1
|
Gholami D, Sharafi M, Esmaeili V, Nadri T, Alaei L, Riazi G, Shahverdi A. Beneficial effects of trehalose and gentiobiose on human sperm cryopreservation. PLoS One 2023; 18:e0271210. [PMID: 37053285 PMCID: PMC10101468 DOI: 10.1371/journal.pone.0271210] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 06/25/2022] [Indexed: 04/15/2023] Open
Abstract
The protection of human sperm during cryopreservation is of great importance to infertility. Recent studies have shown that this area is still a long way from its ultimate aim of maintaining the maximum viability of sperm in cryopreservation. The present study used trehalose and gentiobiose to prepare the human sperm freezing medium during the freezing-thawing. The freezing medium of sperm was prepared with these sugars, and the sperm were then cryopreserved. The viable cells, sperm motility parameters, sperm morphology, membrane integrity, apoptosis, acrosome integrity, DNA fragmentation, mitochondrial membrane potential, reactive oxygen radicals, and malondialdehyde concentration was evaluated using standard protocols. A higher percentage of the total and progressive motility, rate of viable sperm, cell membrane integrity, DNA and acrosome integrity, and mitochondrial membrane potential were observed in the two frozen treatment groups compared to the frozen control. The cells had less abnormal morphology due to treatment with the new freezing medium than the frozen control. The higher malondialdehyde and DNA fragmentation were significantly observed in the two frozen treatment groups than in the frozen control. According to the results of this study, the use of trehalose and gentiobiose in the sperm freezing medium is a suitable strategy for sperm freezing to improve its motion and cellular parameters.
Collapse
Affiliation(s)
- Dariush Gholami
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
- Department of Embryology at Reproduction Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACER, Tehran, Iran
| | - Mohsen Sharafi
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Vahid Esmaeili
- Department of Embryology at Reproduction Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACER, Tehran, Iran
| | - Touba Nadri
- Department of Animal Science, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Loghman Alaei
- Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | - Gholamhossein Riazi
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Abdolhossein Shahverdi
- Department of Embryology at Reproduction Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACER, Tehran, Iran
| |
Collapse
|
2
|
A Long Journey into the Investigation of the Structure–Dynamics–Function Paradigm in Proteins through the Activities of the Palermo Biophysics Group. BIOPHYSICA 2022. [DOI: 10.3390/biophysica2040040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
An overview of the biophysics activity at the Department of Physics and Chemistry Emilio Segrè of the University of Palermo is given. For forty years, the focus of the research has been on the protein structure–dynamics–function paradigm, with the aim of understanding the molecular basis of the relevant mechanisms and the key role of solvent. At least three research lines are identified; the main results obtained in collaboration with other groups in Italy and abroad are presented. This review is dedicated to the memory of Professors Massimo Ugo Palma, Maria Beatrice Palma Vittorelli, and Lorenzo Cordone, which were the founders of the Palermo School of Biophysics. We all have been, directly or indirectly, their pupils; we miss their enthusiasm for scientific research, their deep physical insights, their suggestions, their strict but always constructive criticisms, and, most of all, their friendship. This paper is dedicated also to the memory of Prof. Hans Frauenfelder, whose pioneering works on nonexponential rebinding kinetics, protein substates, and energy landscape have inspired a large part of our work in the field of protein dynamics.
Collapse
|
3
|
More than a Confinement: “Soft” and “Hard” Enzyme Entrapment Modulates Biological Catalyst Function. Catalysts 2019. [DOI: 10.3390/catal9121024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Catalysis makes chemical and biochemical reactions kinetically accessible. From a technological point of view, organic, inorganic, and biochemical catalysis is relevant for several applications, from industrial synthesis to biomedical, material, and food sciences. A heterogeneous catalyst, i.e., a catalyst confined in a different phase with respect to the reagents’ phase, requires either its physical confinement in an immobilization matrix or its physical adsorption on a surface. In this review, we will focus on the immobilization of biological catalysts, i.e., enzymes, by comparing hard and soft immobilization matrices and their effect on the modulation of the catalysts’ function. Indeed, unlike smaller molecules, the catalytic activity of protein catalysts depends on their structure, conformation, local environment, and dynamics, properties that can be strongly affected by the immobilization matrices, which, therefore, not only provide physical confinement, but also modulate catalysis.
Collapse
|
4
|
Olsson C, Genheden S, García Sakai V, Swenson J. Mechanism of Trehalose-Induced Protein Stabilization from Neutron Scattering and Modeling. J Phys Chem B 2019; 123:3679-3687. [PMID: 30964287 DOI: 10.1021/acs.jpcb.9b01856] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The sugar molecule trehalose has been proven to be an excellent stabilizing cosolute for the preservation of biological materials. However, the stabilizing mechanism of trehalose has been much debated during the previous decades, and it is still not fully understood, partly because it has not been completely established how trehalose molecules structure around proteins. Here, we present a molecular model of a protein-water-trehalose system, based on neutron scattering results obtained from neutron diffraction, quasielastic neutron scattering, and different computer modeling techniques. The structural data clearly show how the proteins are preferentially hydrated, and analysis of the dynamical properties show that the protein residues are slowed down because of reduced dynamics of the protein hydration shell, rather than because of direct trehalose-protein interactions. These findings, thereby, strongly support previous models related to the preferential hydration model and contradict other models based on water replacement at the protein surface. Furthermore, the results are important for understanding the specific role of trehalose in biological stabilization and, more generally, for providing a likely mechanism of how cosolutes affect the dynamics of proteins.
Collapse
Affiliation(s)
- Christoffer Olsson
- Department of Physics , Chalmers University of Technology , SE-412 96 Göteborg , Sweden
| | - Samuel Genheden
- Deparment of Chemistry and Molecular Biology , University of Gothenburg , Box 462, SE-405 30 Göteborg , Sweden
| | - Victoria García Sakai
- ISIS Facility, STFC Rutherford Appleton Laboratory , Harwell Campus , Didcot , OX11 0QX Oxfordshire , U.K
| | - Jan Swenson
- Department of Physics , Chalmers University of Technology , SE-412 96 Göteborg , Sweden
| |
Collapse
|
5
|
Knox PP, Lukashev EP, Gorokhov VV, Grishanova NP, Paschenko VZ. Hybrid complexes of photosynthetic reaction centers and quantum dots in various matrices: resistance to UV irradiation and heating. PHOTOSYNTHESIS RESEARCH 2019; 139:295-305. [PMID: 29948749 DOI: 10.1007/s11120-018-0529-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/05/2018] [Indexed: 06/08/2023]
Abstract
The effects of ultraviolet (UV) irradiation (up to 0.6 J/cm2) and heating (65 °C, 20 min) on the absorption spectra and electron transfer in dehydrated film samples of photosynthetic reaction centers (RCs) from purple bacterium Rhodobacter (Rb.) sphaeroides, as well as in hybrid structures consisting of RCs and quantum dots (QDs), have been studied. The samples were placed in organic matrices containing the stabilizers of protein structure-polyvinyl alcohol (PVA) and trehalose. UV irradiation led to partially irreversible oxidation of some RCs, as well as to transformation of some fraction of the bacteriochlorophyll (BChl) molecules into bacteriopheophytin (BPheo) molecules. In addition, UV irradiation causes degradation of some BChl molecules that is accompanied by formation of 3-acetyl-chlorophyll a molecules. Finally, UV irradiation destroys the RCs carotenoid molecules. The incorporation of RCs into organic matrices reduced pheophytinization. Trehalose was especially efficient in reducing the damage to the carotenoid and BChl molecules caused by UV irradiation. Hybrid films containing RC + QD were more stable to pheophytinization upon UV irradiation. However, the presence of QDs in films did not affect the processes of carotenoid destruction. The efficiency of the electronic excitation energy transfer from QD to P865 also did not change under UV irradiation. Heating led to dramatic destruction of the RCs structure and bacteriochlorins acquired the properties of unbound molecules. Trehalose provided strong protection against destruction of the RCs and hybrid (RC + QD) complexes.
Collapse
Affiliation(s)
- Peter P Knox
- Department of Biophysics, Biological Faculty of the M.V. Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Evgeny P Lukashev
- Department of Biophysics, Biological Faculty of the M.V. Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Vladimir V Gorokhov
- Department of Biophysics, Biological Faculty of the M.V. Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Nadezhda P Grishanova
- Department of Biophysics, Biological Faculty of the M.V. Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Vladimir Z Paschenko
- Department of Biophysics, Biological Faculty of the M.V. Lomonosov Moscow State University, Moscow, Russia, 119991.
| |
Collapse
|
6
|
Giuffrida S, Cordone L, Cottone G. Bioprotection Can Be Tuned with a Proper Protein/Saccharide Ratio: The Case of Solid Amorphous Matrices. J Phys Chem B 2018; 122:8642-8653. [PMID: 30149699 DOI: 10.1021/acs.jpcb.8b05098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Saccharides, and in particular trehalose, are well known for their high efficiency in protecting biostructures against adverse environmental conditions. The protein dynamics is known to be highly inhibited in a low-water trehalose host medium, the inhibition being markedly dependent on the amount of residual water. Besides hydration, the protein/sugar ratio is expected to affect the properties of saccharide amorphous matrices. In this work, we report an infrared spectroscopy study in dry amorphous matrices of various sugars (the disaccharides trehalose, maltose, sucrose, and lactose, and the trisaccharide raffinose) containing myoglobin, at different protein/sugar ratios. We analyze the stretching band of the bound CO molecule and the water association band. Such bands have already been successfully exploited for the simultaneous study of thermal evolution of a matrix and embedded protein. The results show a high dependence of protein and matrix signals on the protein/sugar ratio, the system behavior evolving from situations where (i) the protein slaves the matrix to (ii) protein ↔ matrix coupling/uncoupling, then to (iii) the matrix slaving the protein, with increasing sugar concentration. This supports a mutual protein ↔ matrix structural and dynamic influence in low hydrated systems, indicating that the protein/solvent master and slave paradigm does not strictly hold, but the mutual relationship depends on the relative concentrations. Furthermore, for each sugar, an optimal protein/sugar concentration ratio can be identified, which maximizes the protein preservation; under such a condition, the water content is minimal.
Collapse
Affiliation(s)
- Sergio Giuffrida
- Dipartimento di Fisica e Chimica , Università di Palermo , Viale delle Scienze 17-18 , I-90128 Palermo , Italy
| | - Lorenzo Cordone
- Dipartimento di Fisica e Chimica , Università di Palermo , Viale delle Scienze 17-18 , I-90128 Palermo , Italy
| | - Grazia Cottone
- Dipartimento di Fisica e Chimica , Università di Palermo , Viale delle Scienze 17-18 , I-90128 Palermo , Italy
| |
Collapse
|
7
|
Lukashev EP, Oleinikov IP, Knox PP, Seifullina NK, Gorokhov VV, Rubin AB. The Effects of ultraviolet irradiation on hybrid films of photosynthetic reaction centers and quantum dots in various organic matrices. Biophysics (Nagoya-shi) 2017. [DOI: 10.1134/s0006350917050128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
8
|
Giuffrida S, Cottone G, Cordone L. The water association band as a marker of hydrogen bonds in trehalose amorphous matrices. Phys Chem Chem Phys 2017; 19:4251-4265. [DOI: 10.1039/c6cp06848k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The water association band is a suitable marker of residual water behavior in bioprotective trehalose matrices.
Collapse
Affiliation(s)
- Sergio Giuffrida
- Dipartimento di Fisica e Chimica
- Università degli Studi di Palermo
- Palermo
- Italy
| | - Grazia Cottone
- Dipartimento di Fisica e Chimica
- Università degli Studi di Palermo
- Palermo
- Italy
- School of Physics
| | - Lorenzo Cordone
- Dipartimento di Fisica e Chimica
- Università degli Studi di Palermo
- Palermo
- Italy
| |
Collapse
|
9
|
Malferrari M, Savitsky A, Mamedov MD, Milanovsky GE, Lubitz W, Möbius K, Semenov AY, Venturoli G. Trehalose matrix effects on charge-recombination kinetics in Photosystem I of oxygenic photosynthesis at different dehydration levels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1440-1454. [DOI: 10.1016/j.bbabio.2016.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 05/03/2016] [Accepted: 05/06/2016] [Indexed: 10/21/2022]
|
10
|
|
11
|
Hill JJ, Shalaev EY, Zografi G. The importance of individual protein molecule dynamics in developing and assessing solid state protein preparations. J Pharm Sci 2014; 103:2605-2614. [PMID: 24867196 DOI: 10.1002/jps.24021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/05/2014] [Accepted: 05/06/2014] [Indexed: 11/09/2022]
Abstract
Processing protein solutions into the solid state is a common approach for generating stable amorphous protein mixtures that are suitable for long-term storage. Great care is typically given to protecting the protein native structure during the various drying steps that render it into the amorphous solid state. However, many studies illustrate that chemical and physical degradations still occur in spite of this amorphous material having good glassy properties and it being stored at temperatures below its glass transition temperature (Tg). Because of these persistent issues and recent biophysical studies that have refined the debate ascribing meaning to the molecular dynamical transition temperature and Tg of protein molecules, we provide an updated discussion on the impact of assessing and managing localized, individual protein molecule nondiffusive motions in the context of proteins being prepared into bulk amorphous mixtures. Our aim is to bridge the pharmaceutical studies addressing bulk amorphous preparations and their glassy behavior, with the biophysical studies historically focused on the nondiffusive internal protein dynamics and a protein's activity, along with their combined efforts in assessing the impact of solvent hydrogen-bonding networks on local stability. We also provide recommendations for future research efforts in solid-state formulation approaches.
Collapse
Affiliation(s)
- John J Hill
- Department of Bioengineering, University of Washington, Seattle, WA 98195.
| | | | - George Zografi
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705-2222
| |
Collapse
|
12
|
Malferrari M, Nalepa A, Venturoli G, Francia F, Lubitz W, Möbius K, Savitsky A. Structural and dynamical characteristics of trehalose and sucrose matrices at different hydration levels as probed by FTIR and high-field EPR. Phys Chem Chem Phys 2013; 16:9831-48. [PMID: 24358471 DOI: 10.1039/c3cp54043j] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Some organisms can survive complete dehydration and high temperatures by adopting an anhydrobiotic state in which the intracellular medium contains large amounts of disaccharides, particularly trehalose and sucrose. Trehalose is most effective also in protecting isolated in vitro biostructures. In an attempt to clarify the molecular mechanisms of disaccharide bioprotection, we compared the structure and dynamics of sucrose and trehalose matrices at different hydration levels by means of high-field W-band EPR and FTIR spectroscopy. The hydration state of the samples was characterized by FTIR spectroscopy and the structural organization was probed by EPR using a nitroxide radical dissolved in the respective matrices. Analysis of the EPR spectra showed that the structure and dynamics of the dehydrated matrices as well as their evolution upon re-hydration differ substantially between trehalose and sucrose. The dehydrated trehalose matrix is homogeneous in terms of distribution of the residual water and spin-probe molecules. In contrast, dehydrated sucrose forms a heterogeneous matrix. It is comprised of sucrose polycrystalline clusters and several bulk water domains. The amorphous form was found only in 30% (volume) of the sucrose matrix. Re-hydration leads to a structural homogenization of the sucrose matrix, whilst in the trehalose matrix several domains develop differing in the local water/radical content and radical mobility. The molecular model of the matrices provides an explanation for the different protein-matrix dynamical coupling observed in dried ternary sucrose and trehalose matrices, and accounts for the superior efficacy of trehalose as a bioprotectant. Furthermore, for bacterial photosynthetic reaction centers it is shown that at low water content the protein-matrix coupling is modulated by the sugar/protein molar ratio in sucrose matrices only. This effect is suggested to be related to the preference for sucrose, rather than trehalose, as a bioprotective disaccharide in some anhydrobiotic organisms.
Collapse
Affiliation(s)
- M Malferrari
- Laboratorio di Biochimica e Biofisica, Dipartimento di Farmacia e Biotecnologie, FaBiT, Università di Bologna, via Irnerio 42, I-40126 Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
13
|
Giuffrida S, Cottone G, Bellavia G, Cordone L. Proteins in amorphous saccharide matrices: structural and dynamical insights on bioprotection. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2013; 36:79. [PMID: 23884626 DOI: 10.1140/epje/i2013-13079-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 03/21/2013] [Accepted: 05/02/2013] [Indexed: 06/02/2023]
Abstract
Bioprotection by sugars, and in particular trehalose peculiarity, is a relevant topic due to the implications in several fields. The underlying mechanisms are not yet clearly elucidated, and remain the focus of current investigations. Here we revisit data obtained at our lab on binary sugar/water and ternary protein/sugar/water systems, in wide ranges of water content and temperature, in the light of the current literature. The data here discussed come from complementary techniques (Infrared Spectroscopy, Molecular Dynamics simulations, Small Angle X-ray Scattering and Calorimetry), which provided a consistent description of the bioprotection by sugars from the atomistic to the macroscopic level. We present a picture, which suggests that protein bioprotection can be explained in terms of a strong coupling of the biomolecule surface to the matrix via extended hydrogen-bond networks, whose properties are defined by all components of the systems, and are strongly dependent on water content. Furthermore, the data show how carbohydrates having similar hydrogen-bonding capabilities exhibit different efficiency in preserving biostructures.
Collapse
Affiliation(s)
- S Giuffrida
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Via Archirafi 36, I-90123, Palermo, Italy.
| | | | | | | |
Collapse
|
14
|
Giuffrida S, Panzica M, Giordano FM, Longo A. SAXS study on myoglobin embedded in amorphous saccharide matrices. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2011; 34:87. [PMID: 21938613 DOI: 10.1140/epje/i2011-11087-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 07/04/2011] [Indexed: 05/31/2023]
Abstract
We report on Small Angle X-ray Scattering (SAXS) measurements performed on samples of carboxy-myoglobin and met-myoglobin embedded in low hydrated matrices of four different saccharides (trehalose, sucrose, maltose and lactose). Results confirm the already reported occurrence of inhomogeneities, which are not peculiar of trehalose samples, but appear also in maltose and lactose, and in some cases also sucrose, being dependent on the sample hydration and on the presence of sodium dithionite. This behaviour confirms our previous interpretation about the nature of the inhomogeneities, and prompt it as a possible general behaviour for highly concentrated sugar matrices.
Collapse
Affiliation(s)
- S Giuffrida
- Dipartimento di Fisica, Università degli Studi di Palermo, via Archirafi 36, I-90123 Palermo, Italy.
| | | | | | | |
Collapse
|
15
|
Giuffrida S, Troia R, Schiraldi C, D’Agostino A, De Rosa M, Cordone L. MbCO Embedded in Trehalosyldextrin Matrices: Thermal Effects and Protein–Matrix Coupling. FOOD BIOPHYS 2010. [DOI: 10.1007/s11483-010-9197-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
16
|
Horta BA, Perić-Hassler L, Hünenberger PH. Interaction of the disaccharides trehalose and gentiobiose with lipid bilayers: A comparative molecular dynamics study. J Mol Graph Model 2010; 29:331-46. [DOI: 10.1016/j.jmgm.2010.09.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 09/24/2010] [Accepted: 09/30/2010] [Indexed: 11/29/2022]
|
17
|
Longo A, Giuffrida S, Cottone G, Cordone L. Myoglobin embedded in saccharide amorphous matrices: water-dependent domains evidenced by small angle X-ray scattering. Phys Chem Chem Phys 2010; 12:6852-8. [PMID: 20463993 DOI: 10.1039/b926977k] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report Small Angle X-ray Scattering (SAXS) measurements performed on samples of carboxy-myoglobin (MbCO) embedded in low-water trehalose glasses. Results showed that, in such samples, "low-protein" trehalose-water domains are present, surrounded by a protein-trehalose-water background; such finding is supported by Infrared Spectroscopy (FTIR) measurements. These domains, which do not appear in the absence of the protein and in analogous sucrose systems, preferentially incorporate the incoming water at the onset of rehydration, and disappear following large hydration. This observation suggests that, in organisms under anhydrobiosis, analogous domains could play a buffering role against the daily variations of the atmospheric moisture. The reported results are rationalized by assuming sizably different protein-matrix coupling in trehalose with respect to sucrose, analogous to the one suggested for the photosynthetic reaction centre from Rhodobacter sphaeroides (F. Francia et al., J. Am. Chem. Soc., 2008, 130, 10240-10246).
Collapse
Affiliation(s)
- Alessandro Longo
- Istituto per lo Studio dei Materiali Nanostrutturati ISMN-CNR, Via Ugo La Malfa 153, I-90146, Palermo
| | | | | | | |
Collapse
|
18
|
Katayama DS, Carpenter JF, Menard KP, Manning MC, Randolph TW. Mixing properties of lyophilized protein systems: a spectroscopic and calorimetric study. J Pharm Sci 2009; 98:2954-69. [PMID: 18623211 DOI: 10.1002/jps.21467] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The purpose of this study was to investigate the solid-state properties of lyophilized formulations of protein (ribonuclease A) containing sucrose or trehalose across a wide range of compositions, both in the presence or absence of hydroxyethylstarch (HES). Infrared spectroscopy reveals that the protein forms hydrogen bonds to sugars (sucrose or trehalose) as water is removed from the sample. The strength and/or number of hydrogen bonds in dried samples increase as the weight fraction of sugar increases. Significant deviations of glass transition temperatures (T(g)'s) from those predicted by free volume theory are seen in both protein-sugar systems. The behavior can be explained by formation of protein-sugar hydrogen bonds at the expense of self-interactions between the sugars. Attractive interactions between lyophilized ribonuclease A and HES were detected spectroscopically and from thermodynamic analysis of T(g) values, contrary to the view that HES is sterically hindered from interacting with the protein surface. Sucrose-HES interactions were much less favorable than trehalose-HES interactions, suggesting that phase separation in sugar/HES/protein mixtures would be more likely in the presence of sucrose than trehalose. Finally, the thermodynamics of mixing were investigated using differential scanning calorimetry (DSC) providing some of the first data for such solid protein sugar formulations with and without HES. In nearly all samples, positive excess enthalpy, excess entropy and excess free energy were observed, with the excess free energy being greater for samples containing sucrose rather than trehalose. Analysis of Flory-Huggins chi parameters suggests that phase separation between protein and excipients may be thermodynamically favored in these dried solid preparations.
Collapse
Affiliation(s)
- Derrick S Katayama
- Department of Pharmaceutical Sciences, Center for Pharmaceutical Biotechnology, University of Colorado, Denver Health Sciences Center, Denver, Colorado, USA
| | | | | | | | | |
Collapse
|
19
|
Lerbret A, Affouard F, Bordat P, Hédoux A, Guinet Y, Descamps M. Molecular dynamics simulations of lysozyme in water/sugar solutions. Chem Phys 2008. [DOI: 10.1016/j.chemphys.2007.09.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
|
21
|
Cordone L, Cottone G, Giuffrida S, Librizzi F. Thermal evolution of the CO stretching band in carboxy-myoglobin in the light of neutron scattering and molecular dynamics simulations. Chem Phys 2008. [DOI: 10.1016/j.chemphys.2007.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Pereira CS, Hünenberger PH. Interaction of the sugars trehalose, maltose and glucose with a phospholipid bilayer: a comparative molecular dynamics study. J Phys Chem B 2007; 110:15572-81. [PMID: 16884281 DOI: 10.1021/jp060789l] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular dynamics simulations are used to investigate the interaction of the sugars trehalose, maltose, and glucose with a phospholipid bilayer at atomic resolution. Simulations of the bilayer in the absence or in the presence of sugar (2 molal concentration for the disaccharides, 4 molal for the monosaccharide) are carried out at 325 and 475 K. At 325 K, the three sugars are found to interact directly with the lipid headgroups through hydrogen bonds, replacing water at about one-fifth to one-quarter of the hydrogen-bonding sites provided by the membrane. Because of its small size and of the reduced topological constraints imposed on the hydroxyl group locations and orientations, glucose interacts more tightly (at identical effective hydroxyl group concentration) with the lipid headgroups when compared to the disaccharides. At high temperature, the three sugars are able to prevent the thermal disruption of the bilayer. This protective effect is correlated with a significant increase in the number of sugar-headgroups hydrogen bonds. For the disaccharides, this change is predominantly due to an increase in the number of sugar molecules bridging three or more lipid molecules. For glucose, it is primarily due to an increase in the number of sugar molecules bound to one or bridging two lipid molecules.
Collapse
Affiliation(s)
- Cristina S Pereira
- Laboratory of Physical Chemistry, ETH-Hönggerberg, HCI, CH-8093 Zürich, Switzerland
| | | |
Collapse
|
23
|
Lerbret A, Bordat P, Affouard F, Hédoux A, Guinet Y, Descamps M. How Do Trehalose, Maltose, and Sucrose Influence Some Structural and Dynamical Properties of Lysozyme? Insight from Molecular Dynamics Simulations. J Phys Chem B 2007; 111:9410-20. [PMID: 17629322 DOI: 10.1021/jp071946z] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The influence of three well-known disaccharides, namely, trehalose, maltose, and sucrose, on some structural and dynamical properties of lysozyme has been investigated by means of molecular dynamics computer simulations in the 37-60 wt % concentration range. The effects of sugars on the protein conformation are found to be relatively weak, in agreement with the preferential hydration of lysozyme. Conversely, sugars seem to increase significantly the relaxation times of the protein. These effects are shown to be correlated to the fractional solvent accessibilities of lysozyme residues and further support the slaving of protein dynamics. Moreover, a significant increase in the relaxation times of lysozyme, sugars, and water molecules is observed within the studied concentration range and may result from the percolation of the hydrogen-bond network of sugar molecules. This percolation appears to be of primary importance to explain the influence of sugars on the dynamical properties of lysozyme and water.
Collapse
Affiliation(s)
- A Lerbret
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, New York 14853, USA.
| | | | | | | | | | | |
Collapse
|
24
|
D'Alfonso L, Collini M, Cannone F, Chirico G, Campanini B, Cottone G, Cordone L. GFP-mut2 proteins in trehalose-water matrixes: spatially heterogeneous protein-water-sugar structures. Biophys J 2007; 93:284-93. [PMID: 17416616 PMCID: PMC1914445 DOI: 10.1529/biophysj.106.090621] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report investigations on the properties of nanoenvironments around single-GFP-mut2 proteins in trehalose-water matrixes. Single-GFPmut2 molecules embedded in thin trehalose-water films were characterized in terms of their fluorescence brightness, bleaching dynamics, excited state lifetime, and fluorescence polarization. For each property, sets of approximately 100-150 single molecules have been investigated as a function of trehalose content and hydration. Three distinct and interconverting families of proteins have been found which differ widely in terms of bleaching dynamics, brightness, and fluorescence polarization, whose relative populations sizably depend on sample hydration. The reported results evidence the simultaneous presence of different protein-trehalose-water nanostructures whose rigidity increases by lowering the sample hydration. Such spatial inhomogeneity is in line with the well-known heterogeneous dynamics in supercooled fluids and in nonsolid carbohydrate glasses and gives a pictorial representation of the sharp, sudden reorganization of the above structures after uptake <==>release of water molecules.
Collapse
Affiliation(s)
- Laura D'Alfonso
- Dipartimento di Fisica, Università di Milano Bicocca, Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
25
|
Cottone G. A comparative study of carboxy myoglobin in saccharide-water systems by molecular dynamics simulation. J Phys Chem B 2007; 111:3563-9. [PMID: 17388507 DOI: 10.1021/jp0677288] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Results from room-temperature molecular dynamics simulation on a system containing carboxy-myoglobin, water, and maltose molecules are reported. Protein atomic fluctuations, protein-solvent and solvent-solvent hydrogen bonding have been analyzed and compared to the ones in trehalose-water and sucrose-water systems (Proteins 2005, 59, 291-302). Results help in rationalizing, at a molecular level, the effects of homologues disaccharides on protein structure/dynamics experimentally observed. Furthermore, the effectiveness of disaccharides in bioprotection in terms of peculiar protein-matrix coupling is also discussed.
Collapse
Affiliation(s)
- Grazia Cottone
- Dipartimento di Scienze Fisiche ed Astronomiche, Università Degli Studi di Palermo and CNISM, Via Archirafi 36, I-90123 Palermo, Italy.
| |
Collapse
|
26
|
Giuffrida S, Cottone G, Cordone L. Role of solvent on protein-matrix coupling in MbCO embedded in water-saccharide systems: a Fourier transform infrared spectroscopy study. Biophys J 2006; 91:968-80. [PMID: 16714349 PMCID: PMC1563748 DOI: 10.1529/biophysj.106.081927] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Embedding protein in sugar systems of low water content enables one to investigate the protein dynamic-structure function in matrixes whose rigidity is modulated by varying the content of residual water. Accordingly, studying the dynamics and structure thermal evolution of a protein in sugar systems of different hydration constitutes a tool for disentangling solvent rigidity from temperature effects. Furthermore, studies performed using different sugars may give information on how the detailed composition of the surrounding solvent affects the internal protein dynamics and structural evolution. In this work, we compare Fourier transform infrared spectroscopy measurements (300-20 K) on MbCO embedded in trehalose, sucrose, maltose, raffinose, and glucose matrixes of different water content. At all the water contents investigated, the protein-solvent coupling was tighter in trehalose than in the other sugars, thus suggesting a molecular basis for the trehalose peculiarity. These results are in line with the observation that protein-matrix phase separation takes place in lysozyme-lactose, whereas it is absent in lysozyme-trehalose systems; indeed, these behaviors may respectively be due to the lack or presence of suitable water-mediated hydrogen-bond networks, which match the protein surface to the surroundings. The above processes might be at the basis of pattern recognition in crowded living systems; indeed, hydration shells structural and dynamic matching is first needed for successful come together of interacting biomolecules.
Collapse
Affiliation(s)
- Sergio Giuffrida
- Dipartimento di Scienze Fisiche ed Astronomiche, Università di Palermo and CNISM, I-90123 Palermo, Italy
| | | | | |
Collapse
|
27
|
Hill JJ, Shalaev EY, Zografi G. Thermodynamic and dynamic factors involved in the stability of native protein structure in amorphous solids in relation to levels of hydration. J Pharm Sci 2005; 94:1636-67. [PMID: 15965985 DOI: 10.1002/jps.20333] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The internal, dynamical fluctuations of protein molecules exhibit many of the features typical of polymeric and bulk small molecule glass forming systems. The response of a protein's internal molecular mobility to temperature changes is similar to that of other amorphous systems, in that different types of motions freeze out at different temperatures, suggesting they exhibit the alpha-beta-modes of motion typical of polymeric glass formers. These modes of motion are attributed to the dynamic regimes that afford proteins the flexibility for function but that also develop into the large-scale collective motions that lead to unfolding. The protein dynamical transition, T(d), which has the same meaning as the T(g) value of other amorphous systems, is attributed to the temperature where protein activity is lost and the unfolding process is inhibited. This review describes how modulation of T(d) by hydration and lyoprotectants can determine the stability of protein molecules that have been processed as bulk, amorphous materials. It also examines the thermodynamic, dynamic, and molecular factors involved in stabilizing folded proteins, and the effects typical pharmaceutical processes can have on native protein structure in going from the solution state to the solid state.
Collapse
Affiliation(s)
- John J Hill
- ICOS Corporation, 22021 20th Avenue SE, Bothell, WA 98021, USA.
| | | | | |
Collapse
|
28
|
Chiantia S, Kahya N, Schwille P. Dehydration damage of domain-exhibiting supported bilayers: an AFM study on the protective effects of disaccharides and other stabilizing substances. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:6317-23. [PMID: 15982037 DOI: 10.1021/la050115m] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Atomic force microscopy (AFM) has been applied to characterize hydrated sphingomyelin/dioleoylphosphatidylcholine/cholesterol supported bilayers, after dehydration either in the absence or in the presence of several stabilizing substances. Such a study provides information about the effect of extreme environmental conditions on biological membranes and, in particular, on lipidic microdomains. Dehydration stress, indeed, is thought to cause both macroscopical damage and alterations of microdomains in biomembranes, leading to deleterious effects. These phenomena can be avoided if disaccharides are added during dehydration. In this work, we apply AFM imaging to directly visualize damage caused to supported lipid bilayers by water removal. We compare the efficiency of sucrose, trehalose, dextran, dimethyl sulfoxide, and glucose in preserving the structural integrity of domain-exhibiting model membranes. Finally, in addition to confirming previous findings, our results provide further insight into damage and alteration of microdomains in membranes as a consequence of stressful drying conditions.
Collapse
Affiliation(s)
- Salvatore Chiantia
- Biotechnologisches Zentrum, Dresden University of Technology, Tatzberg 47-51, D-01307, Dresden, Germany
| | | | | |
Collapse
|
29
|
Cordone L, Cottone G, Giuffrida S, Palazzo G, Venturoli G, Viappiani C. Internal dynamics and protein–matrix coupling in trehalose-coated proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1749:252-81. [PMID: 15886079 DOI: 10.1016/j.bbapap.2005.03.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Revised: 03/04/2005] [Accepted: 03/04/2005] [Indexed: 11/23/2022]
Abstract
We review recent studies on the role played by non-liquid, water-containing matrices on the dynamics and structure of embedded proteins. Two proteins were studied, in water-trehalose matrices: a water-soluble protein (carboxy derivative of horse heart myoglobin) and a membrane protein (reaction centre from Rhodobacter sphaeroides). Several experimental techniques were used: Mossbauer spectroscopy, elastic neutron scattering, FTIR spectroscopy, CO recombination after flash photolysis in carboxy-myoglobin, kinetic optical absorption spectroscopy following pulsed and continuous photoexcitation in Q(B) containing or Q(B) deprived reaction centre from R. sphaeroides. Experimental results, together with the outcome of molecular dynamics simulations, concurred to give a picture of how water-containing matrices control the internal dynamics of the embedded proteins. This occurs, in particular, via the formation of hydrogen bond networks that anchor the protein surface to the surrounding matrix, whose stiffness increases by lowering the sample water content. In the conclusion section, we also briefly speculate on how the protein-matrix interactions observed in our samples may shed light on the protein-solvent coupling also in liquid aqueous solutions.
Collapse
Affiliation(s)
- Lorenzo Cordone
- Dipartimento di Scienze Fisiche ed Astronomiche, Università di Palermo, Italy.
| | | | | | | | | | | |
Collapse
|
30
|
Chiantia S, Giannola LI, Cordone L. Lipid phase transition in saccharide-coated cholate-containing liposomes: coupling to the surrounding matrix. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:4108-4116. [PMID: 15835981 DOI: 10.1021/la046974c] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We performed FTIR measurements on cholate-containing liposomes (CCL) embedded in saccharide (trehalose or sucrose) matrixes with different contents of residual water. We obtained information on the CCL phase transition following the thermal evolution (310-70 K) of the IR spectrum of the carbonyl moieties of phospholipids in the frequency range 4225-4550 cm(-1). Furthermore, we simultaneously followed the thermal evolution of the water association band, which gave information on the behavior of the surrounding water-saccharide matrix. The analysis revealed a small sub-band of the water association band present in CCL but not in cholate-free liposomes, the thermal evolution of which is tightly coupled to that of the spectrum of the carbonyl moieties of phospholipids. We suggest that this band arises from water molecules, which are inserted within the lipidic structure, in the region located at the border between the hydrophilic and the hydrophobic moieties of phospholipids in the presence of cholic acid. Such water molecules could be responsible for the peculiar flexibility and hydrophilicity of CCL. Following Giuffrida et al. (J. Phys. Chem. B 2003, 107, 13211-13217), we also performed a Spectra Distance analysis, which enabled us to detect an overall liposomes-matrix structural coupling.
Collapse
Affiliation(s)
- Salvatore Chiantia
- Istituto Nazionale per la Fisica della Materia (INFM) and Dipartimento di Scienze Fisiche ed Astronomiche, Università di Palermo, Via Archirafi 36, I-90123 Palermo, Italy
| | | | | |
Collapse
|
31
|
Cottone G, Giuffrida S, Ciccotti G, Cordone L. Molecular dynamics simulation of sucrose- and trehalose-coated carboxy-myoglobin. Proteins 2005; 59:291-302. [PMID: 15723350 DOI: 10.1002/prot.20414] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We performed a room temperature molecular dynamics (MD) simulation on a system containing 1 carboxy-myoglobin (MbCO) molecule in a sucrose-water matrix of identical composition (89% [sucrose/(sucrose + water)] w/w) as for a previous trehalose-water-MbCO simulation (Cottone et al., Biophys J 2001;80:931-938). Results show that, as for trehalose, the amplitude of protein atomic mean-square fluctuations, on the nanosecond timescale, is reduced with respect to aqueous solutions also in sucrose. A detailed comparison as a function of residue number evidences mobility differences along the protein backbone, which can be related to a different efficacy in bioprotection. Different heme pocket structures are observed in the 2 systems. The joint distribution of the magnitude of the electric field at the CO oxygen atom and of the angle between the field and the CO unit vector shows a secondary maximum in sucrose, absent in trehalose. This can explain the CO stretching band profile (A substates distribution) differences evidenced by infrared spectroscopy in sucrose- and trehalose-coated MbCO (Giuffrida et al., J Phys Chem B 2004;108:15415-15421), and in particular the appearance of a further substate in sucrose. Analysis of hydrogen bonds at the protein-solvent interface shows that the fraction of water molecules shared between the protein and the sugar is lower in sucrose than in trehalose, in spite of a larger number of water molecules bound to the protein in the former system, thus indicating a lower protein-matrix coupling, as recently observed by Fourier transform infrared (FTIR) experiments (Giuffrida et al., J Phys Chem B 2004;108:15415-15421).
Collapse
Affiliation(s)
- G Cottone
- INFM and Dipartimento di Scienze Fisiche ed Astronomiche, Università di Palermo, Palermo, Italy
| | | | | | | |
Collapse
|