and Environmental Engineering, Institute of Low-dimensional Materials Genome Initiative, Shenzhen University, Shenzhen, 518060, China
| | - Ye Chen
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Hongfei Cheng
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jiawei Liu
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Bo Chen
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Chaoliang Tan
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China
| | - Peng-Fei Yin
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Hong-Xing Zheng
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, China
| | - Qiang-Qiang Li
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Shuangming Chen
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Wenjie Xu
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Xiaoqian Wang
- Center of Advanced Nanocatalysis (CAN), Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Geng Wu
- Center of Advanced Nanocatalysis (CAN), Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Rongbo Sun
- Center of Advanced Nanocatalysis (CAN), Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiang-Huan Shan
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xun Hong
- Center of Advanced Nanocatalysis (CAN), Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| |
Collapse
|
37
|
Abstract
ConspectusThe enhanced catalytic activity of Pd-Au catalysts originates from ensemble effects related to the local composition of Pd and Au. The study of Pd-Au planar model catalysts in an ultrahigh vacuum (UHV) environment allows the observation of molecular level catalytic reactions between the Pd-Au surface and target molecules. Recently, there has been progress in understanding the behavior of simple molecules (H2, O2, CO, etc.) employing UHV surface science techniques, the results of which can be applied not only to heterogeneous catalysis but also to electro- and photochemical catalysis.Employing UHV methods in the investigation of Pd-Au model catalysts has shown that single Pd atoms can dissociatively adsorb H2 molecules. The recombinative desorption temperature of H2 varies with Pd ensemble size, which allows the use of H2 as a probe molecule for quantifying surface composition. In particular, H2 desorption from Pd-Au interface sites (or small Pd ensembles) is observed from 150-300 K, which is between the H2 desorption temperature from pure Au (∼110 K) and Pd (∼350 K) surfaces. When the Pd ensembles are large enough to form Pd(111)-like islands, H2 desorption occurs from 300-400 K, as with pure Pd surfaces. The different H2 desorption behavior, which depends on Pd ensemble size, has also been applied to the analysis of dehydrogenation mechanisms for potential liquid storage mediums for H2, namely formic acid and ethanol. In both cases, the Pd-Au interface is the main reaction site for generating H2 from formic acid and ethanol with less overall decomposition of the two molecules (compared to pure Pd).The chemistry behind O2 activation has also been informed through the control of Pd ensembles on a gold model catalyst for acetaldehyde and ethanol oxidation reactions under UHV conditions. O2 molecules molecularly adsorbed on continuous Pd clusters can be dissociated into O adatoms above 180 K. This O2 activation process is improved by coadsorbed H2O molecules. It is also possible to directly (through a precursor mechanism) introduce O adatoms on the Pd-Au surface by exposure to O2 at 300 K. The quantity of dissociatively adsorbed O adatoms is proportional to the Pd coverage. However, the O adatoms are more reactive on a less Pd covered surface, especially at the Pd-Au interface sites, which can initiate CO oxidation at temperatures as low as 140 K. Acetaldehyde molecules can be selectively oxidized to acetic acid on the Pd-Au surface with O adatoms, in which the selectivity toward acetic acid originates from preventing the decarboxylation of acetate species. Moreover, the O adatoms on the Pd-Au surface accelerate ethanol dehydrogenation, which causes the increase in acetaldehyde production. Hydrogen is continuously abstracted from the formed acetaldehyde and remaining ethanol molecules, and they ultimately combine as ethyl acetate on the Pd-Au surface.Using Pd-Au model catalysts under UHV conditions allows the discovery of molecular level mechanistic details regarding the catalytic behavior of H and O adatoms with other molecules. We also expect that these findings will be applicable regarding other chemistry on Pd-Au catalysts.
Collapse
Affiliation(s)
- Sungmin Han
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712-0231, United States
| | - C. Buddie Mullins
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712-0231, United States
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712-0231, United States
- Texas Materials Institute, Center for Electrochemistry, University of Texas at Austin, Austin, Texas 78712-0231, United States
| |
Collapse
|
38
|
Hou X, Qi L, Li W, Zhao J, Liu S. Theoretical study on water adsorption and dissociation on the nickel surfaces. J Mol Model 2021; 27:36. [PMID: 33423126 DOI: 10.1007/s00894-020-04662-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/22/2020] [Indexed: 11/29/2022]
Abstract
Using density functional theory methods, H2O dissociation was investigated on the Ni(111), Ni(100), and Ni(110) surfaces. H and O atom as well as OH species adsorb stably at the high coordination sites. While on the Ni(110) surface, the OH species prefers at the twofold short bridge site because the adsorption on the fourfold hollow site is less feasible due to the increased distances between the nickel atoms. The amount of charge transfer is related to the adsorption stability. The more charge transfer, the more stable the adsorption. The charge transfer decreases in the order of O > OH > H. H2O molecule adsorbs at the top site in a configuration parallel to the surface. The final products are different for H2O dissociation due to the different mechanisms. On the Ni(111) surface, the final product is the O atom. On the Ni(100) and Ni(110) surfaces, the most abundant species are OH and H, but the reaction mechanisms were different. It is not necessary to linear BEP relationship for a given reaction on different surfaces. These results could provide fundamental insights into water behaviors and a favorable theoretical basis for further understanding and research on the interaction between water and metal surfaces.
Collapse
Affiliation(s)
- Xuejie Hou
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, People's Republic of China
| | - Lingxi Qi
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, People's Republic of China
| | - Wenzuo Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, People's Republic of China.
| | - Jin Zhao
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, People's Republic of China
| | - Shaoli Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, People's Republic of China.
| |
Collapse
|
39
|
Sakagami H, Tachikawa M, Ishimoto T. Theoretical study of the H/D isotope effect of CH 4/CD 4 adsorption on a Rh(111) surface using a combined plane wave and localized basis sets method. RSC Adv 2021; 11:10253-10257. [PMID: 35423504 PMCID: PMC8696195 DOI: 10.1039/d0ra10796d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/01/2021] [Indexed: 12/29/2022] Open
Abstract
Using our CPLB method, we elucidate that the adsorption distance and adsorption energy of CH4 on the Rh(111) surface are shorter and larger than those of CD4, which is in reasonable agreement with the corresponding H/D isotope trend in experiments.
Collapse
Affiliation(s)
- Hiroki Sakagami
- Graduate School of Nanobioscience
- Yokohama City University
- Yokohama 236-0027
- Japan
| | - Masanori Tachikawa
- Graduate School of Data Science
- Yokohama City University
- Yokohama 236-0027
- Japan
| | - Takayoshi Ishimoto
- Graduate School of Nanobioscience
- Yokohama City University
- Yokohama 236-0027
- Japan
- Department of Applied Chemistry
| |
Collapse
|
40
|
Burange AS, Ahmad A, Luque R. Electrophilicity in heterogeneous catalysis: role of surface and sub-surface modification. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00613d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surface and sub-surface modification can play a significant role in improving the catalytic activity in designed systems.
Collapse
Affiliation(s)
| | - Awais Ahmad
- Departamento de Quimica Organica
- Universidad de Cordoba
- E14014 Cordoba
- Spain
| | - Rafael Luque
- Departamento de Quimica Organica
- Universidad de Cordoba
- E14014 Cordoba
- Spain
- Peoples Friendship University of Russia (RUDN University)
| |
Collapse
|
41
|
Kim K, Kang DW, Choi Y, Kim W, Lee H, Lee JW. Improved H 2 utilization by Pd doping in cobalt catalysts for reductive amination of polypropylene glycol. RSC Adv 2020; 10:45159-45169. [PMID: 35516265 PMCID: PMC9058643 DOI: 10.1039/d0ra10033a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 12/11/2020] [Indexed: 11/21/2022] Open
Abstract
Cobalt based catalysts having enhanced H2 dissociation and desorption were synthesized by inserting a trace amount of palladium. These catalysts were used for the reductive amination of polypropylene glycol (PPG) to polyetheramine (PEA). The catalytic activity toward PEA was significantly increased by incorporating an extremely low content of palladium (around 0.01 wt%) into cobalt based catalysts. The Pd inserted cobalt catalysts promoted reduction of cobalt oxide to cobalt metal and inhibited formation of cobalt nitride in the reductive amination. The Pd inserted cobalt catalysts not only enhanced hydrogen dissociation but also accelerated hydrogen desorption by increasing the electron density of cobalt through interaction between cobalt and palladium. These play a critical role in reducing cobalt oxide or cobalt nitride to cobalt metal as an active site for the reductive amination. Thus, the Pd inserted cobalt catalysts provide improved catalytic performance toward PEA production by maintaining the cobalt metal state.
Collapse
Affiliation(s)
- Kyungjun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- LOTTE CHEMICAL R&D Center Daejeon 34110 Republic of Korea
| | - Dong Woo Kang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Youngheon Choi
- LOTTE CHEMICAL R&D Center Daejeon 34110 Republic of Korea
| | - Wanggyu Kim
- LOTTE CHEMICAL R&D Center Daejeon 34110 Republic of Korea
| | - Hyunjoo Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Jae W Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
42
|
Zou L, Cao P, Lei Y, Zakharov D, Sun X, House SD, Luo L, Li J, Yang Y, Yin Q, Chen X, Li C, Qin H, Stach EA, Yang JC, Wang G, Zhou G. Atomic-scale phase separation induced clustering of solute atoms. Nat Commun 2020; 11:3934. [PMID: 32769992 PMCID: PMC7415157 DOI: 10.1038/s41467-020-17826-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 06/30/2020] [Indexed: 11/21/2022] Open
Abstract
Dealloying typically occurs via the chemical dissolution of an alloy component through a corrosion process. In contrast, here we report an atomic-scale nonchemical dealloying process that results in the clustering of solute atoms. We show that the disparity in the adatom-substrate exchange barriers separate Cu adatoms from a Cu-Au mixture, leaving behind a fluid phase enriched with Au adatoms that subsequently aggregate into supported clusters. Using dynamic, atomic-scale electron microscopy observations and theoretical modeling, we delineate the atomic-scale mechanisms associated with the nucleation, rotation and amorphization-crystallization oscillations of the Au clusters. We expect broader applicability of the results because the phase separation process is dictated by the inherent asymmetric adatom-substrate exchange barriers for separating dissimilar atoms in multicomponent materials.
Collapse
Affiliation(s)
- Lianfeng Zou
- Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York, Binghamton, NY, 13902, USA
| | - Penghui Cao
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA, 92697, USA
| | - Yinkai Lei
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Dmitri Zakharov
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Xianhu Sun
- Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York, Binghamton, NY, 13902, USA
| | - Stephen D House
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Environmental TEM Catalysis Consortium (ECC), University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Langli Luo
- Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York, Binghamton, NY, 13902, USA
| | - Jonathan Li
- Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York, Binghamton, NY, 13902, USA
| | - Yang Yang
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Qiyue Yin
- Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York, Binghamton, NY, 13902, USA
| | - Xiaobo Chen
- Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York, Binghamton, NY, 13902, USA
| | - Chaoran Li
- Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York, Binghamton, NY, 13902, USA
| | - Hailang Qin
- Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York, Binghamton, NY, 13902, USA
| | - Eric A Stach
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Judith C Yang
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Environmental TEM Catalysis Consortium (ECC), University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Guofeng Wang
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Guangwen Zhou
- Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York, Binghamton, NY, 13902, USA.
| |
Collapse
|
43
|
Morteo-Flores F, Engel J, Roldan A. Biomass hydrodeoxygenation catalysts innovation from atomistic activity predictors. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20200056. [PMID: 32623992 PMCID: PMC7422890 DOI: 10.1098/rsta.2020.0056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
Circular economy emphasizes the idea of transforming products involving economic growth and improving the ecological system to reduce the negative consequences caused by the excessive use of raw materials. This can be achieved with the use of second-generation biomass that converts industrial and agricultural wastes into bulk chemicals. The use of catalytic processes is essential to achieve a viable upgrade of biofuels from the lignocellulosic biomass. We carried out density functional theory calculations to explore the relationship between 13 transition metals (TMs) properties, as catalysts, and their affinity for hydrogen and oxygen, as key species in the valourization of biomass. The relation of these parameters will define the trends of the hydrodeoxygenation (HDO) process on biomass-derived compounds. We found the hydrogen and oxygen adsorption energies in the most stable site have a linear relation with electronic properties of these metals that will rationalize the surface's ability to bind the biomass-derived compounds and break the C-O bonds. This will accelerate the catalyst innovation for low temperature and efficient HDO processes on biomass derivates, e.g. guaiacol and anisole, among others. Among the monometallic catalysts explored, the scaling relationship pointed out that Ni has a promising balance between hydrogen and oxygen affinities according to the d-band centre and d-band width models. The comparison of the calculated descriptors to the adsorption strength of guaiacol on the investigated surfaces indicates that the d-band properties alone are not best suited to describe the trend. Instead, we found that a linear combination of work function and d-band properties gives significantly better correlation. This article is part of a discussion meeting issue 'Science to enable the circular economy'.
Collapse
Affiliation(s)
| | | | - Alberto Roldan
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
| |
Collapse
|
44
|
Ciufo RA, Han S, Floto ME, Eichler JE, Henkelman G, Mullins CB. Hydrogen desorption from the surface and subsurface of cobalt. Phys Chem Chem Phys 2020; 22:15281-15287. [PMID: 32617541 DOI: 10.1039/d0cp02410d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The influence of coverage on the diffusion of hydrogen into the subsurface of cobalt was studied using density functional theory (DFT) and temperature programmed desorption (TPD). DFT calculations show that as the hydrogen coverage on Co(0001) increases, the barrier for hydrogen diffusion into the bulk decreases by 20%. Additionally, subsurface hydrogen on a hydrogen covered surface was found to be more stable when compared to a clean cobalt surface. To test these theoretical findings experimentally, excited hydrogen was used in an ultra-high vacuum environment to access higher hydrogen coverages. Our TPD studies showed that at high hydrogen coverages, a sharp low temperature feature appeared, indicating the stabilization of subsurface hydrogen. Further DFT calculations indicate that this sharp low temperature feature results from associative hydrogen desorption from a hydrogen saturated surface with a population of subsurface hydrogen. Microkinetic modelling was used to model the TPD spectra for hydrogen desporption from cobalt with and without subsurface hydrogen, showing reasonable agreement with experiment.
Collapse
Affiliation(s)
- Ryan A Ciufo
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Hannagan RT, Giannakakis G, Flytzani-Stephanopoulos M, Sykes ECH. Single-Atom Alloy Catalysis. Chem Rev 2020; 120:12044-12088. [DOI: 10.1021/acs.chemrev.0c00078] [Citation(s) in RCA: 286] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
46
|
Wang Y, Zheng P, Li M, Li Y, Zhang X, Chen J, Fang X, Liu Y, Yuan X, Dai X, Wang H. Interfacial synergy between dispersed Ru sub-nanoclusters and porous NiFe layered double hydroxide on accelerated overall water splitting by intermediate modulation. NANOSCALE 2020; 12:9669-9679. [PMID: 32319487 DOI: 10.1039/d0nr01491e] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Construction of an efficient bifunctional electrocatalyst through a rational interface-engineering strategy to optimize the adsorption energy of H* and OH* species at the atomic/molecular level is of great importance for water splitting. Although conventional NiFe layered double hydroxide (LDH) shows excellent performance for alkaline oxygen evolution reactions (OERs), it shows extremely poor activity toward hydrogen evolution reactions (HERs) due to weak hydrogen adsorption and sluggish kinetics. In this work, integration of sub-nanoscale Ru species with NiFe LDH can dramatically enhance the adsorption energy of H* and improve their HER kinetics. Besides, benefitting from the desired potential-induced strategy, the Ru-NiFe LDH interfaces will convert to RuO2-NiFe(OOH)x interfaces to optimize the adsorption energy of OH* to meet the requirement of strengthening the OER performance. Strikingly, the Ru-NiFe LDH-F/NF sample (NF: Ni foam) shows an excellent OER and HER performance with an overpotential of 230.0 mV and 115.6 mV at a current density of 10 mA cm-2, respectively, as well as outstanding durability. The overall water splitting device was fabricated by using Ru/NiFe LDH-F/NF as both the HER and OER electrode with a potential of 1.53 V to achieve a current density of 10 mA cm-2. In addition, the theoretical calculations demonstrated that the Ru-NiFe LDH interfaces could optimize the adsorption energy of H* and OH*. This study provides a new insight into the development of highly efficient bifunctional electrocatalysts for water electrolysis.
Collapse
Affiliation(s)
- Yao Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Beijing 102249, China.
| | - Peng Zheng
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Beijing 102249, China.
| | - Mingxuan Li
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Beijing 102249, China.
| | - Yunrui Li
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Beijing 102249, China.
| | - Xin Zhang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Beijing 102249, China.
| | - Juan Chen
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Beijing 102249, China.
| | - Xu Fang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Beijing 102249, China.
| | - Yujie Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Beijing 102249, China.
| | - Xiaolin Yuan
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Beijing 102249, China.
| | - Xiaoping Dai
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Beijing 102249, China.
| | - Hai Wang
- National Institute of Metrology, Beijing 100013, China
| |
Collapse
|
47
|
Hamamoto Y, Uchikoshi T, Tanabe K. Comprehensive modeling of hydrogen transport and accumulation in titanium and zirconium. NUCLEAR MATERIALS AND ENERGY 2020. [DOI: 10.1016/j.nme.2020.100751] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
48
|
Rao KK, Do QK, Pham K, Maiti D, Grabow LC. Extendable Machine Learning Model for the Stability of Single Atom Alloys. Top Catal 2020. [DOI: 10.1007/s11244-020-01267-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
49
|
Lopato EM, Eikey EA, Simon ZC, Back S, Tran K, Lewis J, Kowalewski JF, Yazdi S, Kitchin JR, Ulissi ZW, Millstone JE, Bernhard S. Parallelized Screening of Characterized and DFT-Modeled Bimetallic Colloidal Cocatalysts for Photocatalytic Hydrogen Evolution. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05404] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eric M. Lopato
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Emily A. Eikey
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Zoe C. Simon
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Seoin Back
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Kevin Tran
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Jacqueline Lewis
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Jakub F. Kowalewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Sadegh Yazdi
- Renewable and Sustainable Energy Institute, University of Colorado at Boulder, 4001 Discovery Drive, Boulder, Colorado 80309, United States
| | - John R. Kitchin
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Zachary W. Ulissi
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Jill E. Millstone
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Stefan Bernhard
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
50
|
Pd3Ag(111) as a Model System for Hydrogen Separation Membranes: Combined Effects of CO Adsorption and Surface Termination on the Activation of Molecular Hydrogen. Top Catal 2020. [DOI: 10.1007/s11244-020-01246-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractThe co-adsorption of hydrogen and carbon monoxide on Pd3Ag(111) alloy surfaces has been studied as a model system for Pd-Ag alloys in membrane and catalysis applications using periodic density functional theory calculations (PW91-GGA). We explored the effects of Pd–Ag surface composition, since segregation of silver towards and away from the surface has been suggested to explain the experimentally observed changes in H2 activation, CO inhibition and reactivity. We found that CO pre-adsorbed on the surface weakens the adsorption of H on Pd3Ag(111) alloy surfaces irrespective of whether the surface termination corresponds to the bulk Pd3Ag composition, or is purely Pd-terminated. A higher coverage of H with CO present is obtained for the Pd-terminated surface; this surface also exhibits a larger range of chemical potentials for co-adsorbed hydrogen and CO. The barrier for H2 activation increases with increasing CO coverage, but the surface composition has the largest impact on H2 activation at intermediate CO coverage. The results imply that Pd-based membranes with typically ~ 23 wt% Ag are less prone to CO poisoning if the surface becomes Pd-terminated.
Collapse
|