1
|
Klippenstein SJ, Elliott SN. OH Roaming during the Ozonolysis of α-Pinene: A New Route to Highly Oxygenated Molecules? J Phys Chem A 2023; 127:10647-10662. [PMID: 38055299 DOI: 10.1021/acs.jpca.3c05179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The formation of low-volatility organic compounds in the ozonolysis of α-pinene, the dominant atmospheric monoterpene, provides an important route to aerosol formation. In this work, we consider a previously unexplored set of pathways for the formation of highly oxygenated molecules in α-pinene ozonolysis. Pioneering, direct experimental observations of Lester and co-workers have demonstrated a significant production of hydroxycarbonyl products in the dissociation of Criegee intermediates. Theoretical analyses indicate that this production arises from OH roaming-induced pathways during the OO fission of the vinylhydroperoxides (VHPs), which in turn come from internal H transfers in the Criegee intermediates. Ab initio kinetics computations are used here to explore the OH roaming-induced channels that arise from the ozonolysis of α-pinene. For computational reasons, the calculations consider a surrogate for α-pinene, where two spectator methyl groups are replaced with H atoms. Multireference electronic structure calculations are used to illustrate a variety of energetically accessible OH roaming pathways for the four VHPs arising from the ozonolysis of this α-pinene surrogate. Ab initio transition-state theory-based master equation calculations indicate that for the dissociation of stabilized VHPs, these OH roaming pathways are kinetically significant with a branching that generally increases from ∼20% at room temperature up to ∼70% at lower temperatures representative of the troposphere. For one of the VHPs, this branching already exceeds 60% at room temperature. For the overall ozonolysis process, these branching ratios would be greatly reduced by a limited branching to the stabilized VHP, although there would also be some modest roaming fraction for the nonthermal VHP dissociation process. The strong exothermicities of the roaming-induced isomerizations/additions and abstractions suggest new routes to fission of the cyclobutane rings. Such ring fissions would facilitate further autoxidation reactions, thereby providing a new route for producing highly oxygenated nonvolatile precursors to aerosol formation.
Collapse
Affiliation(s)
- Stephen J Klippenstein
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Sarah N Elliott
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
2
|
Kenseth CM, Hafeman NJ, Rezgui SP, Chen J, Huang Y, Dalleska NF, Kjaergaard HG, Stoltz BM, Seinfeld JH, Wennberg PO. Particle-phase accretion forms dimer esters in pinene secondary organic aerosol. Science 2023; 382:787-792. [PMID: 37972156 DOI: 10.1126/science.adi0857] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/11/2023] [Indexed: 11/19/2023]
Abstract
Secondary organic aerosol (SOA) is ubiquitous in the atmosphere and plays a pivotal role in climate, air quality, and health. The production of low-volatility dimeric compounds through accretion reactions is a key aspect of SOA formation. However, despite extensive study, the structures and thus the formation mechanisms of dimers in SOA remain largely uncharacterized. In this work, we elucidate the structures of several major dimer esters in SOA from ozonolysis of α-pinene and β-pinene-substantial global SOA sources-through independent synthesis of authentic standards. We show that these dimer esters are formed in the particle phase and propose a mechanism of nucleophilic addition of alcohols to a cyclic acylperoxyhemiacetal. This chemistry likely represents a general pathway to dimeric compounds in ambient SOA.
Collapse
Affiliation(s)
- Christopher M Kenseth
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Nicholas J Hafeman
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Samir P Rezgui
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jing Chen
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Yuanlong Huang
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Nathan F Dalleska
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Henrik G Kjaergaard
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Brian M Stoltz
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - John H Seinfeld
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Paul O Wennberg
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
3
|
Hakala J, Donahue NM. Carbonyl Oxide Stabilization from Trans Alkene and Terpene Ozonolysis. J Phys Chem A 2023; 127:8530-8543. [PMID: 37792960 PMCID: PMC10591513 DOI: 10.1021/acs.jpca.3c03650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/14/2023] [Indexed: 10/06/2023]
Abstract
The pressure dependence of carbonyl oxide (Criegee intermediate) stabilization can be measured via H2SO4 detection using chemical ionization mass spectrometry. By selectively scavenging OH radicals in a flow reactor containing an alkene, O3, and SO2, we measure an H2SO4 ratio related to the Criegee intermediate stabilization, and by performing experiments at multiple pressures, we constrain the pressure dependence of the stabilization. Here, we present results from a set of monoterpenes as well as isoprene, along with previously published results from tetramethylethylene and a sequence of symmetrical trans alkenes. We are able to reproduce the observations with a physically sensible set of parameters related to standard pressure falloff functions, providing both a consistent picture of the reaction dynamics and a method to describe the pressure stabilization following ozonolysis of all alkenes under a wide range of atmospheric conditions.
Collapse
Affiliation(s)
- Jani Hakala
- Center
for Atmospheric Particle Studies, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Institute
for Atmospheric and Earth System Research, Department of Physics, University of Helsinki, P.O. Box 64, Helsinki, 00014, Finland
| | - Neil M. Donahue
- Center
for Atmospheric Particle Studies, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
4
|
Liu Y, Zhou M, Lu K. Compilation of reaction kinetics parameters determined in the Key Development Project for Air Pollution Formation Mechanism and Control Technologies in China. J Environ Sci (China) 2023; 123:327-340. [PMID: 36521996 DOI: 10.1016/j.jes.2022.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 06/17/2023]
Abstract
A compilation of new advances made in the research field of laboratory reaction kinetics in China's Key Development Project for Air Pollution Formation Mechanism and Control Technologies was presented. These advances are grouped into six broad, interrelated categories, including volatile organic compound (VOC) oxidation, secondary organic aerosol (SOA) formation, new particle formation (NPF) and gas-particle partitioning, ozone chemistry, model parameters, and secondary inorganic aerosol (SIA) formation, highlighting the laboratory work done by Chinese researchers. For smog chamber applications, the current knowledge gained from laboratory studies is reviewed, with emphasis on summarizing the oxidation mechanisms of long-chain alkanes, aromatics, alkenes, aldehydes/ketones in the atmosphere, SOA formation from anthropogenic emission sources, and oxidation of aromatics, isoprene, and limonene, as well as SIA formation. For flow tube applications, atmospheric oxidation mechanisms of toluene and methacrolein, SOA formation from limonene oxidation by ozone, gas-particle partitioning of peroxides, and sulfuric acid-water (H2SO4-H2O) binary nucleation, methanesulfonic acid-water (MSA-H2O) binary nucleation, and sulfuric acid-ammonia-water (H2SO4-NH3-H2O) ternary nucleation are discussed.
Collapse
Affiliation(s)
- Yuehui Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Ming Zhou
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Keding Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
5
|
Karsili TNV, Marchetti B, Lester MI, Ashfold MNR. Electronic Absorption Spectroscopy and Photochemistry of Criegee Intermediates. Photochem Photobiol 2023; 99:4-18. [PMID: 35713380 DOI: 10.1111/php.13665] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/14/2022] [Indexed: 01/26/2023]
Abstract
Interest in Criegee intermediates (CIs), often termed carbonyl oxides, and their role in tropospheric chemistry has grown massively since the demonstration of laboratory-based routes to their formation and characterization in the gas phase. This article reviews current knowledge regarding the electronic spectroscopy of atmospherically relevant CIs like CH2 OO, CH3 CHOO, (CH3 )2 COO and larger CIs like methyl vinyl ketone oxide and methacrolein oxide that are formed in the ozonolysis of isoprene, and of selected conjugated carbene-derived CIs of interest in the synthetic chemistry community. Of the aforementioned atmospherically relevant CIs, all except CH2 OO and (CH3 )2 COO exist in different conformers which, under tropospheric conditions, can display strikingly different thermal loss rates via unimolecular and bimolecular processes. Calculated photolysis rates based on their absorption properties suggest that solar photolysis will rarely be a significant contributor to the total loss rate for any CI under tropospheric conditions. Nonetheless, there is ever-growing interest in the absorption cross sections and primary photochemistry of CIs following excitation to the strongly absorbing 1 ππ* state, and how this varies with CI, with conformer and with excitation wavelength. The later part of this review surveys the photochemical data reported to date, including a range of studies that demonstrate prompt photo-induced fission of the terminal O-O bond, and speculates about possible alternate decay processes that could occur following non-adiabatic coupling to, and dissociation from, highly internally excited levels of the electronic ground state of a CI.
Collapse
Affiliation(s)
| | | | - Marsha I Lester
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA
| | | |
Collapse
|
6
|
Kenseth CM, Hafeman NJ, Huang Y, Dalleska NF, Stoltz BM, Seinfeld JH. Synthesis of Carboxylic Acid and Dimer Ester Surrogates to Constrain the Abundance and Distribution of Molecular Products in α-Pinene and β-Pinene Secondary Organic Aerosol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12829-12839. [PMID: 32813970 DOI: 10.1021/acs.est.0c01566] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Liquid chromatography/negative electrospray ionization mass spectrometry [LC/(-)ESI-MS] is routinely employed to characterize the identity and abundance of molecular products in secondary organic aerosol (SOA) derived from monoterpene oxidation. Due to a lack of authentic standards, however, commercial terpenoic acids (e.g., cis-pinonic acid) are typically used as surrogates to quantify both monomeric and dimeric SOA constituents. Here, we synthesize a series of enantiopure, pinene-derived carboxylic acid and dimer ester homologues. We find that the (-)ESI efficiencies of the dimer esters are 19-36 times higher than that of cis-pinonic acid, demonstrating that the mass contribution of dimers to monoterpene SOA has been significantly overestimated in past studies. Using the measured (-)ESI efficiencies of the carboxylic acids and dimer esters as more representative surrogates, we determine that molecular products measureable by LC/(-)ESI-MS account for only 21.8 ± 2.6% and 18.9 ± 3.2% of the mass of SOA formed from ozonolysis of α-pinene and β-pinene, respectively. The 28-36 identified monomers (C7-10H10-18O3-6) constitute 15.6-20.5% of total SOA mass, whereas only 1.3-3.3% of the SOA mass is attributable to the 46-62 identified dimers (C15-19H24-32O4-11). The distribution of identified α-pinene and β-pinene SOA molecular products is examined as a function of carbon number (nC), average carbon oxidation state (OS¯C), and volatility (C*). The observed order-of-magnitude difference in (-)ESI efficiency between monomers and dimers is expected to be broadly applicable to other biogenic and anthropogenic SOA systems analyzed via (-) or (+) LC/ESI-MS under various LC conditions, and demonstrates that the use of unrepresentative surrogates can lead to substantial systematic errors in quantitative LC/ESI-MS analyses of SOA.
Collapse
Affiliation(s)
- Christopher M Kenseth
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Nicholas J Hafeman
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Yuanlong Huang
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, United States
| | - Nathan F Dalleska
- Environmental Analysis Center, Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, United States
| | - Brian M Stoltz
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - John H Seinfeld
- Divisions of Chemistry and Chemical Engineering and Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
7
|
Rousso AC, Hansen N, Jasper AW, Ju Y. Identification of the Criegee intermediate reaction network in ethylene ozonolysis: impact on energy conversion strategies and atmospheric chemistry. Phys Chem Chem Phys 2019; 21:7341-7357. [DOI: 10.1039/c9cp00473d] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction network of the simplest Criegee intermediate (CI) CH2OO has been studied experimentally during the ozonolysis of ethylene.
Collapse
Affiliation(s)
- Aric C. Rousso
- Department of Mechanical and Aerospace Engineering
- Princeton University
- USA
| | - Nils Hansen
- Combustion Research Facility
- Sandia National Laboratories
- Livermore
- USA
| | - Ahren W. Jasper
- Chemical Sciences and Engineering Division
- Argonne National Laboratory
- Lemont
- USA
| | - Yiguang Ju
- Department of Mechanical and Aerospace Engineering
- Princeton University
- USA
| |
Collapse
|
8
|
Sun C, Xu B, Lv L, Zhang S. Theoretical investigation on the reaction mechanism and kinetics of a Criegee intermediate with ethylene and acetylene. Phys Chem Chem Phys 2019; 21:16583-16590. [DOI: 10.1039/c9cp02644d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The competition among the possible pathways, the branching ratios of the adduct and the decomposition products at different temperatures and pressures have been evaluated.
Collapse
Affiliation(s)
- Cuihong Sun
- College of Chemical Engineering
- Shijiazhuang University
- Shijiazhuang
- P. R. China
| | - Baoen Xu
- College of Chemical Engineering
- Shijiazhuang University
- Shijiazhuang
- P. R. China
| | - Liqiang Lv
- College of Chemical Engineering
- Shijiazhuang University
- Shijiazhuang
- P. R. China
| | - Shaowen Zhang
- School of Chemistry and Chemical Engineering
- Key Laboratory of Cluster Science of Ministry of Education
- Beijing Institute of Technology
- South Zhongguancun Street #5
- Beijing
| |
Collapse
|
9
|
Luo PL, Chung CA, Lee YP. Rate coefficient of the reaction CH2OO + NO2 probed with a quantum-cascade laser near 11 μm. Phys Chem Chem Phys 2019; 21:17578-17583. [DOI: 10.1039/c9cp03333e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Employing a cw quantum-cascade laser coupled with Herriott mirrors to probe CH2OO, we report a rate coefficient k = (1.0 ± 0.2) × 10−12 cm3 molecule−1 s−1 for the reaction CH2OO + NO2 at 298 K, which is much smaller than literature values.
Collapse
Affiliation(s)
- Pei-Ling Luo
- Institute of Atomic and Molecular Sciences Academia Sinica
- Taipei 10617
- Taiwan
| | - Chen-An Chung
- Department of Applied Chemistry and Institute of Molecular Science National Chiao Tung University
- Hsinchu 30010
- Taiwan
| | - Yuan-Pern Lee
- Institute of Atomic and Molecular Sciences Academia Sinica
- Taipei 10617
- Taiwan
- Department of Applied Chemistry and Institute of Molecular Science National Chiao Tung University
- Hsinchu 30010
| |
Collapse
|
10
|
Khan MAH, Percival CJ, Caravan RL, Taatjes CA, Shallcross DE. Criegee intermediates and their impacts on the troposphere. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:437-453. [PMID: 29480909 DOI: 10.1039/c7em00585g] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Criegee intermediates (CIs), carbonyl oxides formed in ozonolysis of alkenes, play key roles in the troposphere. The decomposition of CIs can be a significant source of OH to the tropospheric oxidation cycle especially during nighttime and winter months. A variety of model-measurement studies have estimated surface-level stabilized Criegee intermediate (sCI) concentrations on the order of 1 × 104 cm-3 to 1 × 105 cm-3, which makes a non-negligible contribution to the oxidising capacity in the terrestrial boundary layer. The reactions of sCI with the water monomer and the water dimer have been found to be the most important bimolecular reactions to the tropospheric sCI loss rate, at least for the smallest carbonyl oxides; the products from these reactions (e.g. hydroxymethyl hydroperoxide, HMHP) are also of importance to the atmospheric oxidation cycle. The sCI can oxidise SO2 to form SO3, which can go on to form a significant amount of H2SO4 which is a key atmospheric nucleation species and therefore vital to the formation of clouds. The sCI can also react with carboxylic acids, carbonyl compounds, alcohols, peroxy radicals and hydroperoxides, and the products of these reactions are likely to be highly oxygenated species, with low vapour pressures, that can lead to nucleation and SOA formation over terrestrial regions.
Collapse
Affiliation(s)
- M A H Khan
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - C J Percival
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr, Pasadena, CA 91109, USA
| | - R L Caravan
- Combustion Research Facility, Sandia National Laboratories, Mailstop 9055, Livermore, California, 94551 USA
| | - C A Taatjes
- Combustion Research Facility, Sandia National Laboratories, Mailstop 9055, Livermore, California, 94551 USA
| | - D E Shallcross
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| |
Collapse
|
11
|
Kuwata KT, Luu L, Weberg AB, Huang K, Parsons AJ, Peebles LA, Rackstraw NB, Kim MJ. Quantum Chemical and Statistical Rate Theory Studies of the Vinyl Hydroperoxides Formed in trans-2-Butene and 2,3-Dimethyl-2-butene Ozonolysis. J Phys Chem A 2018; 122:2485-2502. [DOI: 10.1021/acs.jpca.8b00287] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Keith T. Kuwata
- Department of Chemistry, Macalester College, Saint Paul, Minnesota 55105-1899, United States
| | - Lina Luu
- Department of Chemistry, Macalester College, Saint Paul, Minnesota 55105-1899, United States
| | - Alexander B. Weberg
- Department of Chemistry, Macalester College, Saint Paul, Minnesota 55105-1899, United States
| | - Ke Huang
- Department of Chemistry, Macalester College, Saint Paul, Minnesota 55105-1899, United States
| | - Austin J. Parsons
- Department of Chemistry, Macalester College, Saint Paul, Minnesota 55105-1899, United States
| | - Liam A. Peebles
- Department of Chemistry, Macalester College, Saint Paul, Minnesota 55105-1899, United States
| | - Nathan B. Rackstraw
- Department of Chemistry, Macalester College, Saint Paul, Minnesota 55105-1899, United States
| | - Min Ji Kim
- Department of Chemistry, Macalester College, Saint Paul, Minnesota 55105-1899, United States
| |
Collapse
|
12
|
Xu K, Wang W, Wei W, Feng W, Sun Q, Li P. Insights into the Reaction Mechanism of Criegee Intermediate CH2OO with Methane and Implications for the Formation of Methanol. J Phys Chem A 2017; 121:7236-7245. [DOI: 10.1021/acs.jpca.7b05858] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kaining Xu
- Key
Laboratory of Life-Organic Analysis, School of Chemistry and Chemical
Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Weihua Wang
- Key
Laboratory of Life-Organic Analysis, School of Chemistry and Chemical
Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Wenjing Wei
- Key
Laboratory of Life-Organic Analysis, School of Chemistry and Chemical
Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Wenling Feng
- Key
Laboratory of Life-Organic Analysis, School of Chemistry and Chemical
Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Qiao Sun
- Collaborative
Innovation Center of Radiation Medicine of Jiangsu Higher Education
Institutions, School for Radiological and Interdisciplinary Sciences, Soochow University, Suzhou 215123, P. R. China
| | - Ping Li
- Key
Laboratory of Life-Organic Analysis, School of Chemistry and Chemical
Engineering, Qufu Normal University, Qufu 273165, P. R. China
| |
Collapse
|
13
|
Vereecken L, Nguyen HMT. Theoretical Study of the Reaction of Carbonyl Oxide with Nitrogen Dioxide: CH2
OO + NO2. INT J CHEM KINET 2017. [DOI: 10.1002/kin.21112] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- L. Vereecken
- Institute for Tropospheric Chemistry; Forschungszentrum Jülich GmbH; 52428 Jülich Germany
| | - H. M. T. Nguyen
- Faculty of Chemistry and Center for Computational Science; Hanoi National University of Education; Hanoi Vietnam
| |
Collapse
|
14
|
Drozd GT, Kurtén T, Donahue NM, Lester MI. Unimolecular Decay of the Dimethyl-Substituted Criegee Intermediate in Alkene Ozonolysis: Decay Time Scales and the Importance of Tunneling. J Phys Chem A 2017; 121:6036-6045. [DOI: 10.1021/acs.jpca.7b05495] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Greg T. Drozd
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Theo Kurtén
- Department
of Chemistry, University of Helsinki, P.O. Box 55, Helsinki 00014, Finland
| | - Neil M. Donahue
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15123, United States
| | - Marsha I. Lester
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
15
|
H. Khan MA, Morris WC, Galloway M, A. Shallcross B, Percival CJ, Shallcross DE. An Estimation of the Levels of Stabilized Criegee Intermediates in the UK Urban and Rural Atmosphere Using the Steady-State Approximation and the Potential Effects of These Intermediates on Tropospheric Oxidation Cycles. INT J CHEM KINET 2017; 49:611-621. [PMID: 28781420 PMCID: PMC5519938 DOI: 10.1002/kin.21101] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/05/2017] [Accepted: 05/05/2017] [Indexed: 01/18/2023]
Abstract
Levels of the stabilized Criegee Intermediate (sCI), produced via the ozonolysis of unsaturated volatile organic compounds (VOCs), were estimated at two London urban sites (Marylebone Road and Eltham) and one rural site (Harwell) in the UK over the period of 1998-2012. The steady-state approximation was applied to data obtained from the NETCEN (National Environmental Technology Centre) database, and the levels of annual average sCI were estimated to be in the range of 30-3000 molecules cm-3 for UK sites. A consistent diurnal cycle of sCI concentration is estimated for the UK sites with increasing levels during daylight hours, peaking just after midday. The seasonal pattern of sCI shows higher levels in spring with peaks around May due to the higher levels of O3. The ozone weekend effect resulted in higher sCI in UK urban areas during weekend. The sCI data were modeled using the information provided by the Air Quality Improvement Research Program (AQIRP) and found that the modeled production was five- to six-fold higher than our estimated data, and therefore the estimated sCI concentrations in this study are thought to be lower estimates only. Compared with nighttime, 1.3- to 1.8-fold higher sCI exists under daytime conditions. Using the levels of sCI estimated at Marylebone Road, globally the oxidation rates of NO2 + sCI (22.4 Gg/yr) and SO2 + sCI (37.6 Gg/yr) in urban areas can increase their effect in the troposphere and potentially further alter the oxidizing capacity of the troposphere. Further investigations of modeled sCI show that CH3CHOO (64%) and CH2OO (13%) are dominant among all contributing sCI at the UK sites.
Collapse
Affiliation(s)
- M. Anwar H. Khan
- Atmospheric Chemistry Research GroupSchool of ChemistryUniversity of BristolBristolBS8 1TSUK
| | - William C. Morris
- Atmospheric Chemistry Research GroupSchool of ChemistryUniversity of BristolBristolBS8 1TSUK
| | - Matthew Galloway
- Atmospheric Chemistry Research GroupSchool of ChemistryUniversity of BristolBristolBS8 1TSUK
| | | | | | - Dudley E. Shallcross
- Atmospheric Chemistry Research GroupSchool of ChemistryUniversity of BristolBristolBS8 1TSUK
| |
Collapse
|
16
|
Taatjes CA. Criegee Intermediates: What Direct Production and Detection Can Teach Us About Reactions of Carbonyl Oxides. Annu Rev Phys Chem 2017; 68:183-207. [DOI: 10.1146/annurev-physchem-052516-050739] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Craig A. Taatjes
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551-0969
| |
Collapse
|
17
|
Caravan RL, Khan MAH, Rotavera B, Papajak E, Antonov IO, Chen MW, Au K, Chao W, Osborn DL, Lin JJM, Percival CJ, Shallcross DE, Taatjes CA. Products of Criegee intermediate reactions with NO2: experimental measurements and tropospheric implications. Faraday Discuss 2017; 200:313-330. [DOI: 10.1039/c7fd00007c] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reactions of Criegee intermediates with NO2 have been proposed as a potentially significant source of the important nighttime oxidant NO3, particularly in urban environments where concentrations of ozone, alkenes and NOx are high. However, previous efforts to characterize the yield of NO3 from these reactions have been inconclusive, with many studies failing to detect NO3. In the present work, the reactions of formaldehyde oxide (CH2OO) and acetaldehyde oxide (CH3CHOO) with NO2 are revisited to further explore the product formation over a pressure range of 4–40 Torr. NO3 is not observed; however, temporally resolved and [NO2]-dependent signal is observed at the mass of the Criegee–NO2 adduct for both formaldehyde- and acetaldehyde-oxide systems, and the structure of this adduct is explored through ab initio calculations. The atmospheric implications of the title reaction are investigated through global modelling.
Collapse
|
18
|
Chhantyal-Pun R, Welz O, Savee JD, Eskola AJ, Lee EPF, Blacker L, Hill HR, Ashcroft M, Khan MAH, Lloyd-Jones GC, Evans L, Rotavera B, Huang H, Osborn DL, Mok DKW, Dyke JM, Shallcross DE, Percival CJ, Orr-Ewing AJ, Taatjes CA. Direct Measurements of Unimolecular and Bimolecular Reaction Kinetics of the Criegee Intermediate (CH3)2COO. J Phys Chem A 2016; 121:4-15. [DOI: 10.1021/acs.jpca.6b07810] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rabi Chhantyal-Pun
- School of Chemistry, The University of Bristol, Cantock’s
Close BS8 1TS, U.K
| | - Oliver Welz
- Combustion Research Facility, Mail Stop
9055, Sandia National Laboratories, Livermore, California 94551-0969, United States
| | - John D. Savee
- Combustion Research Facility, Mail Stop
9055, Sandia National Laboratories, Livermore, California 94551-0969, United States
| | - Arkke J. Eskola
- Combustion Research Facility, Mail Stop
9055, Sandia National Laboratories, Livermore, California 94551-0969, United States
| | - Edmond P. F. Lee
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
- Department
of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Lucy Blacker
- School of Chemistry, The University of Bristol, Cantock’s
Close BS8 1TS, U.K
| | - Henry R. Hill
- School of Chemistry, The University of Bristol, Cantock’s
Close BS8 1TS, U.K
| | - Matilda Ashcroft
- School of Chemistry, The University of Bristol, Cantock’s
Close BS8 1TS, U.K
| | - M. Anwar H. Khan
- School of Chemistry, The University of Bristol, Cantock’s
Close BS8 1TS, U.K
| | - Guy C. Lloyd-Jones
- School of Chemistry, The University of Bristol, Cantock’s
Close BS8 1TS, U.K
| | - Louise Evans
- School of Chemistry, The University of Bristol, Cantock’s
Close BS8 1TS, U.K
| | - Brandon Rotavera
- Combustion Research Facility, Mail Stop
9055, Sandia National Laboratories, Livermore, California 94551-0969, United States
| | - Haifeng Huang
- Combustion Research Facility, Mail Stop
9055, Sandia National Laboratories, Livermore, California 94551-0969, United States
| | - David L. Osborn
- Combustion Research Facility, Mail Stop
9055, Sandia National Laboratories, Livermore, California 94551-0969, United States
| | - Daniel K. W. Mok
- The Centre
for Atmospheric Science, The School of Earth, Atmospheric and Environmental
Science, The University of Manchester, Simon Building, Brunswick Street, Manchester M13 9PL, U.K
| | - John M. Dyke
- Department
of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | | | - Carl J. Percival
- The Centre
for Atmospheric Science, The School of Earth, Atmospheric and Environmental
Science, The University of Manchester, Simon Building, Brunswick Street, Manchester M13 9PL, U.K
| | - Andrew J. Orr-Ewing
- School of Chemistry, The University of Bristol, Cantock’s
Close BS8 1TS, U.K
| | - Craig A. Taatjes
- Combustion Research Facility, Mail Stop
9055, Sandia National Laboratories, Livermore, California 94551-0969, United States
| |
Collapse
|
19
|
Hakala JP, Donahue NM. Pressure-Dependent Criegee Intermediate Stabilization from Alkene Ozonolysis. J Phys Chem A 2016; 120:2173-8. [DOI: 10.1021/acs.jpca.6b01538] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jani P. Hakala
- Center
for Atmospheric Particle Studies, Carnegie Mellon University, 5000
Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Division
of Atmospheric Sciences, Department of Physics, University of Helsinki, Gustaf Hällströminkatu 2 A, 00560 Helsinki, Finland
| | - Neil M. Donahue
- Center
for Atmospheric Particle Studies, Carnegie Mellon University, 5000
Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
20
|
|
21
|
Vereecken L, Glowacki DR, Pilling MJ. Theoretical Chemical Kinetics in Tropospheric Chemistry: Methodologies and Applications. Chem Rev 2015; 115:4063-114. [DOI: 10.1021/cr500488p] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Luc Vereecken
- Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - David R. Glowacki
- PULSE
Institute and Department of Chemistry, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
- Department
of Computer Science, University of Bristol, Bristol BS8 1UB, United Kingdom
| | | |
Collapse
|
22
|
Berndt T, Kaethner R, Voigtländer J, Stratmann F, Pfeifle M, Reichle P, Sipilä M, Kulmala M, Olzmann M. Kinetics of the unimolecular reaction of CH2OO and the bimolecular reactions with the water monomer, acetaldehyde and acetone under atmospheric conditions. Phys Chem Chem Phys 2015; 17:19862-73. [DOI: 10.1039/c5cp02224j] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The rate coefficients of the unimolecular reaction of CH2OO and the bimolecular reactions with the water monomer and carbonyls were measured.
Collapse
Affiliation(s)
- Torsten Berndt
- Leibniz-Institut für Troposphärenforschung
- TROPOS
- Leipzig
- Germany
| | - Ralf Kaethner
- Leibniz-Institut für Troposphärenforschung
- TROPOS
- Leipzig
- Germany
| | | | - Frank Stratmann
- Leibniz-Institut für Troposphärenforschung
- TROPOS
- Leipzig
- Germany
| | - Mark Pfeifle
- Institut für Physikalische Chemie
- Karlsruher Institut für Technologie (KIT)
- Karlsruhe
- Germany
| | - Patrick Reichle
- Institut für Physikalische Chemie
- Karlsruher Institut für Technologie (KIT)
- Karlsruhe
- Germany
| | - Mikko Sipilä
- Department of Physics
- University of Helsinki
- Helsinki
- Finland
| | - Markku Kulmala
- Department of Physics
- University of Helsinki
- Helsinki
- Finland
| | - Matthias Olzmann
- Institut für Physikalische Chemie
- Karlsruher Institut für Technologie (KIT)
- Karlsruhe
- Germany
| |
Collapse
|
23
|
Rissanen MP, Kurtén T, Sipilä M, Thornton JA, Kangasluoma J, Sarnela N, Junninen H, Jørgensen S, Schallhart S, Kajos MK, Taipale R, Springer M, Mentel TF, Ruuskanen T, Petäjä T, Worsnop DR, Kjaergaard HG, Ehn M. The formation of highly oxidized multifunctional products in the ozonolysis of cyclohexene. J Am Chem Soc 2014; 136:15596-606. [PMID: 25283472 DOI: 10.1021/ja507146s] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The prompt formation of highly oxidized organic compounds in the ozonolysis of cyclohexene (C6H10) was investigated by means of laboratory experiments together with quantum chemical calculations. The experiments were performed in borosilicate glass flow tube reactors coupled to a chemical ionization atmospheric pressure interface time-of-flight mass spectrometer with a nitrate ion (NO3(-))-based ionization scheme. Quantum chemical calculations were performed at the CCSD(T)-F12a/VDZ-F12//ωB97XD/aug-cc-pVTZ level, with kinetic modeling using multiconformer transition state theory, including Eckart tunneling corrections. The complementary investigation methods gave a consistent picture of a formation mechanism advancing by peroxy radical (RO2) isomerization through intramolecular hydrogen shift reactions, followed by sequential O2 addition steps, that is, RO2 autoxidation, on a time scale of seconds. Dimerization of the peroxy radicals by recombination and cross-combination reactions is in competition with the formation of highly oxidized monomer species and is observed to lead to peroxides, potentially diacyl peroxides. The molar yield of these highly oxidized products (having O/C > 1 in monomers and O/C > 0.55 in dimers) from cyclohexene ozonolysis was determined as (4.5 ± 3.8)%. Fully deuterated cyclohexene and cis-6-nonenal ozonolysis, as well as the influence of water addition to the system (either H2O or D2O), were also investigated in order to strengthen the arguments on the proposed mechanism. Deuterated cyclohexene ozonolysis resulted in a less oxidized product distribution with a lower yield of highly oxygenated products and cis-6-nonenal ozonolysis generated the same monomer product distribution, consistent with the proposed mechanism and in agreement with quantum chemical modeling.
Collapse
Affiliation(s)
- Matti P Rissanen
- Department of Physics, University of Helsinki , P.O. Box 64, Helsinki, 00014, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Shallcross DE, Taatjes CA, Percival CJ. Criegee intermediates in the indoor environment: new insights. INDOOR AIR 2014; 24:495-502. [PMID: 24512513 DOI: 10.1111/ina.12102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 02/02/2014] [Indexed: 06/03/2023]
Abstract
Criegee intermediates are formed in the ozonolysis of alkenes and play an important role in indoor chemistry, notably as a source of OH radicals. Recent studies have shown that these Criegee intermediates react very quickly with NO2 , SO2 , and carbonyls, and in this study, steady-state calculations are used to inspect the potential impact of these data on indoor chemistry. It is shown that these reactions could accelerate NO3 formation and SO2 removal in the indoor environment significantly. In addition, reaction between Criegee intermediates and halogenated carbonyls could provide a significant loss process indoors, where currently one does not exist.
Collapse
Affiliation(s)
- D E Shallcross
- School of Chemistry, Cantock's Close, University of Bristol, Bristol, UK
| | | | | |
Collapse
|
25
|
Alam MS, Rickard AR, Camredon M, Wyche KP, Carr T, Hornsby KE, Monks PS, Bloss WJ. Radical Product Yields from the Ozonolysis of Short Chain Alkenes under Atmospheric Boundary Layer Conditions. J Phys Chem A 2013; 117:12468-83. [DOI: 10.1021/jp408745h] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Mohammed S. Alam
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | | | - Marie Camredon
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Kevin P. Wyche
- Department
of Chemistry, University of Leicester, Leicester LE1 7RH, U.K
| | - Timo Carr
- Department
of Chemistry, University of Leicester, Leicester LE1 7RH, U.K
| | - Karen E. Hornsby
- Department
of Chemistry, University of Leicester, Leicester LE1 7RH, U.K
| | - Paul S. Monks
- Department
of Chemistry, University of Leicester, Leicester LE1 7RH, U.K
| | - William J. Bloss
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| |
Collapse
|
26
|
Taatjes CA, Welz O, Eskola AJ, Savee JD, Scheer AM, Shallcross DE, Rotavera B, Lee EPF, Dyke JM, Mok DKW, Osborn DL, Percival CJ. Direct Measurements of Conformer-Dependent Reactivity of the Criegee Intermediate CH3CHOO. Science 2013; 340:177-80. [DOI: 10.1126/science.1234689] [Citation(s) in RCA: 327] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
27
|
Ouyang B, McLeod MW, Jones RL, Bloss WJ. NO3 radical production from the reaction between the Criegee intermediate CH2OO and NO2. Phys Chem Chem Phys 2013; 15:17070-5. [DOI: 10.1039/c3cp53024h] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Henry KM, Lohaus T, Donahue NM. Organic aerosol yields from α-pinene oxidation: bridging the gap between first-generation yields and aging chemistry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:12347-12354. [PMID: 23088520 DOI: 10.1021/es302060y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Secondary organic aerosol formation from volatile precursors can be thought of as a succession of generations of reaction products. Here, we constrain first-generation SOA formation from the α-pinene + OH reaction and also study SOA formation from α-pinene ozonolysis carried out without an OH scavenger. SOA yields from OH oxidation of α-pinene are significantly higher than SOA yields from ozonolysis including an OH scavenger, and the SOA mass yields for unscavenged ozonolysis generally fall within the range of mass yields for α-pinene ozonolysis under various conditions. Taken together, first-generation product yields parametrized with a volatility basis set fit provide a starting point for atmospheric models designed to simulate both the production and subsequent aging of SOA from this important terpene.
Collapse
Affiliation(s)
- Kaytlin M Henry
- Carnegie Mellon University Department of Chemical Engineering, 5000 Forbes Ave Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|
29
|
Vereecken L, Harder H, Novelli A. The reaction of Criegee intermediates with NO, RO2, and SO2, and their fate in the atmosphere. Phys Chem Chem Phys 2012; 14:14682-95. [PMID: 23032271 DOI: 10.1039/c2cp42300f] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The reaction of Criegee intermediates (CI) with NO and RO(2) radicals is studied for the first time by theoretical methodologies; additionally, the reaction of CI with SO(2) molecules is re-examined. The reaction of CI with NO was found to be slow, with a distinct energy barrier. Their reaction with RO(2) radicals proceeds by the formation of a pre-reactive complex followed by addition of the RO(2) radical on the CI carbon over a submerged barrier, leading to a larger peroxy radical and opening the possibility for oligomer formation in agreement with experiment. The impact of singlet biradicals on the reaction of CI with SO(2) is examined, finding a different reaction mechanism compared to earlier work. For larger CI, the reaction with SO(2) at atmospheric pressures mainly yields thermalized sulfur-bearing secondary ozonides. The fate of the CI in the atmosphere is examined in detail, based on observed concentration of a multitude of coreactants in the atmosphere, and estimated rate coefficients available from literature data. The impact of SCI on tropospheric chemistry is discussed.
Collapse
Affiliation(s)
- L Vereecken
- Max Planck Institute for Chemistry, Mainz, Germany.
| | | | | |
Collapse
|
30
|
Duncianu M, Olariu RI, Riffault V, Visez N, Tomas A, Coddeville P. Development of a new flow reactor for kinetic studies. Application to the ozonolysis of a series of alkenes. J Phys Chem A 2012; 116:6169-79. [PMID: 22268561 DOI: 10.1021/jp211480x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new flow reactor has been developed to study ozonolysis reactions at ambient pressure and room temperature (297 ± 2 K). The reaction kinetics of O(3) with 4-methyl-1-pentene (4M1P), 2-methyl-2-pentene (2M2P), 2,4,4-trimethyl-1-pentene (tM1P), 2,4,4-trimethyl-2-pentene (tM2P) and α-pinene have been investigated under pseudo-first-order conditions. Absolute measurements of the rate coefficients have been carried out by recording O(3) consumption in excess of organic compound. Alkene concentrations have been determined by sampling adsorbent cartridges that were thermodesorbed and analyzed by gas-chromatography coupled to flame ionization detection. Complementary experimental data have been obtained using a 250 L Teflon smog chamber. The following ozonolysis rate coefficients can be proposed (in cm(3) molecule(-1) s(-1)): k(4M1P) = (8.23 ± 0.50) × 10(-18), k(2M2P) = (4.54 ± 0.96) × 10(-16), k(tM1P) = (1.48 ± 0.11) × 10(-17), k(tM2P) = (1.25 ± 0.10) × 10(-16), and k(α-pinene) = (1.29 ± 0.16) × 10(-16), in very good agreement with literature values. The products of tM2P ozonolysis have been investigated, and branching ratios of (21.4 ± 2.8)% and (73.9 ± 7.3)% have been determined for acetone and 2,2-dimethyl-propanal, respectively. Additionally, a new nonoxidized intermediate, 2-methyl-1-propene, has been identified and quantified. A topological SAR analysis was also performed to strengthen the consistency of the kinetic data obtained with this new flow reactor.
Collapse
|
31
|
Henry KM, Donahue NM. Photochemical aging of α-pinene secondary organic aerosol: effects of OH radical sources and photolysis. J Phys Chem A 2012; 116:5932-40. [PMID: 22439909 DOI: 10.1021/jp210288s] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study addresses photochemical aging of secondary organic aerosol (SOA) produced from α-pinene ozonolysis. The SOA is aged via hydroxyl radical (OH) reactions with first-generation vapors and UV photolysis. OH radicals are created through tetramethylethylene ozonolysis, HOOH photolysis, or HONO photolysis, sources that vary in OH concentration and the presence or absence of UV illumination. Aging strongly influences observed SOA mass concentrations, but the behavior is complex. In the dark or with high concentrations of OH, vapors are functionalized, lowering their volatility, resulting in an increase in OA by a factor of 2-3. However, with lower concentrations of OH under UV illumination SOA mass concentrations decrease over time. We attribute this decrease to evaporation driven by photolysis of the highly functionalized second-generation products. The photolysis rates are rapid, a few percent of the NO(2) photolysis frequency, and can thus be highly competitive with other aging mechanisms in the atmosphere.
Collapse
Affiliation(s)
- Kaytlin M Henry
- Center for Atmospheric Particle Studies, Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, Pennsylvania, 15213 United States
| | | |
Collapse
|
32
|
Welz O, Savee JD, Osborn DL, Vasu SS, Percival CJ, Shallcross DE, Taatjes CA. Direct Kinetic Measurements of Criegee Intermediate (CH2OO) Formed by Reaction of CH2I with O2. Science 2012; 335:204-7. [DOI: 10.1126/science.1213229] [Citation(s) in RCA: 557] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
33
|
Vereecken L, Francisco JS. Theoretical studies of atmospheric reaction mechanisms in the troposphere. Chem Soc Rev 2012; 41:6259-93. [DOI: 10.1039/c2cs35070j] [Citation(s) in RCA: 311] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
34
|
Drozd GT, Donahue NM. Pressure Dependence of Stabilized Criegee Intermediate Formation from a Sequence of Alkenes. J Phys Chem A 2011; 115:4381-7. [DOI: 10.1021/jp2001089] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Greg T. Drozd
- Center for Atmospheric Particle Studies, Carnegie Mellon University, 1106 Doherty Hall, 5000 Forbes Ave., Pittsburgh, Pennsylvania, United States
| | - Neil M. Donahue
- Center for Atmospheric Particle Studies, Carnegie Mellon University, 1106 Doherty Hall, 5000 Forbes Ave., Pittsburgh, Pennsylvania, United States
| |
Collapse
|
35
|
Donahue NM, Drozd GT, Epstein SA, Presto AA, Kroll JH. Adventures in ozoneland: down the rabbit-hole. Phys Chem Chem Phys 2011; 13:10848-57. [DOI: 10.1039/c0cp02564j] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Drozd GT, Kroll J, Donahue NM. 2,3-Dimethyl-2-butene (TME) Ozonolysis: Pressure Dependence of Stabilized Criegee Intermediates and Evidence of Stabilized Vinyl Hydroperoxides. J Phys Chem A 2010; 115:161-6. [DOI: 10.1021/jp108773d] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Greg T. Drozd
- Carnegie Mellon, University, Pittsburgh, Pennsylvania, U.S.A., and Massachusetts Institute of Technology, Cambridge, Massachusetts, U.S.A
| | - Jesse Kroll
- Carnegie Mellon, University, Pittsburgh, Pennsylvania, U.S.A., and Massachusetts Institute of Technology, Cambridge, Massachusetts, U.S.A
| | - Neil M. Donahue
- Carnegie Mellon, University, Pittsburgh, Pennsylvania, U.S.A., and Massachusetts Institute of Technology, Cambridge, Massachusetts, U.S.A
| |
Collapse
|
37
|
Bothe M, Donahue NM. Organic aerosol formation in citronella candle plumes. AIR QUALITY, ATMOSPHERE, & HEALTH 2010; 3:131-137. [PMID: 20700379 PMCID: PMC2914284 DOI: 10.1007/s11869-009-0061-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 12/21/2009] [Indexed: 05/29/2023]
Abstract
Citronella candles are widely used as insect repellants, especially outdoors in the evening. Because these essential oils are unsaturated, they have a unique potential to form secondary organic aerosol (SOA) via reaction with ozone, which is also commonly elevated on summer evenings when the candles are often in use. We investigated this process, along with primary aerosol emissions, by briefly placing a citronella tealight candle in a smog chamber and then adding ozone to the chamber. In repeated experiments, we observed rapid and substantial SOA formation after ozone addition; this process must therefore be considered when assessing the risks and benefits of using citronella candle to repel insects.
Collapse
Affiliation(s)
- Melanie Bothe
- Department of Biochemical and Chemical Engineering, Technische Universität Dortmund, Dortmund, Germany
| | - Neil McPherson Donahue
- Carnegie Mellon University Center for Atmospheric Particle Studies, 5000 Forbes Ave, Pittsburgh, PA 15213 USA
| |
Collapse
|
38
|
Maksymiuk CS, Gayahtri C, Gil RR, Donahue NM. Secondary organic aerosol formation from multiphase oxidation of limonene by ozone: mechanistic constraints via two-dimensional heteronuclear NMR spectroscopy. Phys Chem Chem Phys 2009; 11:7810-8. [DOI: 10.1039/b820005j] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Epstein SA, Donahue NM. The Kinetics of Tetramethylethene Ozonolysis: Decomposition of the Primary Ozonide and Subsequent Product Formation in the Condensed Phase. J Phys Chem A 2008; 112:13535-41. [DOI: 10.1021/jp807682y] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Scott A. Epstein
- Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Neil M. Donahue
- Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
40
|
Johnson D, Marston G. The gas-phase ozonolysis of unsaturated volatile organic compounds in the troposphere. Chem Soc Rev 2008; 37:699-716. [PMID: 18362978 DOI: 10.1039/b704260b] [Citation(s) in RCA: 375] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The gas-phase reactions of ozone with unsaturated hydrocarbons are significant sources of free radical species (including *OH) and particulate material in the Earth's atmosphere. In this tutorial review, the kinetics, products and mechanisms of these reactions are examined, starting with a discussion of the original mechanism proposed by Criegee and following with a summary presentation of the complex, free radical-mediated reactions of carbonyl oxide (Criegee) intermediates. The contribution of ozone-terpene reactions to the atmospheric burden of secondary organic aerosol material is also discussed from the viewpoint of the formation of non-volatile organic acid products from the complex chemistry of ozone with alpha-pinene. Throughout the article, currently accepted understanding is supported through the presentation of key experimental results, and areas of persistent or new uncertainty are highlighted.
Collapse
Affiliation(s)
- David Johnson
- Department of Chemistry, University of Reading, PO Box 224, Whiteknights, Reading, UK RG6 6AD
| | | |
Collapse
|
41
|
Walser ML, Desyaterik Y, Laskin J, Laskin A, Nizkorodov SA. High-resolution mass spectrometric analysis of secondary organic aerosol produced by ozonation of limonene. Phys Chem Chem Phys 2008; 10:1009-22. [DOI: 10.1039/b712620d] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Lambe AT, Zhang J, Sage AM, Donahue NM. Controlled OH radical production via ozone-alkene reactions for use in aerosol aging studies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2007; 41:2357-63. [PMID: 17438787 DOI: 10.1021/es061878e] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We present a novel method for continuous, stable OH radical production for use in smog chamber studies, especially those focused on organic aerosol aging. Our source produces OH radicals from the reaction of 2,3-dimethyl-2-butene and ozone and is unique as a method that requires neither NOx nor UV photolysis of a radical precursor. Typical radical concentrations are in the range of (4-8) x 10(6) molec cm(-3) and are easily sustainable over experimental time scales of several hours. We discuss design considerations, radical production capability under different operating conditions, and the core source chemistry. As a proof of concept we present preliminary results from oxidation of n-hexacosane aerosol observed with an Aerodyne Aerosol Mass Spectrometer. The extent of hexacosane oxidation is sufficient to significantly change the organic aerosol mass spectrum by virtue of fast heterogeneous uptake of OH radicals at the particle surface, with a calculated uptake coefficient gamma = 1.04 +/-0.21.
Collapse
Affiliation(s)
- Andrew T Lambe
- Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | |
Collapse
|
43
|
Donahue NM, Tischuk JE, Marquis BJ, Huff Hartz KE. Secondary organic aerosol from limona ketone: insights into terpene ozonolysis via synthesis of key intermediates. Phys Chem Chem Phys 2007; 9:2991-8. [PMID: 17551623 DOI: 10.1039/b701333g] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Limona ketone was synthesized to explore the secondary organic aerosol (SOA) formation mechanism from limonene ozonolysis and also to test group-additivity concepts describing the volatility distribution of ozonolysis products from similar precursors. Limona ketone SOA production is indistinguishable from alpha-pinene, confirming the expected similarity. However, limona ketone SOA production is significantly less intense than limonene SOA production. The very low vapor pressure of limonene ozonolysis products is consistent with full oxidation of both double bonds in limonene and furthermore with production of products other than ketones after oxidation of the exo double bond in limonene. Mass-balance constraints confirm that ketone products from exo double-bond ozonolysis have a minimal contribution to the ultimate product yield. These results serve as the foundation for an emerging framework to describe the effect on volatility of successive generations of organic compounds in the atmosphere.
Collapse
Affiliation(s)
- Neil M Donahue
- Center for Atmospheric Particle Studies, Carnegie Mellon University, USA
| | | | | | | |
Collapse
|
44
|
Presto AA, Hartz KEH, Donahue NM. Secondary organic aerosol production from terpene ozonolysis. 2. Effect of NOx concentration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2005; 39:7046-54. [PMID: 16201628 DOI: 10.1021/es050400s] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We report secondary organic aerosol (SOA) yields from the ozonolysis of alpha-pinene in the presence of NO and NO2. Experimental conditions are characterized by the [VOC]0/ [NOx]0 ratio (ppbC/ppb), which varies from approximately 1 to approximately 300. SOA yield is constant for [VOC]0/[NOx]0 > approximately 15 and decreases dramatically (by more than a factor of 4) as [VOC]0/[NOx]0 decreases. Aerosol production is completely suppressed in the presence of NO for [VOC]0/[NOx]0 < or = 4.5. Fouriertransform IR analysis of filter samples reveals that nitrate-containing species contribute significantly to the total aerosol mass at low [VOC]0/[NOx]0. Yield reduction is a result of the formation of a more volatile product distribution as [VOC]0/[NOx]0 decreases; we propose that the change in the product distribution is driven by changes in the gas-phase chemistry as NOx concentration increases. We also present two-product model parameters to describe aerosol production from the alpha-pinene/0/NOx system under both high- and low-NOx conditions.
Collapse
Affiliation(s)
- Albert A Presto
- Department of Chemistry and Department of Chemical Engineering, Doherty Hall, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|
45
|
Presto AA, Hartz KEH, Donahue NM. Secondary organic aerosol production from terpene ozonolysis. 1. Effect of UV radiation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2005; 39:7036-45. [PMID: 16201627 DOI: 10.1021/es050174m] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We report secondary organic aerosol (SOA) yields from the ozonolysis of alpha-pinene under both dark and UV-illuminated conditions. Exposure to UV light reduces SOA yield by 20-40%, with a maximum reduction in yield coinciding with a minimum in the amount of terpene consumed (15-30 ppb). The data are consistent with a constant absolute reduction in the yield of approximately 0.03. Gas chromatography mass spectrometry analysis of filter samples indicates that the major products found in alpha-pinene SOA include organic acids (e.g., pinic acid), keto acids (e.g., pinonic acid), and hydroxy keto acids (e.g., 10-hydroxypinonic acid). Analysis of filter-based results suggests that yield reduction is a result of the formation of a more volatile product distribution when experiments are conducted in the presence of UV light. These results implythat previous "dark bag" experiments may overestimate SOA generation from monoterpenes and also that SOA generation in the atmosphere may depend significantly on actinic flux.
Collapse
Affiliation(s)
- Albert A Presto
- Department of Chemistry and Department of Chemical Engineering, Doherty Hall, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|
46
|
Donahue NM, Hartz KEH, Chuong B, Presto AA, Stanier CO, Rosenhørn T, Robinson AL, Pandis SN. Critical factors determining the variation in SOA yields from terpene ozonolysis: A combined experimental and computational study. Faraday Discuss 2005; 130:295-309; discussion 363-86, 519-24. [PMID: 16161790 DOI: 10.1039/b417369d] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A substantial fraction of the total ultrafine particulate mass is comprised of organic compounds. Of this fraction, a significant subfraction is secondary organic aerosol (SOA), meaning that the compounds are a by-product of chemistry in the atmosphere. However, our understanding of the kinetics and mechanisms leading to and following SOA formation is in its infancy. We lack a clear description of critical phenomena; we often don't know the key, rate limiting steps in SOA formation mechanisms. We know almost nothing about aerosol yields past the first generation of oxidation products. Most importantly, we know very little about the derivatives in these mechanisms; we do not understand how changing conditions, be they precursor levels, oxidant concentrations, co-reagent concentrations (i.e., the VOC/NOx ratio) or temperature will influence the yields of SOA. In this paper we explore the connections between fundamental details of physical chemistry and the multitude of steps associated with SOA formation, including the initial gas-phase reaction mechanisms leading to condensible products, the phase partitioning itself, and the continued oxidation of the condensed-phase organic products. We show that SOA yields in the alpha-pinene + ozone are highly sensitive to NOx, and that SOA yields from beta-caryophylene + ozone appear to increase with continued ozone exposure, even as aerosol hygroscopicity increases as well. We suggest that SOA yields are likely to increase substantially through several generations of oxidative processing of the semi-volatile products.
Collapse
Affiliation(s)
- Neil M Donahue
- Department of Chemistry and Chemical Engineering, Carnegie Mellon University, Pittsburgh PA 15213, USA.
| | | | | | | | | | | | | | | |
Collapse
|