1
|
Santabarbara S, Agostini A, Petrova AA, Bortolus M, Casazza AP, Carbonera D. Chlorophyll triplet states in thylakoid membranes of Acaryochloris marina. Evidence for a triplet state sitting on the photosystem I primary donor populated by intersystem crossing. PHOTOSYNTHESIS RESEARCH 2024; 159:133-152. [PMID: 37191762 DOI: 10.1007/s11120-023-01023-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023]
Abstract
Photo-induced triplet states in the thylakoid membranes isolated from the cyanobacterium Acaryocholoris marina, that harbours Chlorophyll (Chl) d as its main chromophore, have been investigated by Optically Detected Magnetic Resonance (ODMR) and time-resolved Electron Paramagnetic Resonance (TR-EPR). Thylakoids were subjected to treatments aimed at poising the redox state of the terminal electron transfer acceptors and donors of Photosystem II (PSII) and Photosystem I (PSI), respectively. Under ambient redox conditions, four Chl d triplet populations were detectable, identifiable by their characteristic zero field splitting parameters, after deconvolution of the Fluorescence Detected Magnetic Resonance (FDMR) spectra. Illumination in the presence of the redox mediator N,N,N',N'-Tetramethyl-p-phenylenediamine (TMPD) and sodium ascorbate at room temperature led to a redistribution of the triplet populations, with T3 (|D|= 0.0245 cm-1, |E|= 0.0042 cm-1) becoming dominant and increasing in intensity with respect to untreated samples. A second triplet population (T4, |D|= 0.0248 cm-1, |E|= 0.0040 cm-1) having an intensity ratio of about 1:4 with respect to T3 was also detectable after illumination in the presence of TMPD and ascorbate. The microwave-induced Triplet-minus-Singlet spectrum acquired at the maximum of the |D|-|E| transition (610 MHz) displays a broad minimum at 740 nm, accompanied by a set of complex spectral features that overall resemble, despite showing further fine spectral structure, the previously reported Triplet-minus-Singlet spectrum attributed to the recombination triplet of PSI reaction centre,3 P 740 [Schenderlein M, Çetin M, Barber J, et al. Spectroscopic studies of the chlorophyll d containing photosystem I from the cyanobacterium Acaryochloris marina. Biochim Biophys Acta 1777:1400-1408]. However, TR-EPR experiments indicate that this triplet displays an eaeaea electron spin polarisation pattern which is characteristic of triplet sublevels populated by intersystem crossing rather than recombination, for which an aeeaae polarisation pattern is expected instead. It is proposed that the observed triplet, which leads to the bleaching of the P740 singlet state, sits on the PSI reaction centre.
Collapse
Affiliation(s)
- Stefano Santabarbara
- Photosynthesis Research Unit, Centro Studi Sulla Biologia Cellulare e Molecolare delle Piante, Consiglio Nazionale Delle Ricerche, Via Celoria 26, 20133, Milan, Italy.
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via Bassini 15a, 20133, Milan, Italy.
| | - Alessandro Agostini
- Department of Chemical Sciences, Università di Padova, Via Marzolo 1, 35131, Padua, Italy
| | - Anastasia A Petrova
- Photosynthesis Research Unit, Centro Studi Sulla Biologia Cellulare e Molecolare delle Piante, Consiglio Nazionale Delle Ricerche, Via Celoria 26, 20133, Milan, Italy
- A. N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory 1 Building 40, Moscow, Russia, 119992
| | - Marco Bortolus
- Department of Chemical Sciences, Università di Padova, Via Marzolo 1, 35131, Padua, Italy
| | - Anna Paola Casazza
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via Bassini 15a, 20133, Milan, Italy
| | - Donatella Carbonera
- Department of Chemical Sciences, Università di Padova, Via Marzolo 1, 35131, Padua, Italy.
| |
Collapse
|
2
|
Alster J, Bína D, Charvátová K, Lokstein H, Pšenčík J. Direct observation of triplet energy transfer between chlorophylls and carotenoids in the core antenna of photosystem I from Thermosynechococcus elongatus. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149016. [PMID: 37832862 DOI: 10.1016/j.bbabio.2023.149016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
Quenching of chlorophyll triplet states by carotenoids is an essential photoprotective process, which prevents formation of reactive singlet oxygen in photosynthetic light-harvesting complexes. The process is usually very efficient in oxygenic organisms under physiological conditions, thus preventing any observable accumulation of chlorophyll triplets. However, it subsequently prevents also the determination of the triplet transfer rate. Here we report results of nanosecond transient absorption spectroscopy on photosystem I core complexes, where a major part of chlorophyll a triplet states (~60 %) accumulates on a nanosecond time scale at ambient temperature. As a consequence, the triplet energy transfer could be resolved and the transfer time was determined to be about 24 ns. A smaller fraction of chlorophyll a triplet states (~40 %) is quenched with a faster rate, which could not be determined. Our analysis indicates that these chlorophylls are in direct contact with carotenoids. The overall chlorophyll triplet yield in the core antenna was estimated to be ~0.3 %, which is a value two orders of magnitude smaller than in most other photosynthetic light-harvesting complexes. This explains why slower quenching of chlorophyll triplet states is sufficient for photoprotection of photosystem I. Nevertheless, the core antenna of photosystem I represents one of only few photosynthetic complexes of oxygenic organisms in which the quenching rate of the majority of chlorophyll triplets can be directly monitored under physiological temperature.
Collapse
Affiliation(s)
- J Alster
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - D Bína
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic; Biology Centre, Czech Academy of Science, České Budějovice, Czech Republic
| | - K Charvátová
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - H Lokstein
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - J Pšenčík
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic.
| |
Collapse
|
3
|
Bhattacharjee S, Neese F, Pantazis DA. Triplet states in the reaction center of Photosystem II. Chem Sci 2023; 14:9503-9516. [PMID: 37712047 PMCID: PMC10498673 DOI: 10.1039/d3sc02985a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/16/2023] [Indexed: 09/16/2023] Open
Abstract
In oxygenic photosynthesis sunlight is harvested and funneled as excitation energy into the reaction center (RC) of Photosystem II (PSII), the site of primary charge separation that initiates the photosynthetic electron transfer chain. The chlorophyll ChlD1 pigment of the RC is the primary electron donor, forming a charge-separated radical pair with the vicinal pheophytin PheoD1 (ChlD1+PheoD1-). To avert charge recombination, the electron is further transferred to plastoquinone QA, whereas the hole relaxes to a central pair of chlorophylls (PD1PD2), subsequently driving water oxidation. Spin-triplet states can form within the RC when forward electron transfer is inhibited or back reactions are favored. This can lead to formation of singlet dioxygen, with potential deleterious effects. Here we investigate the nature and properties of triplet states within the PSII RC using a multiscale quantum-mechanics/molecular-mechanics (QM/MM) approach. The low-energy spectrum of excited singlet and triplet states, of both local and charge-transfer nature, is compared using range-separated time-dependent density functional theory (TD-DFT). We further compute electron paramagnetic resonance properties (zero-field splitting parameters and hyperfine coupling constants) of relaxed triplet states and compare them with available experimental data. Moreover, the electrostatic modulation of excited state energetics and redox properties of RC pigments by the semiquinone QA- is described. The results provide a detailed electronic-level understanding of triplet states within the PSII RC and form a refined basis for discussing primary and secondary electron transfer, charge recombination pathways, and possible photoprotection mechanisms in PSII.
Collapse
Affiliation(s)
- Sinjini Bhattacharjee
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Dimitrios A Pantazis
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| |
Collapse
|
4
|
Giovagnetti V, Ruban AV. The mechanism of regulation of photosystem I cross-section in the pennate diatom Phaeodactylum tricornutum. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:561-575. [PMID: 33068431 DOI: 10.1093/jxb/eraa478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Photosystems possess distinct fluorescence emissions at low (77K) temperature. PSI emits in the long-wavelength region at ~710-740 nm. In diatoms, a successful clade of marine primary producers, the contribution of PSI-associated emission (710-717 nm) has been shown to be relatively small. However, in the pennate diatom Phaeodactylum tricornutum, the source of the long-wavelength emission at ~710 nm (F710) remains controversial. Here, we addressed the origin and modulation of F710 fluorescence in this alga grown under continuous and intermittent light. The latter condition led to a strong enhancement in F710. Biochemical and spectral properties of the photosynthetic complexes isolated from thylakoid membranes were investigated for both culture conditions. F710 emission appeared to be associated with PSI regardless of light acclimation. To further assess whether PSII could also contribute to this emission, we decreased the concentration of PSII reaction centres and core antenna by growing cells with lincomycin, a chloroplast protein synthesis inhibitor. The treatment did not diminish F710 fluorescence. Our data suggest that F710 emission originates from PSI under the conditions tested and is enhanced in intermittent light-grown cells due to increased energy flow from the FCP antenna to PSI.
Collapse
Affiliation(s)
- Vasco Giovagnetti
- Department of Biochemistry, School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Alexander V Ruban
- Department of Biochemistry, School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
5
|
Cazzaniga S, Bressan M, Carbonera D, Agostini A, Dall'Osto L. Differential Roles of Carotenes and Xanthophylls in Photosystem I Photoprotection. Biochemistry 2016; 55:3636-49. [PMID: 27290879 DOI: 10.1021/acs.biochem.6b00425] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Carotenes and their oxygenated derivatives, xanthophylls, are structural elements of the photosynthetic apparatus and contribute to increasing both the light-harvesting and photoprotective capacity of the photosystems. β-Carotene is present in both the core complexes and light-harvesting system (LHCI) of Photosystem (PS) I, while xanthophylls lutein and violaxanthin bind exclusively to its antenna moiety; another xanthophyll, zeaxanthin, which protects chloroplasts against photooxidative damage, binds to the LHCI complexes under conditions of excess light. We functionally dissected various components of the xanthophyll- and carotene-dependent photoprotection mechanism of PSI by analyzing two Arabidopsis mutants: szl1 plants, with a carotene content lower than that of the wild type, and npq1, with suppressed zeaxanthin formation. When exposed to excess light, the szl1 genotype displayed PSI photoinhibition stronger than that of wild-type plants, while removing zeaxanthin had no such effect. The PSI-LHCI complex purified from szl1 was more photosensitive than the corresponding wild-type and npq1 complexes, as is evident from its faster photobleaching and increased rate of singlet oxygen release, suggesting that β-carotene is crucial in controlling chlorophyll triplet formation. Accordingly, fluorescence-detected magnetic resonance analysis showed an increase in the amplitude of signals assigned to chlorophyll triplets in β-carotene-depleted complexes. When PSI was fractioned into its functional moieties, it was revealed that the boost in the rate of singlet oxygen release caused by β-carotene depletion was greater in LHCI than in the core complex. We conclude that PSI-LHCI complex-bound β-carotene elicits a protective response, consisting of a reduction in the yield of harmful triplet excited states, while accumulation of zeaxanthin plays a minor role in restoring phototolerance.
Collapse
Affiliation(s)
- Stefano Cazzaniga
- Dipartimento di Biotecnologie, Università di Verona , Strada Le Grazie 15, 37134 Verona, Italy
| | - Mauro Bressan
- Dipartimento di Biotecnologie, Università di Verona , Strada Le Grazie 15, 37134 Verona, Italy
| | - Donatella Carbonera
- Dipartimento di Scienze Chimiche, Università di Padova , via Marzolo 1, 35100 Padova, Italy
| | - Alessandro Agostini
- Dipartimento di Scienze Chimiche, Università di Padova , via Marzolo 1, 35100 Padova, Italy
| | - Luca Dall'Osto
- Dipartimento di Biotecnologie, Università di Verona , Strada Le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
6
|
Arulmozhiraja S, Nakatani N, Nakayama A, Hasegawa JY. Energy dissipative photoprotective mechanism of carotenoid spheroidene from the photoreaction center of purple bacteria Rhodobacter sphaeroides. Phys Chem Chem Phys 2015; 17:23468-80. [PMID: 26292635 DOI: 10.1039/c5cp03089g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carotenoid spheroidene (SPO) functions for photoprotection in the photosynthetic reaction centers (RCs) and effectively dissipates its triplet excitation energy. Sensitized cis-to-trans isomerization was proposed as a possible mechanism for a singlet-triplet energy crossing for the 15,15'-cis-SPO; however, it has been questioned recently. To understand the dissipative photoprotective mechanism of this important SPO and to overcome the existing controversies on this issue, we carried out a theoretical investigation using density functional theory on the possible triplet energy relaxation mechanism through the cis-to-trans isomerization. Together with the earlier experimental observations, the possible mechanism was discussed for the triplet energy relaxation of the 15,15'-cis-SPO. The result shows that complete cis-to-trans isomerization is not necessary. Twisting the C15-C15' bond leads to singlet-triplet energy crossing at ϕ(14,15,15',14') = 77° with an energy 32.5 kJ mol(-1) (7.7 kcal mol(-1)) higher than that of the T1 15,15'-cis minimum. Further exploration of the minimum-energy intersystem crossing (MEISC) point shows that triplet relaxation could occur at a less distorted structure (ϕ = 58.4°) with the energy height of 26.5 KJ mol(-1) (6.3 kcal mol(-1)). Another important reaction coordinate to reach the MEISC point is the bond-length alternation. The model truncation effect, solvent effect, and spin-orbit coupling were also investigated. The singlet-triplet crossing was also investigated for the 13,14-cis stereoisomer and locked-13,14-cis-SPO. We also discussed the origin of the natural selection of the cis over trans isomer in the RC.
Collapse
Affiliation(s)
- Sundaram Arulmozhiraja
- Catalysis Research Center, Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo 001-0021, Japan.
| | | | | | | |
Collapse
|
7
|
Caffarri S, Tibiletti T, Jennings RC, Santabarbara S. A comparison between plant photosystem I and photosystem II architecture and functioning. Curr Protein Pept Sci 2015; 15:296-331. [PMID: 24678674 PMCID: PMC4030627 DOI: 10.2174/1389203715666140327102218] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 11/22/2013] [Accepted: 03/16/2014] [Indexed: 01/31/2023]
Abstract
Oxygenic photosynthesis is indispensable both for the development and maintenance of life on earth by converting
light energy into chemical energy and by producing molecular oxygen and consuming carbon dioxide. This latter
process has been responsible for reducing the CO2 from its very high levels in the primitive atmosphere to the present low
levels and thus reducing global temperatures to levels conducive to the development of life. Photosystem I and photosystem
II are the two multi-protein complexes that contain the pigments necessary to harvest photons and use light energy to
catalyse the primary photosynthetic endergonic reactions producing high energy compounds. Both photosystems are
highly organised membrane supercomplexes composed of a core complex, containing the reaction centre where electron
transport is initiated, and of a peripheral antenna system, which is important for light harvesting and photosynthetic activity
regulation. If on the one hand both the chemical reactions catalysed by the two photosystems and their detailed structure
are different, on the other hand they share many similarities. In this review we discuss and compare various aspects of
the organisation, functioning and regulation of plant photosystems by comparing them for similarities and differences as
obtained by structural, biochemical and spectroscopic investigations.
Collapse
Affiliation(s)
| | | | | | - Stefano Santabarbara
- Laboratoire de Génétique et de Biophysique des Plantes (LGBP), Aix-Marseille Université, Faculté des Sciences de Luminy, 163 Avenue de Luminy, 13009, Marseille, France.
| |
Collapse
|
8
|
Santabarbara S, Agostini A, Casazza AP, Zucchelli G, Carbonera D. Carotenoid triplet states in photosystem II: coupling with low-energy states of the core complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:262-275. [PMID: 25481107 DOI: 10.1016/j.bbabio.2014.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/19/2014] [Accepted: 11/21/2014] [Indexed: 11/28/2022]
Abstract
The photo-excited triplet states of carotenoids, sensitised by triplet-triplet energy transfer from the chlorophyll triplet states, have been investigated in the isolated Photosystem II (PSII) core complex and PSII-LHCII (Light Harvesting Complex II) supercomplex by Optically Detected Magnetic Resonance techniques, using both fluorescence (FDMR) and absorption (ADMR) detection. The absence of Photosystem I allows us to reach the full assignment of the carotenoid triplet states populated in PSII under steady state illumination at low temperature. Five carotenoid triplet ((3)Car) populations were identified in PSII-LHCII, and four in the PSII core complex. Thus, four (3)Car populations are attributed to β-carotene molecules bound to the core complex. All of them show associated fluorescence emission maxima which are relatively red-shifted with respect to the bulk emission of both the PSII-LHCII and the isolated core complexes. In particular the two populations characterised by Zero Field Splitting parameters |D|=0.0370-0.0373 cm(-1)/|E|=0.00373-0.00375 cm(-1) and |D|=0.0381-0.0385 cm(-1)/|E|=0.00393-0.00389 cm(-1), are coupled by singlet energy transfer with chlorophylls which have a red-shifted emission peaking at 705 nm. This observation supports previous suggestions that pointed towards the presence of long-wavelength chlorophyll spectral forms in the PSII core complex. The fifth (3)Car component is observed only in the PSII-LHCII supercomplex and is then assigned to the peripheral light harvesting system.
Collapse
Affiliation(s)
- Stefano Santabarbara
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via Celoria 26, 20133 Milan, Italy.
| | - Alessandro Agostini
- Department of Chemical Sciences, Università di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Anna Paola Casazza
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via Bassini 15a, 20133 Milano, Italy
| | - Giuseppe Zucchelli
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via Celoria 26, 20133 Milan, Italy
| | - Donatella Carbonera
- Department of Chemical Sciences, Università di Padova, Via Marzolo 1, 35131 Padova, Italy.
| |
Collapse
|
9
|
Photochemical trapping heterogeneity as a function of wavelength, in plant photosystem I (PSI–LHCI). BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:779-85. [DOI: 10.1016/j.bbabio.2013.03.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/12/2013] [Accepted: 03/20/2013] [Indexed: 11/18/2022]
|
10
|
Cazzaniga S, Li Z, Niyogi KK, Bassi R, Dall’Osto L. The Arabidopsis szl1 mutant reveals a critical role of β-carotene in photosystem I photoprotection. PLANT PHYSIOLOGY 2012; 159:1745-58. [PMID: 23029671 PMCID: PMC3425210 DOI: 10.1104/pp.112.201137] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 06/20/2012] [Indexed: 05/18/2023]
Abstract
Carotenes and their oxygenated derivatives, the xanthophylls, are structural determinants in both photosystems (PS) I and II. They bind and stabilize photosynthetic complexes, increase the light-harvesting capacity of chlorophyll-binding proteins, and have a major role in chloroplast photoprotection. Localization of carotenoid species within each PS is highly conserved: Core complexes bind carotenes, whereas peripheral light-harvesting systems bind xanthophylls. The specific functional role of each xanthophyll species has been recently described by genetic dissection, however the in vivo role of carotenes has not been similarly defined. Here, we have analyzed the function of carotenes in photosynthesis and photoprotection, distinct from that of xanthophylls, by characterizing the suppressor of zeaxanthin-less (szl) mutant of Arabidopsis (Arabidopsis thaliana) which, due to the decreased activity of the lycopene-β-cyclase, shows a lower carotene content than wild-type plants. When grown at room temperature, mutant plants showed a lower content in PSI light-harvesting complex I complex than the wild type, and a reduced capacity for chlorophyll fluorescence quenching, the rapidly reversible component of nonphotochemical quenching. When exposed to high light at chilling temperature, szl1 plants showed stronger photoxidation than wild-type plants. Both PSI and PSII from szl1 were similarly depleted in carotenes and yet PSI activity was more sensitive to light stress than PSII as shown by the stronger photoinhibition of PSI and increased rate of singlet oxygen release from isolated PSI light-harvesting complex I complexes of szl1 compared with the wild type. We conclude that carotene depletion in the core complexes impairs photoprotection of both PS under high light at chilling temperature, with PSI being far more affected than PSII.
Collapse
|
11
|
Carbonera D. Optically Detected Magnetic Resonance (ODMR) of photoexcited triplet states. PHOTOSYNTHESIS RESEARCH 2009; 102:403-414. [PMID: 19238576 DOI: 10.1007/s11120-009-9407-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 01/15/2009] [Indexed: 05/27/2023]
Abstract
Optically Detected Magnetic Resonance (ODMR) is a double resonance technique which combines optical measurements (fluorescence, phosphorescence, absorption) with electron spin resonance spectroscopy. After the first triplet-state ODMR experiments in zero magnetic field reported in 1968 by Schmidt and van der Waals, the number of double resonance studies on excited triplet states grew rapidly. Photosynthesis has proven to be a fruitful field of application due to the intrinsic possibility of forming photo-induced pigment triplet states in many sites of the photosynthetic apparatus. The basic principles of this technique are described and examples of application in Photosynthesis are reported.
Collapse
Affiliation(s)
- Donatella Carbonera
- Dipartimento di Scienze Chimiche, Universitá di Padova, 35131 Padova, Italy.
| |
Collapse
|
12
|
Mozzo M, Mantelli M, Passarini F, Caffarri S, Croce R, Bassi R. Functional analysis of Photosystem I light-harvesting complexes (Lhca) gene products of Chlamydomonas reinhardtii. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1797:212-21. [PMID: 19853576 DOI: 10.1016/j.bbabio.2009.10.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 10/09/2009] [Accepted: 10/14/2009] [Indexed: 10/20/2022]
Abstract
The outer antenna system of Chlamydomonas reinhardtii Photosystem I is composed of nine gene products, but due to difficulty in purification their individual properties are not known. In this work, the functional properties of the nine Lhca antennas of Chlamydomonas, have been investigated upon expression of the apoproteins in bacteria and refolding in vitro of the pigment-protein complexes. It is shown that all Lhca complexes have a red-shifted fluorescence emission as compared to the antenna complexes of Photosystem II, similar to Lhca from higher plants, but less red-shifted. Three complexes, namely Lhca2, Lhca4 and Lhca9, exhibit emission maxima above 707 nm and all carry an asparagine as ligand for Chl 603. The comparison of the protein sequences and the biochemical/spectroscopic properties of the refolded Chlamydomonas complexes with those of the well-characterized Arabidopsis thaliana Lhcas shows that all the Chlamydomonas complexes have a chromophore organization similar to that of A. thaliana antennas, particularly to Lhca2, despite low sequence identity. All the major biochemical and spectroscopic properties of the Lhca complexes have been conserved through the evolution, including those involved in "red forms" absorption. It has been proposed that in Chlamydomonas PSI antenna size and polypeptide composition can be modulated in vivo depending on growth conditions, at variance as compared to higher plants. Thus, the different properties of the individual Lhca complexes can be functional to adapt the architecture of the PSI-LHCI supercomplex to different environmental conditions.
Collapse
Affiliation(s)
- Milena Mozzo
- Department of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
13
|
Santabarbara S, Agostini G, Casazza AP, Syme CD, Heathcote P, Böhles F, Evans MC, Jennings RC, Carbonera D. Chlorophyll triplet states associated with Photosystem I and Photosystem II in thylakoids of the green alga Chlamydomonas reinhardtii. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:88-105. [DOI: 10.1016/j.bbabio.2006.10.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 10/16/2006] [Accepted: 10/17/2006] [Indexed: 12/01/2022]
|
14
|
Santabarbara S, Agostini G, Heathcote P, Carbonera D. A fluorescence detected magnetic resonance investigation of the carotenoid triplet states associated with photosystem II of isolated spinach thylakoid membranes. PHOTOSYNTHESIS RESEARCH 2005; 86:283-96. [PMID: 16172946 DOI: 10.1007/s11120-005-2840-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Accepted: 02/24/2005] [Indexed: 05/04/2023]
Abstract
The carotenoid triplet populations associated with the fluorescence emission chlorophyll forms of Photosystem II have been investigated in isolated spinach thylakoid membranes by means of fluorescence detected magnetic resonance in zero field (FDMR). The spectra collected in the 680-690 nm emission range, have been fitted by a global analysis procedure. At least five different carotenoid triplet states coupled to the terminal emitting chlorophyll forms of PS II, peaking at 682 nm, 687 nm and 692 nm, have been characterised. The triplets associated with the outer antenna emission forms, at 682 nm, have zero field splitting parameters |D| = 0.0385 cm-1, |E| = 0.00367 cm-1; |D| = 0.0404 cm-1, |E| = 0.00379 cm-1 and |D| = 0.0386 cm-1, |E| = 0.00406 cm-1 which are very similar to those previously reported for the xanthophylls of the isolated LHC II complex. Therefore the FDMR spectra recorded in this work provide insights into the organisation of the LHC II complex in the unperturbed environment represented by thylakoid membranes. The additional carotenoid triplet populations, detected by monitoring the chlorophyll emission at 687 and 692 nm, are assigned to carotenoids bound to inner antenna complexes and hence attributed to beta-carotene molecules.
Collapse
Affiliation(s)
- Stefano Santabarbara
- School of Biological Sciences, Queen Mary University of London, Mile End Road, E1 4NS London, UK.
| | | | | | | |
Collapse
|
15
|
Carbonera D, Agostini G, Morosinotto T, Bassi R. Quenching of Chlorophyll Triplet States by Carotenoids in Reconstituted Lhca4 Subunit of Peripheral Light-Harvesting Complex of Photosystem I. Biochemistry 2005; 44:8337-46. [PMID: 15938623 DOI: 10.1021/bi050260z] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, triplet quenching, the major photoprotection mechanism in antenna proteins, has been studied in the light-harvesting complex of photosystem I (LHC-I). The ability of carotenoids bound to LHC-I subunit Lhca4, which is characterized by the presence of the red-most absorption components at wavelength >700 nm, to protect the system through quenching of the chlorophyll triplet states, has been probed, by analyzing the induction of carotenoid triplet formation. We have investigated this process at low temperature, when the funneling of the excitation toward the low-lying excited states of the Chls is stronger, by means of optically detected magnetic resonance (ODMR), which is well-suited for investigation of triplet states in photosynthetic systems. The high selectivity and sensitivity of the technique has made it possible to point out the presence of specific interactions between carotenoids forming the triplet states and specific chlorophylls characterized by red-shifted absorption, by detection of the microwave-induced Triplet minus Singlet (T-S) spectra. The effect of the red forms on the efficiency of triplet quenching was specifically probed by using the Asn47His mutant, in which the red forms have been selectively abolished (Morosinotto, T., Breton, J., Bassi, R., and Croce, R. (2003) J. Biol. Chem. 278, 49223-49229). Lack of the red forms yields into a reduced efficiency of the triplet quenching in LHC-I thus suggesting that the "red Chls" play a role in enhancing triplet quenching in LHC-I and, possibly, in the whole photosystem I.
Collapse
Affiliation(s)
- Donatella Carbonera
- Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, 35131 Padova, Italy.
| | | | | | | |
Collapse
|